
Najmuddin, S, Asim, M, Munir, K, Baker, T, Guo, Z and Ranjan, R

 A BBR-based Congestion Control for Delay-sensitive Real-time Applications

http://researchonline.ljmu.ac.uk/id/eprint/13155/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Najmuddin, S, Asim, M, Munir, K, Baker, T, Guo, Z and Ranjan, R (2020) A 
BBR-based Congestion Control for Delay-sensitive Real-time Applications. 
Computing. ISSN 0010-485X 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Computing manuscript No.
(will be inserted by the editor)

A BBR-based Congestion Control for Delay-sensitive
Real-time Applications

Sayed Najmuddin · Muhammad Asim ·
Kashif Munir · Thar Baker · Zehua Guo ·
Rajiv Ranjan

Received: date / Accepted: date

Abstract The current User Datagram Protocol (UDP) causes unfairness and
bufferbloats to delay sensitive applications due to the uncontrolled con-
gestion and monopolization of available bandwidth.This causes call drops
and frequent communication/connection loss in delay sensitive applications
such as VoIP. We present a Responsive Control Protocol using Bottleneck
Bandwidth and Round trip propagation time (RCP-BBR) as an alternate so-
lution to UDP. RCP-BBR achieves low latency, high throughput, and low call
drops ratio by efficiently customizing Transmission Control Protocol (TCP)
Bottleneck Bandwidth and Round-trip propagation time (TCP-BBR) con-
gestion control. We conducted comprehensive experiments, and the results
show that proposed protocol achieves better throughput over UDP in sta-
ble networks. Moreover, in unstable and long-distanced networks, RCP-BBR
achieved smaller queues in deep buffers and lower delays as compared to
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UDP, which performed poorly by keeping delays above the call drop thresh-
old.

Keywords Congestion control · UDP · Delay sensitive application · VoIP

1 Introduction

RCP-BBR (Responsive Control Protocol-Bottleneck Bandwidth and Round-
trip) is a transport protocol that provides the efficiency of UDP (User Data-
gram Protocol) along with an enhanced congestion control mechanism. The
protocol provides a balanced solution for delay sensitive applications which
requires efficiency of UDP but do not want a protocol that is un-responsive
to congestion. The proposed protocol is based on TCP-BBR (Transmission
Control Protocol- Bottleneck Bandwidth and Round-trip) congestion control
algorithm proposed by Google [1]. TCP-BBR monitors available bandwidth
and minimum round trip time for the estimation of congestion whereas tra-
ditional TCP algorithms uses packet loss as a measure of congestion. RCP-
BBR follows the same approach for the detection of congestion however it
provides a modified mechanism to handle the reliability of packet deliv-
ery. The modified mechanism follows a UDP like behavior to achieve better
than TCP’s efficiency, for this it sacrifices in-order delivery and packet re-
transmission features. The proposed protocol is well suited for applications
that generate delay sensitive traffic such as voice service over telephone but
avoids to use UDP due to associated issues such as bufferbloat, protocol
unfairness, congestion collapse.

Recent advances in smart devices and cellular networks have introduced
new brands of internet applications which generates real-time, delay sensi-
tive traffic, such as games, audio/video calling and social media apps. With
every passing year this trend is growing and it is estimated that by 2020, 50
percent of the internet applications will be multimedia-oriented[2, 3]. For
example VoIP is one prominent and rapidly growing delay-sensitive ap-
plication of Internet that has been widely adopted as a new way of voice
communication [4]. It is also observed that there is a significant increase
in multimedia traffic over UDP [5, 6] which is causing critical issues such
congestion collapse and protocol fairness [7, 8].

