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Abstract 

Sitting for prolonged periods of time impairs people’s health. Prior research has mainly 

investigated sitting behaviour on an aggregate level, e.g., by analysing total sitting time per day. 

By contrast, taking a dynamic approach, here we conceptualise sitting behaviour as a continuous 

chain of sit-to-stand and stand-to-sit transitions. We use multilevel time-to-event analysis to 

analyse the timing of these transitions. We analyse ~30,000 objectively-measured posture 

transitions from 156 people during worktime. Results indicate that the temporal dynamics of sit-to-

stand transitions differ from stand-to-sit transitions, that people are quicker to switch postures 

later on the workday, and quicker to stand up after having been more active in the recent hours. 

We found no evidence for associations with physical fitness. Altogether, these findings provide 

insights into the origins of people’s stand-up and sit-down decisions, show that sitting behaviour 

is fundamentally different from exercise behaviour, and provide pointers for the development of 

interventions. 

Keywords (min 3; max 6) 

Sedentary behaviour, Time-to-event analysis, Survival analysis, Fatigue, Occupational health 

 

Significance Statement 

Nowadays, most people spend large parts of their waking time sitting. Problematically, sitting for 

long, uninterrupted periods of time harms people’s health. To develop effective interventions, we 

need a solid understanding of the aetiology of unhealthy sitting patterns. We proposed a novel 

approach to studying sitting behaviour, which aims to unravel the temporal dynamics of sitting 

patterns. Our research yielded novel insights regarding why and when people sit (e.g., mental 

fatigue may play a key role), and regarding how to best study sitting behaviour (e.g., we need to 

distinguish sitting behaviour from exercise behaviour). These findings have implications for the 

design of effective interventions targeting sitting behaviour. Moving forward, the science of sitting 

may benefit from adopting a dynamic approach. 
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Main Text 
 
Introduction 
 

In modern society, most people spend large parts of their waking time sitting, especially 

when they are at work (1–4). Numerous studies have demonstrated that sitting for extended 

periods of time contributes to mental and physical health conditions, such as depression, stress, 

obesity, diabetes, cardiovascular diseases, cancer, and all-cause mortality (5–7). Problematically, 

the detrimental health consequences of sitting appear present even in those who otherwise meet 

recommended  levels of daily physical activity (6). Therefore, to improve society’s health and well-

being, it is vital to change people’s sitting behaviour.  

So far, research into sitting behaviour has yielded crucial insights, such as that for working 

adults extensive sitting time mostly accumulates during worktime (8, 9), and that sitting directly 

influences metabolism, bone mineral content, and vascular health (10, 11). However, prior 

research on sitting behaviour has typically examined sitting on an aggregate level. That is, 

typically, summary characteristics of sitting behaviour (e.g., total sitting time, average duration of 

sitting episodes) are used as primary outcomes (12). This traditional approach conceptualises 

sitting behaviour as a static property of a person—or at best, as a static property of a person on a 

specific day. This approach parallels the mainstream approach that is used to study physical 

exercise, where volume of exercise is usually expressed and investigated as total hours or 

minutes per week. Yet, when used on sitting behaviour, such a static approach overlooks the fact 

that sitting is a highly dynamic phenomenon that is characterised by a continuous chain of 

transitions between sitting and standing. Here, we examine sitting behaviour on a more granular 

level: the level of individual sit-to-stand and stand-to-sit transitions.  

Relative to the traditional approach, our dynamic approach has three main advantages. First, 

our approach provides a sensitive method to capture the variability that is characteristic of natural 

sitting behaviour. On an average day, people transition between sitting and standing between 

~70 and ~140 times; also, people may stay in a single posture for time periods ranging from a few 

seconds to several hours (13). These substantial variations are presumably also present when 

people’s sitting behaviour is strongly constrained by the physical and social context, such as 

when people are paid to work behind a desk. That is, in such constrained contexts, people still 

make short but frequent posture switches, for example stretching the legs, visiting the bathroom, 

or grabbing coffee (14, 15). So, examining sitting behaviour on a person-level or day-level does 

not provide an ecologically valid representation of the time scale on which sitting behaviour 

occurs (see also 16). Recent studies support the potential importance of acknowledging dynamic 

variation in sitting. That is, the time people spend in prolonged, uninterrupted periods of sitting 

(>30 minutes), rather than total sitting time, may be the main cause of sitting-related health 

problems (17, 18). Our approach can be used to gain unique and detailed insight into the 
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dynamic variations in sitting, and therefore into the specific unhealthy characteristics of sitting 

behaviour.  

