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ABSTRACT

We analyse three public cosmic shear surveys; the Kilo-Degree Survey (KiDS-450), the Dark Energy Survey (DES-SV) and the
Canada France Hawaii Telescope Lensing Survey (CFHTLenS). Adopting the “COSEBIs” statistic to cleanly and completely separate
the lensing E-modes from the non-lensing B-modes, we detect B-modes in KiDS-450 and CFHTLenS at the level of ∼2.7σ. For DES-
SV we detect B-modes at the level of 2.8σ in a non-tomographic analysis, increasing to a 5.5σ B-mode detection in a tomographic
analysis. In order to understand the origin of these detected B-modes we measure the B-mode signature of a range of different
simulated systematics including PSF leakage, random but correlated PSF modelling errors, camera-based additive shear bias and
photometric redshift selection bias. We show that any correlation between photometric-noise and the relative orientation of the galaxy
to the point-spread-function leads to an ellipticity selection bias in tomographic analyses. This work therefore introduces a new
systematic for future lensing surveys to consider. We find that the B-modes in DES-SV appear similar to a superposition of the B-
mode signatures from all of the systematics simulated. The KiDS-450 and CFHTLenS B-mode measurements show features that are
consistent with a repeating additive shear bias.

Key words. gravitational lensing: weak – methods: data analysis – methods: statistical – surveys – cosmology: observations

1. Introduction

Weak gravitational lensing is recognised as a powerful probe
of the large-scale structure of the Universe. Its reach, however,
will always be limited by the accuracy to which terrestrial and
astrophysical contaminating signals can be controlled. Known
sources of astrophysical systematics include the intrinsic align-
ment of neighbouring galaxies (see Joachimi et al. 2015, and
references therein) and the impact of baryon feedback when
modelling the non-linear matter power spectrum (Semboloni
et al. 2011) as well as the more subtle effect of the cluster-
ing of background “source” galaxies (Schneider et al. 2002a).
Known sources of terrestrial systematics arise from residual dis-
tortions resulting from uncertainty in the point-spread function
(PSF) model (Hoekstra 2004), biases in the adopted source red-
shift distributions (Hildebrandt et al. 2012), object selection bias
(Hirata & Seljak 2003), shear calibration bias (Heymans et al.
2006) and detector-level effects (Massey et al. 2014; Antilogus
et al. 2014). As weak lensing surveys have grown in size, the list
of known sources of error has also grown, with accompanying
mitigation strategies (see Mandelbaum 2018). This progress is
impressive, but there will always be the possibility that hitherto
unknown sources are contaminating the cosmic shear signals that
we observe. In this paper we therefore explore the sensitivity of

the “COSEBIs” weak lensing statistic to blindly uncover a range
of different contaminating signals.

Complete Orthogonal Sets of E/B-Integrals, “COSEBIs”,
were defined by Schneider et al. (2010). They provide a complete
set of filter functions which cleanly separate a measured cos-
mic shear signal into its curl-free (E-mode) and divergence-free
(B-mode) distortion patterns over a finite angular range. Weak
lensing can only produce E-modes1, and as such any detected
B-modes in the measured cosmic shear signal will have a non-
lensing origin. The most popular statistic used in current cos-
mic shear analyses are the shear two-point correlation functions,
ξ±, (2PCFs; Jee et al. 2016; Joudaki et al. 2017a; Hildebrandt
et al. 2017; Troxel et al. 2018a). As these direct measurements
of the cosmic shear signal mix E and B modes, other methods
are required in order to extract and identify any contaminating
non-lensing signal through its B-mode distortion pattern.

A range of different statistics exist to filter E/B-modes
in 2PCFs, for example, aperture mass statistics (Schneider
et al. 2002b), ξE/B (Crittenden et al. 2002) and ring statistics

1 Contributions beyond the first-order Born approximation (Schneider
et al. 1998) and source clustering (Schneider et al. 2002a) can pro-
duce insignificant levels of B-modes for the current generation of shear
surveys.
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(Schneider & Kilbinger 2007). The aperture mass statistics and
ξE/B rely on knowing the 2PCFs at either very small angu-
lar separations (where the galaxy images blend) or very large
angular scales, (beyond the surveyed area). Using these statis-
tics therefore results in biased estimates of E/B-modes. For the
aperture mass statistic, the E/B-mode leakage is ∼10% for a typi-
cal case (Kilbinger et al. 2013). Both ring and aperture mass statis-
tics suffer from a loss of information due to their filtering method.

Alternatives to real-space estimators decompose the cosmic
shear signal into its E and B-mode convergence power spec-
trum. Quadratic estimators can be used (Köhlinger et al. 2016),
but this method is sensitive to the modelling of the noise and
is also challenging to use to estimate the power at large Fourier
modes due to its computational speed (Köhlinger et al. 2017).
Faster methods estimate “pseudo” power spectra where in an
ideal case the E/B- power spectra can be easily separated. Unfor-
tunately the presence of masks mixes Fourier modes, and hence
E/B-modes, making this method sensitive to the modelling of
the mask (Asgari et al. 2018; Hikage et al. 2019). Power spec-
tra can also be estimated from 2PCFs, if the 2PCFs are known
over all scales. In practice this is not feasible, hence the integrals
over 2PCFs are truncated, which can produce biases in the esti-
mates (van Uitert et al. 2018). Alternatives to band-power spec-
trum estimation from 2PCFs have also been suggested (Becker
& Rozo 2016), which attempt to minimize the information leak-
age from the out-of-range angular scales. Another approach to
power spectrum inference uses hierarchical Bayesian modelling
(Alsing et al. 2016, 2017). Although this method is not sensi-
tive to masking effects, it is highly computationally expensive
as it relays on estimating posterior density distributions for all
combinations of power spectra, which in turn can produce inac-
curacies in the analysis.

In this paper we adopt the COSEBIs statistic as it is the only
method that can cleanly, without loss of information, separate E
and B-modes over a finite angular range from realistic lensing
survey data. They are also efficient as a small number of COSE-
BIs modes (∼5 per tomographic redshift bin) can essentially cap-
ture the full cosmological information (Asgari et al. 2012). With
data compression, using linear combinations of the tomographic
COSEBIs modes that are most sensitive to the parameters to be
estimated, the total number of data points can also be signifi-
cantly decreased (Asgari & Schneider 2015). This compression
then makes the method less sensitive to the accuracy to which the
covariance matrix of the data can be estimated from numerical
simulations.

COSEBIs have been used to analyse the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS; Kilbinger et al.
2013; Asgari et al. 2017), finding significant B-mode signals in
the tomographic analysis that were not detected by a range of
other systematic analyses (Heymans et al. 2012). The COSEBIs
statistic is therefore more sensitive and stringent in detecting B-
mode distortions. It is not immediately apparent, however, how
a COSEBIs B-mode detection can be used in order to uncover
the origin of the observed non-lensing distortions. In contrast,
the ξB and aperture mass statistics are rather intuitive. For exam-
ple. a peak in the measured B-mode at the angular scale of the
CCD chip can be readily associated with an issue on the chip-
level. It is also unclear how detected COSEBIs B-modes impact
the cosmological parameters from the measured E-modes. For
example, is a significant high-order COSEBIs B-mode detection
an issue, when all the cosmological information is contained in
the first five COSEBIs E-modes?

By using a range of different simulated systematic errors and
analysing three public weak lensing surveys, this paper explores

how B-mode statistics can be used to diagnose data-related sys-
tematic errors as follows. We describe the COSEBIs, ξE/B and
compressed COSEBIs (CCOSEBIs) statistics as well as their
covariance matrices in Sect. 2. In Sect. 3, we introduce the three
public weak lensing surveys that we analyse; the Kilo-Degree
Survey (KiDS-450, Hildebrandt et al. 2017), the science verifi-
cation data from the Dark Energy Survey (DES-SV, Dark Energy
Survey Collaboration 2016) and CFHTLenS (Heymans et al.
2013), presenting a full B-mode analysis of these surveys in
Sect. 4. We then use mock weak lensing surveys to explore how
the COSEBIs and ξE/B statistics respond to a range of differ-
ent observationally motivated systematics, introduced in Sect. 5,
with results presented in Sect. 6. We compare the results for
the mocks and real data in Sect. 7 and conclude in Sect. 8. In
Appendix A we discuss the biases that exist in published 2PCF
analyses that arise from the angular binning of the 2PCFs. We
also show how these biases can be mitigated. Appendix B deter-
mines the σ8 −Ωm degeneracy direction for a CCOSEBIs analy-
sis of KiDS data. We discuss how to optimise B-mode null-tests
using differing selections of the data vector in Appendix C and
present supplementary material for the tomographic data analy-
sis in Appendix D.

2. Methods

The most familiar two-point statistics used in cosmic shear anal-
ysis are the shear two-point correlation functions, ξ±, which cor-
relate γt/×, the tangential and cross components of shear, of two
galaxies separated by an angle θ in the sky. They are defined as

ξ±(θ) = 〈γtγt〉(θ) ± 〈γ×γ×〉(θ). (1)

In practice, galaxy ellipticities, ε, are measured with differ-
ing accuracies, accounted for using weights, w. In this case, an
unbiased estimator for ξ± is given by

ξ̂±(θ) =

∑
ab wawb [εt(xxxa)εt(xxxb) ± ε×(xxxa)ε×(xxxb)]∑

ab wawb
, (2)

where the sum goes over all galaxy pairs in an angular bin
labelled as θ (see Appendix A for binning choices). wa is the
weight associated with the measured ellipticity at xxxa and εt/× are
the tangential and cross components of the measured ellipticity
(Schneider et al. 2002b). Here the ellipticity is defined such that
its expectation value is equal to the reduced shear, in absence of
systematics (Schramm & Kayser 1995; Seitz & Schneider 1997).
If the ellipticity measurements require a multiplicative correc-
tion, m (see for example Miller et al. 2013), then the correlation
functions may be calibrated by dividing them with the following
correction,

1 + K(θ) =

∑
ab wawb(1 + ma)(1 + mb)∑

ab wawb
· (3)

Theoretically the 2PCFs can be calculated through their rela-
tion to the shear power spectrum, Pγ,

ξ+(θ) =

∫ ∞

0

d` `
2π

J0(`θ) Pγ(`) , (4)

ξ−(θ) =

∫ ∞

0

d` `
2π

J4(`θ) Pγ(`) ,

where ` is the Fourier conjugate of θ and J0 and J4 are the
ordinary Bessel functions of zeroth and fourth order (see Kaiser
1992, for example). The shear power spectrum is in turn related
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to the three-dimensional matter power spectrum. This relation
can be simplified assuming a flat-sky and Limber approximation
(Kaiser 1998), although, these approximations start to fail for
small `-modes (corresponding to large scales). Various approx-
imations and corrections are investigated in Kilbinger et al.
(2017). Their “hybrid” case which is used in most of the recent
cosmic shear data analysis (see also Loverde & Afshordi 2008),
can be written for redshift bins i and j as follows,

Pi j
γ (`) =

9H4
0Ω2

m

4c4

∫ χh

0
dχ

gi(χ)g j(χ)
a2 Pδ

(
` + 1/2

fK(χ)
, χ

)
, (5)

where H0 is the Hubble constant, Ωm is the matter density param-
eter, c is the speed of light in vacuum, a is the scale factor nor-
malized to one at the present, Pδ is the 3D matter power spectrum
and χ is the comoving radial coordinate. The geometric factor for
redshift bin i, gi(χ), is given by

gi(χ) =

∫ χh

χ

dχ′ pi
χ(χ′)

fK(χ′ − χ)
fK(χ′)

, (6)

where χh is the comoving horizon scale, pi
χ(χ) is the probability

density of sources in comoving distance for redshift bin i and
fK(χ) is the comoving angular diameter distance, which is equal
to χ for a Universe with flat spatial geometry.

The correlation functions calculated using Eq. (4) need to
be binned in θ before they can be compared to the measure-
ment. As we usually compress the data by binning ξ± into broad
θ-bins, we should apply the same binning to the theory, to take
the functional form of the 2PCFs over the angular bin into
account. Additionally, the number of galaxy pairs is roughly pro-
portional to their angular separation. Therefore in the binned
data, 2PCFs values for larger θ contribute a larger weight to
the mean signal in the bin. In Appendix A we calculate the
biases introduced by binning 2PCFs data, showing that using a
point estimate for the expected values of ξ± can produce biases
of up to ±10% for the angular range and binning adopted in
Hildebrandt et al. (2017) and Troxel et al. (2018b).

In practice we need to modify the relation between the
2PCFs and shear power spectrum in Eq. (4), to accommodate
any B-mode power spectra that may exist in the data,

ξ+(θ) =

∫ ∞

0

d` `
2π

J0(θ`)[PE(`) + PB(`)] , (7)

ξ−(θ) =

∫ ∞

0

d` `
2π

J4(θ`)[PE(`) − PB(`)] ,

where2 Pγ(`) = PE(`) and PB(`) is the B-mode power spec-
trum (Schneider et al. 2002a). In the following subsections
we introduce three methods that separate E/B-modes in cos-
mic shear data: ξE/B, COSEBIs and compressed COSEBIs.
COSEBIs, being the most robust two-point statistic method, will
be used as our primary E/B-mode separation method.

2.1. E/B-mode 2PCFs

The correlation functions, ξ±, can be separated into E/B-modes
following Crittenden et al. (2002) and Schneider et al. (2002a),
where

ξE =
ξ+(θ) + ξ′(θ)

2
and ξB =

ξ+(θ) − ξ′(θ)
2

, (8)

2 Neglecting small contributions from source clustering and higher
order effects.

with

ξ′(θ) = ξ−(θ) + 4
∫ ∞

θ

dϑ
ϑ
ξ−(ϑ) − 12θ2

∫ ∞

θ

dϑ
ϑ3 ξ−(ϑ). (9)

The above definition makes ξE/B pure E/B-modes and hence
we can write

ξE(θ) =

∫ ∞

0

d` `
2π

J0(θ`)PE(`), (10)

ξB(θ) =

∫ ∞

0

d` `
2π

J0(θ`)PB(`).

From Eqs. (7)–(10) we can immediately see that for a B-
mode free case ξE = ξ+(θ).

In Schneider et al. (2002a), ξE/B(θ) is denoted ξE+/B+(θ) as
they also provide an alternative definition for E/B two point cor-
relation functions, ξE−/B−(θ), in terms of integrals over ξ+(ϑ).
In that case the integrals are taken from ϑ = 0 up to ϑ = θ,
instead. Although in both cases the integral is taken over a range
of angular separations that are not observable, it is preferable to
use Eq. (8) since, at least for a B-mode free case, ξ−(θ)/θ is very
small for large θ (ξ−(θ) ∝ θ−3 at large scales). In this case we
can truncate the integrals in Eq. (9) without needing to extrap-
olate to infinitely large ϑ. However, we may lose some B-mode
information by this truncation, as there is no guarantee that the
B-mode signal is negligible for large angular scales. One way to
extend the integral to large angular scales that are not available
in the data is to use the theoretical value of ξ−(θ) for these angu-
lar ranges. In this paper we use measurements over an angular
range of [0.5′, 300′] and a theoretical ξ−(θ) from θ = 300′ out to
θ = 1000′. We find that the inclusion of the theoretical extension
of the integral has less than 5% effect on the largest angular bin
(used in KiDS-450) centred at 50′ and drops to subpercent level
for θ . 20′.

2.2. COSEBIs

COSEBIs (Complete Orthogonal Sets of E/B-Integrals) modes
live neither in Fourier nor real space. The filter functions for
COSEBIs form sets of basis functions which transform 2PCFs
and shear power spectra to the COSEBIs modes. The two sets
of COSEBIs basis functions are the Lin- and Log-COSEBIs
filters, which are written in terms of polynomials in ϑ and
ln(ϑ) in real space, respectively. In this analysis we use the
Log-COSEBIs, as they require fewer modes compared to the
Lin-COSEBIs to capture essentially all the cosmological infor-
mation (see Schneider et al. 2010 for a single redshift bin and
Asgari et al. 2012 for the tomographic case).