In this changing situation the conventional transport protocol i.e. TCP/UDP
needs to be reconsidered to for enhanced efficiency and quality of service re-
quirements posed by these new applications. A recent study about the per-
formance comparison of TCP, UDP and STCP indicated that TCP is slow for
mutlimedia applications [9] while STCP is more efficient than UDP. TCP is
a reliable transport protocol but this reliability comes at the cost of extra de-
lays [10, 11] and traffic [12] shows that TCP has largest delay in a simulated
environment when compared with TCP, SCTP, DCCP and UDP, it further
explains that this long delay is due to TCP’s congestion control mechanism.
On the other hand UDP is very efficient however it is not only unreliable
but also is non responsive to congestion, furthermore it has some congestion
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issues of its own . UDP has no congestion control mechanism and a sender
can generate unbounded network traffic which can easily overload a router
and make it unavailable for any other traffic. The objective of our proposed
RCP-BBR protocol is to provide efficiency comparable with UDP but with-
out causing network congestion.
To efficiently estimate and avoid the network congestion, RCP-BBR adopts
the idea of using recent bandwidth and round-trip time from TCP-BBR, the
protocol handles congestion issues just like TCP-BBR. However in case of
congestion or packet loss the proposed protocol adopts a UDP like behavior
and maintains efficiency by not res-sending the lost packets, and hence do
not need packet re-ordering service as well. RCP-BBR not only solves issues
related to delay-sensitive applications, but also overcomes protocol fairness,
bufferbloats [13], and network congestion problems. To evaluate the pro-
posed scheme we developed many simulations on NS2 (Network Simulator
version 2) [14]. NS2 is an open source discrete event simulation frame-
work that supports modeling of variety of protocols including TCP, UDP
and IP, along with provision to develop custom network simulations. The
tool is widely used by network research community and is maintained by a
variety of well know research organization such as DARPA, Sun Microsys-
tem etc. The performance of RCP-BBR is compared with an efficient reliable
transport protocol TCP-BBR and an unreliable transport protocol UDP. The
performance is measured in terms of latency and throughput, as latency
indicates efficient delivery of packets at destination while throughput in-
dicates packet loss and re-transmissions. Our simulation results indicates
that proposed RCP-BBR protocol is more efficient than TCP-BBR and offers
better throughput as compared to UDP. The Transmission Control Protocol
(TCP) is a connection-oriented protocol that guarantees reliable data transfer
with congestion and flow control mechanisms. TCP offers reliable data trans-
fer with retransmission of lost packets, in-order delivery of data, acknowl-
edgments of received packets and congestion control mechanisms. Internet
applications (e.g., email, and file transfer) that require reliable data stream
services use TCP for data transportation. However, TCP requires additional
delay when a packet is lost or corrupted within the network [10, 11]. On
the contrary, delay-sensitive applications (e.g., VoIP, online games, and real
time streaming) employ User Datagram Protocol (UDP), which is a connec-
tionless and best effort delivery service protocol. It provides a basic packet
delivery service without the guarantee of packet delivery, ordering or du-
plicate protection [11]. UDP does not provide congestion control or packet
recovery mechanisms. Thus, delay-sensitive applications opt for UDP due
to its speedy transmission. Moreover, applications prefer to use UDP when
packet loss up to a certain extent is acceptable and delays due to the retrans-
mission of the lost packets are not desirable.
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1.1 Motivation

Recently, Internet has seen dramatic growth in the real-time traffic generated
by the emergence of various real-time applications (e.g., VoIP, online gam-
ing, and real-time broadcasting), which typically use UDP protocol [7, 8]. By
2020, it is estimated that 50% of the Internet applications will be multimedia-
oriented [2, 3], which require fast data transmission and reliable connection.
VoIP is one prominent and rapidly growing delay-sensitive application of
Internet that has been widely adopted as a new way of voice communica-
tion [4]. However, the use of UDP for VoIP can cause sever congestion in
real-time traffic, leading to call drops and frequent reconnections. Thus, re-
sulting in negatively affecting the users’ overall experience and satisfaction
with the application. Therefore, there is a need to develop a new protocol
that achieves low latency, high throughput, and low call drops ratio in delay-
sensitive applications.

1.2 Problem statement

The increasing growth of the UDP-based real-time traffic could easily cause
critical issues, such as congestion collapse, VoIP call drops [5, 6] and proto-
col fairness problems [7]. It could even prevent the traffic of well-mannered
congestion-controlled flows of TCP [15], and therefore, causes severe conges-
tion and bufferbloat problems in deep buffer [13]. Bufferbloat problem is the
buffering of excessive packets inside a network, causing congestion, unnec-
essary delay and reduced throughput [16]. Protocol fairness requires that
multiple competing flows receive equal shares of the available bandwidth
in a network. If any protocol obtains unfair capacity, it may tend to cause
problems such as congestion collapse [15]. This makes UDP less suitable for
the transportation of VoIP and other delay-sensitive applications due to its
unfairness to TCP and other protocols, even with its own competing UDP
flows. On the contrary, TCP has a built-in congestion control mechanism, but
it does not suit real-time applications because of its complex retransmission
mechanism.

1.3 Contribution

In this paper, we introduce an enhanced responsive transport protocol as
an alternate solution to UDP for delay-sensitive applications. Our protocol
is based on the TCP-BBR (Bottleneck Bandwidth and Round-trip) conges-
tion control mechanism proposed by Google [17]. We customize TCP-BBR
congestion control framework to propose an enhanced Responsive Control
Protocol (RCP-BBR) by efficiently removing reliability features to achieve
low latency and high throughput. RCP-BBR solves not only delay-sensitive
applications issues, but also overcomes protocol fairness, bufferbloats [16],
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and network congestion problems. Moreover, we focus on VoIP as a delay-
sensitive application for the analyses and evaluation of our proposed work.

