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ABSTRACT
We present a public suite of weak-lensing mock data, extending the Scinet Light Cone Sim-
ulations (SLICS) to simulate cross-correlation analyses with different cosmological probes.
These mocks include Kilo Degree Survey (KiDS)-450- and LSST-like lensing data, cosmic
microwave background lensing maps and simulated spectroscopic surveys that emulate the
Galaxy And Mass Assembly, BOSS, and 2-degree Field Lensing galaxy surveys. With 844
independent realizations, our mocks are optimized for combined-probe covariance estimation,
which we illustrate for the case of a joint measurement involving cosmic shear, galaxy–galaxy
lensing, and galaxy clustering from KiDS-450 and BOSS data. With their high spatial resolu-
tion, the SLICS are also optimal for predicting the signal for novel lensing estimators, for the
validation of analysis pipelines, and for testing a range of systematic effects such as the impact
of neighbour-exclusion bias on the measured tomographic cosmic shear signal. For surveys
like KiDS and Dark Energy Survey, where the rejection of neighbouring galaxies occurs within
∼2 arcsec, we show that the measured cosmic shear signal will be biased low, but by less than
a per cent on the angular scales that are typically used in cosmic shear analyses. The amplitude
of the neighbour-exclusion bias doubles in deeper, LSST-like data. The simulation products
described in this paper are made available at http://slics.roe.ac.uk/.

Key words: gravitational lensing: weak - methods: numerical – dark matter – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The standard model of cosmology has been highly successful in
describing a number of observations, including fluctuations in the
cosmic microwave background (CMB, e.g. Das et al. 2014; Planck
Collaboration 2016), and baryonic acoustic oscillations in galaxy
surveys (e.g. Blake et al. 2011; Padmanabhan et al. 2012; Alam et al.
2017a). The technique of weak gravitational lensing has recently
seen rapid progress, resulting in the early results from the Kilo De-
gree Survey (KiDS) and the Dark Energy Survey (DES) presented
in Hildebrandt et al. (2017, H17 hereafter) and Troxel et al. (2017),
respectively. Based on the measurement of correlations between the

� E-mail: jharno@roe.ac.uk

shapes of distant galaxies that are produced by a foreground matter
distribution, the weak-lensing signal is a key probe of dark matter
and structure formation (see Bartelmann & Schneider 2001, for a
review).

To reach its full potential, this technique must address a num-
ber of systematic effects (Massey et al. 2013; Mandelbaum 2017),
many of which are associated with the fact that the scales probed
by the signal reside in the non-linear regime of gravitational col-
lapse. Complications therefore arise due to non-linear dynamics,
which generate important deviations from linear predictions and
produce non-Gaussian features in the matter distribution that can af-
fect likelihood analyses. Many of these challenges can be overcome
with numerical N-body simulations, which accurately capture the
gravitational physics over the scales relevant to the weak-lensing
measurement. These calculations are expensive to carry out and

C© 2018 The Author(s)
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1338 J. Harnois-Déraps et al.

require vast resources on supercomputers, but their scientific out-
come is rich and their applications numerous and central to many
aspects of weak-lensing analysis:

(1) Modelling – Numerical cosmological simulations are re-
quired in the modelling of weak-lensing signals for which theoreti-
cal predictions are either not available or not accurate enough. Mod-
ern prediction tools such as HALOFIT (Smith et al. 2003; Takahashi
et al. 2012), the Cosmic Emulator (Heitmann et al. 2014), HMCODE

(Mead et al. 2015) or the Mira-Titan project (Heitmann et al. 2016)
are all based on large suites of N-body simulations in which the
input cosmology parameters were varied. The science objectives
were, in these cases, to construct high-precision predictions of the
two-point correlation functions (for the collisionless dark matter)
that extend deep into the non-linear regime of large-scale-structure
formation. In the context of weak lensing, these serve to model
the cosmic shear signal. On top of this, there are complementary
lensing measurements that are particularly sensitive to non-linear
structures and which contain additional information, such as the
lensing peak statistics (e.g. Liu et al. 2015a,b; Kacprzak et al. 2016;
Martinet et al. 2017), the lensing of under- and overdense regions
(Friedrich et al. 2017; Gruen et al. 2017; Brouwer et al. 2018), or
clipped lensing (Simpson et al. 2016; Giblin et al. 2018), which in
some cases completely rely on simulations to estimate the expected
signal. It is worth mentioning here that an important part of the
modelling comes from the presence (or the absence) of massive
neutrinos, modified gravity and baryon feedback. However, these
effects are outside the scope of this paper, and can be dealt with
separately with analytic halo models (e.g. Mead et al. 2016) or hy-
drodynamical simulations (e.g. Semboloni et al. 2011; McCarthy
et al. 2018; Chisari et al. 2018).

