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Abstract: A data-driven Bayesian network (BN) is used to investigate the effect of human factors on maritime safety 12 

through maritime accident analysis. Its novelties consist of 1) manual collection and analysis of the primary data 13 

representing frequencies of risk factors directly derived from maritime accident reports, 2) incorporation of human 14 

factors into causational analysis with respect to different maritime accident types, and 3) modelling by a historical 15 

accident data-driven approach, to generate new insights on critical human factors contributing to different types of 16 

accidents. The modelling of the interdependency among the risk influencing factors is structured by Tree Augmented 17 

Network (TAN), and validated by both sensitivity analysis and past accident records. Our findings reveal that the 18 

critical risk factors for all accident types are ship age, ship operation, voyage segment, information, and vessel 19 

condition. More importantly, the findings also present the differentiation among the vital human factors against 20 

different types of accidents. Most probable explanation (MPE) is used to provide a specific scenario in which the 21 

beliefs are upheld, observing the most probable configuration. The work pioneers the analysis of various impacts of 22 

human factors on different maritime accident types. It helps provide specific recommendations for the prevention of a 23 

particular type of accidents involving human errors. 24 
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1. Introduction 27 

Most shipping accidents (e.g. collisions, groundings, crash, fire and explosions) are characterised with a feature of low 28 

probability-high consequence. Catastrophic maritime accidents may cause huge loss of human lives, damage to the 29 



society and environment (Zhang and Thai, 2016). Analysing maritime accidents becomes one of the effective ways to 30 

reduce the risks of maritime transportation. Maritime administrations conduct accident investigation to learn how the 31 

systems fail and why accidents happen (Schroder-Hinrichs et al., 2011). It then simulates maritime administrations to 32 

review and revise regulations, standards and management. To mitigate the risk and improve the safety of maritime 33 

transportation, the International Maritime Organisation (IMO) introduced the Formal Safety Assessment (FSA) 34 

methodology for its applications to the rule-making process (IMO, 2002; IMO, 2013). According to the literature, the 35 

organisation, working condition, and navigational environment are the major driving forces to maritime accidents 36 

(García-Herrero et al., 2012). 37 

Although modern ships are highly equipped with advanced technologies (e.g. navigation technology, onboard 38 

information, bridge resource management systems), human factors present a major contribution to accidents. There is 39 

no consensus on the statistical analysis of the causations leading to maritime accidents, due to the different 40 

perspectives on the analysis and use of various investigation approaches. However, human errors, technical failures, 41 

and mechanical failures are traditionally highlighted as the main root causes of accidents (Celik and Cebi, 2009a). The 42 

maritime sector initiated the studies on the contribution of human and organisational factors (HOFs) to maritime 43 

accidents from the occurrence of the capsizing of the Herald of Free Enterprise in 1987 (Transport, 1987). Since then, 44 

accident investigations pay more attention to human factors in maritime safety. It is widely accepted that the human 45 

element, accounting for 75%-96% of maritime casualties, plays an important role in accidents involving modern ships 46 

(Trucco et al., 2008a, Fan et al., 2018, Tzannatos, 2010). Human factors are often viewed as causes behind anything 47 

that goes improperly at sea.  48 

Human factors are usually adopted as a concept that considers other relevant factors, including workplace conditions, 49 

physical and natural environment, procedures, technology, training, organisation, management, as well as seafarers 50 

(i.e. fatigue, task load, mental state, etc.) (Psarros, 2015). Several researchers have studied the contribution of human 51 

and organisational factors to ship accidents (Chauvin et al., 2013, Chen et al., 2013, Xi et al., 2017). The majority of 52 

accidents occurred due to one of or the combination of the following causes: poor crew competence, fatigue, lack of 53 

communication, lack of proper maintenance, lack of application of safety culture and protocols or other procedures, 54 

inadequate training, poor situation assessment, and stress (Vinagre-Ríos and Iglesias-Baniela, 2013, Fan et al., 2018). 55 

Generally, seafarers often face more accidents than the crews working onshore, as reported by Roberts and Hansen 56 

(2002). Also, there is a consideration that a system for the training and assessment of the non-technical skills (NTS) of 57 

co-operation, leadership and management skills, situation awareness and decision making, needs to be established in 58 



the maritime industry (Saeed et al., 2016). Thus, the effective control of these causes will help reduce the risk and 59 

improve safety at sea. 60 

Risk analysis is an effective way of devising mitigation measures that prevent accidents. Among the studies on the risk 61 

analysis of maritime transportation, historical data analyses have been widely used. A number of papers have used 62 

historical accident data for such purposes (Zhang et al., 2013; Zhang et al., 2016). Ronza et al. (2003) investigated 828 63 

accidents in port areas using event trees to predict the frequency of accidents. Kujala et al. (2009) included detailed 64 

accident statistics over a ten-year period in a collision model, to analyse the safety in the Gulf of Finland. Jin and 65 

Thunberg (2005) proposed the logic regression model based on accident data from 1981-2000, to analyse fishing 66 

vessel accidents.  67 

This study investigates how human factors combined with non-human factors affect maritime transportation using risk 68 

analysis. Allowing for the drawbacks arising from traditional studies, this study proposes a novel risk assessment of 69 

the human factors contributing to maritime accidents. Since 75-96% of maritime accidents involve human elements, it 70 

is worth of clarify the extent to which a maritime accident can be defined as a human-related maritime accident. This 71 

study aims at investigating how different risk factors generate, in an individual or combined manner, an impact on 72 

different types of human-related maritime accidents. Based on recorded maritime accident reports from the Marine 73 

Accident Investigation Branch (MAIB) and the Transportation Safety Board of Canada (TSB) between 2012 and 74 

2017, a primary database is developed. Owing to the use of accident data, the Tree Augmented Network (TAN) model 75 

is developed to construct a BN and train the data, to propose a data-driven BN-based approach for accident analysis.  76 

The rest of the paper is structured as follows. The literature review on human factors research in maritime accidents 77 

and data-driven BN-based maritime accident modelling is conducted in Section 2. Section 3 demonstrates the 78 

methodology of Risk Influencing Factors (RIFs) identification, BN structure learning, and sensitivity analysis. Section 79 

4 analyses the results of the RIFs for different ‘accident types’, illustrates the combined manners generated by RIFs, 80 

and highlights the implications through providing a plausible explanation for the observed findings. Finally, Section 5 81 

concludes the paper. 82 

2. Literature review 83 

2.1 Human factors in maritime safety studies 84 

Since the United States Coast Guard (USCG) reported in 1993 that human factors had essentially caused 85 

approximately 80% of maritime accidents and near misses, there has been an overwhelming understanding that human 86 



factors play a significant role in a considerable number of incidents or catastrophes by triggering chain events. Also 87 

Branch et al. (2004) disclosed that watchkeeping manning levels and individual’s abilities to discharge duties were 88 

essential factors resulting in collisions and groundings.  89 

The preliminary findings of literature review are summarised in Table 1. For organisational factors, Lu and Tsai 90 

(2008) studied the influence of the safety culture in ship accidents, concluding that the job safety, management safety 91 

practices and safety training were among the top influencers. On the other hand, people surrendered the level of vessel 92 

safety standards to a profitable activity, due to commercial affairs (Vinagre-Ríos and Iglesias-Baniela, 2013). It 93 

showed that increase and decrease in the level of ship-owners’ profits influence the amount of risk tolerated in their 94 

ship operation. From this point of view, human factors were also derived from the practices and operating policies 95 

established by shipping companies.  96 

Table 1 Strengths and weaknesses of the relevant research 97 

Researchers Journals  Strengths Weaknesses 

Lu and Tsai, 

2008 

Accident Analysis 

& Prevention 

Considered the organisational factors, and 

empirically evaluated the influence of safety 

climate on vessel accidents from a seafarer’s 

perspective 

Factors were limited and it did not 

illustrate the interaction between 

organizational factors. 

Vinagre-Ríos 

and Iglesias-

Baniela, 2013 

The Journal of 

Navigation 

Mentioned the increasing incidence of 

human errors, and pointed out how 

commercial affairs of shipping market 

influences the risk behaviour of shipping 

business decision-makers. 