1.4 Paper structure

The rest of the paper is organised as follows: Section 2 presents an overview
of the TCP-BBR protocol. Section 3 discusses our proposed approach. A
proof of correctness for the proposed approach is presented in section 4.
Section 5 reports the experimental results. Finally, section 6 concludes the
paper.

2 Principles of BBR

TCP-BBR uses the recent measurements of bandwidth and round-trip Time
(RTT) to significantly improve the bandwidth utilization with a low latency
[16]. Different from a loss-based and delay-based congestion control mech-
anism, TCP-BBR is practically rate-based rather than window-based [17].
When in-flight data size is greater than the Bandwidth-Delay Product (BDP)
of a path, a congestion occurs. BBR keeps in-flight data in range with a
path’s BDP. BBR only considers the bottleneck’s bandwidth (the estimated
maximum bandwidth available to a flow) and RTT (estimated from mini-
mum RTT from a moving window). BBR tries to attain high throughput and
low latency by estimating the above parameters. Rate balance is achieved
when the data size related to the in-flight packets becomes equal to the BDP
and that is the target operating point for BBR, as shown in Figure 1. The
changes in bottleneck’s bandwidth and minimal RTT estimates are the con-
gestion indicators for TCP-BBR. TCP-BBR limits its sending rate in response
to a decrease in bottleneck’s bandwidth. When a loss occurs, TCP-BBR goes
into a recovery mode, but it is less conservative than TCP-Reno [15] that
reduces the congestion window by a half.

3 Proposed Approach, TCP-BBR

In the standard TCP protocol, various overheads produce a delay in network
transmission. These delays mainly are: TCP buffer delay, retransmission de-
lay, queuing delay, packet re-ordering delay, Head of the Line (HOL) block-
ing, and delay related to packet acknowledgments [19]. TCP-BBR reduces
latency and provides higher throughput without removing the aforemen-
tioned delay parameters (except reducing the queuing delay) as discussed in
Section 2. Since the delay-sensitive applications realize retransmission and
packet reordering by themselves, we can remove the features from the TCP-
BBR sender’s side refers to accelerate the transmission. From the receiver’s
side, we apply TCP-QUICKACK, in which TCP passes the received packets
to the application layer as soon as it receives them. Afterwards, it sends an
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Fig. 1 Best Operating Point [18]

acknowledgment of the last received packet to the sender, where in-order
delivery feature can be removed from receiver’s side to avoid head of the
line blocking.

3.1 Sender’s side modification

We do the following modifications to TCP-BBR at the sender’s side.

3.1.1 Removing Packet Retransmission

In the standard TCP, when a packet is lost due to triple duplicates, Retrans-
mission Timeout (RTO) or any other reason, TCP retransmits the lost packet.
In the proposed approach, we remove this feature, because in delay-sensitive
applications, we cannot afford delays caused by lost packets retransmission
and most applications have their solutions to solve the problem. Algorithm
1 provides the pseudo-code for removing packet re-transmission.

3.1.2 Removing TCP Nagle

In the TCP, TCP Nagles [20] algorithm is used at the sender’s side and makes
TCP transmit a larger packet until its buffer is full. Since delay-sensitive
applications avoid any delay caused by waiting for the buffer to fill, we
can remove TCP Nagles. In the proposed mechanism, similar to UDP, we
change the receiver’s behavior by not waiting for the lost packets, and for-
ward the received packets to the application layer with no delay. Disabling
TCP Nagles algorithm is also called TCP-NODELAY. Algorithm 2 provides
the pseudo-code for disabling TCP Nagle in the proposed approach.
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Algorithm 1: Removing Packet Re transmission
Input: Re-Transmission Condition is set to false
/* Re-Transmission part */

Output: Modified TCP sender, will not re-transmit lost packets
1 Function Main(seqno, reason):
2 if (seqno == curseq) && (seqno > maxseq) then
3 idle()
4 if seqno > maxseq then
5 idle()

/* If the packet has not been transmitted */

6 else
7 ++nrexmitpack
8 nrexmitbytes= nrexmitbytes+ bytes
9 return true

Algorithm 2: TCP-Nodelay replacing the TCP Nagle’s Algorithm
Input: TCP with Nagle’s Algorith
Output: Modified TCP with no Nagle’s Delay
/* TCP Nagle’s Algorithm waits for TCP buffer to fill. This creates delay

in VoIP. Hence, we need to disable Nagle’s Algorithm, which by default

is enabled */

/* Nagle’s Algorithm */

1 if there is no bufferd data to send then
2 if the window size >= MSS and available data is >= MSS then
3 send complete MSS segment immediately
4 else
5 if there is still unconfirmed data in the buffer then
6 enqueue data in the buffer until an ACK is received
7 else
8 send data as quick as received
/* To remove TCP Nagle’s Algorithm which waits for TCP buffer to fill.