The COSEBIs can be written in terms of the 2PCFs as

E(i j)
n =

1
2

∫ θmax

θmin

dϑϑ [T+n(ϑ) ξ(i j)
+ (ϑ) + T−n(ϑ) ξ(i j)

− (ϑ)], (11)

B(i j)
n =

1
2

∫ θmax

θmin

dϑϑ [T+n(ϑ) ξ(i j)
+ (ϑ) − T−n(ϑ) ξ(i j)

− (ϑ)], (12)

where E(i j)
n and B(i j)

n are the E and B-mode COSEBIs for red-
shift bins i and j, and n, a natural number, is the order of the
COSEBIs modes. T±n(ϑ) are the COSEBIs filter functions,
(given in Eqs. (28)–(37) in Schneider et al. 2010). These are
oscillatory functions with n + 1 roots in their range of support,
as shown in Fig. 1. Therefore, the COSEBIs modes with larger
n values have more oscillations in their range of support and can
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Fig. 1. Log-COSEBIs filter functions, T±n(θ). These filter functions con-
vert ξ± to COSEBIs E and B modes through Eqs. (11) and (12). We
show four example n-modes for each filter for the angular separation
range of [0.5′, 100′]. By definition T±n(θ) are equal to zero outside of
the range of their support.

pick up features in the 2PCFs that appear as smaller-scale varia-
tions, compared to the modes with small n and few oscillations.
These small n-modes are more sensitive to the larger-scale vari-
ations in the input ξ± or the overall behaviour of these functions.

The E/B-COSEBIs can also be expressed as a function of the
convergence power spectra,

E(i j)
n =

∫ ∞

0

d` `
2π

P(i j)
E (`) Wn(`), (13)

B(i j)
n =

∫ ∞

0

d` `
2π

P(i j)
B (`) Wn(`),

where P(i j)
E(B) are the E(B)-mode convergence power spectra and

the Wn(`) are the Hankel transforms of T±n(ϑ),

Wn(`) =

∫ ϑmax

ϑmin

dϑ ϑ T+n(ϑ)J0(`ϑ),

=

∫ ϑmax

ϑmin

dϑ ϑ T−n(ϑ)J4(`ϑ). (14)

Figure 2 shows the Wn(`) functions corresponding to the
T±n(θ) filters shown in Fig. 1. The first peak in Wn(`) is set by the
value of ϑmax and n. As can be seen, the higher order Wn pick up
more power from larger `. We use Eq. (13) to calculate the the-
oretical value of the E-mode COSEBIs as theories, in general,
give their predictions in terms of the power spectrum. However,
in practice the shear 2PCFs are more straightforward to mea-
sure from data, hence Eqs. (11) and (12) are used to calculate

102 103 104

1

0

1

W
n(

)/m
ax

[W
n(

)]

n = 1
n = 5
n = 10
n = 20[0.5',100']

Fig. 2. Log-COSEBIs weight functions, Wn(`), normalized to their max-
imum value. These weight functions convert E and B shear power spec-
tra to COSEBIs modes through Eq. (13). Four example n-modes are
shown for the angular range of [0.5′, 100′].

the E/B-mode COSEBIs from data and simulations. To evalu-
ate these integrals in the angular range of [0.5′, 100′] we use
4 × 105 linear angular bins (see Asgari et al. 2017, for a discus-
sion on optimising the number of bins for this type of analysis).

2.3. CCOSEBIs

We use the data compression method of Asgari & Schneider
(2015) to explore the effect of systematics on cosmological
parameter estimation, as this method is informed by the sen-
sitivity of the data to the parameters. This method, which can
be applied to any statistic, reduces the number of data points,
which is important to minimise errors when estimating covari-
ance matrices from simulations (see Hartlap et al. 2007, for
example).

To compress COSEBIs we need to have an estimate for their
inverse covariance matrix (see Sect. 2.4), as well as their first
and second-order derivatives with respect to the parameters to be
measured. We then linearly combine the COSEBIs modes using
the sensitivity of each mode to the given parameter(s) as their
coefficient. For the first-order compressed E-COSEBIs we have,

Ec
µ =

nmax∑
n,m=1

∂Em

∂µ
(C−1)mnEn, (15)

where µ is a cosmological parameter, C−1 is the inverse covari-
ance matrix of En and nmax is the number of COSEBIs modes
considered in the compression. This first order compression is
equivalent to a Karhunen–Loeve compression where the covari-
ance matrix is known (see Tegmark et al. 1997, for example),
but using the first order compression alone can result in a loss of
information when the covariance matrix estimate is inaccurate.
We therefore follow Asgari & Schneider (2015) by adding the
following second-order compressed quantities to the data,

Ec
µν =

nmax∑
n,m=1

∂2Em

∂µ∂ν
(C−1)mnEn, (16)

where ν is a second cosmological parameter and second order
derivatives of En are taken. In short, we can write both first and
second-order CCOSEBIs as the following matrix equation,

Ec = ΓE and Bc = ΓB, (17)

where the elements of the compression matrix, Γ, are formed
from combinations of the derivatives of En with respect to the
parameters and their inverse covariance matrix.
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2.4. Covariance matrix

To quantify the significance of the B-modes measured from the
data or in the simulations, we need to know the covariance
matrix of the data vector. Aside from currently negligible phys-
ical effects that can produce B-modes (discussed in Sect. 1) and
in the absence of systematics, we expect any observed B-modes
to be consistent with random noise arising from galaxy shape-
noise. Therefore, to calculate the B-mode covariance, we assume
that they are only due to noise and find the covariance matrix for
each of the above statistics.

Assuming a field of galaxies with ellipticities randomly
picked from a Gaussian with zero mean and σ2

ε variance, we
can write the covariance of the 2PCF as

〈ξ
i j,noise
± (θ)ξkl,noise

± (ϑ)〉 =
σ4
ε

2N i j
pair(θ)

δθϑ[δikδ jl + δilδ jk], (18)

where N i j
pair(θ) is the number of galaxy pairs, in redshift bin

pair i j, within an angular separation bin with the label θ. The
Kronecker symbols, δi j and δθϑ, are equal to unity if their argu-
ments are equal and are otherwise zero (for example see Eq. (34)
in Joachimi et al. 2008).

An approximation for Npair(θ) can be determined by calcu-
lating the number of pairs in an infinite field, scaled by the true
finite field area, A, where

N i j
pair(θ)

approx = 2πA θ∆θ n̄i
galn̄

j
gal, (19)

and n̄i
gal is the mean number density of galaxies in redshift bin

i. This approximation fails, however, as it does not account for
intricate small-scale survey geometry, source clustering or any
variable depth effects. Furthermore, as we get closer to the field
size, it does not account for the pairs of galaxies which are lost
due to the discontinuities in the observed field (see for exam-
ple Joachimi et al. 2008). As the significance of any measured
B-modes is determined entirely by the shot-noise, we therefore
choose to use a direct measurement of Npair(θ) from the data. We
follow the method of Schneider et al. (2002b), who determine
the full covariance matrix for 2PCFs for a weighted ellipticity
field, to find the shape-noise-only term of the covariance matrix,
with the number of galaxy pairs given as

Npair(θ) =
(
∑

ab wawb)2∑
ab w

2
aw

2
b

· (20)

Here the sums are over galaxies in the given angular separa-
tion bin. Determining Npair from Eq. (20) instead of the approxi-
mation in Eq. (19), enlarges the covariance at large scales where
there are fewer pairs of galaxies due to geometry effects. On
small scales where variable depth and source clustering become
important, the covariance is decreased.

Inserting Eq. (18) into the following expression for the
COSEBIs covariance (Schneider et al. 2010)

Ci j,kl
mn =

1
4

∫ θmax

θmin

dθ θ
∫ θmax

θmin

dθ′ θ′ (21)

×
∑

µν=+,−

Tµm(θ)Tνn(θ′)Ci j,kl
µν (θ, θ′),

where C±±(θ, θ′) is the covariance of ξ±, we find the B-mode
covariance for COSEBIs,

Ci j,kl
mn =

σ4
ε

8

∫ θmax

θmin

dθ θ
∫ θmax

θmin

dθ′ θ′

ni j
pair(θ

′)
[δikδ jl + δilδ jk] (22)

× δD(θ − θ′)[T+m(θ)T+n(θ′) + T−m(θ)T−n(θ′)],

where ni j
pair(θ) dθ = N i j

pair(θ), δD is the Dirac delta function and we
have used δθθ′ = δD(θ − θ′) ∆θ to remove the Kronecker symbol.
Taking the inner integral in Eq. (22) results in,

Ci j,kl
mn =

σ4
ε

8
[δikδ jl + δilδ jk]

∫ θmax

θmin

dθ θ2

ni j
pair(θ)

(23)

× [T+m(θ)T+n(θ) + T−m(θ)T−n(θ)].
We calculate the COSEBIs B-mode covariance using trape-

zoidal integration with fine θ-bins and verified that these equa-
tions accurately predict the noise-only covariance, by analysing
1000 shape-noise-only mock simulations. We find that for a
100 deg2 field the noise term for the COSEBIs covariance is
underestimated by 30% if we use Napprox

pair from Eq. (19), while
using Eq. (20) recovers the measured covariance from the
simulation.

The corresponding covariance for CCOSEBIs is simply
equal to the COSEBIs covariance sandwiched between two com-
pression matrices,
Cc = ΓCΓt, (24)
where t denotes a transposed matrix3.

The covariance matrix of ξB can also be calculated from
Eq. (18),

〈ξ
i j
B (θ)ξkl

B (ϑ)〉 =
σ4
ε

4N i j
pair(θ)

δθϑ[δikδ jl + δilδ jk]. (25)

Note that the only difference between Eqs. (25) and (18) is
a factor of 2, which arises from the fact that ξ± depends on both
E/B-modes and their associated noise, while ξE/B only depends
on a single component, as can be seen in Eqs. (10) and (7). As a
result, ξE/B is only sensitive to the noise components that resem-
ble E/B-modes. The power spectrum of the noise can be equally
divided into an E-mode and a B-mode component, and as such
the noise covariance for ξE/B is half the amplitude of the corre-
sponding covariance for 2PCFs.

In addition to B-modes, we show E-mode measurements for
the data with error bars calculated assuming Gaussian covari-
ances. We choose not to include the non-Gaussian and super
sample terms in the error calculation which primarily affect the
off-diagonal terms of the covariance matrix4. As we do not anal-
yse the E-modes in a quantitative way in this study, and use
the E-mode covariances solely for plotting purposes, our cho-
sen Gaussian treatment of the covariance is sufficient. We can
write the Gaussian covariance for the E-modes in terms of three
contributors,
C = Cosmic variance + Mixed + Noise, (26)
where the Mixed term depends on both cosmology and noise.
The Noise term here is estimated in the same manner as the B-
modes covariance, (Eqs. (23)–(25)), taking all the survey effects
into account. For the other two contributions, however, we
assume a simple survey geometry and follow Eqs. (53) and (54)
in Joachimi et al. (2008) for the covariance of power spectra
and correlation functions5, respectively. The Gaussian mixed
3 The transpose is applied to the right hand Γ, since Γ is a matrix with
p, the number of cosmological parameters, rows and nmax columns.
4 Semboloni et al. (2007) find the transition between the Gaussian and
non-Gaussian terms occurs at θ ∼ 20′. At this scale the cosmic variance
and mixed term roughly double the size of the error bars. At θ ∼ 1′ the
non-Gaussian term is an order of magnitude larger than the Gaussian
cosmic variance term, but as the noise term is dominant here the effect
of the non-Gaussian term on the error bars is only ∼10%.
5 These two terms are the same for ξ+ and ξE .
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Table 1. Published best-fitting cosmological parameters for the sur-
veys (KiDS-450, CFHTLenS, and DES-SV: Hildebrandt et al. 2017;
Heymans et al. 2013; Abbott et al. 2016), and the simulation (SLICS,
Harnois-Déraps et al. 2018), that we use in this paper.

σ8 Ωm ns h Ωb AIA

KiDS-450 0.849 0.2478 1.09 0.747 0.0400 1.1
CFHTLenS 0.794 0.255 0.967 0.717 0.0437 −1.18
DES-SV 0.745 0.378 0.96 0.405 0.0440 2.07
SLICS 0.826 0.2905 0.969 0.6898 0.0473 0

Notes. σ8 is the standard deviation of perturbations in a sphere of radius
8 h−1 Mpc today. ns is the spectral index of the primordial power spec-
trum. Ωm and Ωb are the matter and baryon density parameters, respec-
tively and h is the dimensionless Hubble parameter. The underlying
cosmology for all cases is a flat ΛCDM model with Gaussian initial
perturbations. The final column shows AIA, the amplitude of the intrin-
sic galaxy alignment model. DES-SV best-fit parameters are provided
by Zuntz (2018, priv. comm.).

and cosmic variance terms for COSEBIs covariance are given
in Eq. (11) in Asgari et al. (2012) for the tomographic case.

3. Data

We use three sets of cosmic shear catalogues that are in the pub-
lic domain, KiDS-450, DES-SV and CFHTLenS. Our focus in
this paper is the analysis of their B-mode signal, but we also
compare the corresponding measured E-mode signals to theoret-
ical predictions, based on the published best fitting cosmological
parameters from each survey, as given in Table 1. This allows for
the level of B-modes to be assessed, relative to the E-modes, but
we leave a full E-mode cosmological parameter analysis to a
future paper.

The theoretical predictions are calculated using cosmosis
(Zuntz et al. 2015)6 with linear matter power spectra calculated
with camb (Lewis et al. 2000; Howlett et al. 2012)7. Takahashi
et al. (2012) is used to model the non-linear evolution of the
matter power spectrum. A Limber approximation is employed
to estimate the lensing power spectrum as described in Sect. 2.
For the intrinsic alignment of galaxies we adopt the non-linear
model from Bridle & King (2007)8, which is equivalent to the
models used in the analysis of all three surveys. The 2PCFs
are measured from the data and the simulations using athena9

(Kilbinger et al. 2014).

3.1. CFHTLenS

Heymans et al. (2012) present the CFHTLenS, a completed sur-
vey with 154 square degrees of observed data in 5 photomet-
ric bands. The public data products that we analyse here are
processed by theli (Erben et al. 2013), with galaxy ellipticities
measured using lensfit (Miller et al. 2013) and photometric red-
shifts determined using the Bayesian photometric redshift code
bpz (Benítez 2000; Hildebrandt et al. 2012).

The 2PCFs cosmic shear analysis for CFHTLenS is pre-
sented in Kilbinger et al. (2013) and Heymans et al. (2013). As
summarised in Kilbinger et al. (2017), however, several improve-
ments have been recognised since these publications, in partic-

6 cosmosis: bitbucket.org/joezuntz/cosmosis
7 camb: http://camb.info
8 bk_corrected in cosmosis
9 athena: www.cosmostat.org/software/athena

ular with respect to the calibration of the photometric redshifts
(see for example Choi et al. 2016; Joudaki et al. 2017b) and the
shear measurements (see Kuijken et al. 2015; Fenech Conti et al.
2017). The resulting uncertainty in these calibrations will impact
the E-mode cosmological parameter constraints from this sur-
vey. As our focus is on a B-mode analysis however, which is
independent of these calibration corrections, we choose to use
the redshift distributions and calibration corrections adopted by
Heymans et al. (2013) for this study.

We follow Heymans et al. (2013) by dividing the data into
six photometric redshift bins: z1 ∈ (0.2, 0.39], z2 ∈ (0.39, 0.58],
z3 ∈ (0.58, 0.72], z4 ∈ (0.72, 0.86], z5 ∈ (0.86, 1.02] and
z6 ∈ (1.02, 1.3], also including a single bin case that uses the
full range of z ∈ (0.2, 1.3]. In Asgari et al. (2017), we anal-
ysed CFHTLenS using COSEBIs to find a significant level of
B-modes. We extend this analysis to explore higher modes in
COSEBIs, in addition to ξE/B, and we use an exact noise covari-
ance (Eq. (20)) in contrast to our earlier work which used
Eq. (19).