Not interacted with other risk factors 

Antão and 

Guedes Soares, 

2008 

Reliability 

Engineering & 

System Safety 

Identified the difference in the pattern of 

human factors and other factors associated 

with high-speed crafts accidents, as 

compared with the more traditional ocean-

going ships 

Human factors were limited to human 

tasks, including set speed, set 

heading, look out planning, trip 

maintenance, engine, and others.  

Celik and Cebi, 

2009 

Accident Analysis 

& Prevention 

Improved Human Factors Analysis and 

Classification System (HFACS) framework 

to identify the role of human factors in 

shipping accidents. Improvement of safety 

precautions in shipping companies 

Did not reflect the influences between 

different factors levels. 

Chen et al., 

2013 

Safety Science The use of HFACS-MA model with WBA 

can help ensure the relevant latent conditions 

and indicate the adverse influences between 

different factors levels. 

It needed a dedicated HOFs 

framework with detailed items 

specified for marine accidents and the 

weights of the HOFs identified. 

Yang et al., 

2013,  

Ocean 

Engineering 

Proposed a modified CREAM to facilitate 

human reliability quantification in marine 

engineering; developed a quantitative human 

reliability analysis method using fuzzy 

Bayesian; realised real time monitoring of 

marine engineers' failures under uncertainty 

It required appropriate consideration 

of the influence of the CPCs with 

neutral effects in the establishment of 

belief fuzzy rule bases. 

Soner et al., 

2015 

Safety Science Used Fuzzy Cognitive Mapping (FCM) with 

HFACS to propose a novel proactive 

modelling and add value to predicting the 

root causes revealed in various levels. 

Detailed predictions of suggested 

safety mechanisms need to be studied 

in order to manage the operational 

level. 

Pristrom et al., 

2016 

Reliability 

Engineering & 

System Safety 

Used data collected from the Global 

Integrated Shipping Information System 

(GISIS) together with expert judgement 

There was no detailed human factors 

data. 

Zhang et al., 

2016 

Safety Science A literature review on expert knowledge and 

BN modelling for shipping accidents in view 

of risk and uncertainty. 

New methods for experts’ knowledge 

elicitation should be developed to 

improve the model validity. 



Chauvin et al., 

2013 

Accident Analysis 

& Prevention 

Used HFACS to identify contributory 

factors involved in 39 collisions; used MCA 

and hierarchical clustering to reveal three 

patterns of factors 

The small number of collisions 

studied but the high number of 

variables. 

Wang and 

Yang, 2018 

Reliability 

Engineering & 

System Safety 

Showed the key factors influencing 

waterway safety including the type and 

location of the accident and conducted a 

novel scenario analysis to predict accident 

severity. 

The completeness of the data mined 

from the text case was arguable. It 

focused more on objective variables 

than human factors. 
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However, human factors have complex casual relations with each other. Lema et al. (2014) applied a K-means 99 

clustering method to indicate that human factors coexist with the condition of a ship and other external factors. It was 100 

widely accepted that human factors were associated with a variety of unsafe actions, behaviours, omissions and 101 

hazardous conditions, and the human element was a key factor in maritime accidents (Antão and Guedes Soares, 102 

2008). A lot of attention has been paid to the risk analysis of accidents’ causes related to human factors. Celik and 103 

Cebi (2009b) proposed a Human Factors Analysis and Classification System (HFACS) approach to identify human 104 

factors in shipping accidents. It revealed the hierarchy structure of human factors and the logic relations within the 105 

structure.  In line with HFACS, Reason's Swiss Cheese Model and Hawkins' SHEL model, Chen et al. (2013) 106 

modified the HFACS to make it more applicable to maritime accidents (i.e. HFACS-MA model), to comprehensively 107 

describe HOFs in maritime sector. In addition, human performance defined by human reliability in accidents was 108 

analysed, and the human failure probabilities were estimated to assess the risk level of shipping industry (Yang et al., 109 

2013, Yoshimura et al., 2015, Yang and Wang, 2012). Soner et al. (2015) combined Fuzzy Cognitive Mapping (FCM) 110 

with HFACS to generate a proactive model in fire prevention on-board ships, which revealed that human factors were 111 

significant, leading to the failures of maritime operations with an enormous and long-term loss.  112 

To analyse human factors, the maritime accident database is used as one of the most valuable sources to obtain the 113 

primary data, including the global database like Global Integrated Shipping Information System (GISIS) (Pristrom et 114 

al., 2016), and the historical accident data collected from national/regional maritime administration (Zhang et al., 115 

2016). However, such databases contain less detailed information than the extractions from maritime accident reports. 116 

From this perspective, the investigation reports of maritime accidents provide the navigational circumstance, process 117 

of the failure chain, environmental information, direct or indirect causes of the accidents, and the actions taken during 118 

the accidents. Even the hidden potential hazards and causal relations between various factors are demonstrated in 119 

detail. However, few studies utilised accident reports to conduct accident and human factors analysis due to the time-120 

consuming process of extracting the data from each report. Therefore, even studies utilising accident reports provided 121 

limited content of the data sources. For instance, Chauvin et al. (2013) underlined 39 vessels involved in 27 collisions 122 

derived from the accident reports, identifying the importance of Bridge Resource Management (BRM) for situations 123 



of navigation in restricted waters. Chen et al. (2013) utilised the accident reports of selected cases from MAIB for 124 

accidents analysis providing a complement measure. Wang and Yang (2018) analysed all accident investigation 125 

reports by China's Maritime Safety Administration (MSA), to conclude the key risk factors influencing waterway 126 

accident severity. 127 

To determine human factors in maritime, 109 accident reports extracted from 152 reports in MAIB and 52 accident 128 

reports obtained from 61 reports in TSB during 2012-2017 have been reviewed, as these two organisation are among 129 

the most representative from the literature (Chauvin et al., 2013, Graziano et al., 2015, Kum and Sahin, 2015). 130 

According to such reports, human factors are derived. 131 

Previous studies relying mainly on the secondary database for RIFs identification were unable to present primary 132 

information from accident reports. One of the novelties of this study is to incorporate human factors derived from 133 

accident reports into accident analysis, combined with other external factors, considering both subjective and objective 134 

factors. New insights brought by the data acquisition through the investigation of accident reports, cannot be achieved 135 

by only relying on the secondary or existing databases. 136 

2.2 Data-driven BN in maritime accident modelling 137 

Quantitative risk and reliability analysis techniques have been widely used to reduce the probability of failure in 138 

maritime sectors, including Hazard and Operability Studies (HAZOP), Failure Mode and Effects Analysis (FMEA), 139 

Fault Tree Analysis (FTA), Event Tree Analysis (ETA) and Bayesian Network (BN). (Yeo et al., 2016; Zhang and 140 

Thai, 2016). BN has become popular for maritime risk modelling during the period of 2004–2013. It has been widely 141 

applied to maritime risk analysis, including collision risk assessment (Hanninen and Kujala (2012); Ma et al., 2016), 142 

human reliability analysis (Martins and Maturana, 2013), and risk estimation (Montewka et al., 2014). Zhang et al. 143 

(2013) and Zhang et al. (2014) estimated the navigational risk through FSA and BN to improve the navigational safety 144 

in the Yangtze River, and established the BN for the analysis and prediction of the congestion risk of inland 145 

waterways. In addition, BN was constructed to represent the dependencies between the indicators and accident 146 

consequences (Zhang et al., 2016), revealing that the accident consequences were the most sensitive to the position 147 

where the accidents occurred.  148 

Weber et al. (2012) pointed out that the number of publications on BN in risk analysis increased every year, due to its 149 

advantages of learning and inference algorithms. Compared with other classical methods used in dependability 150 

analysis, BN sustains its advantages by conducting multi-state variable modelling. For example, BN displays similar 151 

features as the Fault Tree (FT) which fits for the two-state variables, but has additional ability to model a multi-state 152 



variable and several outputs. In addition, FT can also be translated into BN to make it applicable for the system 153 

(Khakzad et al., 2011, Mahadevan et al., 2001, Bobbio et al., 2001, Trucco et al., 2008b, Montani et al., 2006). 154 

However, the system modelling tends to be complicated with increasing variables, while leading to an apparent 155 

increase of parameters and related functions (Weber et al., 2012). For instance, Markov chain (MC) analyses the 156 

probability of a failure event with the dependencies among variables and has the ability to represent multi-state 157 

variables, which implies sophisticated system when the number of variables increases. However, BN has required a 158 

relatively low number of parameters and a small-size conditional probability table.  159 