(2) Validation of estimators – In addition to their key role in the
modelling of weak-lensing observables, simulations can be post-
processed into mock catalogues that are constructed to match a
number of properties of the input data. In that form, the mocks
serve to test, calibrate and optimize different estimation techniques,
and can tell us how these respond to different observational effects
that can be added by hand (e.g. survey masking, photometric error,
and point spread function residuals). Another usage is to test the sen-
sitivity of different measurement techniques to known systematic
contamination. This is of particular importance when developing
new weak-lensing estimators, e.g. clipped lensing, and study their
response to secondary physical effects such as source clustering.

(3) Covariance matrix estimation – Weak-lensing analyses are
carried out on correlated data points, which means that an accu-
rate assessment of the uncertainty on the measurements requires
a full covariance matrix. The ideal way to measure this relies on
a large ensemble (LE) of independent N-body simulations at each
of the cosmologies that are being sampled along the Monte Carlo
Markov Chain (MCMC) parameter sampler. Given the requirement
that the number of simulations per ensemble must significantly
exceed the dimension of the data vector, this scenario requires com-
puting resources far exceeding those currently available. Alternative
techniques have been used instead to estimate the covariance ma-
trices of weak-lensing observables, including ‘internal’ estimates
such as jack-knife (JK) or bootstrap resampling of the data, ana-
lytic calculations (see Takada & Jain 2009; Krause & Eifler 2017,
for example), lognormal realizations (Hilbert, Hartlap & Schneider
2011), or approximate gravity solvers such as ICE-COLA (Izard,
Fosalba & Crocce 2018). Another approach is to run an ensemble

of full N-body simulations at a single cosmology and ignore the
variation of the covariance with cosmology. Hybrid techniques are
also possible, where for example one can use fast Gaussian approx-
imations to promote a matrix with some cosmological dependence
(see Kilbinger et al. 2013, for example). Each of these techniques
have pros and cons, and the best choice for a given measurement
will strike a compromise that minimizes the impact on the final
parameter inference. Generally, internal estimates become inaccu-
rate at large scales, lognormal, and approximate methods do not
reproduce exactly the non-linear structures, analytical calculations
need to be validated against ensembles of N-body simulations to be-
gin with, and simulation-based estimates are themselves subjected
to the missing ‘Super Sample Covariance’ (SSC) term (Li, Hu &
Takada 2014). Undoubtedly, even at a fixed cosmology, the ensem-
ble approach offers a valuable tool to estimate covariance matrices,
which is the central focus of this paper.

(4) Likelihood modelling – Weak-lensing analyses are mostly
carried out under the assumption that the underlying data are dis-
tributed according to a multivariate Gaussian function. The likeli-
hood that describes such idealized data can be expressed analyti-
cally, however little is known about the accuracy of this assumption.
In fact, this is expected to break in the highly non-linear regime, and
there are even hints that this could already be a source of systematic
error in the interpretation of the current weak-lensing data (Sellentin
& Heavens 2016). There is a need to study extensions to the current
method, and numerical simulations can serve to test non-Gaussian
likelihood models (Sellentin, Heymans & Harnois-Déraps 2018;
Hahn et al. 2018). These assumptions and their numerical imple-
mentation can be tested in a full mock analysis, where it can be
verified whether the likelihood analysis can recover the input cos-
mology (MacCrann et al. 2018).

There is a range of public mock data sets designed to serve
the weak-lensing community, each having their strengths and
limitations.1 We present a few of them here, and summarize in
Table 1 some of the key properties that affect their performance at
estimating weak-lensing covariance matrices. Ray tracing through
the Millennium Simulation (Springel et al. 2005; Hilbert et al. 2009),
for instance, has yielded a rich science outcome, however there is
only one realization (and two cosmologies). The MICE-GC simu-
lation (Fosalba et al. 2013) is particularly useful for the volume it
covers, but again there is a single realization available . Comple-
mentary to these are the Dietrich & Hartlap (2010, DH10 hereafter)
simulations, which probe 158 different cosmologies in the [σ 8 −
�m] plane, and additionally contain an ensemble of 37 realizations
for the main cosmology. Compared to the other simulations, this
large suite was constructed with smaller volumes and at a lower
mass resolution.