3.2. KiDS-450

The Kilo-Degree Survey (KiDS) will collect 1350 square
degrees and in combination with VIKING (VISTA Kilo-degree
Infrared Galaxy survey) will present data in nine photometric
bands (see Kuijken et al. 2015 and de Jong et al. 2017). We anal-
yse the data products released for the first 450 square degrees
(KiDS-450), that has been processed by theli (Erben et al. 2013)
and Astro-WISE (Begeman et al. 2013). Galaxy ellipticities are
measured with lensfit (Miller et al. 2013) and calibrated using
the image simulations described in Fenech Conti et al. (2017).
The 4-band photometric redshifts are calibrated using external
overlapping spectroscopic surveys (Hildebrandt et al. 2017) and
galaxies are binned into tomographic bins using bpz.

The KiDS-450 2PCFs cosmic shear analysis is shown in
Hildebrandt et al. (2017) and Joudaki et al. (2017a, 2018), with
complementary cosmic shear power spectrum analyses calcu-
lated using quadratic estimators in Köhlinger et al. (2017), and
integrals over 2PCFs in van Uitert et al. (2018). All these anal-
yses reported significant but low-level traces of B-modes in the
data.

As in the KiDS-450 cosmic shear analyses we divide the
data into four photometric redshift bins: z1 ∈ (0.1, 0.3], z2 ∈

(0.3, 0.5], z3 ∈ (0.5, 0.7] and z4 ∈ (0.7, 0.9], including a single
bin case that uses the full range of z ∈ (0.1, 0.9].

3.3. DES-SV

The Dark Energy Survey Collaboration (2005) introduce the
Dark Energy Survey (DES) project which will produce 5000
square degrees of gravitational lensing data in five bands. The
science verification data also known as DES-SV10 is the public
dataset that we analyse here. The galaxy ellipticities in DES-
SV are measured using ngmix (Jarvis et al. 2016) and photo-
metric redshifts are determined using a machine learning-based
pipeline, skynet (Bonnett et al. 2016).

Becker et al. (2016) present the primary cosmic shear analy-
sis of the DES-SV data using 2PCFs along with cosmic shear
power spectrum measurements (also see Troxel et al. 2018a,
for the analysis of the first 1300 square degrees of DES data).
Fourier space B-mode measurements detected no significant
B-modes on scales ` < 2500.

10 DES-SV: http://des.ncsa.illinois.edu/releases/sva1
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Fig. 3. COSEBIs E-modes (left) and B-modes (right) for a single broad redshift bin. Results for DES-SV are shown with blue squares, KiDS-450
with black stars and CFHTLenS with magenta triangles. The angular ranges are shown for each row in the upper right corner. In addition, the
significance of the B-modes is shown as p-values for each survey and angular range. E-mode predictions are calculated using the best fitting
cosmological parameter values given in Table 1 for DES-SV (solid), KiDS-450 (dashed) and CFHTLenS (dotted). Note that COSEBIs modes are
discrete and the theory values are connected to each other only as a visual aid. A zero-line is also shown for reference.

We divide the data into three photometric redshift bins fol-
lowing Becker et al. (2016): z1 ∈ (0.3, 0.55), z2 ∈ (0.55, 0.83)
and z3 ∈ (0.83, 1.3) and also consider a single bin case that uses
the full range of z ∈ (0.3, 1.3). In order to compare our mea-
sured E-mode signal to the published best-fitting cosmological
parameters, listed in Table 1, we also take into consideration the
best-fitting DES-SV shear calibration and photometric redshift
biases in our predictions, which Abbott et al. (2016) include as
nuisance parameters in their fit. For our single bin analysis of
DES-SV data we adopt zero bias for the photometric redshift and
the same value as the first tomographic bin for the shear calibra-
tion bias, which is similar to the average of the biases measured
for the three bins (see Table D.1).

4. Results: survey E/B-modes

In this section we present the measured COSEBIs (Eq. (11)
and Eq. (12)), CCOSEBIs (Eq. (17)) and ξE/B (Eq. (8)) for
KiDS-450, DES-SV and CFHTLenS. In Fig. 3 we show the

COSEBIs measurement for a single redshift bin encompassing
the full range of redshifts adopted by each survey. For the COSE-
BIs statistics we need to choose an angular range and throughout
this paper we show results for three sets of angular ranges: the
full angular range: [0.5′, 100′], large scales: [40′, 100′] and small
scales: [0.5′, 40′]. These were chosen to span both the survey-
adopted ξ+(θ) angular ranges: KiDS-450 (0.5′ < θ+ < 72′),
DES-SV (2′ . θ+ . 60′), CFHTLenS (1.5′ < θ+ < 35′), whilst
also probing some of the larger angular scales used in the corre-
sponding ξ−(θ) analysis: KiDS-450 (8.6′ < θ− < 300′), DES-SV
(24.5′ . θ− . 245.5′) and CFHTLenS (1.5′ < θ− < 35′). The
large scale cut for ξ+(θ) is generally employed to avoid bias-
ing the results, when a constant additive bias term (c-term) is
present in the shear catalogues. The same large scale angular-
cut is not applied to ξ−(θ), since this statistic is not sensitive to
a constant c-term. COSEBIs share this insensitivity with ξ−(θ)
and hence any measured COSEBIs B-modes that use scales
beyond the maximum θ+ range are not a result of a constant
c-term.
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Each row in Fig. 3 corresponds to one angular range, as
denoted in the right panels, with E-modes on the left and B-
modes on the right. The different symbols show the results
for DES-SV (squares), KiDS-450 (stars) and CFHTLenS (tri-
angles). Overlaid are the theoretical predictions, given the pub-
lished best-fitting survey cosmological parameters from Table 1.
We show these E-mode predictions as curves for ease of com-
parison, even though the COSEBIs modes are discrete. As the
COSEBIs modes are correlated to their neighbouring modes (see
Asgari et al. 2012, 2017, for plots of the covariance matrices),
we caution that the goodness-of-fit to the model should not be
deduced by simply looking at the graphs, a practice commonly
known as “χ-by-eye”. Any goodness-of-fit exercise must take
into account the significant correlations between the points.

Throughout this paper we truncate the COSEBIs measure-
ments at n = 20. In principle the COSEBIs can be estimated for
an infinite number of modes. However as can be seen in the left
hand panels of Fig. 3 the E-mode predictions are equivalent to
zero for n & 7. Therefore, we do not expect to gain any cosmo-
logical information from these modes. On the other hand the sig-
nal from systematic effects does not necessarily follow the same
behaviour. We expect a significant signal at larger n-modes for
certain systematics (see Sect. 6). As a result we choose n = 20
as our maximum n-mode, which encompasses modes that are
important for both cosmological and systematic analyses. Future
analyses may however want to extend their diagnostic B-mode
analysis to even higher n-modes, depending on the signature of
the systematic that they are searching for.

Focusing first on the E-mode measurements (left panels of
Fig. 3) we expect to measure signal in the lower n-modes and
none for the modes n & 8, as seen in the theoretical predic-
tions. This arises from the fact that both the 2PCFs and shear
power spectrum are relatively smooth functions with a few fea-
tures that are captured, almost entirely, by the first few COSEBIs
modes. Any significant detection of high-order COSEBIs modes
indicates high-frequency variations in the 2PCFs, which are
unexpected in a ΛCDM cosmology and therefore indicative of
systematics. We remind the reader that our E-mode errors, which
include both sampling variance assuming a Gaussian shear field
and shot noise, will be slightly underestimated as we have not
included the sub-dominant super sample and non-Gaussian con-
tributions to the sampling variance terms (see Sect. 2.4).

Turning to the B-mode measurements (right panels of Fig. 3),
we determine the significance of the measured B-modes using
“p-values”, for each dataset and angular range, listed in Table 2.
The p-value is equal to the probability of randomly producing
a B-mode that is equally or more significant than the measured
B-mode signal, given the model that B-modes are equal to zero
and their distribution is Gaussian (see Appendix C for the math-
ematical definition of p-value). This model is appropriate for
B-modes generated from random noise. The degrees-of-freedom
here is equal to the number of COSEBIs modes (20 modes in the
single redshift bin case), as the model has no free parameters to
be fitted. The p-values take into account the correlations between
the COSEBIs modes. Our error analysis for the B-modes is accu-
rate, taking into account the weighted number of galaxy pairs in
each dataset. We consider the B-modes to be significant when
the measured p-values are p < 0.01 (highlighted in bold), cor-
responding to greater than 2.3σ detection of B-modes. We find
that the B-modes of KiDS-450 and CFHTLenS are consistent
with zero, finding p > 0.1 in all cases. DES-SV, however, shows
significant 2.8σB-modes with p = 0.0026, when the full angu-
lar range is considered. We discuss the complexity of linking
B-mode features with E-mode features in Sect. 6.

In Table 2 we also list the significance of the measured
COSEBIs B-modes for a tomographic analysis of the three
angular ranges, using the survey-defined photometric redshift
bins (see Sect. 3). The COSEBIs tomographic measurements
for each survey, adopting the full angular range, are shown
in Appendix D. For all angular ranges, we find no signifi-
cant COSEBIs B-modes for KiDS-450. In contrast, for DES-SV
data we find a 4.0σ detection of B-modes for the large-scale
angular range that includes angular scales used in the DES-
SV cosmic shear analysis. For the full angular range, includ-
ing small-scale information that was excluded from the DES-SV
cosmic shear analysis, the significance of the detection increases
to 5.5σ. For CFHTLenS we find a significant B-mode detec-
tion for small scales, but not at large scales. This result
is in contrast to Asgari et al. (2017) who found significant
CFHTLenS B-modes for large, but not small scales. We do
however recover this result if we limit our p-value analysis to
the first 7 COSEBIs modes adopted by Asgari et al. (2017).
This demonstrates that the p-values are sensitive to the choice
of modes considered in the analysis, motivating the study of
how different systematics impact different COSEBIs E/B-modes
in Sect. 6.

In Fig. 4 we show the measured compressed COSEBIs,
where the COSEBIs modes are combined to produce a set of
E-mode CCOSEBIs that, in a systematic-free dataset, are only
sensitive to cosmological parameters (Eq. (17)). We compress
the B-mode COSEBIs using the same compression matrix. Cos-
mic shear is mainly sensitive to a combination of σ8 and Ωm (see
for example Jain & Seljak 1997), hence we choose only these
two parameters to form the CCOSEBIs modes11. The CCOSE-
BIs modes are highly correlated as σ8 and Ωm are degenerate
in cosmic shear data, and we hence caution the reader, again,
against a “χ-by-eye” analysis.

Figure 4 shows the results for a single-bin analysis (left)
and a tomographic analysis (right) for the three sets of angu-
lar ranges indicated in the right panels. The E-modes are shown
as open symbols and the B-modes as filled symbols for DES-SV,
KiDS-450 and CFHTLenS. Overlaid is the theoretical expecta-
tion for the E-mode signal, shown as curves for visual aid even
though the CCOSEBIs modes are discrete. The horizontal axis
shows which parameter (for the first-order modes) or two param-
eters (for the second-order modes) the CCOSEBIs mode is sensi-
tive to. We highlight that CCOSEBIs represent a significant data
compression, particularly in the tomographic case where, for
example, we compress the 3-bin 120 data-point DES-SV anal-
ysis, and the 6-bin 420 data point CFHTLenS analysis, down to
the same 5 CCOSEBIs modes.

Comparing the measured E-modes with the level of B-modes
in Fig. 4 we find that, aside from the largest angular range that
also has the lowest signal-to-noise ratio, the E-modes are about
an order of magnitude larger than the B-modes. In all panels we
see that the KiDS-450 E-mode signal is lower than DES-SV and
CFHTLenS, resulting from a smaller upper photometric redshift
cut of zphot < 0.9 in this dataset.

Table 3 shows the p-values for CCOSEBIs B-modes. We
do not show p-values for the E-modes since for this analysis
we have not included the super sample covariance term and our
E-mode errors are therefore underestimated. Readers concerned
by the apparent offset between the highly correlated [40′, 100′]

11 When survey sizes grow and they become sensitive to other cosmo-
logical parameters such as the Hubble parameter, H0 and the scalar
spectral index, ns, this CCOSEBIs analysis should be extended to
include these additional cosmological parameters.
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Fig. 4. CCOSEBIs E and B-modes for non-tomographic (left) and tomographic (right) analyses. The E-modes are shown as empty symbols,
with the B-modes shown as filled symbols, for DES-SV (blue squares), KiDS-450 (black stars) and CFHTLenS (magenta triangles). The analysis
is conducted over three different angular ranges, denoted in the upper right corner of each panel. The CCOSEBIs mode is indicated on the
horizontal-axis. E-mode predictions are calculated using the best fitting cosmological parameter values given in Table 1 for DES-SV (solid),
KiDS-450 (dashed) and CFHTLenS (dotted). A zero-line is also shown for reference.

Table 2. Probability of zero B-mode contamination for each survey,
given the measured COSEBIs B-modes.

[0.5′, 40′] [0.5′, 100′] [40′, 100′]

DES-SV, Single bin 0.049 2.6 × 10−3 0.026
DES-SV, Tomography 9.9 × 10−7 1.5 × 10−8 3.8 × 10−5

KiDS-450, Single bin 0.40 0.12 0.55
KiDS-450, Tomography 0.94 0.61 0.77
CFHTLenS, Single bin 0.63 0.61 0.58
CFHTLenS, Tomography 2.5 × 10−3 0.047 0.037

Notes. Results are tabulated for three different angular ranges, including
the tomographic and broad single redshift bin analysis. All p-values that
are smaller than 0.01 are shown in bold, corresponding to a greater than
2.3σ B-mode detection.

E-mode measurements and expectation values, should note
that the similarly highly correlated B-modes, for the non-
tomographic case, are all consistent with zero, even for the cases
where they look inconsistent. The significance of the B-modes is
different from the values shown in Table 2, where we have used
the first 20 COSEBIs modes to measure the p-values. This appar-
ent inconsistency is not unexpected, as the bulk of the CCOSE-

Table 3. Same as Table 2 but for CCOSEBIs.

[0.5′, 40′] [0.5′, 100′] [40′, 100′]

DES-SV, Single bin 3.3 × 10−3 1.1 × 10−3 0.17
DES-SV, Tomography 0.029 0.014 2.6 × 10−3

KiDS-450, Single bin 4.8 × 10−3 3.0 × 10−3 0.56
KiDS-450, Tomography 0.013 3.3 × 10−3 0.51
CFHTLenS, Single bin 0.62 0.55 0.068
CFHTLenS, Tomography 0.70 0.90 0.026

BIs signal comes from the first few COSEBIs modes, which con-
tain the cosmological signal and different levels of systematics
in comparison to the full set of 20 COSEBIs modes. A good
example of this difference comes in the tomographic analysis of
DES-SV where we find a significant ∼5.5σ non-zero B-mode
signal for COSEBIs, but the CCOSEBI B-mode is not signif-
icant at 2.2σ. This shows that the first few COSEBIs modes
have a smaller contribution to the total DES-SV B-mode sig-
nal compared to the higher order modes, which can also be seen
in Fig. D.1. KiDS-450, however, shows an insignificant B-mode
signal when we consider both high and low COSEBIs modes, in
contrast to a 2.7σ B-mode detection when only the low n-modes
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Fig. 5. ξE and ξB E/B-modes for a single broad redshift bin. The
E-modes are shown as empty symbols, with the B-modes shown as
filled symbols, for DES-SV (blue squares), KiDS-450 (black stars)
and CFHTLenS (magenta triangles). The DES-SV and CFHTLenS
results are horizontally offset relative to KiDS-450 to aid visualisation.
E-mode predictions for ξE are calculated using the best fitting cosmo-
logical parameter values given in Table 1 for DES-SV (solid), KiDS-
450 (dashed) and CFHTLenS (dotted). A zero-line is also shown for
reference. We detect significant B-modes in all cases as shown by the
p-values, in the legend, which determine the probability of the data
B-modes given a null B-mode model.

are used to construct the CCOSEBIs. As can be seen in Table 3,
and the upper right panel of Fig. 3, the low-n B-modes for KiDS-
450 data only become significant when the small angular scales
are included.