Second, our dynamic approach allows us to examine a range of candidate predictors to help 

explain sitting behaviour. Examining individual sit-to-stand and stand-to-sit transitions will yield 

more precise insights into people’s decision-making processes that drive their sit-to-stand and 

stand-to-sit transitions. Moreover, going beyond the traditional approach, a more granular 

investigation of sitting behaviour allows us to examine candidate predictors whose values vary 

throughout the day. In this research, we tested several candidate predictors: (a) We examined 

time of the day to examine natural circadian fluctuations in sit-to-stand and stand-to-sit 

transitions. Specifically, later during the workday people tend to experience higher levels of 

mental fatigue (19, 20); thus, examining time of the day may provide an insight into how mental 

fatigue affects sitting behaviour. (b) We examined people’s physical effort expenditure in recent 

hours, as recent effort is known to affect other health behaviours (21, 22). For example, after 

expending effort during the workday, people are less motivated to exercise in the evening (23). 

(c) We examined individual differences in physical fitness, as people who are less physically fit 

likely perceive higher energetic costs of standing up when sitting (24). By examining these 

candidate predictors, our dynamic approach opens the door to a more detailed understanding of 

the psychological processes that drive sitting behaviour (25).  

Third, our dynamic approach provides a way of analysing data from modern wearable 

technology (in our case, the activPAL monitor). Such technology records all individual sit-to-stand 

and stand-to-sit transitions that people make, with measurement precision in seconds. We 

capitalise on the richness of such time-series data by modelling individual posture transitions. For 

this purpose, we use multilevel time-to-event analysis. 

Time-to-event analysis, also known as survival analysis, is used to examine the timing of 

events—or, transitions from one state to another (26, 27). Originally developed to predict the 

timing of death (27), time-to-event analysis has subsequently been used in other fields of study, 

for instance, to predict the timing of relapse into substance abuse (28) or to predict the timing of 

emotion expression in children (26, 29). To the best of our knowledge, time-to-event analysis has 

not yet been used to examine determinants of health behaviour. In time-to-event analysis, 

researchers estimate the hazard of an event, which refers to the conditional (i.e., given that the 

event has not happened yet) probability that an event occurs per unit of time. As we examine 

events that can happen more than once within each individual (i.e., sit-to-stand and stand-to-sit 

transitions), we use a multilevel framework to model random variability in the timing of sit-to-stand 

and stand-to-sit transitions between individuals (i.e., events nested within individuals; 26, 29). 
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Specifically, using multilevel time-to-event analysis, we were able to examine predictors of (a) the 

hazard of standing up when sitting, and (b) the hazard of sitting down when standing. 

For working adults, overall unhealthy sitting behaviour is mostly accumulated during 

worktime (2). Thus, in this paper we limited our investigation to sitting behaviour during worktime. 

We analysed ~30,000 objectively measured posture transitions of 156 UK-based employees from 

various worksites, who performed mainly desk-based work. We used a split-samples cross-

validation procedure (30, 31). Specifically, prior to looking at the data, we randomly split the data 

into two samples of equal size: A training sample (n = 79; 7,316 sit-to-stand and 7,263 stand-to-

sit transitions) and a testing sample (n = 77; 7,216 sit-to-stand and 7,158 stand-to-sit transitions). 

We used the training sample for data exploration and fine-tuning of analyses and analytical 

decisions. After this, we preregistered our analysis plan for the testing sample to the Open 

Science Framework (URL to the preregistration). As the present study is, to our knowledge, the 

first study to use timing of sit-to-stand and stand-to-sit transitions as the primary outcome, and as 

we could reasonably expect associations with predictors in different directions, we anticipated a 

range of different study outcomes. Thus, rather than to specify one-sided hypotheses, we 

preregistered (a) our research questions, (b) a detailed analysis plan, and (c), for all plausible 

outcomes, what our interpretation would be. Unless otherwise specified, in this paper we report 

results from the preregistered analyses on the testing sample, along with the preregistered 

interpretation. We used this split-samples procedure because it diminishes the chance of 

reporting false positives through preregistration; at the same time, the training sample offered 

opportunity to explore the data, thus decreasing the probability of overlooking potentially relevant 

predictors (30, 31).  