Here we remove If statement in second else statement */

9 else
10 if there is still unconfirmed data in the buffer then
11 enqueue data in the buffer until an ACK is received
12 else
13 send data as quick as received

3.1.3 Modifying probe RTT state

Mostly, delay-sensitive applications (e.g., VoIP) have two states: the first one
is ’burst’ period where the application data is sent in burst; and the second
one is ’silent’ or ’idle’ period where the application is idle by not sending any
data or very little data. TCP-BBR estimates bandwidth and RTT based on the
amount of data transmitted in recent time periods. In ’burst’ period of VoIP,
TCP-BBR gets an actual estimate of the bandwidth but in an idle period, the
estimate of the bandwidth becomes application-limited. We maintain a vari-
able for bandwidth estimation when the traffic suddenly switches from ’idle’
state to ’burst’ state. We also modify the ’probe-RTT’ state of BBR which is
10 seconds, in the ’idle’ state to not probe for RTT every 10 second when the
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sending rate is already low. The proposed approach keeps a record of the
’burst’ period, and probes only for the RTT if the ’burst’ period continues
for over 20 seconds. We use 20 seconds as the threshold because TCP-BBR
probes for RTT after every 10 seconds. If the ’burst’ period continues for
over 20 seconds, it creates a queue. Thus, to drain the queue and find the
minimum RTT, we double the time of probe after 20 seconds.

First, we check whether the RTT value is higher than the last minimum-
RTT. If yes, we then check whether the RTT is less than 700 ms. If it is so, we
continue in idle state, otherwise, we go for probe-RTT state. We use 700 ms
as a threshold, because it is a two-way propagation delay, and most delay-
sensitive applications delay requirement is to keep the delay below 400 ms.
Taking 700 ms as a threshold is fair enough to keep one-way propagation
below the applications delay requirement. We take 700 ms because in UDP,
only one-way propagation delay matters. In our approach, we take a two-
way propagation delay into account. One-way propagation takes 350 ms if
both sending and receiving links take the same amount of time. As sending
can take more time because of the routing or congestion from the sender’s
side, we reserve 100 ms for this purpose. Even if a receiver takes 300 ms, the
sender does not exceed 400 ms in most cases.

3.1.4 Adding AppLimited variable

We propose maintaining the average BBR maximum bandwidth estimate (10
RTT) to address the problem of switching state between the ’idle’ and ’burst’.
Algorithm 3 provides the pseudo-code of all the listed modifications made
to TCP-BBR on the sender side.

AppLimited =
recent

∑
i=bw

BtlbwMaxevery10Rtt′s/n

/* where n is the number of recent max.bandwidth records */
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Algorithm 3: RCP-BBR
Output: Enabling TCP-NODELAY No Nagle Algorithm

1 if there is no bufferd data to send then
2 if the window size >= MSS and available data is >= MSS then
3 send complete MSS segment now
4 else
5 send data immediately

Output: Adding application limited variable
/* To use it when VoIP jumps from idle to burst mode */

6 Function App-limited(estimated.btlbw, recentMax.bw, state):
7 if estimated.btlbw >= 160 bytes && recentMax.bw>= 100 && state == ProbeBW then
8 burst-mode == true
9 recentmax-counter++

10 applimited-bandwidth += recent-Max.bw
11 if burst-mode then
12 app-limit = applimited-bandwidth / recentMax-counter
13 else
14 app-limit = 1
15 return Max(estimated.btlbw, app− limit);

Output: Checking for ProbeRTT state whether to probe or not
16 Function Check-ProbeRTT(estimated.rtt, recentmin.rtt, state):
17 if estimated.rtt >= 700ms && recentMin.rtt>= 700 && state==ProbeBW then
18 burst-mode == true
19 rttseconds++
20 if burst-mode then

/* Entering ProbeRTT state */

21 ProbeRTT()
22 rttseconds++
23 else
24 if !burst-mode && rttseconds < 20sec then
25 rttseconds++
26 else
27 ProbeRTT()
28 rttseconds = 0
29 return rttseconds;

30 3.2 Receiver’s side modification

After the sender’s side modifications, now we discuss the receiver’s side
modifications.