If the origin of the B-modes detected in the COSEBIs anal-
ysis was known to impact the E and B modes equally, then the
CCOSEBIs result would be the most relevant for cosmic shear
studies. If the systematics impact the E and B modes differ-
ently, however, then the compressed CCOSEBIs result, focused
on only low-n modes, could lead to a false null-test for the sur-
vey. It is therefore important to study how different systemat-
ics impact the full range of E and B COSEBIs, which we carry
out in Sect. 6, and discuss this matter further in Sect. 7. In
Appendix C we also discuss how analysis choices, for exam-
ple in this case tomographic or non-tomographic, COSEBIs
or CCOSEBIs, can optimise or dilute the power of a B-mode
null-test.

Finally we turn to Fig. 5 which shows the measured ξE/B
statistic across the full redshift range for each survey. Over-
laid are the best fitting theory curves for each dataset derived
from the published cosmological parameters in Table 1. The
p-values corresponding to the zero B-mode model are low in
all cases, as given in the legend of the figure, with all surveys
showing a tendency for increasing B-mode power and decreasing
E-mode power at large scales, which, we discuss further in
Sect. 7. B-modes are detected at greater than ∼2.6σ for all sur-
veys. For DES-SV the significance of the B-modes is particularly
high at ∼9σ, but this reduces to 2.3σ, or p = 0.012, when we
select the angular scales [4.2′, 72′] which roughly correspond to
the angular cuts applied to ξ+ in the DES-SV cosmic shear anal-
ysis12. In Appendix D we present the ξE/B tomographic analysis
for each survey where we find a significant B-mode detection for

12 The angular cuts used in DES-SV is variable for different redshift
bins and are also different for ξ+ and ξ−. Since ξE/B are estimated
using both ξ+ and ξ− the decision for corresponding angular cuts is
ambiguous.

DES-SV (p ∼ 4× 10−19), but no detection of B-modes for KiDS
or CFHTLenS (p ∼ 0.7).

Given the required extrapolation of the data in order to cal-
culate the ξE/B statistic (see Eq. (9)) we emphasize that these
results are, by nature, a biased measurement of ξE/B, which may
not represent the data accurately. For this statistic, the errors on
ξB are uncorrelated (see Eq. (25)) but also biased as the integral
truncation when estimating ξE/B also affects its noise properties,
which we have not taken into account. We therefore do not place
too strong an emphasis on the high significance of the measured
B-modes, or the lack of E-mode power on large-scales for all sur-
veys, particularly as these are the scales that are most impacted
by the choices made when extrapolating the data. That said, if
surveys continue to use 2PCFs as a standard cosmic shear statis-
tic, then it is still relevant to measure ξE/B as it is the B-mode
measurement that is most closely related to the 2PCFs.

5. Modelling systematics

In Sect. 4 we detected significant B-modes in the DES-SV data
as well as in certain tomographic combinations of CFHTLenS
and KiDS-450 data. In this section we introduce models for a
range of data-related systematic effects that are appropriate for
the datasets described in Sect. 3. We consider three models of
systematics that affect the shear measurement of all galaxies
independently of their redshift. In addition we model one photo-
metric redshift-dependent systematic, demonstrating how catas-
trophic errors in photometric redshifts can lead to shape selection
bias. We add these systematic models to mock data to explore
their effect on the 2 point statistics introduced in Sect. 2. We are
particularly interested in measuring the B-modes associated with
each systematic (see Sect. 6). By comparing simulated results
with and without these systematic effects, the B-mode signa-
tures can then be used as a tool for diagnosing the source of the
B-modes in the surveys analysed in Sect. 4.

In this analysis, we do not model masking effects, since all of
the methods we use rely on measuring 2PCFs, which are insensi-
tive to masking, provided the mask is uncorrelated with the shear
field. If such correlations exist, all statistics will be affected by
them. This is in contrast to methods that rely on Fourier trans-
forms of the shear field, where masks can cause significant sys-
tematic effects (see for example Asgari et al. 2018).

5.1. Shear measurement errors

For the case of weak shear with |γ| � 1, we can model the
observed ellipticity as

εobs = (1 + m)[ε int + γ] + η + αε∗ + β δε∗ + c, (27)

where ε int is the intrinsic galaxy ellipticity, γ is the shear, η is ran-
dom noise on the ellipticity measurement, ε∗ is the PSF model
ellipticity, δε∗ = ε∗ − ε∗true is the residual ellipticity between the
model and true PSF, and c is an additive shear that is uncorrelated
with the PSF. For all these quantities we use complex notation
where, for example, γ = γ1 + i γ2. For the two PSF-dependent
terms, αε∗ quantifies the fraction of the model PSF ellipticity
that leaks into the shape measurement, and β δε∗ quantifies the
fraction of the residual PSF arising from PSF modelling errors,
that leaks into the shape measurement. The term m is a multi-
plicative shear bias that is traditionally calibrated using image
simulations.

We simulate each of the systematic terms in Eq. (27) in isola-
tion, in order to characterise their B-mode signature. One excep-
tion is the shear calibration correction, m, which we set to zero,
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Fig. 6. First ellipticity component of the spatially varying systematic effects, simulated over a 10◦ × 10◦ field. Here the effects are normalized
to their maximum value for a better visual comparison. From the left, the first panel shows the point spread function pattern used to model PSF
leakage (−0.01 < αε∗1 < 0.01). The second panel shows a regular pattern using the detector chip bias model from OmegaCam multiplied by a factor
of 5 (0.001 < c1 < 0.025). The third panel shows the random correlated noise PSF residual model with a smoothing length similar to the chip size
(−0.006 < βδε∗1 < 0.006), while the last panel shows the same systematic for a roughly pointing size smoothing length (−0.003 < βδε∗1 < 0.003).

as an isotropic shear bias cannot introduce a B-mode signal, only
scale an E-mode signal.

5.1.1. Point spread function (PSF) leakage: αε∗

In order to mimic the effect of the PSF leakage on cosmic shear
measurements we use PSF models from KiDS to make a real-
istic spatially varying PSF model spanning 100 square degrees.
We construct this large-scale PSF pattern on a 1 arcmin2 resolu-
tion grid, mapping the KiDS PSF measurements onto a 10◦×10◦
field by stitching together two 5◦ × 10◦ sections from the G12
and G15 regions in KiDS-450 data (see Hildebrandt et al. 2017,
for details). This provides us with a model for ε∗i (x, y), where
ε∗1(x, y) is shown in the left panel of Fig. 6. In KiDS the PSF
is modelled with polynomials of third order within each point-
ing, where the lowest order is allowed to vary between CCDs
to allow for discontinuities between CCD chips (see Kuijken
et al. 2015, for more details). Similar modelling approaches are
taken by CFHTLenS and DES-SV. The mean of the PSF ellip-
ticity and its one sigma deviation is ε∗i = 0.006 ± 0.016 and its
full range is covered by −0.1 < ε∗i < 0.1 for both components.
Figure 6 shows how the PSF pattern changes within and across
each ∼square degree pointing. In areas where the KiDS data are
masked and the PSF model unconstrained, we linearly interpo-
late the value of the PSF ellipticity to accommodate all galaxy
positions in our unmasked mock data analysis.

We choose to apply a 10% PSF leakage by setting α = 0.1.
This level of leakage corresponds to the α measured in the
poorer-seeing KiDS i-band data (see Amon et al. 2018). For
the high-quality KiDS r-band data that are used for the main
cosmic shear analysis, α was found to be consistent with zero
(Hildebrandt et al. 2017).

5.1.2. Regular repeating additive pattern: c(x,y)

In the absence of PSF-related errors, the amplitude of any
remaining additive bias that is uncorrelated with the PSF, c, can
be estimated directly from the data. Since we expect 〈ε int + γi +
η〉 = 0 over a large area, 〈εobs

i 〉 = c when α = β = 0. Surveys
typically correct for any significant measurement of c before any
analysis, but this empirical correction usually takes an average
over all galaxies and is therefore insensitive to small scale spa-
tial variations c(x, y) (van Uitert & Schneider 2016). Systematic

effects that are stable and associated with the camera or tele-
scope would result in a repeating pattern in the survey which is
built from a series of different pointings. To determine the impact
of such a systematic, we model a spatially varying, but repeating
additive term, which remains constant between pointings.

We use the data from Hoekstra et al. (in prep.), who present a
detailed analysis of imaging from the KiDS OmegaCam camera.
Hoekstra et al. (in prep.) report low-level but significant detector
and electronic defects that introduce an additive shear contribu-
tion per CCD that is uncorrelated with the PSF and spans the
range 0.0002 < ε∗1 < 0.005 and −0.0004 < ε∗2 < 0.00015, shown
in the second panel in Fig. 6. The white “chip 15” of OmegaCam
shows the largest bias at the level of ε1 = 0.005. For the pur-
poses of this analysis we multiply the Hoekstra et al. (in prep.)
detector-bias model by a factor of five to amplify its effect, as we
find that the original level of this effect is too small to show any
significant E/B-modes for the current datasets.

5.1.3. Random but correlated noise: β δε∗

Errors in PSF modelling, δε∗, can be systematic if the stars used
in the modelling are unrepresentative of the PSF experienced by
the galaxies (Antilogus et al. 2014; Guyonnet et al. 2015; Gruen
et al. 2015). In this case the resulting systematic behaves simi-
larly to the PSF leakage model outlined in Sect. 5.1.1, and we
therefore do not consider this type of PSF modelling error.

Instead we consider the random errors in the PSF modelling
that arise from noise in the PSF measurement. The impact of
measurement noise on the PSF model increases as the number
of stars available to characterise the model at each position in
the field decreases. The PSF modelling strategy (see Sect. 5.1.1)
means that any local random errors from the sparse PSF mea-
surement will propagate as random but correlated errors across
the PSF model for the full field of view.

We mimic the impact of random but correlated PSF resid-
ual errors by assigning a randomly generated number from a
Gaussian distribution with zero mean and unit dispersion to each
5 × 5 arcsec pixel within a 10◦ × 10◦ field. We first verify that
the uncorrelated version of this systematic does not produce any
coherent signal, as expected from a random error. We then cor-
relate the random PSF measurement noise over each pointing
using a Gaussian filter convolution defined within the boundaries
of the pointing. These convolved fields are then renormalized to
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produce an overall dispersion equal to 10% of the shear disper-
sion in the mock data, σRCN = 0.1σγ. We investigate two kernel
sizes with a correlation length of roughly the CCD chip level
(∼1.6 arcmin) and the pointing scale level (∼43 arcmin). The
resulting systematic patterns are shown in the two right panels of
Fig. 6, where the systematic ranges are −0.006 < βδε∗i < 0.006
(chip-level correlation) and −0.003 < βδε∗i < 0.003 (pointing-
level correlation). For this systematic we chose both components
of the contaminating ellipticity to be equal.

5.2. Photometric redshift selection bias

Cosmic shear surveys rely on photometric measurements to esti-
mate the redshifts of galaxies. The photometric redshift (photo-z)
of a galaxy can be estimated by comparing the magnitude of the
galaxy in several colour-bands to template catalogues of galaxy
spectral energy distributions (SEDs) or to spectroscopic train-
ing samples (see Salvato et al. 2019, and references therein).
The most probable value for the redshift of each galaxy, given
the measured photometric colours, zphot, is then used to divide
the galaxy sample into tomographic redshift bins. The true red-
shifts of these galaxies may not all lie within the boundaries of
their appointed photometric redshift bins but provided the true
underlying redshift distribution of the galaxies is known, this
can be accounted for in the theoretical predictions of the cosmic
shear signal (Eq. (6)). The dispersion in true redshift within these
tomographic bins will however depend on the precision of each
galaxy’s photo-z estimate, which in turn depends on the error on
the measured flux of the galaxy in each photometric band. As
a galaxy imaged with different noise realisations can therefore
appear in different photometric redshift bins, in cases where the
flux error is correlated with the shape or orientation of the galaxy,
selecting a galaxy sample based on photometric redshifts could
therefore lead to an ellipticity-redshift selection bias and hence
a systematic error in a cosmic shear analysis. In this section we
explore and introduce this new concept of photometric redshift
selection bias as a systematic for lensing surveys.

Consider two identical elliptical galaxies of fixed size and
flux. The first galaxy is convolved with an elliptical PSF aligned
with its major axis. The second is convolved with an ellipti-
cal PSF aligned perpendicular to its major axis. In the result-
ing image our second galaxy will appear to cover a larger area
than our first galaxy and with a lower surface brightness and
lower significance. It will therefore have larger photometric
errors compared to the first galaxy. Kaiser (2000) recognised
that this effect implied that any cuts on observed significance
would introduce a PSF-dependent selection bias in the ellipticity
of the galaxies (see also Bernstein & Jarvis 2002). The introduc-
tion of tomographic photo-z selection in a cosmic shear analysis,
which implicitly depends on the significance of each detection,
can therefore also lead to an ellipticity-dependent selection bias.

In addition to this core effect, flux errors that are corre-
lated with the relative orientation of the galaxy and PSF can
also arise simply from the methodology used to measure the
photometry in each band. DES-SV use SExtractor automated
aperture magnitudes where the aperture is fixed by the galaxy
shape in the detection image (Bonnett et al. 2016; Rykoff et al.
2016). Whilst this method ensures that the physical apertures are
matched between the bands, it does not take into account the dif-
fering PSFs. Hildebrandt et al. (2012) show that this approach
leads to an overall degradation in the photometric redshifts. For
example, if the PSF in the i-band is perpendicular to the PSF
in the detection r-band, the resulting i-band flux, assuming a
fixed-detection aperture, will be underestimated. This approach

therefore results in flux errors that are correlated with the rela-
tive orientation of the galaxy and PSF in each band. Hildebrandt
et al. (2012) demonstrate the importance of homogenising the
PSFs between bands before determining the matched-aperture
photometry. Both CFHTLenS and KiDS Gaussianise the PSFs
before measuring the photometry using the methodology pro-
posed by Kuijken (2008) and Kuijken et al. (2015). These sur-
veys should therefore be fairly immune to this additional error
and we note that the DES photometry methodology has been
significantly improved since the release of the DES-SV data that
we analyse in this paper (Drlica-Wagner et al. 2018).

In this analysis we make the first step to examine
photometric-redshift selection bias, by simulating a mock galaxy
catalogue where we introduce an anti-correlation between the
signal-to-noise ratio of the measured flux and the ellipticity of
the galaxies relative to the local PSF ellipticity, |ε − ε∗x |, in four
bands x = u, g, r, i. We use the following linear relation for the
anti-correlation,

Flux
Flux error

= ax|ε − ε
∗
x | + bx, (28)

where the value for ax and bx are determined by fitting to KiDS-
450 multi-band data (see Table D.2). Given that KiDS can only
measure the noisy observed ellipticity, we recognise that the
majority of the anti-correlation that we find in the KiDS-450
data, derive from taking the mean of the absolute value of the
observed ellipticity where the measurement noise, η in Eq. (27),
increases with decreasing signal-to-noise. Using Eq. (28) to
apply a correlation between the signal-to-noise of a galaxy and
its relative ellipticity to the local PSF therefore provides an upper
limit for this effect. Future work will use multi-band image sim-
ulations to determine values for ax and bx where the true elliptic-
ity is known. Our current approach is however sufficient for the
purposes of examining the B-mode signature that is introduced
by such an effect.