 
 
Results 
 
Standing up versus sitting down 

First, we estimated the baseline probability of standing up when sitting versus sitting down 

when standing, and whether these develop differently over time. To investigate whether sit-to-

stand versus stand-to-sit transitions were qualitatively different, we tested whether the type of 

transition predicted the hazard of posture transition, and whether the hazard of standing up when 

sitting and the hazard of sitting down when standing developed differently over time.  

Results are presented in Table 1. Figure 1 displays the baseline survival function (i.e., the 

proportion of events that has not happened yet as a function of time) of stand-to-sit transitions 

and sit-to-stand transitions separately. There was a significant effect of type of transition, which 

suggested that participants were 5.4 times more likely to sit down per minute of standing, than to 

stand up per minute of sitting. Median survival times indicated that 50% of the time participants 

sat down within 1.8 minutes of standing, and stood up within 5.6 minutes of sitting. In other 

https://osf.io/rbaqx/?view_only=da51924da62242d7a5808ede6192561a
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words, people were quicker to select sitting over standing, i.e., they were quicker to choose the 

behavioural option that costs the least energy (32) and yields most comfort in the context of desk-

based working (33). These low median survival times suggest that participants were often rather 

quick to switch back and forth between standing and sitting. On the other hand, Figure 1 suggests 

that, consistent with previous research (4), 15% of sitting episodes lasted longer than 30 minutes. 

In fact, in our sample, 88% of participants had ≥ 3 long episodes of uninterrupted sitting on at 

least one single workday. Thus, despite the relatively large amount of short sitting and standing 

episodes, unhealthy sitting behaviour at the workplace is abundantly present. 

Going beyond previous work, the significant Transitions x Event time interaction suggests 

that sit-to-stand and stand-to-sit transitions have distinct associated probabilities and a different 

development over time. Specifically, the hazard of sitting down when standing was relatively high 

in the first minutes of standing, and decreased quickly over the time course of a standing episode. 

In other words, most of the time when people were active, they quickly sat down again. 

Conversely, the hazard of standing up when sitting was relatively low in the first minutes of sitting, 

and decreased gradually over the time course of a sitting episode (See also Figure S1). This 

means that once participants remained seated beyond the first minutes, they were likely to 

remain seated for a long, uninterrupted amount of time.  

Time of the day 

We examined time of the day as a predictor of the hazard of standing up when sitting and 

the hazard of sitting down when standing (Table 1). Figure 2 displays estimated survival functions 

for sit-to-stand and stand-to-sit transitions for a typical beginning (9 am) and end (5 pm) of a 

workday. With each hour increase in time of the day, participants were 4% more likely to stand up 

per minute of sitting, and 3% more likely to sit down per minute of standing. Estimated median 

survival times for 9 am indicated that 50% of the time participants stood up within 7.1 minutes of 

sitting and sat down within 2.0 minutes of standing. At 5 pm, estimated median survival times 

were 4.4 minutes and 1.6 minutes, respectively. This result suggests that later on the day, when 

fatigue had likely set in (19, 20), participants were quicker to switch back-and-forth between 

sitting and standing.  

Activity in last 5 hours 

We then examined recent activity, specifically activity in the last 5 hours, as a predictor of the 

hazard of standing up when sitting and the hazard of sitting down when standing (Table 1). We 

chose a 5-hour time window, based on previous studies on muscle fatigue that show that physical 

discomfort tends to set in within 2–5 hours of activity (34, 35). Figure 2 displays the estimated 

survival functions for 45 minutes (15%; ≈ -1 SD) versus 150 minutes (50%; ≈ +1 SD) of activity in 

the last 5 hours. With each additional minute that participants had been physically active in the 

last 5 hours, they were 0.17% more likely to stand up per minute of sitting, and 0.21% less likely 
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to sit down per minute of standing. We estimated median survival times for low activity in the last 

5 hours (i.e., 45 minutes of activity in the last 5 hours), and for high activity in the last 5 hours 

(i.e., 150 minutes of activity in the last 5 hours). Our estimates suggest that when participants had 

been relatively inactive in the last 5 hours, they stood up within 6.7 minutes of sitting 50% of the 

time. However, when participants had been relatively active, they stood up within 4.1 minutes of 

sitting 50% of the time. Also, when participants had been relatively inactive in the past 5 hours, 

they sat down within 1.5 minutes of standing 50% of the time. However, when participants had 

been relatively active, they sat down within 2.5 minutes of standing 50% of the time. So, after 

periods of more standing (i.e., being active, exerting more physical effort), people were more 

likely to stand, and less likely to sit.  