3.2.1 Applying TCP QUICKACK

We apply the modified TCP QUICKACK at the receiver’s end where TCP
passes the received packets to the application layer as soon as it receives
them, and then sends an acknowledgment of the last received packet to the
sender, on which BBR depends.
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3.2.2 Removing In-order delivery check

In the proposed approach, we remove the in-order delivery check from the
receiver’s side in order to remove the head of the line blocking, which creates
seconds of lag in communication. Thus, we achieve all the functionalities of
UDP through the modified TCP-BBR with its acknowledgment feature.

Algorithm 4: QUICKACK
Output: QUICKACK and removing In-Order delivery
/* QUICKACK part */

Output: Modifying TCP reciever, to acknowledge newly received packet without
waiting for other packets

1 Function output(packet, lastack):
2 if (seq no == cur seq )&&(seq no > max seq ) then
3 Duplicate();
4 if seq no > max seq then
5 sendACKtoSender()
6 passPacketToApplication()

/* If the packet the out of order */

7

8 else
/* Let the Application Handle it */

9

10 passPacketToApplication()
11 return true;

Figure 2 presents a complete view of the proposed methodology.
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Fig. 2 A Complete Diagram of Methodology

4 Proof of Correctness

UDP has a less overhead for generating header information than TCP and
it is free from maintaining the variables that are needed for congestion and
flow control (like the variables maintained in TCP). The end-to-end path
delays and other hop-to-hop impairments that are added to the overall delay
are the same for both TCP and UDP. However, UDP has no control over the
queuing delay in routers unlike TCP. This leads to problems like bufferbloat
and severe congestion. The overall delay for sending a segment using UDP
takes an amount of time that can be calculated by using Equation I.

dudp =
N

∑
i=1
{di

proc + dqueuei + di
trans + di

prop} (1)
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dudp = End to end delay of a UDP packet

N = Total number of links between sender and receiver
dproc = Processing delay, the time elapsed between arrival of a packet till it is assigned to outgoing queue.

dtrans = Transmission delay, time required to transmit the packet on medium
dqueue = Queuing delay at router

dprop = Propagation delay or travel time in the medium

This delay should not exceed 400 ms threshold, otherwise, a VoIP ap-
plication discards the late packets. Equation I clearly formalises the delay
involved in sending a UDP segment. Standard TCP is not appropriate for
delay-sensitive applications like online gaming and streaming. In TCP, all re-
liability features such as retransmission, buffering, in-order delivery etc. are
considered. These produce a delay, which makes TCP infeasible for delay-
sensitive and streaming applications. Using Equation II, the delay overhead
of standard TCP can be calculated.

dtcp = dNagle + dudp + drtx + drdr + dack (2)

dtcp = End to end delay of a single tcp packet

dNagle = Delay caused by Nagle algorithm

dudp = As given by equation 1

drtx = Re-transmission delay, time required to re-transmit a lost packet
drdr = Time spend in re-ordering packets at receiver
dack = Time elapsed at sender while it waits for acknowledgement

For a VoIP application, we do not need to retransmit the lost pack-
ets and also cannot afford packet reordering at the receiver’s end, which
creates head-of-the-line blocking. To achieve UDP-like speed, we eliminate
those delays, which make TCP infeasible for delay-sensitive applications and
hence, we propose modifications in TCP-BBR. The proposed mechanism also
achieves congestion control like in BBR, which accurately estimates the avail-
able bottleneck bandwidth. In case of UDP, sending with more data rate than
available bandwidth causes packet loss and congestion in routers, which is
not handled by UDP. Hence by removing retransmission, in-order delivery
from TCP, and by keeping acknowledgment feature that BBR needs for es-
timation, we can control packet losses, bufferbloats (severe congestion in
deep buffers), and congestion collapses. It also provides help and more in-
telligence for VoIP applications and application developers to choose the
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Fig. 3 Call Drops after applying above technique .

right encoding scheme. By applying TCP-BBR on VoIP and other delay-
sensitive applications, we achieve more router-friendly traffic unlike UDP
traffic, which is by default blocked by most of the firewalls due to security
and other issues. These changes lead us to Equation I I I:

dRCP−BBR = dtcp + dack (3)

dRCP−BBR = End to end delay of a RCP-BBR packet
dtcp = As given by equation 2

dack = Time elapsed at sender while waiting for acknowledgement

Equation 3 makes the basis of the proposed approach. In the proposed
approach, the data is sent as quickly as it is sent by UDP. The packet ac-
knowledgment feature is kept on with some addition of bitwise overhead of
TCP header and TCP variables states maintenance, which add little delay to
the overall end-to-end sending of the packet. All above TCP overheads are
bitwise operations which do not exceed over 5 ms. Normally, a VoIP appli-
cation sends data every 20 ms. So, even if we increase that interval to 25 ms,
it has no impact on the overall quality of the VoIP application. Applying this
strategy controls the call drops by compromising a littl on quality. Figure (4)
shows how the proposed mechanism controls the call drops by not letting
buffers to get full and to cause severe congestion. As a result, we get enough
data flowing which does not leave the VoIP application call drop threshold
to be met [5] [6].
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Fig. 4 Network topology of NS-2 Simulations