We produce mock ellipticity catalogues by randomly
associating ellipticities to galaxies, using a fit to the observed
KiDS-450 galaxy ellipticity distribution, such that 〈εmock〉 = 0.
We simulate 15 fields of 100 deg2 each with a total galaxy num-
ber density of 5.5 arcmin−2. We choose a simple model of con-
stant PSF per 1 deg2 pointing taken randomly from a uniform
distribution between [−0.1, 0.1] for each component of the PSF
ellipticity13.

We associate noise-free multi-band fluxes to the mock galax-
ies using simulations similar to the ones presented in Sect. 3.1 of
Hildebrandt et al. (2009) but adapted to KiDS. These simulations
were created with the HyperZ package (Bolzonella et al. 2000)
and are based on SED templates from the library of Bruzual &
Charlot (1993), i-band number counts from COSMOS (Capak
et al. 2007), and redshift distributions from bpz (Benítez 2000).
These magnitude simulations contain half a million galaxies
with magnitudes given in each of the four bands, selected to
recover the KiDS redshift distributions given in Fig. 7.

For each galaxy, we assign an error on the flux in each band
using Eq. (28). Noise is then added to the mock galaxy flux,
sampling from a Gaussian distribution. This approach corre-
lates high values of observed galaxy ellipticity with high flux
errors, as expected from the ellipticity measurement noise in
the data. In addition, the flux error may also depend on the

13 We chose this strong PSF over the very low ellipticity KiDS-450
PSF model, ε∗ = −0.006±0.018, shown in the left-hand panel of Fig. 6,
as initial KiDS-like studies did not result in a significant photometric
redshift selection bias.
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Fig. 7. True redshift distribution of the mock galaxies, separated into
photometric redshift bins. The zB selection is shown in the legend. The
cyan histogram shows the true redshift distribution of the galaxies in
the parent noise-free sample. In order to determine the photometric
redshifts we introduce flux errors that mimic a KiDS-like survey and
depend on the relative ellipticity of the mock galaxy to the mock PSF.

relative-orientation of the galaxy and the PSF, in each band, as
expected from some photometry measurement methods in addi-
tion to the Kaiser (2000) effect. As this is the first investiga-
tion into photometric redshift selection bias, we have not tried
to separate these effects in our analysis. We also note that this
method of assigning noise to our mock galaxy sample ignores
the additional dependence of the signal-to-noise ratio on galaxy
size and magnitude. Future work will need to investigate this in
more detail, using multi-colour image simulations.

We use the Bayesian Photometric Redshifts software bpz to
estimate photo-z’s for each of our mock galaxies using a tem-
plate fitting method (Benítez 2000; Benítez et al. 2004; Coe
et al. 2006). The inputs are the noisy flux measurements and
their associated errors. The output is the best fitting photometric
redshift, zB, which we use to then bin the galaxies into the four
redshift bins that were used in the KiDS-450 cosmic shear anal-
ysis, zi ≤ zB < zi+1, with zi = {0.1, 0.3, 0.5, 0.7, 0.9} as well as a
broad single bin encompassing the full redshift range of KiDS-
450, 0.1 ≤ zB < 0.9. DES-SV and CFHTLenS use a similar
number of tomographic bins, spanning similar ranges in photo-
metric redshifts. Note that the SED templates that we use in bpz
to estimate the redshift of the mock galaxies is independent from
the ones used to make the mocks, which shows the robustness of
this method to the choice of templates.

Figure 7 shows the true redshift distribution of the mock
galaxies for each tomographic redshift bin in zB. The distribu-
tions are broad due to the noise with extended high and low
redshift tails which we label as catastrophic outliers in the distri-
bution. The mean and median of each tomographic bin is similar
to those in the KiDS-450 data, demonstrating that our method
to assign noise to our mock galaxy sample is sufficient for this
analysis.

6. Results: mock E/B-modes

In this section we present the two-point statistic signatures of the
systematics introduced in Sect. 5.1 using the statistics explained
in Sect. 2. We show the effect of the three redshift-independent
shear systematics in Sect. 6.2 considering only a single redshift
distribution for the galaxies. The effect of the remaining system-

atic, photometric redshift selection bias, is explored in Sect. 6.3
where redshift binning is applied. With these signatures identi-
fied, our goal is to use B-mode measurements as a diagnostic
tool to uncover the origin of the systematic signals identified in
DES-SV, CFHTLenS and KiDS in Sect. 4. We can also deter-
mine the impact of these systematics on the measured E-mode
signals. Our approach is complementary to previous studies by
Amara & Réfrégier (2008), Kitching et al. (2016), Taylor
& Kitching (2018) who propagated cosmic shear systematics
through to cosmological parameters in order to set requirements
on their (in)significance.

6.1. SLICS shear simulations

The basis of our systematics analysis makes use of the ensem-
ble of mock KiDS-450 catalogues constructed from the SLICS14

simulations suite described in Harnois-Déraps & van Waerbeke
(2015) and Harnois-Déraps et al. (2018). Each SLICS line of
sight corresponds to a 10◦ × 10◦ field that includes galaxy posi-
tions, shear and their true and photometric redshifts. On average
the redshift distribution and number density of galaxies in these
mocks correspond to the KiDS-450 data, which is not so dissim-
ilar from the properties of both DES-SV and CFHTLenS.

In Fig. 8 we present the SLICS cosmic shear measurements,
ξ±, ξE/B and COSEBIs, averaged over 10 shape noise-free lines
of sight (i.e. ε int = 0). On the left we show ξ± and ξE/B, for
θ ∈ [0.5′, 300′] in 50 logarithmic bins. The top left panel shows
ξ+ and ξE and the lower left panel shows ξ− and ξB. The right
panels belong to the E-mode COSEBIs for a range of angu-
lar scales. The measurements from SLICS can be compared to
the theoretical prediction (Eqs. (4), (10), (13)), shown as thick
solid curves for ξ and pluses for COSEBIs. Here we adopt a flat
ΛCDM model given by the input cosmology of the SLICS sim-
ulations in Table 1. We use a Bond & Efstathiou (1984) transfer
function to estimate the linear matter power spectrum and the
Smith et al. (2003) halofit model for the non-linear scales. This
combination, although dated, was chosen as the resulting the-
oretical predictions fit the mocks better than the more modern
alternatives (Harnois-Déraps & van Waerbeke 2015). The thin
coloured lines in Fig. 8 show the measured values for each line-
of-sight (LOS), which show a considerable scatter, especially for
larger angular scales. Even with the inclusion of a larger number
of LOS, however, we do not expect the theory to match the mean
of the mocks perfectly, as the finite box-size of the N-body sim-
ulations, where Lbox = 505 h−1 Mpc, results in a loss of power
on large scales (Harnois-Déraps et al. 2018).

For a B-mode free dataset, ξ+ = ξE . In the upper left panel
of Fig. 8, we see that this is not the case for SLICS as at large
angular scales ξE is smaller than ξ+. Looking at the lower panel
we see that ξB is non-zero for the same angular ranges. This
leakage from E to B in the ξE/B statistic is a result of using
the theoretical ξ− at large scales for calculating the integrals in
Eq. (9), which differs from the ξ− of SLICS due to its finite
box-size. We find that COSEBIs do not suffer from either of
these effects, with the COSEBIs B-mode signal in the mocks
found to be ∼4 orders of magnitude smaller than the E-modes
(not shown). The reason for the robustness of COSEBIs to the
finite box bias comes from the weight functions that convert the
shear power spectrum to these statistics. The low ` behaviour
of the weight functions for COSEBIs have a leading-order term
proportional to `4 such that the function reaches zero at small
`-values in contrast to the ξ+ kernel, J0, which has power at small

14 Available here: http://slics.roe.ac.uk/

A134, page 13 of 33

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834379&pdf_id=7
http://slics.roe.ac.uk/


A&A 624, A134 (2019)

3

2

1

0

1

2

+
th
+

E+
th
+

E

100 101 102

(arcmin)

1

0

1

2

3

4

X[
10

4  
ar

cm
in

]

th
B

2 4 6 8 10 12 14 16 18 20
n

0.0

0.2

0.4

0.6

0.8

1.0

Mocks Theory

 [0.5′, 40′]

2 4 6 8 10 12 14 16 18 20
n

0

1

2

3

Efid n
×

10
10

 [0.5′, 100′]

2 4 6 8 10 12 14 16 18 20
n

0.0

0.5

1.0

1.5
 [40′, 100′]

Fig. 8. SLICS 2-point statistics, ξ± and ξE/B (left) and E-mode COSEBIs (right), averaged over 10 noise-free lines-of-sight, which serves as
our fiducial “systematics-free” measurement. The mean result can be compared to the theoretical expectation (smooth solid curves). For ξ± and
COSEBIs we also show the measurements for each individual line-of-sight with thin solid curves with matching colors between different panels.
The upper left panel shows the measured ξ+ (magenta squares) and ξE (blue diamonds), with the lower left panel showing ξ− (green pluses) and
ξB (black crosses). The expectation value for ξB is zero, shown with the dashed black line. The COSEBIs E-modes (right panels) are shown for
the three angular ranges indicated in each row. The COSEBIs B-modes in SLICS are 4 orders of magnitude smaller than the E-modes and are
therefore not shown. The measurements are shown as squares and their expected theory value as plus symbols. Note that COSEBIs modes are
discrete and the points are only connected together as a visual aid.

arguments (see Eq. (4)). At high ` the COSEBI weights also
diminish rapidly in contrast to the 2PCFs which include some
degree of power from all scales (see Fig. 4 in Kilbinger et al.
2017, for a comparison between the kernels corresponding to
COSEBIs and 2PCFs).

6.2. The B-mode signature of shear measurement
systematics

We add the shear measurement systematic effects, developed in
Sect. 5.1, in turn to the SLICS simulations. We follow the stan-
dard approach of applying an empirical systematics correction to
each mock by subtracting the average observed ellipticity from
each line of sight before commencing our statistical analysis. In
Fig. 9 we compare the resulting 2PCFs with the signal measured
in the systematic-free fiducial data (see Fig. 8). The 2PCFs are
ξ+ (squares), ξ− (pluses), ξE (blue diamonds) and ξB (crosses).
The left panels show the fractional difference of ξ± and ξE to
their fiducial values, calculated from systematic free mocks and
shown with a “fid” superscript, for each systematic, while the
right panels show the difference between ξB and its fiducial value
as well as ξE−ξB (pluses) for each case. Here we use 50 logarith-
mic θ-bins, to show the angular dependence of each systematic
in detail.

Each row in Fig. 9 shows the impact of the systematic which
from top-down cover PSF leakage, a repeating additive pattern,
and random but correlated noise (RCN), similar to PSF resid-
uals, correlated over chip-scales and then pointing scales. The
grey regions in the right panels show the level of noise expected
for KiDS-450 data, which is similar to the noise in the DES-SV
and CFHTLenS analyses. As the simulations are free of shape-
noise, the error associated with them is negligible compared to
the expected errors from either of the three surveys, therefore we
have excluded the simulation error from this figure (Fig. 9) and
the next one (Fig. 10). We note that all these systematics also
produce parity violating signals ξ× = 〈εtε×〉, which is expected
to be zero for a shear only field. We find that their amplitude
is about an order of magnitude smaller than the B-modes, how-
ever, and are therefore harder to detect in the data. As a result,
we limit our systematics study to the effect of systematics on
E/B-modes.

One interesting result from Fig. 9 comes from the non-zero
signal in the (ξE − ξ

fid
E ) − (ξB − ξ

fid
B ) curves. If a systematic adds

equal power to both observed E and B-modes, Psys, from Eq. (7)
and Eq. (8) we find that the observed ξB is equal to the excess
signal in the observed ξE due to this systematic,

ξobs
E − ξtrue

E = ξobs
B , (29)
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Fig. 9. Impact of shear measurement systematics on ξ± and ξE/B for four different types of shear measurement systematics; From the top down:
PSF leakage, a repeating additive pattern, and random but correlated noise, correlated on chip and pointing scales (see Fig. 6). For ξ+ (magenta
squares), ξ− (green pluses) and ξE (blue diamonds) we present, in the left panels, the fractional difference between the measured signal in the
systematic-induced KiDS-like SLICS mocks and the fiducial systematic-free case. As ξB (black crosses) and the E/B difference ξE − ξB (red
pluses) tends to zero, we present, in the right panels, the difference between these measurements and the fiducial case, multiplied by the angular
distance in arcminutes and scaled by 104. The measured B-modes can be compared to the expected shape-noise error for KiDS-450 (shaded area).
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where ξobs
E/B are the observed E/B-mode 2PCFs and ξtrue

E is the
E-mode signal produced from a shear only field. Furthermore
as ξ− is proportional to PE − PB, an equal Psys contribution to
the E and B-modes will cancel such that ξobs

− − ξtrue
− = 0. In

this case there is a clear route to correct the measured E-mode
by the measured B-mode or to select “clean” angular scales for
the E-mode analysis which are B-mode free (see for example
Hildebrandt et al. 2017). For the sample of systematics that we
have simulated, however, we see that this common assumption
of the equal contribution of systematic power to the E and B
modes is far from reality, especially for larger angular scales15.
This implies that if a ξB signal is detected at any angular scale,
its origin should be identified and mitigated at the catalogue or
image level. Without understanding the origin it is unclear how
that systematic will contaminate the ξ± signal.

15 Note that the finite box-size bias has already been accounted for by
subtracting the fiducial values for each statistic. Any remaining correla-
tion originates from the systematic effects that we have introduced.

In Fig. 10 we present the COSEBIs analysis of the mocks.
We show the relative effect of systematics on the E-mode (left)
and B-mode (right) COSEBIs, as the difference between their
fiducial values and those estimated from the systematic induced
mocks including PSF leakage, αε∗ (blue squares), repeating
additive pattern, c(x, y) (black stars), and random but correlated
noise (RCN), βδε∗, correlated on chip scales (green triangles)
and pointing scales (magenta diamonds). All values are shown
for the mean of the 10 SLICS lines-of-sight. The grey regions
show the one sigma errors corresponding to a KiDS-450-like sur-
vey. Random but correlated noise at the chip level shows small
deviations from the fiducial values in agreement with Fig. 9.
Within a single pointing, this systematic has a similar form to the
additive pattern, where we find similar low-n behaviour between
these two systematics with similar peaks at n = 2 and a dip at
n = 4, 5, albeit at different amplitudes. PSF leakage and the ran-
dom but correlated noise at the pointing level are more signifi-
cant, exhibiting a similar signal from the lower COSEBIs modes.
The repeating additive pattern has the most chaotic effect on
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COSEBIs, in comparison to the other systematics that we have
simulated. The erratic high frequency changes that can be seen in
the 2PCFs in Fig. 9 are reflected in the significant power seen in
the higher COSEBIs modes. As these systematics produce vary-
ing correlations for different angular scales, COSEBIs modes are
affected by them in differing amplitudes, which also depend on
the angular range they probe. Comparing Fig. 9 and Fig. 10 gives
insight into the sensitivity of COSEBIs modes to correlation at
various angular scales.

For all four systematics, we find that their effects on the
COSEBIs are more prominent when the full angular range is
used (middle panels). Comparing the right and left panels we see
that all systematics affect both E and B-modes, but not equally.
In general a significant B-mode signal translates to a significant
contamination to the E-modes on the same scales. The repeat-
ing additive pattern forms a clear exception to this rule though.
This draws us to the same conclusion as the ξB analysis, the
origin of any COSEBIs B-mode signal should be traced back
to its source and corrected for at the pixel-data product level
where phase information is still available, since it is unclear
how these systematics will impact the E-mode at another angular
scale.