Individual differences in physical fitness 

Finally, we explored associations between individual differences related to physical fitness 

and the hazard of standing up when sitting and the hazard of sitting down when standing. We 

assumed that people who have higher Body Mass Index (BMI), are older, and/or are less active in 

their leisure time, are less physically fit. We conducted a-priori sensitivity analyses 

(Supplementary Text) to determine the magnitude of effects we could detect with a power of 1 – β 

= .80. Results indicated that we could detect medium to large effect sizes. However, based on 

exploratory analyses on the training sample, we expected only small effects, if any. Therefore, we 

decided to consider the analyses regarding individual differences exploratory, and to conduct 

these analyses on the full sample (training sample + testing sample), in order to provide the most 

precise effect size estimates that we can at this point, given the available data. There were some 

missing values on the predictor variables (See Methods).  

Results (See Table 2) indicated that none of the indicators of physical fitness were related to 

the hazard of standing up or to the hazard of sitting down. These results suggests that the timing 

of standing up while sitting and sitting down while standing does not depend on one’s level of 

physical fitness. It is important to note, however, that these tests were exploratory and that 

statistical power for these tests was relatively low. Therefore, more research into the associations 

between physical fitness and sitting patterns is necessary before drawing firm conclusions. 

 
 
Discussion  
 

We investigated sitting behaviour as a continuous chain of sit-to-stand and stand-to-sit 

transitions, using multilevel time-to-event analysis. In line with previous findings, people in our 

study switched often and quickly between sitting and standing (within minutes; 13), but also 

engaged in a considerable amount of prolonged, unhealthy sitting episodes at work (4). 

Extending previous research, we showed that sit-to-stand and stand-to-sit transitions are different 

both in probability and timing. This underscores the relevance of zooming in on these individual 
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transitions when investigating sitting behaviour. Adopting our dynamic approach, we found that 

people were quicker to switch postures later during the workday compared to earlier during the 

workday. Moreover, when people were more active (non-sitting) in the previous hours, they were 

quicker to stand up when sitting and slower to sit down when standing. Finally, whereas previous 

findings indicate that people who are older, have a higher BMI, or engage in less physical activity 

in their leisure time, generally sit more and longer (2, 36), we found no evidence that the timing of 

standing up and sitting down depends on individual differences in physical fitness.  

Our findings yield several novel insights into the nature of sitting and standing behaviour 

during the workday. First, our findings suggest that sitting behaviour is critically different from 

other health behaviours. When people feel fatigued at the end of the day they are generally more 

prone to engage in unhealthy behaviours, such as unhealthy eating or skipping exercise sessions 

(21, 23, 37–39). By contrast, our findings regarding time of the day suggest that when people feel 

fatigued at the end of the day, they engage in healthier sitting patterns—characterised by quicker 

posture switching. Although this finding is somewhat counter-intuitive, it is in line with a recent 

account of fatigue, which suggests that fatigue functions as a signal to stop the current task and 

switch to another (22, 40). Specifically, our findings are consistent with the idea that later on the 

day, people feel more fatigued (and possibly more restless and less concentrated); as a result, 

they more quickly change posture while working (e.g., stand up while reading a document), more 

quickly switch to a different work task that involves a change in posture (e.g., decide to print some 

documents), and/or more quickly take a short break that involves a change in posture (e.g., walk 

to the coffee machine).  

In a similar vein, our findings on activity in the last 5 hours also contradicted previous 

findings on other health behaviours. That is, previous research suggest that people are less 

motivated to engage in active behaviour after they have exerted effort (e.g., people are less 

motivated to go to the gym after an effortful workday; 21–23). In contrast, our findings show that 

people display fairly stable sitting and standing patterns over a timeframe of several hours. Thus, 

our findings imply that previous effort exertion does not necessarily diminish future effort exertion, 

at least not in the context of light physical activity (i.e., sitting versus standing and walking). 