Moreover, BN is a competitive approach for maritime risk modelling owing to its abilities to utilise either expert 160 

knowledge and/or data-driven methods. When failure data in the relevant investigations are absent, expert knowledge 161 

continues to be an essential data source for shipping accident modelling (Fu et al., 2016; Zhang and Thai, 2016). 162 

Experts’ knowledge was found to play an essential role in BN structures, regarding the definition of the relative 163 

probabilities due to the insufficient historical data (Hänninen and Kujala, 2014; Zhang and Thai, 2016).  164 

In light of this characteristic, BN is appropriate for modelling maritime accidents since it enables quantitative risk 165 

analysis of HOFs (Trucco et al., 2008b, Akhtar and Utne, 2014, Castaldo et al., 2016) and allows for analysing RIFs to 166 

rationalise relevant regulations for risk control practice by a data-driven approach (Yang et al., 2018). However, 167 

compared to the studies using expert judgements in BN construction, data-driven BN in maritime risk analysis 168 

involves less subjective bias but is scarce, requiring more experimental evidence to be collected before its wide 169 

practical applications.  170 

To fulfil this gap, the study uses new primary data derived from maritime accident reports to conduct a data-driven 171 

BN to generate the structure of RIFs. Consequently, it will provide new insights on the differentiation among critical 172 

human factors contributing to each of the different types of maritime accidents.  173 

3. Methodology 174 

3.1 Identification of RIFs  175 

To analyse the maritime accident types under various RIFs, identifying and selecting the RIFs from the accident 176 

reports are necessary. The data was obtained from case-by-case analysis of recorded maritime accidents from MAIB, 177 

and TSB. These reports are among the most representative from the literature (Chauvin et al., 2013, Graziano et al., 178 

2015, Kum and Sahin, 2015). 179 



To generate the RIFs, the procedure consists of four stages: (1) online database searching, (2) reports screening and 180 

selection, (3) refining and analysis, (4) RIFs selection. Through online database searching, the maritime accident 181 

reports from MAIB (https://www.gov.uk/maib-reports ) and TSB (http://www.bst-tsb.gc.ca/eng/rapports-182 

reports/marine/index.html ) between Jan. 2012 to Dec. 2017 were obtained. In order to ensure the human element 183 

relevance, these accident reports are screened with a focus on human factors-related accidents. For instance, some 184 

accidents disobeying rules of passengers or weather caused accidents in small fishing vessels, are discarded due to that 185 

they are irrelevant to human factors. Therefore, the study generates the database with 161 reports involving 208 186 

vessels. Then, the reports are further refined and analysed, especially according to the illustration of ‘safety issues’ 187 

and ‘common factors’. To identify the most relevant factors (i.e. 32 risk factors in Table 2), manual analysis from 188 

original maritime accident reports generates 77 factors first. All the risk factors relating to human performance were 189 

first identified from maritime accident reports. Domain experts were then invited to fine turn them to merge those of 190 

high similarity. The other factors are retained even they have revealed some interdependence, but in the meantime 191 

present significant difference. The quantitative extent to which one factor influences another is calculated through the 192 

TAN modelling. 193 

Moreover, it is necessary to set the appropriate criterion to select RIFs. Using a low criterion threshold allows more 194 

human-related RIFs to be selected. However, involving a large number of variables with a low sample size will not be 195 

able to ensure the robustness of the model. Oppositely, using a high criterion threshold offers sufficient samples for 196 

risk analysis, but excludes some important human-related factors, such as factors 27, 13, 30. So the criterion threshold 197 

of 19.35% was calculated from averaging the frequencies of all common factors in Table 2. Therefore, 14 common 198 

factors whose frequencies were higher than the average value, 19.35%, were extracted as RIFs in the study. They are 199 

sea condition, information, management system, weather condition, equipment and device, clear order, supervision 200 

and supports, experienced, communication, vessel condition, risk assessment, safety culture, complacent, regulation. 201 

Table 2 The risk factors contributing to human errors in maritime accidents. 202 

Number Risk factors Frequency 

1 Poor communication and coordination 30.77% 

2 Ineffective supervision and supports (lone watchkeeper or working isolated, 

improper supervision of loading operation) 
32.69% 

3 No detailed passage plan or revised passage plan was unsafe 13.46% 

4 Swift duty between pilots and seafarers or change of the steering mode 1.44% 

5 Over-reliance on devices (AIS, GPS…), or poor lookout 15.38% 

6 Fast speed 9.62% 

https://www.gov.uk/maib-reports
http://www.bst-tsb.gc.ca/eng/rapports-reports/marine/index.html
http://www.bst-tsb.gc.ca/eng/rapports-reports/marine/index.html


7 No clear order (not accurately interpret and apply the requirements of a safe 

manning document) 
37.50% 

8 Limited time to respond 12.50% 

9 Lack of situation awareness 14.42% 

10 Fatigue/asleep/tiredness and desire to rest 13.46% 

11 Emotion (low level of arousal, panic, anger, unhappiness) 1.92% 

12 Unfamiliar with/lack of equipment knowledge, inexperienced, ill-prepared 32.69% 

13 Complacent about the duties or underestimation of the severity of the condition 

(low state of alertness) 
21.63% 

14 Recreation drugs, alcohol 6.73% 

15 Cognitively overload 4.81% 

16 Physical incapacitation 0.96% 

17 Distracted/insufficient attention 16.35% 

18 Stress 0.48% 

19 Poor condition of the vessel, increasing complexity of propulsion arrangements, 

and modifications made to vessels, size 
28.85% 

20 Devices and equipment on board not fully utilized or operated correctly (BNWAS 

switched off, alarm system not in the recommended position or not noticed) 
37.98% 

21 Ergonomic impact of innovative bridge design (visual blind sector ahead, motion 

illusion) 
11.06% 

22 Insufficient or lack of updated information (poor quality of equipment data, 

falsified records of information, relies on a single piece of navigational 

equipment); no automatic means or without indicators for necessary observing 

(working indicators, light) 

45.67% 

23 Weather condition: wind, visibility (dense fog) 39.42% 

24 Sea condition: falling tide, current, waves 53.37% 

25 Noisy and vibrating environment 0.96% 

26 Fairway traffic (traffic density, repetitive nature of the route) 16.35% 

27 Inappropriate or ambiguous code, endorsement, regulations, procedure, 

instructions, formal published guidance; operation manual, requirement 
19.71% 

28 Lack of risk assessment 26.92% 

29 Dysfunctional management system (shore management, maintenance 

management, bridge source management, on board management, safety 

management systems, port service, qualification examination, inadequate training, 

practice, emergency drill) 

40.87% 

30 Lack of safety culture, precautionary thought 24.52% 

31 No medical and fitness standards for crews 2.40% 

32 Commercial pressure, public pressure or industrial pressure (financial constrains) 4.33% 
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However, human factors in maritime accidents are usually combined with other external factors, such as sea condition, 204 

weather condition, fairway traffic, and vessel condition, to affect the safety procedure in navigation. From this 205 

perspective, it is beneficial to combine human factors with other non-human RIFs to investigate their combined effect 206 

on maritime safety. Referring to the previous factors analysis studies (Wang and Yang, 2018; Fan et al., 2020), 16 207 



important risk factors are described as important factors contributing to maritime accidents as stated in the literature 208 

and accident reports. It contains ship type, hull type, ship age, length, gross tonnage, ship operation, voyage segment, 209 

ship speed, vessel condition, equipment/device, ergonomic design, information, weather condition, sea condition, time 210 

of day, fairway traffic. It is evident that five overlapped factors exist in both groups (i.e. human and non-human), 211 

including vessel condition, equipment/device, information, weather condition, sea condition. These factors not only 212 

make significant contributions to maritime accidents but also are connected to human factors in maritime safety. At 213 

last, it encompasses a total of 25 RIFs, seen in Table 3. 214 

Table 3 25 RIFs defined in maritime accidents  215 

No RIFs Notation Description 
Corresponding 

values 

1 Ship type 𝑅𝑆𝑇 

Passenger vessel, tug, barge, fishing vessel, container ship, 

bulk carrier, RORO, tanker or chemical ship, cargo ship, 

others. 