The characteristic patterns that we have identified should
be used in any future approach to diagnose and correct shear-
measurement systematics. As an example, if COSEBI B-modes
are found to be oscillatory and extend to high-n, the survey
should investigate additive biases that repeat on a fixed angu-
lar scale across the survey, for example detector-level effects.
If the B-modes are localised at low-n with little high-n power,
the survey should investigate the PSF modelling. With COSE-
BIs alone we cannot distinguish between PSF leakage, αε∗ or
correlated noise in the PSF model, βδε∗, but these two effects
can be separated by measuring the correlation between galaxy
shape and PSF ellipticity, which will be significant if α is non-
zero (Bacon et al. 2003). If our ellipticity model in Eq. (27) is
reasonable in its approach to add systematic terms linearly, we
would expect the B-modes from each individual effect to also
add linearly. When we see both significant power at n < 7 and
high-n oscillatory power, as we do for DES-SV for example, we
can conclude that there is a likely superposition of systemat-
ics from both the PSF modelling errors and repeating additive
biases.

The simulation approach that we use here should be spe-
cialised to the survey in question in future work. This would
allow for a more precise exploration of how survey-specific
issues flow through to cosmological biases. In this analysis we
have presented results that use KiDS to motivate the angular
dependence of the systematics that we have simulated. In addi-
tion, we have also tested a variety of alternative schemes in the
development of this work such that we are confident that the
global behaviour of the B-mode signatures, presented in Fig. 10,
are broadly representative of how these systematics would fea-
ture in any weak lensing survey. These tests included modelling
different possible patterns and fixed amplitudes for each of the
systematics, with the pointing size fixed to 1 deg2 in all cases
in accordance to both KiDS and CFHTLenS. DES pointings are
however hexagons of width 2.2◦.

6.3. The B-mode signature of photometric redshift selection
bias

We simulate photometric redshift selection bias following the
approach developed in Sect. 5.2. As this effect is subtle, we
choose to analyse the correlations in a random intrinsic ellipticity

field alone, in contrast to the analysis in Sect. 6.2. where we also
include the correlated SLICS cosmic shear field. Starting with
the traditional statistics in Fig. 11, we compare two cases. The
top panels show the 2PCFs using the full galaxy sample which
are consistent with zero by construction. The lower panels show
the same 2PCF analysis, including a photometric redshift selec-
tion with 0.1 ≤ zphot ≤ 0.9. Comparing these two results we
immediately see that the photometric redshift selection has pro-
duced a significant signal in all but the ξ− statistic. As such we
find similar levels of E/B-modes in the lower right panel where
the difference between ξE − ξB ≈ 0. Comparing the bottom panel
of Fig. 11 with the top panel of Fig. 9 we see that the location
of the peak in ξ+ is similar. This is because the PSF-leakage sys-
tematic (Fig. 9) is related to photometric redshift selection bias,
although, here we have used a simplified PSF model without
the small scale variations that affect the PSF-leakage systematic
(Fig. 6).

To see the full effect of the photometric redshift selection
bias on the measured correlation function, we use COSEBIs to
analyse four photometric redshift bins, corresponding to those
chosen in the KiDS-450 analysis. Fig. 12 shows the results
revealing significant signal in the different tomographic slices,
with the strongest effect in the highest redshift bins. To quantify
the significance of this effect we use a theoretical covariance to
estimate a χ2 value for COSEBIs relative to the null hypothe-
sis of zero signal. We then calculate the p-value corresponding
to that χ2 finding vanishingly small values of p ∼ 10−28 and
p ∼ 10−15 for the E and B modes respectively, clearly confirm-
ing the significance of the bias.

As with the analysis of the shear measurement systematics
in Sect. 6.2 we see similarities (generally low-n) and differences
(generally high-n) in the measured E and B-modes, again leading
us to the conclusion that B-modes can be used as a diagnostic but
cannot blindly be used to correct the E-modes.

6.4. Cosmological parameter inference

Although we can see the signature of each systematic in
Figs. 9 to 12, it is not immediately clear how they would affect
cosmological parameter inference. One could carry out a likeli-
hood analysis to find any biases introduced by these systematics
(see for example Amara & Réfrégier 2008), but our preference
is to use compressed COSEBIs (CCOSEBIs, see Sect. 2.3) as
a faster alternative approach. CCOSEBIs are formed of linear
combinations of COSEBIs that are sensitive to cosmological
parameters. If the systematics that we identify in the COSEBIs
analyses are null in both the E and B mode CCOSEBIs case, then
we can conclude that the systematics are unlikely to be detrimen-
tal to the cosmological inference.

In this analysis we focus on the CCOSEBIs that are sen-
sitive to Σ8 = σ8(Ωm/0.3)α, as this is the combination of
parameters that cosmic shear data are mostly sensitive to. We
find that for a KiDS-450 redshift distribution, α = 0.65 best
describes the COSEBIs degeneracy direction (see Appendix B).
Because we are interested in Σ8 we only consider the 5 first
and second-order CCOSEBIs for σ8 and Ωm; Ec

σ8
, Ec

Ωm
, Ec

σ8σ8
,

Ec
σ8Ωm

and Ec
ΩmΩm

, where Ec is defined in Eq. (15). Although
it is possible to construct a CCOSEBIs mode that is sensitive
to Σ8 directly, we choose to look at these 5 modes instead in
order to also provide an internal consistency check. For each of
the five modes we calculate a single compressed value, Ec

µ(ν),
that can be compared to its expectation value, given a set of
cosmological parameters, noise covariance and source redshift
distribution.
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Fig. 11. Photometric redshift selection bias: the upper panels show the correlations measured from a random intrinsic ellipticity field using the full
galaxy sample. Lower panels: correlations measured from the same random intrinsic ellipticity field after a 0.1 ≤ zphot ≤ 0.9 photometric redshift
selection has been applied. The 2PCFs shown on the left are ξ+ (squares) and ξ− (pluses). On the right panel, ξE (diamonds), ξB (crosses) and the
difference between the two (pluses) are shown. The one-sigma error bars correspond to the level of ellipticity noise in the mock data. The signals
are shown multiplied by θ in arcminutes and scaled by 104.

Figure 13 shows the measured E-mode (left panel) and
B-mode (right panel) CCOSEBIs for the full angular range of
[0.5′, 100′]. The symbols correspond to the range of shear mea-
surement systematics16 simulated using the SLICS cosmic shear
simulations in Sect. 5.1. The lines connecting the E-mode points
indicate which of the 5 CCOSEBIs modes are shown and also
show their theoretical value. Each measured E-mode can be
compared to the value of Σ8 = σ8(Ωm/0.3)0.65 that would be
inferred from the measurement. In the absence of systematic
errors, we would expect to find the inferred parameters to be
consistent with each other and the input SLICS cosmology with
Σ8 = 0.808. We would also expect to find the B-mode signal
consistent with zero, but looking at the fiducial “no-systematics”
mocks (circles), we do recover a very small residual B-mode and
a slightly high best-fit Σ8 = 0.815. This result is expected, how-
ever, given the imperfect match between the two-point statistics
measured from SLICS and the theoretical expectation shown in
Fig. 8. Here no errors are associated to the E-mode CCOSEBIs,
because the mock data used to produce them are free of shape-
noise.

We find that the introduction of the random, but correlated
noise (RCN) increases the recovered Σ8 value, but within the
statistical tolerance of KiDS (shown as a grey bar) in the case
of the chip-scale correlation. The PSF leakage and repeating
additive pattern result in the largest bias in cosmological param-
eters with a ∼5% deviation from the true input cosmology.
Applying this level of bias to either σ8 or Ωm can produce

16 Note that as we do not include a cosmic shear signal in the photo-
metric redshift selection bias mocks developed in Sect. 5.2, we do not
present a CCOSEBIs analysis of this systematic.

excess correlations of only up to 13% which is significantly
less than the up to 40% biases seen in the two-point corre-
lation function analysis in Fig. 9, from which we can con-
clude that the impact of these systematics on the data can be
only weakly correlated with the impact of varying cosmological
parameters.

We find that the stronger the bias in the recovered cosmology,
the larger the inconsistency between the 5 CCOSEBIs modes,
providing another important diagnostic tool. We also note that all
the shear measurement systematics tested in this analysis serve
to increase the inferred value of Σ8. If these types of systematics
were present in the weak lensing data, correcting for them would
decrease the recovered Σ8, exacerbating the current hints of cos-
mological parameter tension between weak lensing surveys and
Planck (see for example Troxel et al. 2018b).

Comparing the power in the measured E-modes (left panel)
and B-modes (right panel) reveals a close connection, where a
larger bias in the E-modes corresponds to larger B-modes. We
note that although the magnitude of the E/B-modes are con-
nected, they can take opposite signs. For example, in Fig. 10
we see that for the large angular scale analysis with the repeat-
ing additive pattern systematic, the sign of the first four E-modes
differs from the sign of the first four B-modes. Although we do
not show the large-scale CCOSEBIs result, we can confirm that,
this difference in sign is also reflected there, as the CCOSEBIs
are sensitive to the first few modes that contain a large proportion
of the cosmological information. This example demonstrates
that although the large angular scales have the lowest signal
to noise, they can and should be used as an investigative tool
for hunting systematics that could also impact small angular
scales.
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Fig. 12. Impact of photometric redshift selection bias for a COSEBIs 4-bin tomographic analysis of a random intrinsic ellipticity field. The upper
triangle shows the E-modes and the lower triangle shows the B-modes, where the error bars in both cases correspond to the level of ellipticity noise
in the mocks. Each panel shows COSEBIs for a tomographic redshift bin pair, z− i j, corresponding to the correlation between photometric redshift
bins i and j. As our photometric redshift mocks are devoid of any cosmological correlations, in the absence of any selection bias, we would expect
both the E and B modes to be consistent with zero.

7. Discussion

In this section we discuss how we can use the measured COSE-
BIs B-mode signatures from our systematics mocks in Sect. 6 to
diagnose the origin of the B-modes recovered in the CFHTLenS,
DES and KiDS surveys in Sect. 4. Firstly, we focus on the
non-tomographic COSEBIs B-mode measurements in Fig. 3.
One feature that stands out for all three surveys is the high n-
mode oscillatory pattern in the full angular range, shown in the
middle right panel. This oscillatory pattern is the signature of a
repeating additive systematic, shown in Fig. 10, which we find
to be the systematic that was most detrimental to cosmological
parameter estimation in Fig. 13.

We find the level of B-modes for KiDS-450 and CFHTLenS
for higher n-modes to be small and hence the repeating additive
signature is not highly significant in these cases. The similarity
between the B-modes in the data and this systematic signature
does however warrant further exploration, particularly as we also
see similarities in the E-modes for KiDS and the repeating pat-
tern E-mode signature. Here the unexpected E-mode “secondary
peak” seen at n ∼ 6 in the small angular scales of KiDS-450
E-modes (upper left panel of Fig. 3) is replicated at n ∼ 6 in
the E-mode analysis of the same angular scales of the repeating
additive bias mocks (upper left panel of Fig. 10). If a repeating
additive systematic persists it would likely become significant
in future releases of KiDS. It could also be responsible for the
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Fig. 13. Left panel: inferred values of Σ8 = σ8(Ωm/0.3)0.65 from an E-mode CCOSEBIs analysis of four mock cosmic shear surveys that suffer
from PSF leakage (blue squares), a repeating additive pattern (black stars), and random but correlated noise on chip (green triangles) and pointing
(magenta diamond) scales. The curves show the theoretical values of the 5 E-mode CCOSEBIs when varying Σ8, calculated using the KiDS-450
noise only covariance matrix and redshift distribution; Eσ8σ8 (dashed), EΩmΩm (dotted), Eσ8 (middle solid), EΩm (dot-dashed) and Eσ8Ωm (lower
solid). The inferred cosmology for each mock systematic survey can be compared between the 5 different modes. The higher the recovered E-mode
is relative to the fiducial “no-systematics case” (circles), the stronger the bias is on the inferred value of Σ8 and the more discrepant the inferred
cosmology is between the different CCOSEBIs modes. The bias in Σ8 can be compared to the grey region which shows the one-sigma error for Σ8
from the KiDS-450 cosmic shear analysis, centred on the fiducial case. Right panel: B-mode CCOSEBIs from the four mock cosmic shear surveys.
The measured B-mode signal, which does not depend on Σ8, can be compared to the shape noise on a KiDS-450-like survey (shown in grey).

power seen in the low-n modes that lead to the significant detec-
tion of the KiDS CCOSEBIs B-modes.

For DES-SV we find a significant detection of B-modes, not-
ing that in addition to the high-n oscillatory pattern, DES-SV
presents significant additional signal for modes around n = 8 and
n = 4. For an instrument-based repeating additive pattern, the
resulting B-mode signature will depend on the dithering strategy
and camera field-of-view. Both KiDS-450 and CFHTLenS have
a field-of-view of ∼1 deg2 with small dithers. DES-SV, how-
ever, has a hexagonal field-of-view, 2.2◦ across, and uses half-
field dithers. This means the frequency of any repeating additive
pattern will differ for DES-SV in comparison to the KiDS-like
imaging strategy that we have simulated in our mocks. Looking
at only the first few modes for DES-SV data, however, we find
that the signal resembles the signature of both PSF leakage, and
random but correlated noise on the pointing level. This result is
consistent with the findings of Zuntz et al. (2018) who report and
correct for a small but significant PSF residual in their analysis
of the first year of DES observations. We therefore conclude that
the B-mode signature recovered for DES-SV is likely a superpo-
sition of different shear measurement systematics.

By comparing the p-values in Table 2 we can see that for
DES-SV the significance of the COSEBIs B-modes substantially
increases when the data are separated into tomographic bins.
This could be understood by considering the photometric red-
shift selection bias explained in Sect. 5.2. This systematic corre-
lates the PSF ellipticity with the redshift estimation for a galaxy,
and can produce significant B-modes when the data are binned
into smaller photometric redshift bins. It is likely that all surveys
will suffer from this systematic to some degree, but the level will
depend on how the multi-band photometry is measured in each
survey and how the PSF ellipticity varies in each optical band.
We cannot directly compare our mock analysis with the B-modes
in the DES-SV tomographic analysis, but our first-look at this
effect certainly motivates further exploration with more detailed

simulations that fully mimic the photometric redshift measure-
ment in each survey.

Interestingly, comparing the DES-SV tomographic and non-
tomographic p-values in Table 3, we find that for the analy-
ses that include small-scale information, the significance of the
B-modes, measured using the cosmological-parameter-sensitive
CCOSEBIs, decreases when the data are separated into tomo-
graphic bins. This promising result means that if the systematic
that was introduced when the DES-SV tomographic selection
is applied adds equal power to the E and B modes, that sys-
tematic would not introduce modifications to the E-mode signal
that would bias the inferred cosmological parameters. Unfor-
tunately, however, the photometric redshift selection bias sys-
tematic was found to exhibit different E and B mode signals in
Fig. 12. Passing the CCOSEBIs B-mode null-test therefore can-
not validate the CCOSEBIs E-mode measurement. In addition,
this CCOSEBIs B-mode result does not hold for the large angu-
lar scales, [40′, 100′], where again we see a substantial increase
in the measured B-mode when the data are separated into tomo-
graphic bins.

Our findings for DES-SV contradict Becker et al. (2016)
who conclude that the B-modes in DES-SV are insignificant
using two Fourier space methods. We argue that as power spec-
tra pick up features of the data at different scales compared to
ξ±, they are not suitable statistics for verifying the absence of
B-modes in a ξ± cosmic shear analysis. In addition, power spec-
tra measurements are binned in a range of Fourier modes, such
that any high-frequency variations in Fourier space will average
out. COSEBIs are sensitive to these variations and can therefore
be used to diagnose the origin of the B-modes in the data.