Thus, where prior research has aimed to understand sitting behaviour using the same 

psychological models that proved useful for other health behaviours, physical activity in particular 

(41), our findings suggest that sitting behaviour is not necessarily comparable to these other 

health behaviours. The fundamental differences in energy expenditure, frequency, duration, and 

deliberate processing between physical activity and sitting behaviour (42) may contribute to these 

observations. This emphasizes that, to target sitting behaviour, practitioners cannot simply follow 

intervention strategies that have proven to successfully boost physical activity and exercise—

rather, they have to consider the potentially unique nature of sitting behaviour.  
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 Second, our findings highlight that our dynamic approach to sitting behaviour, along with the 

use of multilevel time-to-event analysis, complements and goes beyond the traditional approach 

that is used to understand sitting behaviour. We demonstrated that a dynamic approach is useful 

when attempting to outline the psychology of sitting (25), i.e., when attempting to uncover the 

decision-making processes that drive sit-to-stand and stand-to-sit transitions. However, we 

anticipate that other research fields that take an interest in the antecedents of sitting (e.g., 

environmental psychology, industrial design, medicine, and epidemiology) can also benefit from 

analysing sitting patterns on the level of sit-to-stand and stand-to-sit transitions, making use of 

time-to-event analysis.  

To date, numerous interventions to decrease sitting time have been designed and tested, 

such as height-adjustable desks (43), and online tailored advice on how to reduce and break up 

sitting (44). Although these interventions indeed reduce sitting time on the short-term, the benefits 

seem to wear off over a few months (45, 46). A plausible explanation for this decline is that, even 

though theory-based interventions are known to be more effective (47), the majority of existing 

interventions that aim to change sitting behaviour lack a theoretical basis (45). As our dynamic 

approach can be used to unravel the decisions that drive sitting behaviour, we expect that our 

approach will substantially contribute to the theoretical understanding of sitting behaviour—and, 

thus, help provide a solid basis for designing interventions. In particular, to effectively reduce the 

number of prolonged, uninterrupted periods of sitting, interventions should aim to accelerate 

people’s decisions to stand up when sitting. Besides gaining insights into potential intervention 

targets, exploring the temporal dynamics of sit-to-stand and stand-to-sit transitions also provides 

ideas on when interventions are most necessary. Our findings showed that later during the work 

day people naturally engage in healthier sitting patterns. This implies that interventions to change 

people’s sitting behaviour are most needed at the beginning of the workday.  

With our dynamic approach, future research can isolate the determinants of sit-to-stand and 

stand-to-sit decisions—and, thus, help identify targets for interventions that may otherwise be 

overlooked. A limitation of the current study is that we did not directly assess psychological 

states, such as mental fatigue, with self-report measures. Thus, in our view, it would be 

worthwhile for future research to combine our dynamic approach with an experience sampling 

procedure. This combined design would allow researchers to study how the impact of 

psychological states, including fatigue, varies over the course of a day (e.g., using models that 

include time-varying predictors; 48, 49). Such research should aid the development of 

interventions that target specific decision-making processes at specific moments in time (e.g., 

just-in-time adaptive interventions; 50).   

Our results suggest that unhealthy sitting behaviour is a general problem concerning many 

employees, not only less physically fit or older people. Conversely, we observed that people’s 



 

 

10 

 

sitting patterns are most unhealthy at the beginning of a new workday, when employees plausibly 

still feel fresh and fit. Sitting thus seems to be a ubiquitous consequence of present-day work. 

Building on our findings, along with the accumulating evidence on the negative consequences of 

sitting, one could argue that unhealthy sitting patterns should be considered a serious 

occupational risk for developing disease (see also 51). Regulation of other known occupational 

risks, such as exposure to loud noises, exposure to chemicals, or working nightshifts, has long 

been a formal responsibility of employers (‘duty of care’; 52). This line of reasoning raises the 

question who should take responsibility for changing employees sitting behaviour, in order to 

protect and improve our workforce’s physical health and mental wellbeing. Ultimately, gaining 

insights into the mechanisms that predict sit-to-stand and stand-to-sit transitions during worktime 

will provide practical starting points for both employers and employees to adopt and apply 

interventions that will help employees engage in healthier sitting patterns during work. 

 
 
Materials and Methods 
 

We used existing data collected by the Research Institute of Sport and Exercise Sciences at 

Liverpool John Moores University, UK. The dataset included objectively measured, continuous 

activity data of 167 working adults from various worksites in the United Kingdom.  

Participants and procedure.  