1, 2, 3, 4, 5, 6, 

7, 8, 9, 10 

2 Hull type 𝑅𝐻𝑇 Steel, wood, aluminium, others 1, 2, 4, 5 

3 Ship age (years) 𝑅𝑆𝐴 (0 5], [6 10], [11 15], [16 20], >20, NA 1, 2, 3, 4, 5, 6 

4 Length (m) 𝑅𝐿 ≤100, >100, NA 1, 2, 3 

5 
Gross tonnage 

(GT) 
𝑅𝐺𝑇 ≤300, 300 to 10000, >10000, NA 1, 2, 3, 4 

6 Ship operation 𝑅𝑆𝑂 
Towing, Loading/unloading, Pilotage, Manoeuvring, 

Fishing, At anchor, On passage, others 

1, 2, 3, 4, 5, 6, 

7, 8 

7 Voyage segment 𝑅𝑉𝑆 In port, Departure, Arrival, Mid-water, Transit, others 1, 2, 3, 4, 5, 6 

8 Ship speed 𝑅𝑆𝑆 Normal, fast  
1(normal), 

2(fast) 

9 Vessel condition 𝑅𝑣𝑐 

The condition of vessel has nothing to do with the accidents; 

Increasing complexity of propulsion arrangements, 

modification made to vessels, size contributes to the 

accidents 

1(good), 2(bad) 

10 
Equipment 

/device 
𝑅𝐸 

Devices and equipment on board operate correctly; 

Devices and equipment not fully utilised or operated 

correctly (e.g., BNWAS switched off, alarm system not in 

the recommended position or not noticed) 

1(good), 2(bad) 

11 Ergonomic design 𝑅𝐸𝐷 

Ergonomic friendly or ergonomic aspects has nothing to do 

with accidents; 

Ergonomic impact of innovative bridge design (e.g., visual 

blind sector ahead, motion illusion) 

1(good), 2(bad) 

12 Information 𝑅𝐼 

Effective and updated information provided; 

Insufficient or lack of updated information (e.g., poor 

quality of equipment data, falsified records of information, 

relies on a single piece of navigational equipment, without 

working indicators or light for necessary observing) 

1(good), 2(bad) 

13 Weather condition 𝑅𝑊𝐶 Good/poor considering rain, wind, fog, visibility 1(good), 2(bad) 

14 Sea condition 𝑅𝑆𝐶 Good/poor considering falling/rising tide, current, waves 1(good), 2(bad) 

15 Time of day 𝑅𝑇𝐷 07:00 to 19:00, other 1(good), 2(bad) 

16 Fairway traffic 𝑅𝐹𝑇 

Good or poor considering complex geographic environment, 

dense traffic, or receptive nature of the route contributing to 

ignorance 

1(good), 2(bad) 

17 Communication A1 Good or poor communication and coordination  1(good), 2(bad) 

18 Supervision A2 

Effective or ineffective supervision and supports  

(lone watchkeeper or working isolated, improper supervision 

of loading operation) 

1(good), 2(bad) 

19 Clear order A6 

Good or unclear order from documents 

(not accurately interpret and apply the requirements of a safe 

manning document) 

1(good), 2(bad) 



20 Experienced A11 
Familiar or unfamiliar with/lack of equipment knowledge, 

experienced or inexperienced, good or ill-prepared; 
1(good), 2(bad) 

21 Complacent A12 

Properly understand or complacent about the 

duties/underestimation of the severity of the condition (low 

state of alertness) 

1(good), 2(bad) 

22 Regulation A18 

Good or inappropriate/ambiguous code, endorsement, 

regulations, procedure, instructions, formal published 

guidance; operation manual, requirement 

1(good), 2(bad) 

23 Risk assessment A19 Good or lack of risk assessment 1(good), 2(bad) 

24 Management A20 

Good or dysfunctional management system  

(including shore management, maintenance management, 

bridge source management, on board management, safety 

management systems, port service, qualification 

examination, inadequate training, practice, emergency drill) 

1(good), 2(bad) 

25 Safety culture A21 Good or lack of safety culture, precautionary thought 1(good), 2(bad) 

 216 

Most of the definitions of variables’ states can be extracted from accident investigation reports. For example, ‘accident 217 

type’, ‘ship type’, ‘hull type’, ‘ship operation’, and ‘voyage segment’, are classified into different states according to 218 

the classification of MAIB or TSB, which are widely accepted in the industry. In the process of accident reporting 219 

analysis, hull type are defined as steel (1), wood (2), glass reinforced plastic (3) (MAIB 8-2017), aluminium (4), foam 220 

reinforced plastic (5) (MAIB 7-2017), polyester (6) (MAIB 24-2016). However, the accident statistics reveals that 3, 221 

5, and 6 take account a very low proportion in total. Therefore, these three types are combined as one – ‘others’ and 222 

defined as state 5. Finally, in the table, it is presented as state 1,2,4,and 5. The other variables are graded according to 223 

the literature (e.g. Wang and Yang, 2018), including ‘ship age’, ‘length’, and ‘gross tonnage’. In addition, ‘vessel 224 

condition’, ‘communication’, ‘supervision’, etcetera, are graded based on whether it is blamed for the faults in 225 

accidents, as data characteristic described in the reports. 226 

3.2 BN structuring learning- TAN 227 

Using the RIFs, there are two approaches for the BN structure learning. One relies on expert knowledge, which takes 228 

advantage of subjective causal relationships to build a BN structure. An alternative approach is a data-driven method 229 

to reveal the interactive dependencies between RIFs, which relies on the learning algorithm and data correlation in the 230 

BN model. This study develops the BN structure by the latter approach. First, the raw data from maritime accident 231 

reports is manually analysed to generate a database containing 161 reports involving 208 vessels. The sample size for 232 

such database is applicable for the risk analysis using a data-driven approach. As far as data-driven approach is 233 

concerned, there are many approaches, e.g. Naïve Bayesian Networks (NBN), Augmented naive Bayesian Networks 234 

(ABN), and TAN. Among them, TAN learning constructs qualitative BN representing RIFs’ interactive dependencies, 235 

which helps generate insights on critical human factors contributing to different types of accidents. In addition, 236 

Friedman et al. (1997) pointed out that TAN outperforms naive Bayes, while maintaining the computational simplicity 237 



and robustness that characterise naive Bayes. TAN is proved to be more competitive and accurate than other data-238 

driven network construction approaches (Murphy and Aha, 1996). 239 

A BN encodes a joint probability distribution over a set of random variables U, which is an annotated directed acyclic 240 

graph (DAG). Let  1 n, ,U A A C  where n stands for the number of RIFs, the variables 1, nA A  are the RIFs and 241 

C is the class variable (accident types). Consider a graph structure where the class variable is the root, that is, 242 

C   ( C  denotes the set of parents of C in U), and each RIF has the class variable as its unique parent, i.e. 243 

iA C  for 1 ≤ i ≤ n. A BN defines a unique joint probability distribution over U given by 244 

1 n 1
( , , ) ( ) ( | )

n

ii
P A A C P C P A C


  .                                                                                                                       (1) 245 

The DAG on  1, nA A  is a tree if iA  contains only one parent for all Ai, except for one variable without parents 246 

(referred as the root). There is a function π which can define a tree over 1, nA A , if there is exactly one i such that 247 

i （） 0  (i.e. the root of the tree), and there is no sequence 1, ki i  such that 1jij i （ ）  for i ≤ j< k and 1ki i （ ）  248 

(i.e., no cycles). Such a function defines a tree network where  ( ),i iA C A  if 0i （） , and iA C  if 249 

0i （） .  250 

Learning a TAN structure is an optimisation problem. Solving this problem follows the general procedure proposed by 251 

Chow and Liu (1968), who used conditional mutual information between attributes. The function can be defined as  252 

i

, ,

( , | )
( , | ) ( , , ) log

( | ) ( | )
ii ji i

ii ji i

P j ii ji i

a a c ii i ji i

P a a c
I A A C P a a c

P a c P a c
                                                                                       (2) 253 

where IP represents the conditional mutual information, aii is the ith state of RIF Ai, aji is the ith state of RIF Aj, ci is the 254 

ith state of ‘accident type’. The optimisation problem, i.e. learning a TAN structure, is to find a tree defining function π 255 

over 1, nA A such that the log likelihood is maximised.  256 

3.3 Sensitivity analysis and model validation 257 

3.3.1 Mutual information 258 

The mutual information represents the dependence between two variables in the probabilistic theory (Yang et al., 259 