5 Performance Evaluation

We evaluate the proposed scheme using the NS2 network simulator1. We
used a dumbbell topology with multiple senders and receiver nodes on two
sides of a single link, each end of the link is connected to a router. This is
consistent with the simulation setups that are used in the related literature,
e.g., [21], for the evaluation of VoIP and Constant Bit Rate (CBR) traffics. The
proposed scheme is compared with UDP and TCP-BBR (NODELAY) using
average end-to-end delay, throughput, jitter, and the number of lost packets
as the performance metrics.

To evaluate the proposed scheme we developed a number of simulations
using Network Simulator 2 (NS2), the simulation parameters are taken from
a similar study [21]. There are 4 senders, 4 receivers and two routers as
show in the fig. The link between routers is considered as the bottleneck
link where we can see the effect of traffic load. We used a number of link
capacities ranging from 0.30 Mbps to 1.92 Mbps for the bottleneck link, this
was done to study the behavior of traffic response of protocols. As queues
at routers plays an important role in packet delays and handling congestion,
we used a number of queue sizes in the routers ranging from 5 to 50 pack-
ets. The queues acting as buffers are observed to detect the development of
congestion, we studied the effect of changing the size of these buffers. For
performance evaluation we simulated three candidate protocols TCP-BBR,
UDP and our proposed protocol RCP-BBR, for each simulation we calcu-
lated packet loss, jitter, delay and throughput for each protocol. Throughput
and latency here are linked with the work which is being customized and
are considered as standard terms used in TCP/UDP based networks. For-
mally, the term latency here is used to represent the total time elapsed from
sending a packet by a source till its acknowledgment is received. Similarly
throughput is taken as number of successfully received packets.

1 https://www.isi.edu/nsnam/ns/
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Table 1 Different configurations (Some results are listed here; the remaining ones are shown in
the figures): Q: Queue Size, D: Delay (ms), C: Capacity (Mbps), N = Number of Lost Packets, J
= Jitter (ms).

Run Link b/w Routers Other links BBR UDP RCP-BBR

# Q D C D C N J N J N J

1 25 3 1.92 5 1 0 0.00001 0 0.00001 0 0.00001

2 5 3 1.92 5 1 0 0.00001 0 0.00001 0 0.00001

3 50 90 0.50 30 1 2930 28 1956 25 1885 27

4 5 90 0.50 30 1 3015 0.21 2046 0.019 1975 0.020

5 20 290 0.30 30 1 3386 0.067 2603 0.057 2524 0.062

5.1 Simulation Setup

The CBR traffic flows run between three sender and three receiver nodes,
whereas a VBR traffic flow runs between the fourth sender and the fourth
receiver nodes. The simulation time is 12 seconds. The configuration of the
links and the routers is given in Table 1. We developed 5 simulation scenar-
ios, which corresponds to five different networks. The first two simulations
are developed to simulate network condition where there is no congestion
and no packet is lost. We call it stable network condition, the other three
simulation represents networks with possible congestion and we refer these
networks as unstable networks. In simulation 3, 4 and 5 we changed the
network conditions such that there will be more congestion and increased
packet loss, this is done to study the performance of selected protocols in
congested networks. We considered VoIP as network traffic , each simulation
is executed for 12 seconds and we recorded various network parameters.

The five simulation scenarios/runs in Table 1 correspond to five differ-
ent network conditions. The simulation runs 1 and 2 provide the parameter
values for a stable network having large and small buffer sizes of the routers
respectively. The runs 3 and 4 provide the parameter values for an unstable
network having large and small buffer sizes of the routers respectively. The
run 5 provides the parameter values for a highly unstable network.

5.2 Results and Discussion

Simulation run 1 and 2 are designed for a no loss situation. The no loss
scenarios are developed to evaluate and compare protocol performances to
determine their dependence upon network configuration and available re-
sources. Also this is usually taken as ideal behavior and is not considered as
overall performance for all situations. As shown in Figures 5-8, all protocols
performed almost in a similar way in terms of throughput and latency. It is
very encouraging that BBR performed similar to UDP despite the fact that
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Fig. 5 Stable network scenario with large queues of routers (Run 1): Throughput comparison.