The full sample (n = 167) was combined out of four different samples that were collected for 

different research projects. Data from sample A (n = 14) were collected from university desk 

workers (not academic staff or technicians), data from sample B (n = 70) were collected from call 

agents from two different contact centres, and data from sample C (n = 61) and sample D (n = 

22) were collected from working adults without specific criteria for job role or sitting time. In each 

sample, the procedure for data collection was the same. All participants first provided 

demographics and other personal characteristics; anthropometric assessment was conducted by 

a trained researcher. Next, participants were instructed to continuously wear a thigh-mounted 

activPAL monitor (PAL Technologies, Glasgow, UK) for seven consecutive days. In addition, 

participants recorded the times they started and finished work each day in a log book. For all 

samples, study procedures were approved by the Liverpool John Moores University Ethics 

Committee. The samples did not significantly differ in the hazard of standing up when sitting (p = 

.991) and in the hazard of sitting down when standing (p = .999). 

Data from participants for whom no worktime data were available were excluded, leaving n = 

156 of the full sample, and n = 77 of the testing sample. Participants in the full sample had an 

average age of 33.92 (SD = 11.47), an BMI of 27.84 (SD = 6.84), and scored on average 3.52 

(SD = 0.88; on a 5-point scale) on leisure time activity level. The sample included 95 females 

(61%; one participant had a missing value on gender). The number of workdays varied between 
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one and seven, (M = 3.99, SD = 1.29). Per workday, participants on average sat for 5.31 hours 

(SD = 1.92) and were active for 2.18 hours (SD = 1.79).  

Measures.  

Sitting behaviour is defined as “any waking behaviour characterized by an energy 

expenditure ≤ 1.5 metabolic equivalents (METs), while in a sitting, reclining or lying posture” (9). 

In this study, we distinguished between sitting behaviour and activity, referring to all non-sitting 

behaviour. Sitting behaviour and activity were assessed using an activPAL monitor, a device that 

is worn on the thigh that directly assesses posture using triaxial accelerometry. ActivPAL 

monitors are known to have a good reliability and validity to measure sitting and activity behaviour 

(See 53 for more information on the activPAL monitor). Placement was standardised to the 

anterior midline of the upper right thigh, with monitors inserted into a flexible waterproof sleeve 

and attached using a hypoallergenic waterproof adhesive strip (3M Tegaderm). Time of the day, 

in hours since midnight (precision in seconds), was calculated from the time variable in the 

activPAL data. Activity in last 5 hours, in minutes (precision in seconds), was calculated as the 

sum of all active (non-sitting) time in the 5 hours prior to the previous stand-to-sit or sit-to-stand 

transition, per participant, per day. This variable was calculated before exclusion of non-work 

hours, such that we also took into account activity accumulated in the hours prior to starting the 

workday. BMI was calculated following an anthropometric assessment. Stature was measured to 

the nearest 0.1cm using a portable stadiometer and body mass to the nearest 0.1 kg using a 

calibrated mechanical flat scale. Body mass index was calculated as mass divided by stature 

(kg/m2). Data on BMI were available for 95 participants in the dataset (8222 sit-to-stand and 8172 

stand-to-sit transitions). Age was assessed by self-report. Data on age were available for 150 

participants in the dataset (14211 sit-to-stand and 14102 stand-to-sit transitions). Leisure time 

activity level was assessed by self-report on a scale from 1 (physically inactive) to 5 (physically 

active). Data on leisure time activity level were available for 58 participants in the dataset (6080 

sit-to-stand and 6020 stand-to-sit transitions). 

Data analysis. 

Split-samples procedure. In this study we used a split-samples cross-validation procedure 

(30, 31). Prior to looking at the data, we randomly split the data into two equal samples: A training 

sample (n = 79) and a testing sample (n = 77). As the data were combined out of several 

projects, we stratified data-splitting on project. First, we used the training sample for data 

exploration and fine-tuning of analytical decisions. Then, we designed and preregistered a 

specific  analysis plan for the testing sample. This preregistration (URL to the preregistration) 

described all research questions, preregistered interpretations of results, all data-processing 

steps (i.e., calculation of variables; data exclusion based on worktimes and non-wear), all 

https://osf.io/rbaqx/?view_only=da51924da62242d7a5808ede6192561a


 

 

12 

 

analyses, and handling of assumptions, and convergence / singularity issues. Unless otherwise 

mentioned, the main text of this paper reports preregistered analyses on the testing sample.  