2018). Deriving from the entropy theory, mutual information is described as an indicator showing the uncertainty of 260 



the dataset and interpreted as entropy reduction. The mutual information explains how strong the relationship between 261 

the RIF and ‘accident type’.  262 

One objective of this study is to identify the relationship between the relevant RIFs and a particular ‘accident type’. 263 

‘Accident type’ is first determined as the fixed variable in mutual information. In this way, the mutual information 264 

between the ‘accident type’ and the RIFs can be defined as follows: 265 

i

s, ij

( , )
, ( , ) log

( ) ( )

ij

ij b

i

P s
I s P s

P s P


 


（ ）=-                  (1) 266 

where S is ‘accident type’, i  represents the ith RIF, ji  represents the jth state of the ith RIF, i( , )I S   is the mutual 267 

information between ‘accident type’ and the ith RIF. The larger the value of mutual information is, the stronger the 268 

relationship between i  and ‘accident type’. In this way, calculating the value of mutual information can eliminate 269 

the RIFs that are relatively less relevant to the ‘accident type’.  Then the remaining RIFs are extracted as significant 270 

variables with regards to a selected accident type in the model. 271 

3.3.2 Sensitivity analysis 272 

3.3.2.1 Joint probability 273 

Another form of sensitivity analysis is based on a calculation of the network joint probability, which determines how 274 

the RIF influences ‘accident type’. The value of the target node (e.g. ‘accident type’) is calculated when the state of 275 

RIFs is assigned with different values, and the states of the other variables are locked. The calculation of joint 276 

probability can be seen in (Wang and Yang, 2018; Trucco et al., 2008b). 277 

For example, there are only two variables ‘ship type’ and ‘ship operation’, and ‘ship type’ is the parent node of ‘ship 278 

operation’, Set ‘ship type’ as M, ‘ship operation’ as N, ‘M=Mi’ means the vessel is at its ith ‘ship type’ state, and the 279 

same goes to ‘N=Nj’. According to Baye’s rules, the joint probability can be calculated as: 280 

( , ) ( ) ( )i j i j iP M M N N P M M P N N M M        , where ( , )i jP M M N N   refers to the joint probability that 281 

events ‘M=Mi’ and ‘N=Nj’ both occur, ( )iP M M  is the prior probability of the ith ‘ship type’, ( )j iP N N M M   282 

denotes the conditional probability of the occurrence of ith ‘ship type’ state given that jth ‘ship operation’ state occurs. 283 

3.3.2.2 True Risk Influence (TRI) 284 

Once the RIFs are extracted from the mutual information calculation, there is another form of sensitivity analysis to 285 

determine the effects of different RIFs in a combined way, e.g. scenario simulation. The traditional way sets the 286 



scenario with all the other nodes (apart from the investigated ones) locked. Then the states of target node are updated 287 

gradually. It is applicable for variables with two states, but does not suit for variables with more than two states 288 

Alyami et al. 2019). In this case, the multi-state RIFs make the traditional scenario simulation inappropriate. 289 

To overcome the disadvantage of the traditional scenario simulation, a new method was proposed by Alyami et al. 290 

(2019). This method aids to obtain the High Risk Inference (HRI) of a type of accidents (e.g. collision), by increasing 291 

the probability of the state producing the highest influence on collision to 100%. Then it helps calculate the Low Risk 292 

Inference (LRI) of collision by increasing the probability of the state generating the lowest influence on the collision 293 

to 100%. Then, calculating the average value of HRI and LRI concludes the True Risk Influence (TRI) of each RIF in 294 

the case of a particular accident type.  295 

Subsequently, the similar analysis procedure is applied to other accident types, ‘grounding’ and ‘flooding’, etc., to 296 

obtain the variable influence on ‘accident type’.  Therefore, the sensitivity analysis calculates the TRI values of 297 

variables in different accident types, which illustrates the RIFs’ influences on accident types. In this way, the average 298 

TRI values of all accident types ranks the variables’ effects on the ‘accident type’. The higher a TRI value is, the 299 

higher its corresponding RIF’s effect on ‘accident type’.  300 

3.3.3 Model validation 301 

Two axioms to be satisfied in the sensitivity analysis (Yang et al., 2009, Zhang et al., 2013) are expressed as below: 302 

Axiom 1: A slight increase or decrease in the prior probabilities of each RIF, should contribute to the correspondence 303 

increase or decrease in the posterior probability of the target node (i.e. accident type). 304 

Axiom 2: The total influence of the integration of the probability variations of x parameters should be no smaller than 305 

the one from the set of y (y∈x) RIFs. 306 

Moreover, the validity of the proposed BN model is also conducted by simulating the past maritime accidents with the 307 

associated parameter settings to test if the model can deliver the result reflecting the reality. 308 

3.4 Scenario analysis 309 

BN modelling can also explain the most probable scenario with reference to a particular accident type. Providing a 310 

plausible explanation for the observed findings is called the most probable explanation (MPE). It is a special case of 311 

the maximum a-posteriori probability. In case that results of regular belief updating are questionable, the MPE can be 312 

used to identify the states of RIFs to provide a scenario for which the beliefs are upheld. It finds a completely 313 



specified scenario easier to understand. Then the study gains insights by putting the BN in an MPE mode, entering the 314 

evidence, and observing the most probable configuration for the investigated maritime accident type. 315 

4. Results and discussion 316 

4.1 Description of accident types 317 

To generate the RIFs in maritime accidents according to the procedure in Section 3.1, a case-by-case analysis is 318 

conducted. In this way, 25 RIFs are defined as the variables in Table 3 for the BN construction. In the quantitative 319 

analysis of BN modelling, the accident type is defined as a dependent variable, classified into collision, grounding, 320 

flooding fire/explosion, capsize, contact/crush, sinking, overboard, and others, as presented in Table 4. These accident 321 

types are defined with respect to the classification of MAIB’s maritime accident reports. 322 

Table 4 Accident type 323 

No. Accident type 

S1 Collision 

S2 Grounding 

S3 Flooding 

S4 Fire/explosion 

S5 Capsize 

S6 Contact/crush 

S7 Sinking 

S8 Overboard 

S9 Others 

 324 

4.2 TAN modelling 325 

To generate the BN model, 25 RIFs are involved to demonstrate their relationships with the dependent variable (i.e. 326 

accident type). The Netica software package (Norsys, http://www.norsys.com) is applied to assist the calculation. It 327 

has a ‘learning network’ function that develops the TAN network based on Eq. (2). The structure of BN is presented in 328 

Fig. 1. After the BN qualitative structure is trained by the data, it is carefully checked by domain experts to ensure all 329 

the links between the nodes are meaningful. In this study, no changes are made in the fine-tune process since all the 330 

interrelationship suggested by the data reflect the reality. 331 

http://www.norsys.com/


  332 

Fig. 1. Proposed BN for analysis of accident types probability 333 

Based on the TAN model, the parameter learning of CPTs from the cases is conducted by Netica Software using the 334 

counting-learning algorithm (https://www.norsys.com/WebHelp/NETICA/X_Counting_Learning_Algorithm.htm). 335 

Once the CPTs are constructed and obtained, the posterior probabilities of each variable can be calculated. The 336 

statistical analysis of the probability of variables, reveals interesting initial findings for useful insights regarding safety 337 

caution and accident prevention as follows. 338 
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Fig. 2. Results of TAN 340 

Fig. 2 presents the results of TAN involving all the retained 25 RIFs. Among the accidents, grounding and collision 341 

are among the most frequent accident types, accounting for 20.3% and 21.2%, respectively.  342 

4.3 Sensitivity analysis 343 

4.3.1 Mutual information 344 

The mutual information between “accident type” and RIFs is demonstrated in Table 5. From this point of view, the 345 

variables with higher I(s,Rk) reflects essential impacts on “accident type”. When “accident type” is the parent node, 346 

“ship age” with the corresponding mutual information value of 0.05422, has the largest effect on the accident type. 347 

Meanwhile, it can be seen that many mutual information values are less than 0.03 in Table 5. 0.03 is selected in this 348 

study as the threshold for the selection of such factors for further discussion. Variables ‘ship age’, ‘ship operation’, 349 