At first sight our findings for KiDS also contradict
Hildebrandt et al. (2017) who report a low-level but significant
detection of ξB. This is in contrast to our tomographic ξB analysis
which concludes that ξB is consistent with zero (see Fig. D.5).
We find that the ξB statistic is sensitive to the choice of the
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maximum θ-scale measured from the data and the maximum θ-
scale used for completing the integral to infinity using a theo-
retical prediction (in this analysis we use 1000′ instead of 3000′
used in Hildebrandt et al. 2017). We also find that ξB is sensi-
tive to the method used to bin ξ± as explained in Appendix A
(see Eq. (A.10)). This sensitivity to data analysis choices pro-
vides another reason to archive the traditional ξE/B approach. In
this paper we promote COSEBIs as the optimal statistic for both
E and B mode measurements as it can be estimated accurately
and free of any biases connected to binning and extrapolating
the data. Analysing all 20 COSEBIs modes, we find no signifi-
cant evidence for B-modes in KiDS. In our compressed CCOSE-
BIs analysis, however, we arrive at the same conclusion of both
Hildebrandt et al. (2017) and van Uitert et al. (2018), that low-
level but significant B-modes are present in KiDS-450. In our
[0.5′, 100′] CCOSEBIs analysis, we find a ∼2.7σ detection of
a B-mode signal that is less than 10% of the amplitude of the
E-mode. This difference between the significance of the COSE-
BIs and CCOSEBIs B-mode analysis might seem confusing or
even contradictory. We therefore refer the reader to Appendix C
where we explore how choices over the number of modes used
in a null-test can dilute or optimise the detection of systematics.

8. Conclusions

Two-point shear correlation functions (2PCFs) have been the pri-
mary observables in cosmic shear analysis to date, but they are
not immune to systematics. These statistics mix E and B-modes
in the data, giving rise to a mixed lensing and non-lensing signal
in the presence of systematic errors. In order to test for system-
atics most surveys turn to alternative statistics to separate E/B-
modes, using ξE,B or power spectrum measurements. We argue
that these alternative statistics are biased as they depend on infi-
nite integrals over 2PCFs and are sensitive to binning choices. In
addition, treating the E/B-mode decomposition with a statistic
that has a different scale-dependence to the statistic used in the
cosmological parameter inference, causes a disparity in the anal-
ysis. For future cosmic shear analyses, we therefore advocate
the use of COSEBIs for both parameter inference and system-
atic analyses (see Sect. 2.2). COSEBIs cleanly and completely
separate E/B-modes over a finite angular range, without loss of
information. They have discrete modes and therefore are insensi-
tive to binning choices. The first few modes of COSEBIs contain
almost all of the cosmological information and as such a COSE-
BIs analysis is also an efficient approach to data compression.
For a B-mode analysis, however, a larger number of modes need
to be considered, as systematics can affect the E and B-mode at
different scales.

In this paper we analysed the E and B-mode signals in three
public cosmic shear surveys, CFHTLenS, DES-SV and KiDS-
450. We compared the ξE,B statistic with COSEBIs and CCOSE-
BIs, using p-values to quantify the level of B-modes in the
data. To determine COSEBIs filter functions we need to first
define an angular range of interest. For this study we chose three
sets of angular separation ranges: small separations, [0.5′, 40′],
large separations, [40′, 100′], and the overall separation range,
[0.5′, 100′]. We measure COSEBIs up to mode n = 20. We con-
sidered two cases for each survey; one using the same redshift
bins as used in each survey’s primary cosmic shear analysis, and
another combining those bins into a single redshift bin. We see
that for DES-SV data the tomographic cases show significant B-
modes at a level between 4σ and 5.5σ. For the non-tomographic
DES-SV analyses, B-modes are detected at the level of 2.8σ.
For KiDS-450 and CFHTLenS, we find no significant detection

of B-modes for the majority of our analyses. There is however
some exceptions in each case. The CCOSEBIs analysis of the
small separations (non-tomographic case only) and the analysis
of the full angular range show B-modes at up to 2.7σ for KiDS-
450. The tomographic COSEBIs analysis over the small angular
range [0.5′, 40′] detects a B-mode signal at 2.8σ for CFHTLenS.

In order to diagnose the origin of the B-modes detected in
each survey, we modelled several non-astrophysical systematic
effects relevant to current data in order to determine their E/B
mode signature and assess their impact on cosmological param-
eter inference. We modelled four shear measurement systemat-
ics. PSF-leakage, was modelled using the mosaic PSF pattern
from KiDS-450 assuming a 10% leakage with α = 0.1. An
instrument-based additive bias term resulting in a repeating pat-
tern from pointing to pointing. Here we used the low-level CCD
bias of OmegaCam (Hoekstra et al., in prep.), multiplied by a
factor of five to amplify and model this effect. To model biases
arising from random PSF modelling errors, we correlated low
levels of random noise using two kernel sizes, corresponding
to roughly KiDS CCD and pointing scales. In addition to these
shear measurement systematics, we have introduced a new effect
by modelling the impact of photometric redshift selection bias
that arises from the correlation between the relative orientation
of PSF ellipticity and galaxy ellipticity, and the measured signal-
to-noise of the galaxy.

All of the systematics simulated were detected in our B-
mode analysis. The PSF-leakage and random but correlated
noise systematics introduced low n-mode COSEBIs signal. This
was in contrast to the repeating additive bias which intro-
duced high frequency variations in the shear field which are
picked up as oscillatory behaviour in the high n-mode COSEBIs
measurements. Photometric redshift selection bias also resulted
in high n-mode power in the high photometric redshift bins.
Comparing the B-mode signatures recovered by our mocks to the
B-modes measured in each survey we conclude that DES-SV is
likely to suffer from a combination of all the systematics that we
have simulated. The significant increase in DES-SV B-modes
when the tomographic redshift selection is applied is particu-
larly striking, motivating future work to enhance the realism of
the first-look photometric redshift simulations that we have anal-
ysed in this paper. KiDS-450 and CFHTLenS show oscillatory
behaviour in the high n-mode indicating a repeating additive bias
in the data, although this result is not significant.

The simulated systematics produce E-modes that would bias
cosmological parameter inference. For the analysed shear mea-
surement systematics we found that Σ8 = σ8(Ωm/0.3)0.65 is
biased high in all cases. As a result, we conclude that these
types of systematics, if present, cannot explain the mild ten-
sion between some current cosmic shear and Planck results and
could in principle exacerbate the tension as they bias Σ8 to even
higher values (see Fig. 13). It is interesting to note that the DES-
SV cosmological parameter constraints on S 8 = σ8(Ωm/0.3)0.5

are higher than those from KiDS-450, CFHTLenS and the first
year DES results, which include a number of improvements over
the DES-SV analysis. Given the significant DES-SV B-modes
detected in our analysis, the direction of the difference in S 8
between the surveys is expected. The published cosmological
parameter constraints from all three surveys are, however, in
good agreement.

For the analysis of KiDS-450, we find an interesting case
where the survey formally passes the COSEBIs B-mode anal-
ysis, but a flag is raised with a 2.7σ B-mode detection in the
compressed CCOSEBIs analysis. Here the COSEBIs B-modes
that are insignificant overall are weighted in such a way that the
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resulting CCOSEBIs signal becomes significant. We therefore
recommend measuring both CCOSEBIs and COSEBIs B-modes
in future analyses, ensuring that both are consistent with zero.
The CCOSEBIs B-modes will robustly identify systematics that
will lead to a bias in the cosmological parameter inference, if the
systematic impacts the E/B-modes in the same way. In contrast
the COSEBIs B-modes detect systematics that can affect E and
B-modes differently. For this reason we have shown that it is not
sufficient to correct data by simply subtracting the B-modes from
the E-modes. As we have seen from our repeating additive bias
systematic, where the E and B mode behaviour is very differ-
ent, it will be crucial to look at both a COSEBIs and CCOSEBIs
analysis and return to correct the input catalogues if a significant
B-mode is detected in either case.
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Appendix A: Binning bias with ξ±
When using the traditional ξ± statistic an issue arises from the
choices that can be made when binning the data. ξ±(θ) is usually
binned in broad θ-bins as a form of data compression. As we
expect the number of galaxy pairs to roughly scale with θ, see
Eq. (19), the sampling of ξ±(θ) within the bin is non-uniform. If
we bin these functions into broad angular bins, their value will
therefore be biased towards larger θ scales in each bin. This is
not an issue provided the theory is treated in the same way, but
this is not the standard approach that is taken, as it is computa-
tionally more expensive. Troxel et al. (2018b) compare the dif-
ferences in KiDS-450 cosmological parameter inference if one
takes the logarithmic mid-point of the bin or the weighted mean
value of θ in each bin and evaluate the theoretical 2PCFs at each
θ value. They argue that the latter approach is correct, supported
by Krause et al. (2017) who conclude that this approach is suffi-
ciently accurate for the first year DES analysis. Here we pro-
vide more detail on the question of binning bias, quantifying
how inexact each treatment of the theory is, where we find up to
10% biases in both approaches. A full integration of the theory
within the bin is the correct approach to this problem. If future
surveys wish to use an approximation, however, we demonstrate
that using the linear mid-point of the bin provides the closest
match to the binned data, with less than 2.5% bias.

A.1. Binning theory

Consider making measurements of a function f (x) from noisy
data, with samples drawn non-uniformly in x. We denote the
sampled data points by fdata(x) and the distribution of measured
x byD(x). Given that the sampled data points are noisy, we want
to combine them to find an estimate for the function for a given
binning in x. One way to bin the data is to write it as

f̂binned(x+b) =
1

Nbin

∑
x

fdata(x) ∆(x − xb), (A.1)

where Nbin is the number of data points in the given bin and
∆(x − xb) is the binning function defined as

∆(x − xb) =

{
1 if x is in bin xb,

0 if x is not in bin xb.
(A.2)

This estimate for the binned function corresponds to a
weighted binning, with more weight given to the values where
there are more sampled points. The expectation value of
f̂binned(xb) is in general not equal to f (xb),

〈 f̂binned(xb)〉 =

∫ xmax(xb)
xmin(xb) dx f (x)D(x)∫ xmax(xb)

xmin(xb) dxD(x)
, f (xb), (A.3)

where xmin(xb) and xmax(xb) are the edges of bin xb. Even if we
define xb as the weighted mean of the x-values in the bin, as
advocated by Troxel et al. (2018b),

xb =

∫ xmax(xb)
xmin(xb) dx xD(x)∫ xmax(xb)
xmin(xb) dxD(x)

, (A.4)

we would only recover the true value of the binned data, if f (x)
is either a constant or has a linear relation to x.

Let’s now take very fine x-bins, such that the variation in the
sampling of f (x) is negligible, i.e. D(x) ≈ constant within each

bin. The expectation value of the finely binned function 〈 f̂f(xf)〉,
where the subscript f represents “fine” and xf is the mid-point
of the fine bin, is given by

〈 f̂f(xf)〉 =

∫ xmax(xf )
xmin(xf )

dx f (x)D(x)∫ xmax(xf )
xmin(xf )

dxD(x)
(A.5)

�
1

2 δx

∫ xf+δx

xf−δx
dx f (x) � f (xf),

where 2 δx is the width of the fine bin. If we first measure finely
binned f̂f(xf) from the data, then we have the flexibility to re-bin
the measurements as desired,

f̂w(xb) =

∑
xfw(xf) f̂f(xf)∆(xf − xb)∑

xfw(xf)∆(xf − xb)
, (A.6)

where w(xf) is a weight function assigned to each fine bin. If
we chose to set w(xf) to D(xf) we would recover the weighted
binning defined in Eq. (A.1).

If we choose w(xf) such that it does not vary between dif-
ferent realisations of the data, the expectation value of f̂w(xb) is
given by

〈 f̂w(xb)〉 =

∑
xfw(xf) f (xf)∆(xf − xb)∑

xfw(xf)∆(xf − xb)
, (A.7)

and the covariance of the binned data for bins xb and yb is given
by

Cw(xb, yb) = 〈 f̂w(xb) f̂w(yb)〉 − 〈 f̂w(xb)〉〈 f̂w(yb)〉 (A.8)

=

∑
xf
∑
yfw(xf)w(yf)Cf(xf , yf)∆(xf − xb)∆(yf − yb)∑
xf
∑
yfw(xf)w(yf)∆(xf − xb)∆(yf − yb)

,

where Cf(xf , yf) is the covariance of the finely binned mea-
surements, ff(xf) and ff(yf). If we assume no cross-correlation
between the bins, which is the case for a shape-noise only covari-
ance, then Eq. (A.8) simplifies and the variance of fw(xb) can be
written as,

σ2
w(xb) = 〈 f̂ 2

w(xb)〉 − 〈 f̂w(xb)〉2

=

∑
xfw

2(xf)σ2
f (xf)∆(xf − xb)∑

xfw
2(xf)∆(xf − xb)

· (A.9)

From this equation we can see that the variance of the binned
data is also not equal to the variance of the function at xb,
σ2

w(xb) , σ2(xb), which complicates the calculation of covari-
ance matrices for binned data.

To simplify covariance calculation we can set the weights
in Eq. (A.6) equal to unity and obtain an unweighted rebinned
estimate,

f̂unweighted(xb) =

∑
xf f̂ (xf)∆(xf − xb)∑

xf∆(xf − xb)
. (A.10)

In this case the expectation value of the estimator is,

〈 f̂unweighted(xb)〉 =
1

2 ∆x

∫
xmin

(xb)xmax(xb)dx f (x) , (A.11)

where 2 ∆x is the width of the bin. If the relative variation of the
sampled points within a broad bin is large, then this estimator
may not be optimal and can produce larger errors compared to
the estimator in Eq. (A.6).
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Equation (A.7) is useful for predicting the theoretical value
of the binned function, especially when the sampling frequency
of the data points, D(x), is derived from the data itself. In
the case of cosmic shear ξ±(θ) the sampling of the data points
roughly scales with θ, however, survey geometry and masking
effects together with variations in the depth of the images com-
plicates the analytical estimation for the distribution of data in
angular scale. Hence we suggest measuring D(θ) from the data
and use Eq. (A.7) to predict the binned ξ± values.

A.2. Application to cosmic shear

To demonstrate the level of bias introduced by partial treatment
of the theory in a ξ± cosmic shear analysis we use a theoret-
ical prediction for ξ± as our function, f (x), assuming a single
KiDS-450 redshift bin. To sample ξ±(θ) in a non-uniform way,
we randomly pick θ values from a D(θ) = θ/arcmin × 2000
distribution in the angular range of [0.5′, 300′]. We then add a
constant Gaussian random noise with σ = 0.01 to each sam-
pled point to produce the noisy sampled data points, ξ±data(θ)
and then bin ξ±data(θ) into 1000 fine logarithmic bins to pro-
duce ξ̂±f(θf) and 9 broad logarithmic bins to get ξ̂±binned(θb) (see
Eq. (A.1)).

In Fig. A.1 we show the binning bias introduced for a range
of cases as a ratio between the measured and the proposed theo-
retical value of ξ+ (top panel) and ξ− (bottom panel), as a func-
tion of angular scale, θ. The noisy finely binned data, ξ̂±f(θ) (light
grey circles), shows no significant bias relative to its expectation
value (see Eq. (A.5)). As was shown in Eqs. (A.3) and (A.7)
the expectation value of the broad binned, ξ̂±binned(θb), should be
calculated using an integral over ξ± with the appropriate weights.
The red crosses in the figure correspond to this theoretical pre-
diction which is unbiased as expected. The remaining curves
show the biases introduced when broad binning is applied to the
measurements and the theory is evaluated at a single point in
the bin denoted as θb. The green squares assume that θb is given
by the logarithmic mid-point of the bin (as used in Hildebrandt
et al. 2017), for the black pluses θb is the weighted mean of the
bin (as used in Heymans et al. 2013; Troxel et al. 2018a,b), the
grey triangles use the geometric mean or linear mid-point of the
bin (not used to date) and finally blue diamonds assume that θb
is the area-weighted bin centre (as advocated by Krause et al.
2017), where

θarea =

∫ θmax

θmin
dθ θ2 πθ∫ θmax

θmin
dθ 2πθ

=
2(θ3

max − θ
3
min)

3(θ2
max − θ

2
min)
· (A.12)

Here θmin and θmax are the minimum and maximum values of
the bin.