Data on the between-subjects predictors BMI, age, and leisure time activity level were only 

available for part of the sample. We conducted a-priori sensitivity analyses (Supplementary Text) 

to determine the magnitude of the effects that we could detect with a power of .80. Results from 

this sensitivity analyses indicated that, given the sample sizes in our testing sample for BMI, age, 

and leisure time activity level, we could detect medium to large effects (Hazard Ratio [HR] ≈ 1.5 

for positive associations; HR ≈ 0.7 for negative associations). However, based on our exploratory 

analyses on the training sample, we expected only small (or null) effects. Therefore, we decided 

to examine these predictors in an exploratory fashion, and to examine associations with these 

predictors on the full sample (training sample + testing sample), in order to provide the most 

precise effect size estimates, given the data that we have.  

Exclusion of non-working hours. We excluded observations that fell outside of participants 

workings hours, using participants’ self-reported work start and end times. First, we narrowed the 

work time window by 15 minutes on both start and end times to correct for recall bias, settling into 

the building, and to make sure that commuting time was not included in the dataset (see also 53). 

Next, we excluded observations that fell outside of the narrowed work-time window. For 

observations crossing work start or end times, we only retained observations with at least 50% of 

the time inside the (narrowed) worktime window and excluded the rest (53; 75% of transitions in 

the training sample; 76% of transitions in the testing sample). After exclusion of non-worktimes, 

7,316 sit-to-stand and 7,263 stand-to-sit transitions remained in the training sample, and 7,216 

sit-to-stand and 7,158 stand-to-sit transitions remained in the testing sample.  

Non-wear and extreme values. Sitting episodes with a duration longer than 8 hours were 

identified as non-wear (i.e., as a time period in which the participant did not wear the activPAL 

monitor; 53) and excluded from the analyses (one observation in the training sample; no 

observations in the testing sample). In addition, active episodes with a duration longer than 8 

hours were identified as extreme values and excluded from the analyses (one observation in the 

training sample; no observations in the testing sample).  

Data preparation for time-to-event analysis. ActivPAL data were downloaded from the 

monitors using activPAL software and saved in event-based summary files. Event-based data 

files contain one row for each episode of lying/sitting, standing, and for each step. Each row 

indicates the time the episode begins (start time) and an activity code (sitting/lying down; 

standing; or stepping). For the current research, standing and stepping were taken together as 

active. In order to prepare the data for time-to-event analysis, we computed an event (sit-to-stand 

vs. stand-to-sit) variable and an event time (in minutes; precision in seconds) variable (26, 29). 

The event time variable contained the timing of the event since the previous event had ended 
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(i.e., since the person was at risk for the event to happen). To illustrate, for each sit-to-stand 

transition, the event time variable indicated how long people had been sitting; for each stand-to-

sit transition, the event time variable indicated how long people had been standing.   

Model fitting. All statistical analyses were performed in R version 3.6.1, using the survival 

package (55). For each research question, we fit a separate shared frailty Cox model (see 

Supplementary Text for model equations) on the event times for the transition of interest (posture 

transitions; sit-to-stand transition; or stand-to-sit transition), using the coxph function. We used 

the Cox approach because (a) it is a well-established approach for event data measured in 

continuous time (27), and (b) it provides robust estimates without requiring a-priori knowledge 

about the exact shape of the hazard function (26, 29). In each model, we included the predictor of 

interest (time of the day, activity in last 5 hours, age, BMI, or leisure time activity level). We also 

included a frailty term for participant, which is comparable to a random intercept in linear mixed-

level models. The frailty term captures the random variability in baseline hazard between 

individuals. We used Efron’s method for handling ties (27). Where we conducted separate 

analyses for sit-to-stand transitions and stand-to-sit transitions, we split the data into two 

datasets: one including only event times for sit-to-stand transitions, and one including only event 

times for stand-to-sit transitions. For each model, we interpreted the statistical significance of the 

fixed effect. If this effect was statistically significant, we interpreted the hazard ratio (HR; antilog of 

the raw coefficient) of the predictor. Furthermore, to aid interpretation, we calculated median 

survival times, which is the event time at which 50% of the events have happened, based on 

model predictions for different values of the predictor. In addition, we examined estimated survival 

functions (i.e., proportion of events that has not happened yet as a function of time). In Figure 1 

and Figure 2, we zoomed in on event times between 0 and 120 minutes to better visualise the 

differences in survival function for different levels of the predictor. As a result, in Figure 1, 0.29 % 

of the posture transitions were excluded; in Figure 2, 0.26 % of the sit-to-stand transitions and 

0.32 % of the stand-to-sit transitions were excluded.  