‘voyage segment’, ‘vessel condition’, ‘information’, are selected to be calculated for the factor analysis in the next 350 

step. However, it does not rule out the possibility of using a smaller value to take into account more factors in the 351 
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discussion when and where appropriate. From a methodological perspective, the method of using mutual information 352 

can provide an effective way to analyse the influential individual RIFs in a prioritised list. 353 

Table 5 Mutual information shared with ‘Accident type’ 354 

Node    

 Variance 

Reduction    

 

Percentage 

(%)    

Mutual  

Info 

 

Percentage 

(%)    Variance of Belief 

Ship_age    0.02399 0.284 0.05422 1.84 0.0015433 

Ship_operation    0.3115 3.69 0.05132 1.74 0.0030026 

Voyage_segment    0.11 1.3 0.03595 1.22 0.0013546 

Vessel_condition    0.07391 0.874 0.03171 1.07 0.0006767 

Information          0.06113 0.723 0.03042 1.03 0.0010573 

Ship_type         0.03119 0.369 0.02891 0.98 0.0011112 

Safety_culture        0.01585 0.188 0.02871 0.973 0.000501 

Hull_type     0.1171 1.39 0.02838 0.962 0.0008351 

Gross_tonnage     0.0414 0.49 0.02482 0.841 0.0010064 

Regulation           0.01091 0.129 0.02306 0.782 0.0005812 

Length        0.02874 0.34 0.02151 0.729 0.0003882 

Ergonomic_design       0.07421 0.878 0.0194 0.657 0.0006816 

Sea_condition   0.0168 0.199 0.01774 0.601 0.0006831 

Risk_assessment       0.06751 0.799 0.01466 0.497 0.0004953 

Experienced 0.000957 0.0113 0.01271 0.431 0.0003126 

Ship_speed      0.006733 0.0797 0.01172 0.397 0.0003134 

Weather_condition   0.004131 0.0489 0.00889 0.301 0.0004858 

Management                   0.02553 0.302 0.00851 0.288 0.0001854 

Clear_order              0.01196 0.142 0.00707 0.24 0.0002377 

Fairway_traffic    0.03498 0.414 0.00704 0.238 0.0001619 

Time_of_day      0.04428 0.524 0.00671 0.227 0.0002614 

Complacent            0.003327 0.0394 0.006 0.203 0.000211 

Communication 5.57E-05 0.000659 0.00547 0.185 0.0000786 

Equipment/device 0.003186 0.0377 0.00541 0.183 0.0001612 

Supervision            0.01893 0.224 0.00399 0.135 0.0001467 

 355 

4.3.2 Sensitivity analysis 356 

With regard to the most important variables influencing each of the investigated accident types, the next step is to 357 

figure out how these variables (the states of variables) affect the target accident type. To do so, the calculation of a 358 

joint probability of each variable and ‘accident type’ is presented in Table 6. 359 

Table 6 The joint probability of the TAN model 360 

Ship age   
S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 23.6 19.8 3.69 3.88 12 13.9 2.56 7.7 12.9 

2 22.4 21.1 2.2 4.99 8.81 8.73 3.8 8.21 19.7 

3 14.8 23.5 7.24 8.87 8.93 11.2 7.74 8.92 8.82 

4 15.8 22.5 2.69 3.72 13.7 12.6 3.33 12.9 12.8 

5 16.8 27.7 4.27 5.58 11.7 7.02 4.11 7.15 15.7 

6 29.3 6.95 2.07 6.52 10.6 14.3 4.13 13.2 13 



Ship operation  
S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 12.8 25.3 3.3 4.74 15.2 9.75 4.48 7.9 16.5 

2 15.9 16.3 4.1 6.5 10.3 11.1 4.57 9.81 21.4 

3 14.4 28.4 4.08 5.32 9.28 11.9 4.14 8.9 13.6 

4 16.5 21.6 3.51 5.05 12.5 12.2 3.92 9.36 15.4 

5 16.9 14.2 4.45 5.12 15.4 9.69 3.98 15.9 14.3 

6 16.6 20 4.26 6.75 10.7 11.6 5.26 9.27 15.7 

7 35.7 22.8 2.64 5.19 6.51 8.71 3.14 6.08 9.23 

8 17.5 18 4.51 6.48 12.7 12.2 5.03 9.82 13.7 

Voyage segment  
S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 15.3 15.6 4.24 6.03 13.5 11 4.72 9.95 19.6 

2 20.3 23.5 3.73 5.31 12.6 10.6 4.16 7.96 11.8 

3 11.5 28.5 3.2 5.44 7.72 15.9 4.29 7.54 15.9 

4 25.4 22.1 3.17 5.34 11.3 5.86 2.99 10.6 13.3 

5 27.5 17.7 3.89 5.02 10.9 9.84 4.67 7.51 13 

6 16.5 16.9 4.6 6.53 11.1 14.2 5.12 11.8 13.3 

Vessel condition  
S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 24.3 21.191 3.63 4.46 9.56 11.5 2.22 10.1 13.1 

2 12.8 21.212 3.8 7.53 13.9 8.99 7.76 7.52 16.5 

Information  
S1 S2 S3 S4 S5 S6 S7 S8 S9 

1 21.8 15.8 3.33 6.17 13.2 7.28 4.28 10.6 17.6 

2 18.7 26.8 4.06 4.86 8.86 14.1 4.01 7.82 10.8 

 361 

According to Table 6, the state of each variable that poses the highest influence on an accident type is shown (in bold 362 

value), as well as the state of each variable that poses the lowest influence on an accident type (in bold value). For 363 

example, when a ship is in the state of ‘on passage’, there is the highest probability for the accident to be ‘collision’ 364 

(35.7%); when ‘ship operation’ is the state of ‘towing’, there is the lowest probability to be ‘collision’ (12.8%). 365 

However, when a ship is in ‘pilotage’, there is the highest probability to be ‘grounding’ (28.4%); in ‘fishing’ 366 

operation, there is the lowest probability to be ‘grounding’ (14.2%). For the voyage segment, when in the state of 367 

‘transit’, a ship has the highest probability to be in ‘collision’ (27.5%); when in ‘arrival’ segment, it has the lowest 368 

probability to be in ‘collision’ (11.5%), but has the highest probability to be in ‘grounding’ (28.5%). As far as the ship 369 

age is concerned, a ship with ages from 11 to 15 has the lowest probability to be involved in ‘collision’ (14.8%), 370 

whereas a more than 20-year-old ship has the highest probability to be involved in ‘grounding’(27.7%). Despite good 371 

vessel condition and the condition of good information, a ship can still highly associate with ‘collision’, whereas the 372 

situation of poor information on-board ship exposes the highest risk of ‘grounding’. 373 



In this way, it demonstrates the influence of certain state of a single variable on an accident type. Moreover, it 374 

illustrates how different states of single variable contributes to the probability of a particular accident type. Generally, 375 

more attention should be paid to the red highlighted with the state of the single variable under an accident type, as 376 

these situations show high probabilities of accidents. 377 

In terms of TRI sensitivity analysis, Table 7 demonstrates the TRI value of ‘ship age’ against collision. Table 8 378 

indicates the values of all RIFs for all accidents. Moreover, by comparing the updated value of the target node, it is 379 

claimed that the model is in line with Axiom 1.  380 

Table 7 TRI of a risk variable (ship operation) for collision 381 

Ship age          

1 2 3 4 5 6 Collision HRI LRI TRI 

/ / / / / / 20.3 9.0 5.5 7.25 

100% 0 0 0 0 0 23.6  
 

 
0 100% 0 0 0 0 22.4  

 
 

0 0 100% 0 0 0 14.8    
0 0 0 100% 0 0 15.8    
0 0 0 0 100% 0 16.8    
0 0 0 0 0 100% 29.3       