We find that the weighted mid-point and the area weighted
values are similarly biased, boosting the signal at the ∼3% level
at 10 arcmin, rising to ∼10% bias at large scales for ξ+. Tak-
ing the logarithmic mid-point of the bin has the opposite effect,
decreasing the signal at ∼7% level at 10′ and ∼10% bias at large
scales for ξ+. That the biases work in the opposite sense here
increases the inferred impact of binning bias when comparing
the two KiDS analyses in Troxel et al. (2018b).

In all cases we see that the choice of binning affects ξ+ more
than ξ−, since ξ+ has more curvature than ξ−. We note that these
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Fig. A.1. 2PCF binning bias introduced for a range of analysis choices,
shown as the ratio between the measured ξ̂± and their proposed theoret-
ical value as a function of angular scale, θ. The legends in this figure are
shared between the two panels. For the weighted broad bin estimator,
ξ̂±binned(θb), the bias is calculated assuming θb is given by the logarith-
mic mid-point of the bin, θmid, log (green squares), the weighted mean
of the bin, θw (black pluses, under the blue diamonds), the geometric
mean or linear mid-point of the bin, θmid,lin (dark grey triangles), or an
area-weighted bin centre, θarea (blue diamonds). These estimators can
be compared to the fine binning case, ξ̂±fine(θmid, fine), where the theory
is estimated at the weighted mean of each bin (light grey circles), and
the exact case (red crosses) where the theoretical value is calculated as
a weighted integral over the signal within the bin (Eq. (A.7)). All points
are plotted with errorbars, but in the case of broad binning the errors are
too small to be visible.

biases will be smaller for narrower angular bins and as such their
effect will not be as significant for the first year DES analysis
(Troxel et al. 2018a) which uses the weighted mean for θb with
roughly twice as many bins in the same angular range as shown
here.

If future surveys conclude that it is too computationally
expensive to calculate the impact of binning theoretically, espe-
cially in the case of the covariance matrix, our proposed solution
is to use the linear mid point of the θ-bin in the binned ξ± anal-
ysis. We find that this approximation presents the weakest bias
with at most 2.5% bias at large and small scales and below per-
cent level bias between 0.5′ < θ < 300′. Another alternative
is to move to a COSEBIs analysis. As COSEBIs are discrete
they are not subject to any of the binning biases presented in this
Appendix.
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Appendix B: σ8 − Ωm degeneracy
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Fig. B.1. Degeneracy direction of σ8 and Ωm for a CCOSEBIs analysis
of the KiDS-like data. The colours in the image show the value of the
CCOSEBIs Eσ8 mode, in comparison to dashed lines of constant Σ8 =
σ8(Ωm/0.3)α with α = 0.65. The repeating color scheme was chosen to
capture the variations in the values of Eσ8 . The lower left corner has the
smallest value of Eσ8 which gradually increases, perpendicular to the
dashed curves, towards the upper right corner.

Cosmic shear is most sensitive to a combination of σ8 and Ωm
(Jain & Seljak 1997), where the degeneracy can be written as

Σ8 = σ8

(
Ωm

Ωfid
m

)α
. (B.1)

Here Ωfid
m is arbitrary but is usually taken to be 0.3. In

the majority of cosmic shear analyses α has been taken to be
α = 0.5, even though the optimal value of α will depend
on the statistic used, the redshift distributions and the angu-
lar ranges used in the analysis. As an example, Hildebrandt
et al. (2017) present joint Σ8 − Ωm constraints with α =
0.5. The tilt seen in their Fig. 6 of these constraints demon-
strates that α = 0.5 does not best represent the degeneracy
direction of Ωm and σ8 for the KiDS-450 2PCF tomographic
analysis.

In Fig. B.1 we show the value of the CCOSEBIs mode Eσ8

(see colour bar) for a range of σ8 and Ωm values assuming a
KiDS-like survey. The degeneracy shown in Eσ8 can be com-
pared to the dashed lines of constant Σ8 = σ8(Ωm/0.3)α where
α = 0.65. We have carried out this test for all the CCOSEBIs
modes in our analysis; EΩm ,Eσ8,σ8 , Eσ8,Ωm and EΩm,Ωm to con-
firm that α = 0.65 is an optimal choice for our CCOSEBIs
analysis.

Appendix C: Optimising the COSEBIs B-mode
null-test

All null tests are subject to the choices we make in our data
analysis. As an example, if we limit our B-mode analysis of
CFHTLenS to the first 7 COSEBIs modes, following Asgari
et al. (2017), we conclude there are no significant small scale
B-modes in CFHTLenS. In contrast, our analysis of the first 20

2 4 6 8 10 12 14 16 18 20
n

0.2

0.0

0.2

0.4

0.6

B n

M0
MPSF
Data

Fig. C.1. Model comparison using 10 000 random samples of the PSF-
leakage systematic model, MPSF (solid) defined in Sect. 5.1.1. The data
points show the mean of the random samples, with the errors reflect-
ing the noise on a single realisation. The data samples are analysed to
determine how often the input model MPSF can be distinguished from
the no-systematics zero B-mode model, M0 (dashed).

COSEBIs modes, in Sect. 4, finds a significant B-mode detection
for CFHTLenS on the same scales. In this Appendix we explore
the question of how many COSEBIs modes should be used to
determine the overall significance of the B-modes in a dataset.

As an illustrative example, we take two parameter-free mod-
els for COSEBIs B-modes, shown in Fig. C.1: M0 where Bn =
0 for all n, and MPSF where Bn corresponds to the measured
PSF-leakage systematic defined in Sect. 5.1.1. The difference
between these two models is captured by the first few modes,
with almost zero power for n & 10. We create 10 000 random
samples of Bn for the full angular range of [0.5′, 100′] given the
model MPSF and the KiDS noise-only covariance for the non-
tomographic case. Figure C.1 shows the mean of these samples
(red squares) with errors corresponding to a single sample as
well as the input model (blue curve).

We can determine which of the two models best represents
the data using a Bayesian evidence analysis. If we give the same
weight to both models then the ratio of the Bayesian evidences
for these models is given by the Bayes factor,

Bayes Factor =
P(D|M1)
P(D|M2)

=

∫
P(D|M1,Φ1) P(Φ1|M1) dΦ1∫
P(D|M2,Φ2) P(Φ2|M2) dΦ2

,

(C.1)

where D is the data, Mi is model i and Φi represents the set of
parameters for model i. For the simplified case of parameter free
models that we consider here, Eq. (C.1) simplifies to,

Bayes Factor =
P(D|M0)

P(D|MPSF)
· (C.2)

The resulting Bayes factor will however depend on the num-
ber of n-modes that are included in the analysis. The Bayesian
evidence can only be used when an alternative model exists, but
in the case of null tests, such as a B-mode test, the only available
model is the null hypothesis and therefore we need to use clas-
sical methods to identify the significance of the B-modes. Here
we use χ2 and p-values to test the null hypothesis. The p-value
for the χ2 is defined as the probability of calculating a χ2 value
larger than the measured one, χ2

m, given the model M,

p − value = Pr(χ2 > χ2
m|M) =

∫ ∞

χ2
m

d4χ2 Pr(χ2|M). (C.3)
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Fig. C.2. χ2 distribution of the mock data given the true PSF leakage model, MPSF, (blue histogram) or given the null model, M0, (orange histogram).
Left panel: analysis of the n ≤ 20 COSEBIs modes. In the right panel only the n ≤ 5 modes are considered.
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Fig. C.3. Distribution of p-values for the 10 000 data samples, showing the probability that the MPSF model (blue histogram) or the M0 no
systematics model (orange histogram) is the true underlying model, given each data sample. Left panel: p-values from an analysis of the n ≤ 20
COSEBIs modes. In the right panel only the n ≤ 5 modes are considered.

Figure C.2 shows the distribution of the measured χ2 across
our 10 000 random samples when the data are fit using the input
MPSF model (blue histogram) and the M0 no systematics model
(orange histogram). In the left panel we take the null-test case
where all modes up to n = 20 are included in the analysis (All-
modes). In the right panel, only the first 5 modes (n < 6) are
analysed. As MPSF is the correct model, we naturally find bet-
ter fits to the data, i.e. lower χ2 values, for this model. The dif-
ference between the two distributions for the χ2 values is how-
ever enhanced when the modes analysed are limited to the range
where the two models differ significantly. This means that the
power of the null test is optimised over this reduced, n ≤ 5,
range.

Figure C.3 shows the distribution of p-values for the χ2 val-
ues shown in Fig. C.2. If the model used to fit the data is the true
underlying model, any particular p-value is as likely to be mea-
sured as the other. If the model is not representative of the data,
however, then one is more likely to obtain smaller p-values from
the sample. As expected with MPSF as the correct model, we find
a uniform distribution of p-values and a skewed distribution for

the M0 model. When all 20 COSEBIs modes are included this
p-value distribution is less skewed compared to when we only
include the n ≤ 5 modes. By adding more data points to the
analysis, we have diluted the systematic signal of the PSF leak-
age, making this null-test less effective.

Based on this analysis, we must recognise that finding
that the B-modes pass a null-test using a large data vector
does not ensure that analysing a smaller dataset will give the
same result. A good example of this is KiDS-450 passing the
20-mode COSEBIs null-test, but failing the CCOSEBIs null-test
which is most sensitive to the n ≤ 5 modes. In contrast DES-
SV and CFHTLenS fail the 20-mode COSEBIs null-test, even
though they pass the CCOSEBIs null-test. Their B-modes there-
fore appear when adding in more data points to the analysis.
As our example shows how increasing the size of your data set
serves to reduce the stringency of the null-test, we can therefore
conclude that the significant DES-SV and CFHTLenS B-mode,
seen with COSEBIs and not with CCOSEBIs, is present in the
high-n data that is not included in the CCOSEBIs analysis. If we
had only performed a COSEBIs null-test, we would have missed
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the presence of a systematic signal in KiDS. If we had only per-
formed a low-n CCOSEBIs null-test, we would have missed the
presence of a systematic signal in DES-SV and CFHTLenS.

To illustrate our discussion of null-tests we have used
COSEBIs, but the concept holds for any statistic or null-test.
If a systematic produces a feature at a particular scale, but is
otherwise identical to the standard model, by adding data from
other scales we will dilute the power of the statistical test to dis-
tinguish between the two cases. As null B-mode tests are gen-
erally performed independently of alternative models, it is not
clear which data points should be added to the null-test analysis.
We therefore propose that future null-tests are performed with
the B-mode signatures shown in Sect. 6 in mind. In this way
one can optimise the modes over which to carry out a model
comparison.

Appendix D: Supplementary data and figures

Figures D.1–D.3 show the tomographic COSEBIs measure-
ments, using the angular range of [0.5′, 100′], for DES-SV,
KiDS-450 and CFHTLenS respectively. In each figure, the
upper panels present the E-modes, the lower panels present the
B-modes, and the significance of the B-modes are indicated with
a p-value shown in the upper left corner. The p-values for the
other two angular ranges analysed are given in Table 2. The
predicted E-modes, given the best-fitting cosmology parameters
listed in Table 1, are shown as curves.

Figures D.4–D.6 show ξE/B for the tomographic cases for
DES-SV, KiDS-450 and CFHTLenS respectively. We show p-
values for the significance of the B-modes in each figure, but
caution the reader that due to binning and the truncated integrals
discussed in Sect. 4, this method is not robust. However, as ξB
data points are uncorrelated, they can help with identifying the
source of the systematic even though it was seen in Sect. 6 that
systematics do not always affect the same angular ranges for E
and B-modes. The prediction for ξE, given the best-fitting cos-
mology parameters listed in Table 1, is shown as curves.

For DES-SV, we note that the significance of the tomo-
graphic ξB signal significantly decreases when we restrict the

analysis to an angular range of [4.2′, 72′], as adopted by Dark
Energy Survey Collaboration (2016), with the p-value increas-
ing from p = 4 × 10−19 to p = 0.012. If the systematics that
source the B-modes detected in the standard [0.5′, 100′] analy-
sis add equally to the E and B modes, then the chosen DES-SV
angular selection would serve to mitigate the impact of these sys-
tematics. As shown in Sect. 6, however, we find that the range of
tested systematics exhibit different E and B mode responses. We
would therefore caution against concluding that a choice selec-
tion of angular scales, based on the B-mode response, is suffi-
cient to remove the systematic contamination to the E-modes
within those chosen scales.

In Table D.1 we list the best-fitting values of the calibration
parameters for DES-SV used to calculate the E-mode predic-
tions for DES-SV shown in Sect. 4 and this Appendix . The
first row shows the value of the multiplicative shear calibration
bias and the second row the additive photometric redshift bias
for redshift bins one to three. The last column shows the values
we adopted for the single bin case, which was not analysed in
Abbott et al. (2016). For this case we use a multiplicative shear
calibration equal to the first redshift bin value and a vanishing
photometric redshift bias.

Table D.2 lists the fitted values for ax and bx to KiDS-450
multi-band data using Eq. (28). This values are used to produce
a correlation between the measured ellipticity of galaxies that are
binned in photometric redshift bins with their local PSF elliptic-
ity (see Sects. 5.2 and 6.3).

In Fig. D.7 we replot the left hand side of Fig. 3 to show
the difference between the measured and the fiducial E-modes,
En − Eth

n , for a single redshift bin, while keeping the right hand
side as it was since B-modes are expected to be consistent with
zero. This figure has a similar format to Fig. 10, where we
showed the effect of systematics on simulations. When compar-
ing these figures note that Eth

n in Fig. D.7 is not the input theory,
but instead it is the result of a fit to the data which is inevitably
affected by any systematics that may exist in the data. In con-
trast in Fig. 10 we know the correct values for the Efid

n , as they
are measured directly from the simulations before the systematic
effect is applied to them.
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Fig. D.1. Tomographic E/B mode COSEBIs analysis of DES-SV, spanning an angular range of [0.5′, 100′]. Each panel shows the COSEBIs modes
for the tomographic redshift bin pair z− i j, corresponding to the correlation between photometric redshift bins i and j (see Sect. 3 for the definition
of the redshift bins). The E-modes (upper right panel) can be compared to the theoretical expectation given by the cosmological parameters listed
in Table 1. Note that COSEBIs modes are discrete and we only connect the theoretical model in a curve as a visual aid. The B-modes (lower left
panel) can be compared to the null-case (dashed) where the reduced χ2 value for the B-modes being equal to zero is given, for the auto-correlation
cases, in their corresponding panels. The reduced χ2 and p-value of the full data vector is listed in the upper left.
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Fig. D.2. Tomographic E/B mode COSEBIs analysis of KiDS-450. See the caption of Fig. D.1 for details.
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Fig. D.3. Tomographic E/B mode COSEBIs analysis of CFHTLenS. See the caption of Fig. D.1 for details.

Table D.1. Best fitting shear calibration and photo-z biases for dif-
ferent redshift bins in the DES-SV data (from private communica-
tion with Joe Zuntz).

z1 z2 z3 Single bin

Shear calibration bias 0.0163 −0.0051 −0.0058 0.0163
Photo-z bias 0.0314 −0.0138 0.0106 0.0

Table D.2. Best fitting values for ax and bx as defined in Eq. (28),
fitted to KiDS-450 data.

u-band g-band r-band i-band

ax −3.5 −17 −37 −19
bx 5.5 23 47 23

Notes. In this equation the signal-to-noise of measured fluxes are
written as a linear function of |ε − ε∗x |, where ε is the observed ellip-
ticity of galaxies and ε∗x is the PSF ellipticity in photometric band
x = u, g , r , i.
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Fig. D.5. Tomographic ξE/B analysis of KiDS-450. See the caption of Fig. D.4 for details.
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Fig. D.6. Tomographic ξE/B analysis of CFHTLenS. See the caption of Fig. D.4 for details.
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