For each model, assumptions for multilevel time-to-event analysis were assessed following 

our preregistered analysis plan. Visual inspection of histograms indicated no concerns regarding 

the distribution of predictor variables. Examination of deviance residuals and score residuals (27) 

indicated no concerns regarding influential cases. For each model, the proportionality assumption 

was met, based on examination of Schoenfeld residuals (27). 

Data availability. All data that we used for our analyses, and R code for data processing, 

analysis and visualization, are available in EASY at https://doi.org/10.17026/dans-zfe-gk3b. 

.  
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Figures. 

 

 

Figure 1. Baseline survival functions for the hazard of standing up when sitting and the hazard of 

sitting down when standing separately 
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Figure 2. Estimated survival functions based on model predictions for indicative values of time of 

the day and activity in last 5 hours. Panels show (A) the estimated survival function for the hazard 

of standing up when sitting for 9am vs. 5pm time of the day, (B) the estimated survival function for 

the hazard of sitting down when standing for 9am vs. 5pm time of the day, (C) the estimated 

survival function for the hazard of standing up when sitting for high vs. low activity in the last 5 
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hours, and (D) the estimated survival function for the hazard of sitting down when standing for 

high vs. low activity in last 5 hours. The values for high (50%; 150 minutes) and low (15%; 45 

minutes) activity in last 5 hours roughly correspond to -1 SD and + 1 SD of the mean. 
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Tables 
 
Table 1. Results of the shared frailty Cox regression models for the baseline hazard of sit-to-

stand and stand-to-sit transitions, and the predictors time of the day and activity in last 5 hours 

 

Predictor Estimate df SE HR 95% CI of HR 

Model 1: Transition and Transition x Event time predicting the hazard of changing posture 

Random effect θ 0.194*** 74.34    

Transitiona 1.69*** 1 0.026 5.40 [5.128, 5.685] 

Transitiona x Event time -0.094*** 1 0.002 0.91 [0.906, 0.914] 

Model 2: Time of the day predicting the hazard of standing up when sitting 

Random effect θ 0.303*** 73.74    

Time of the day 0.035*** 1 0.005 1.036 [1.026, 1.046] 

Model 3: Time of the day predicting the hazard of sitting down when standing 

Random effect θ 0.514*** 74.62    

Time of the day 0.033*** 1 0.005 1.034 [1.024, 1.044] 

Model 4: Activity in last 5 hours predicting the hazard of standing up when sitting 

Random effect θ 0.153*** 69.35    

Activity in last 5 hours 0.002*** 1 < 0.001 1.002 [1.001, 1.002] 

Model 5: Activity in last 5 hours predicting the hazard of sitting down when standing 

Random effect θ 0.228*** 71.11    

Activity in last 5 hours -0.002*** 1 < 0.001 0.998 [0.997, 0.999] 

*** p < .001 

Note. df = degrees of freedom, SE = Standard Error, HR = Hazard Ratio, CI = Confidence 

Interval, a Transition was coded as 0 = sit-to-stand vs. 1 = stand-to-sit 
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Table 2. Results of the shared frailty Cox regression models for the predictors BMI, age, and 

leisure time activity level. 

 

*** p < .001 

Note. df = degrees of freedom, SE = Standard Error, HR = Hazard Ratio, CI = Confidence Interval 

 

Predictor Estimate df SE HR 95% CI of HR 

Model 1: BMI predicting the hazard of standing up when sitting 

Random effect θ 0.455*** 90.86    

BMI 0.070 1 0.072 1.073 [0.932, 1.235] 

Model 2: BMI predicting the hazard of sitting down when standing 

Random effect θ 0.477*** 90.63    

BMI 0.038 1 0.102 1.039 [0.850, 1.270] 

Model 3: Age predicting the hazard of standing up when sitting 

Random effect θ 0.371*** 144.20    

Age 0.014 1 0.060 1.014 [0.901, 1.142] 

Model 4: Age predicting the hazard of sitting down when standing 

Random effect θ 0.458*** 144.70    

Age <.001 1 0.067 1.000 [0.877, 1.141] 

Model 5: Leisure time activity level predicting the hazard of standing up when sitting 

Random effect θ 0.181*** 53.24    

Leisure time activity level -0.012 1 0.066 0.988 [0.867, 1.125] 

Model 6: Leisure time activity level predicting the hazard of sitting down when standing 

Random effect θ 0.381*** 54.34    

Leisure time activity level -0.026 1 0.082 0.975 [0.829, 1.146] 