 382 

Table 8 TRI of risk variables for all accident types 383 

Node 

TRI 

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average 

Ship age    7.25 10.38 2.59 2.58 2.45 3.64 2.59 3.03 5.44 4.44 

Ship operation    11.45 7.10 0.94 0.88 4.45 1.75 1.06 4.91 6.09 4.29 

Voyage segment    8.00 6.45 0.72 0.76 2.89 5.02 1.07 2.15 3.30 3.37 

Vessel condition    5.75 0.01 0.09 1.54 2.17 1.26 2.77 1.29 1.70 1.84 

Information          1.55 5.50 0.37 0.66 2.17 3.41 0.14 1.39 3.40 2.06 

 384 

Specifically, in Table 7, the first row denotes the base-case scenario, and the following rows represent the different 385 

scenarios when each state of the variable reaches 100%. To obtain impact levels of such RIFs in accident types, TRIs 386 

are compared and ranked. Generally, the most important variables for ‘accident types’ are as follows: 387 

Ship age > Ship operation > Voyage segment > Information> Vessel condition 388 

In detail, the most important variables list for different accident types are demonstrated in Table 9. 389 

Table 9 The most important variables  390 



Accident type Ship age 
Ship 

operation 

Voyage 

segment 

Vessel 

condition  
Information 

S1 Collision 3 1 2 4 5 

S2 Grounding 1 2 3 5 4 

S3 Flooding 1 2 3 5 4 

S4 Fire/explosion 1 3 4 2 5 

S5 Capsize 3 1 2 4 4 

S6 Contact/crush 2 4 1 5 3 

S7 Sinking 2 4 3 1 5 

S8 Overboard 2 1 3 5 4 

S9 Others 2 1 3 5 4 

 391 

From this point of view, different accident types are correlated with different variable priorities. For example, ‘vessel 392 

condition’ is the most important RIF for ‘sinking’, but the least important RIF for ‘contact/crush’. ‘Ship operation’ 393 

contributes more to the accidents like ‘collision’, ‘capsize’, and ‘overboard’, than the accidents of ‘sinking’ and 394 

‘contact/crush’.  395 

4.3.3 Model validation 396 

To validate the model, it is examined by testing the combined effect of multiple RIFs to the accident types. 397 

Accounting for different states of the parent nodes, this study calculates the changed value of each state. The 398 

‘information’ is selected as the first node, the state generating the highest changed value of state 1 (i.e. collision) in 399 

‘accident type’ is increased by 10%, while the state generating the lowest changed value of state 1 in ‘accident type’ is 400 

decreased by 10%. This procedure is written as ‘~10%’ in Table 10. Then, the same approach is applied to the next 401 

RIF, and the integrated changed value is obtained and updated. The updating procedure would continue until all RIF 402 

nodes are included. Similarly, the same updating procedure is applied into the state 2, 3… 9 in ‘accident type’ 403 

respectively, until all states are included. 404 

The first column of the data in Table 10 shows the original values in TAN, and other columns state the updated 405 

changed values of results. However, each state of ‘accident type’ is calculated separately from each other, i.e. each 406 

row is computed through the change of states of RIFs in each accident type. From Table 10, the updated values of the 407 

target node are gradually increasing or decreasing along with the continuously changing RIFs, so that Axiom 2 is 408 

examined. 409 

Table 10 Accident rate of minor change in variables 410 

Information / ~10% ~10% ~10% ~10% ~10% 

Vessel condition / / ~10% ~10% ~10% ~10% 

Voyage segment / / / ~10% ~10% ~10% 

Ship operation / / / / ~10% ~10% 

Ship age / / / / / ~10% 



S1 20.3 20.4 21.2 21.5 22 22.2 

S2 21.2 21.761 21.765 22 22.2 22.6 

S3 3.69 3.72 3.74 3.76 3.79 3.8 

S4 5.53 5.6 5.8 5.82 5.85 5.91 

S5 11.1 11.3 11.6 11.7 11.8 11.9 

S6 10.6 10.9 11.1 11.371 11.426 11.6 

S7 4.15 4.16 4.52 4.57 4.61 4.68 

S8 9.22 9.36 9.53 9.61 9.79 9.91 

S9 14.3 14.6 14.86 14.945 15.1 15.3 

 411 

Furthermore, the past maritime accidents (which were not included in the database used for the BN construction) are 412 

simulated in the proposed BN model to show the validation of proposed BN model. For instance, from the MAIB 5-413 

2020, there was a collision between the bulk carrier Gülnak and the moored bulk carrier Cape Mathilde River Tees, in 414 

England on 18 April 2019. All the parameter settings for the proposed BN model can be obtained based on the 415 

descriptions, including  416 

1) ‘Steel’ for hull type, ‘bulk carrier’ for ship type, ‘2011’ for the year of build, ‘179.88m’ for length, ‘23397’ for 417 

gross tonnage, ‘on passage’ for ship operation, ‘18 April 2019 0324 UTC+1’ for the time of day. 418 

2) Vessel condition was good because ‘vessel had no deficiencies’ and ‘no evidence was found to indicate that Gülnak 419 

or any sister vessels had previously experienced unexpected difficulties when manoeuvring’. 420 

3) Experience was good because of the qualified bridge team. Communication was good due to ‘the pilot and 421 

Gülnak’s master discussed the passage plan, …, advised that the vessel had no deficiencies and that its anchors were 422 

cleared away and ready for use’. 423 

4) Sea condition and weather condition were both fine because of ‘the negligible tidal stream and the light winds’. 424 

5) Equipment was not fully utilised. Although no direct cause was identified for the equipment malfunction, a 425 

recommendation had been made to ensure that the bridge equipment on the vessel is fully operational. 426 



 427 

Fig.3 Model validation based on a past maritime accident 428 

The accident report stated that the factors contributing to the inability to fully arrest Gülnak’s turn were not apparent, 429 

and some information were not recorded. Therefore, the other nodes keep their generic original probabilities given no 430 

updated evidence is collected from the accident report. Based on the above parameter settings, it reveals a very high 431 

probability of 78.1% for the vessel to be involved in a collision, which further validates the proposed model, as shown 432 

in Figure 3. 433 

4.4 Implications 434 

The study enables the understanding of differences among critical factors, contributing to different types of accidents 435 

by incorporating human factors into the maritime accident analysis. The BN modelling can also help explain the most 436 

probable scenario with reference to a particular accident type. 437 

To enable the MPE function, each variable will have a belief-bar at the 100% level, and usually some bars in RIFs are 438 

at lower levels, as seen in Fig. 4. It reveals the most probable configuration by assuming the state with the bar at the 439 

100% level for each variable.  The shorter bars indicate the relative low probabilities of the other states, given that the 440 
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other variables are in the most probable configuration. In addition, they are scaled by the same factor used to bring the 441 

longest bar to 100%.  442 

 443 

 444 

Fig. 4 Most Probable Explanation for BN model 445 

From Fig. 4, ‘overboard’ is the most probable accident type, as its high occurrence frequency, and other RIFs reveal 446 

the corresponding most probable states. That is to say, a ‘fishing vessel’ tends to be ‘overboard’ within the following 447 

conditions: 448 

1) Ship age ‘more than 20’, ship length ‘100m or less’, gross tonnage ‘300GT or less’, in ‘finishing’ operation and 449 

‘mid-water’ voyage segment with ‘normal’ speed, in ‘good condition’, with friendly ergonomic design and correctly 450 

operating device, and with effective navigational information;  451 

2) Bad sea condition, during the time from 7:00 to 19:00; 452 

3) Dysfunctional management system, lack of safety culture. 453 
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With regards to this explanation, it emphasises the important causal relation between dysfunctional management 454 

system and overboard. The management system refers to shore management, maintenance management, bridge source 455 

management, on board management, port service, inadequate training, emergency drill, etc., which is a complex 456 

system as a significant variable influencing human factors for overboard. From the investigation of MAIB 24-2014, it 457 

is evident that the onboard management of Ovit (of which overboard of the fishing ship occurred), was dysfunctional, 458 

as well as the safety culture developed on the bridge was provided by the insufficient leadership of the master.  459 

In addition, a lack of safety culture and precautionary thought are seen as the critical factors for human errors from 460 

Figure 4, which explains some dangerous behaviours of passengers or crews. Lu and Tsai (2008) conducted the factor 461 

analysis revealed six safety climate dimensions, and used logistic regression analysis to evaluate the effects of safety 462 

climate on vessel accidents. The results suggested the job safety has the most critical impact on vessel accidents, 463 

followed by management safety practices and safety training dimensions. 464 

Similarly, when ‘accident type’ is selected as state 1 (collision), the MPE is displayed in Fig. 5.  465 