Fig. 6 Stable network scenario with large queues of routers (Run 1): Latency comparison.
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Fig. 7 Stable network scenario with small queues of routers (Run 2): Throughput comparison.

it has a congestion control mechanism which means extra processing and
delays where as UDP is free from such burdens. The benefit of BBR is that it
will attempt to handle congestion while keeping up the performance close
to UDP, whereas UDP will only worsens the situation.

Figures 9 and 10 show the results of an unstable network scenario with
a large queue (run 3) and packet losses in the network. In this scenario, the
performance of the proposed scheme (RCP-BBR) and UDP is similar. Al-
though, as shown in Figure 9, the throughput of BBR with TCP-NODELAY
is similar but due to significant number of packet drops, its performance is
not satisfactory for VoIP and delay-sensitive applications. With only a few
milliseconds difference, UDP and RCP-BBR finish the transmission within
13 seconds. However, transmitting the same amount of data by BBR takes
over 16 seconds, which is not suitable for VoIP traffic.

Figures 11 and 12 show an unstable network scenario with a small queue
(run 4). In this scenario, the number of packet losses is more than those in
run 3. Considering the throughput, the performance of UDP and RCP-BBR is
similar at the start (transient state) but with the passage of time the perfor-
mance of RCP-BBR becomes better (steady state). Considering the latency,
the performance of UDP is better at start only (transient state), while the
performance of RCP-BBR is better in the long run (steady state).

Figures 13 and 14 show the results of run 5 for which there is a highly
unstable network having packet losses and high link delays. In this simula-
tion, the performance of BBR is worse than that of UDP and RCP-BBR. The
performance of UDP and RCP-BBR is similar. Considering the latency, the
performance of UDP is better than that of RCP-BBR at the start (transient
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Fig. 8 Stable network scenario with small queues of routers (Run 2): Latency comparison.

Fig. 9 Unstable Network Scenario with large queues of routers (Run 3): Throughput compari-
son.



A BBR-based Congestion Control for Delay-sensitive Real-time Applications 19

Fig. 10 Unstable Network Scenario with large queues of routers (Run 3): Latency comparison.

Fig. 11 Unstable Network Scenario with small queues of routers (Run 4): Throughput compar-
ison.
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Fig. 12 Unstable Network Scenario with small queues of routers (Run 4): Latency comparison.

Fig. 13 Highly Unstable Network Scenario (Run 5).
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Fig. 14 Highly Unstable Network Scenario (Run 5).

state) but with the passage of time (steady state), when congestion occurs,
UDP keeps network buffers full and that consequently creates more delays
as compared to RCP-BBR. RCP-BBR handles network congestion and does
not overload a router’s buffer. In highly unstable networks, the proposed
approach keeps small buffers while UDP overloads the buffers and that con-
sequently creates buffering delays. Hence, it can be said that the proposed
approach performs better in a highly unstable network.

In stable networks, all the considered protocols are suitable for VoIP ap-
plications. In unstable networks (Runs 3-5), TCP-BBR results in a significant
packet loss, which is not suitable for VoIP traffic. The proposed approach
(RCP-BBR) performs better than UDP in deep congested buffers (Runs 3-5)
as the average latency of the proposed technique is less than that of UDP.
Therefore, RCP-BBR performs better than UDP in practical scenarios.

6 Related Work

Congestion in wide area computer networks such as internet has always
been a very active and dynamic area for researcher. As the network equip-
ment, technology, type and amount of traffic keeps of progressing, there are
always new problems related to congestion. Handling congestion is tricky
as latency, throughput , and quality do not adjust with each other easily and
there is always a compromise and a balanced needed. Each new solution
brings up some new adjustments, in this section we are focused at viewing
the congestion issues of real time traffic specifically VoIP. For such traffic
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throughput is usually a priority along with Quality of Service (QoS), UDP
provides good throughput but is poor at QoS, also it raises many conges-
tion issues as well. Following is a brief description of related work, a careful
review of existing solutions revealed that a better solution is possible.

Although, congestion control is a network layer problem, yet it could be
addressed from both network layer and transport layer. From network layer
perspective, congestion could be controlled either by using queue manage-
ment (QM) or Active Queue Management (AQM) [22, 23]. However, AQM is
more advance and adaptive than queue management. Many QMs and AQMs
have been introduced and deployed in recent decades. Drop Tail [22, 24]
was introduced to work in FIFO manner and operate the network buffer
as a FIFO queue. Later, when traffic increased on network routers, Drop
Tail could not perform well because of its nature of filling the buffer and
leaving no space behind, which caused persistent queues. Then, Random
Early Discard (RED) [24], a new queue management approach, was intro-
duced which keeps some threshold for dropping packets when congestion
occurred. It does not access the network buffer by keeping max-min thresh-
old. RED performs well and still used by network routers. With the passage
of time several variants of RED were proposed [24]. Lately, another AQM
was introduced for network routers called CoDel (control delay), which is
an adaptive queue management mechanism. Unlike RED, it performed extra
calculation to drop packets by calculating packet in-time and out-time differ-
ences to drop packets randomly. It is an IETF implementation project which
is an ongoing research [25, 26]. A hybrid of RED and CoDel is a researched
by [27] which provides a balance of these two scheme and is efficient at han-
dling the bufferbloat problem. A similar solution is also proposed recently
by Jim Gettys and his team [16] they addressed the problem from network
layer as well as transport layer perspective.