 466 

Fig. 5 Most Probable Explanation for ‘collision’ 467 
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From Fig. 5, there are multiple 100% bars for ‘hull type’. Normally, when two or more states of the same variable 468 

have bars that are at the 100% level, it indicates that there is more than one configuration with the highest probability 469 

(i.e. the configurations have equal probability).  Then one of the states is to be entered with an artificial finding that 470 

the variable is in that state, to see how it changes the multiple 100% bars of other variables. When accident type is 471 

selected in Fig. 5, there is a high probability for the ‘fishing vessel’ to collide under these circumstances: 472 

1) Ship age ‘more than 20’, ship length ‘100m or less’, gross tonnage ‘300GT or less’, ‘on passage’ operation and 473 

‘mid-water’ voyage segment with ‘normal’ speed, in ‘good vessel condition’, with friendly ergonomic design and 474 

correctly operating device, and effective navigational information; 475 

2) During the time before 7:00 or after 19:00; 476 

3) Ineffective supervision or supports of operation. 477 

Under this circumstance, ineffective supervision or supports of operation is strongly related to the collision in view of 478 

human factors. Ineffective supervision and supports, and improper supervision of loading operation are frequent 479 

during the navigation. Lone watchkeeper or working isolated makes the procedures onboard vulnerable to the hazards 480 

due to the workload pressure or onboard culture. From MAIB 17-2016 report, although required by the Arco Avon’s 481 

SMS, the third engineer did not inform the chief engineer or the bridge officer of the leaking problem of fuel or his 482 

intention to fix it. The reason for him not doing so is probably to have been influenced by the onboard culture of 483 

routine working isolated and the absence of adequate and frequent communication. Also, Arco Avon’s chief 484 

engineer’s standing orders requiring the duty engineer to progress routine duties and conduct planned maintenance 485 

while on watch, effectively condoned working alone and disobeyed the guidance provided in the relevant safety 486 

regulations (e.g. the Code of Safe Working Practices for Merchant Seafarers 2015 edition). It all contributed to the 487 

mistakes the third engineer made. Moreover, from the MAIB 8-2014 report, the mater and chief officer kept lone 488 

watchkeeper on the bridge with the functional Bridge Navigational Watch Alarm System (BNWAS) switched off. 489 

According to this accident, and several similar others in the past, MAIB demonstrated that it was not safe for only two 490 

bridge watchkeepers to operate vessels because of the workloads placed on watchkeeping officers. Branch et al. 491 

(2004) reported that at least three of the fifteen ships which failed to keep a proper lookout at night to collision had 492 

lone watchkeepers on the bridge. Working isolated or improper supervision increases the risk of human errors in 493 

navigation compared to the situations where operations are under supervision. 494 

By trying each of the possibilities, all the configurations that are at the highest probability level are revealed. Table 11 495 

illustrates the MPE for all accident types. Although there are influences between different RIFs, poor vessel condition 496 



such as increasing complexity of propulsion arrangements or modification made to vessels size has a strong relation to 497 

sinking. Insufficient or lack of updated information, such as falsified records of information, relies on a single piece of 498 

navigational equipment, or without working indicators for necessary observing, contributes to grounding, contact, and 499 

other incidents. Ergonomic impact of innovative bridge design (e.g., visual blind sector ahead, motion illusion) is 500 

strongly related to fire and sinking. Also, it emphasises several human factor related variables under different accident 501 

types. For example, there is a high probability for collision to happen under the case of lone watchkeeper or working 502 

isolated. Grounding becomes probable under the circumstance with inadequate risk assessment, dysfunctional 503 

management system, unclear order from documents, and ineffective supervision. The most probable explanation given 504 

human factors for flooding is the lack of safety culture and precautionary thought. Human factors for capsize are 505 

related to lack of risk assessment, unclear order, and ineffective supervision. The situations with poor safety culture, 506 

dysfunctional management, and unclear order are strongly associated with sinking. 507 

Table 11 Most Probable Explanation for all accident types 508 

 Variable S1 S2 S3 S4 S5 S6 S7 S8 S9 

Ship age    5 5 5 5 1 6 5 5 2 

Ship operation    7 1 5 7 1 7 1 5 2 

Voyage segment    4 2 4 4 5 3 5 4 1 

Vessel condition    1 1 1 1 1 1 2 1 1 

Information          1 2 1 1 1 2 1 1 2 

Ship type         4 3 4 4 2 7 2 4 9 

Safety culture       1 1 2 1 1 1 2 2 1 

Hull type     2 1 2 2 1 1 1 5 1 

Gross tonnage     1 2 1 1 1 3 1 1 2 

Regulation           1 1 1 1 1 1 1 1 1 

Length        1 1 1 1 1 2 1 1 1 

Ergonomic design       1 1 1 2 1 1 2 1 1 

Sea condition   1 2 1 2 2 1 2 2 1 

Risk assessment      1 2 1 1 2 1 1 1 2 

Ship speed      1 1 1 1 1 2 1 1 1 

Weather condition   1 2 2 2 1 1 1 1 1 

Management                   1 2 1 2 1 1 2 2 1 

Clear order               1 2 1 2 2 2 2 1 2 

Fairway traffic    1 1 1 1 1 1 1 1 1 

Time of day      2 1 1 1 1 2 1 1 1 

Complacent            1 1 1 1 1 1 1 1 1 

Supervision           2 2 1 1 2 1 1 1 1 

5. Conclusions 509 

Compared to previous studies focusing on causal factors related to the severity and the probability of maritime 510 

accidents, this study uses a data-driven TAN approach, to investigate how different risk factors generate an impact on 511 



different types of maritime accidents with a focus on human factors. To identify RIFs, maritime accident reports from 512 

MAIB and TSB within a five-year period of 2012-2017, are extracted and reviewed to develop a primary database on 513 

maritime accidents. Then the risk-based TAN model is constructed to analyse RIFs incorporating human factors in 514 

maritime accidents. Lastly, the sensitivity analysis is conducted, as well as scenario analysis and MPE to implicate 515 

research contributions. 516 

According to the calculations of the mutual information, crucial RIFs are ranked against different accident types. The 517 

results reveal that critical RIFs for maritime accident types are ‘ship age’, ‘ship operation’, ‘voyage segment’, 518 

‘information’, and ‘vessel condition’. Meanwhile, it is evident that: 519 

(1) The management system including shore management, maintenance management, bridge source management, on 520 

board management, port service, inadequate training, emergency drill, etc., is a significant variable influencing human 521 

factors for overboard. Besides, the lack of safety culture explains dangerous behaviours onboard, so as to cause 522 

overboard. 523 

(2) Ineffective supervision is strongly related to collision. Working isolated or improper supervision increases the risk 524 

of human errors in navigation compared to operating under supervision. 525 

(3) Collision tends to happen under the case of lone watchkeeper or working isolated. Grounding is probable under the 526 

circumstance with inadequate risk assessment, dysfunctional management system, unclear order from documents, and 527 

ineffective supervision. The most probable explanation on human factors for flooding is the lack of safety culture and 528 

precautionary thought. Human factors for capsize are related to lack of risk assessment, unclear order, and ineffective 529 

supervision. The situation with poor safety culture, dysfunctional management, and unclear order is strongly 530 

associated with sinking. 531 

The scenario analysis provides a plausible explanation for the observed findings, revealing the most probable scenario 532 

concerning a particular accident type. Therefore, it can help identify the potential hazards and effectively assist 533 

maritime authorities in developing countermeasures for accident prevention. 534 

Generally, the results from the TAN model present differentiation among the vital human factors contributing to 535 

different types of accidents, which helps provide useful insights for accident investigation and prevention. However, 536 

there is a drawback in the MPE method for implications. For instance, its results can change with the introduction of 537 

irrelevant variables, and be deceptive in the situations where even the most probable explanation is improbable.  538 



Furthermore, there is a limitation on data representation. There were 161 reports involving 208 vessels (cases) in the 539 

study. The state 3 (flooding) of accident type accounts for 3.69% of all accidents, i.e. 7 cases of flooding. To present 540 

more representative results, more data to be continuously collected to support the model development. In future work, 541 

more attention will be paid to the variables, which are hard to measure in accident reports, i.e. mental workload, and 542 

situational awareness factors, to explore the risk analysis of individual factors on maritime accidents.  543 
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