Congestion as transport layer problem has long been researched, initially,
AIMD [28] (Additive Increase and Multiplicative Decrease) was introduced
on top of TCP to provide some basic congestion control and flow control
algorithms, such as slow start and congestion avoidance. It introduced addi-
tive increase in normal transmission and a multiplicative decrease in trans-
mission when congestion is signaled. For quite some period, this mechanism
worked well, but as traffic and usage of Internet increased, many problems
occurred which AIMD could not handle. Therefore, many different mecha-
nisms introduced afterwards based on different congestion signals such as
loss based and delay-based mechanisms. Basically, they are called different
TCP variants, such as TCP-Reno, TCP-BIC, TCP-NewReno, TCP-Vagas, TCP-
Cubic, Compound TCP (Microsoft) [19, 29, 30, 31] and later on TCP-BBR on
which this paper is based.

Congestion control is not only discussed for TCP but there are some
solutions proposed for UDP such as [32] provides a low latency and high
throughput datagram control protocol, similarly a [33] provides a compara-
tive study of high speed congestion control protocols. These studies indicates
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that congestion can be handled at network layer, by TCP as well as by a UDP
protocol as well.

All of mentioned congestion control algorithms are either loss/delay
based or sometimes a hybrid of both such as Microsoft Compound TCP [29].
Recently, a new congestion control framework was introduced by Google
called ’BBR’ [17] that stands for ”Bottleneck Bandwidth and Round-Trip
Time” based on estimation and it precisely estimated the available band-
width and bottleneck bandwidth plus minimum Round-Trip Time (RTT).
It modeled the whole network path as a single bottleneck by which BBR
claimed that it provided high throughput and low delay. Initially, these
claims seemed to be promising. Google implemented this BBR on Google
B4 WAN servers and YouTube edge servers [34] that improved their per-
formance up to 20% worldwide. But in recent research [18], “Experimental
evaluation of BBR congestion control” the writers explained full and deep
experimental evaluation of BBR at higher speeds and different scenarios
which varied in parameters such as number of flows, flows RTT and dif-
ferent buffer sizes at bottleneck. Among other things, they evaluated it by
considering the features like throughput, packet loss, fairness comparison
between Cubic and BBR. They used Linux kernel 4.9 for their experimental
setup and tested on a test-bed with 1 Gbps and 10 Gbps data rate at bottle-
neck. At the end of a rigorous experimental evaluation Mario Hock and his
team were able to conclude that BBR had a lot of retransmission on small
buffers compared Cubic TCP. They also stated that with multiple flows BBR
did not stay fair with Cubic TCP. As BBR is an ongoing implementation and
research Neal and his team did some modification to their framework and
called it BBR v2 [34] which solved the problems pointed by Mario Hock in
[18].

7 Conclusion

In stable networks, both TCP and UDP protocols suit VoIP delay-sensitive
applications perform, but in unstable networks TCP’s performance deems
deficient due to delays and reliability issues such as retransmission and in-
order delivery delays. UDP causes Quality of service QoS problem in un-
stable networks, such as frequent call drops in VoIP and congestion and
bufferbloat problems in networks. In order to overcome this problem, we
introduce RCP-BBR, a new responsive control protocol that perform well
in both stable and unstable networks. By removing retransmission, in-order
delivery and other overheads from modifying TCP-BBR and keeping the re-
ceiver’s acknowledgment, we achieve a higher throughput in shallow buffers
and a lower delay in deep buffers. After evaluation of our proposed ap-
proach, we achieve similar delay performance and up to 5% improvement
in throughput over UDP in stable networks, while in unstable and long-
distanced networks, we achieve smaller queues, and low delays where UDP
performed poorly by keeping delays above VoIP call drop threshold. There-
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fore, our approach performs similarly both in stable and high-speed net-
works, and in unstable networks. Our approach keeps queuing delays low
to VoIP threshold in deep buffers while UDP keeps buffers full and delays
high which frequently met call drop thresholds.
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