The CLONE catalogue (Harnois-Déraps, Vafaei & Van Waer-
beke 2012) was specifically tailored for data quality assessment and
covariance estimation in weak-lensing data analyses of the Canada–
France–Hawaii Telescope Lensing Survey (Heymans et al. 2012).
With 185 realizations, the CLONE probes very small scales, but
also suffers from small volumes (the box sizes are 231 and 147 h−1

Mpc on the side, depending on the redshift) at a level that is now
inadequate for the current generation of lensing surveys.

An ensemble of 108 full-sky weak-lensing mock data has also
been produced by Takahashi et al. (2017) and made publicly avail-

1This is not an exhaustive list of all public mock weak-lensing data, but
instead a subset that shows the diversity of the available tools.
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Combined-probe simulations 1339

Table 1. Properties of some of the weak-lensing simulations that are publicly available: Lbox is the comoving side length of the simulation box, mp is the
particle mass, Ncosmo is the number of cosmologies available, Nsim is the number of realizations, and Atot is the total area, combining all cosmologies and
realizations. The second cosmology covered by the Millennium Simulation is obtained by post-processing the first one (Angulo & White 2010) hence is not
independent. The particle mass varied with cosmology in the DH10 simulations, while both mp and Lbox varied with redshift in the HSC simulations, in 11
steps between z = 0 and 3. The 108 realizations of the HSC mocks are not fully independent: 18 light-cones are produced from each of the 6 truly independent
volumes. Nsim = 932 for the SLICS comic-shear and CMB lensing data, and 844 for the full set of probes.

SLICS HSC DH10 CLONE MICE-GC Millennium

Lbox (h−1Mpc) 505 450 (z ∼ 0) 140 231.1 (z > 2) 3072 500
4950 (z ∼ 3) 147.0 (z < 2)

mp (h−1M�) 2.88 × 109 8.2 × 108 (z ∼ 0) 6.51 × 109(�m = 0.07) 8.94 × 108 (z > 2) 2.93 × 1010 8.6 × 108

1.1 × 1012 (z ∼ 3) 5.74 × 1010(�m = 0.62) 2.30 × 108 (z < 2)
Ncosmo 3 1 158 1 1 2
Nsim 844 108 192 185 1 1
Atot (deg2) 8.44 × 104 4.45 × 106 6912 2.37 × 103 1.03 × 104 1024

able, combined with a release of dark matter halo catalogues and
CMB lensing maps. These simulation products are designed for
the Hyper Suprime Camera (HSC) weak-lensing survey, but can
serve broader science cases. Being full sky, these ‘HSC’ mocks are
well suited to test estimators acting on spherical coordinates, such
as curved-sky map reconstruction algorithms. While there are 108
realizations in the release, these mocks are not statistically inde-
pendent, having ‘recycled’ a smaller number of truly independent
N-body realizations. It has been shown that such recycling has little
impact on the cosmic shear covariance matrix (Petri, Haiman &
May 2016), however its effect on higher order statistics and likeli-
hood modelling is still unknown. The finite mass resolution of these
simulations can be limiting for some applications, since the minimal
halo mass that they form gradually varies from 1 × 1012 h−1 M� at
z ∼ 0.3–5 × 1013 h−1 M� haloes at z ∼ 3 (see their fig. 3). This
is insufficient to describe many galaxy populations that reside in
less massive systems, but can serve to model low-redshift luminous
red galaxies (LRGs), which are hosted in 1 × 1012 h−1 M� haloes
(see Section 3.3 and Fig. 7). According to these limitations, a z

∼ 0.7 LRG sample based on these HSC mocks would be miss-
ing its least massive members. However, their large volumes make
these HSC mocks particularly suitable for the evaluation of the SSC
term.

The SLICS (Scinet LIght Cone Simulations, described in
Harnois-Déraps & van Waerbeke 2015, HvW15 hereafter) were
designed as a massive upgrade of the CLONE. With a volume
of Lbox = 505 h−1Mpc on the side, they significantly reduce the
limitations caused by the finite-box size, thereby allowing data
analyses that include larger angular scales (the cosmic shear sig-
nal is valid out to 2 deg, as opposed to about half a degree in
the CLONE). They resolve structure deep within the non-linear
regime, and the larger size of the ensemble supports longer data
vectors without introducing high levels of noise in the covari-
ance matrix. The SLICS were first tailored for the Red-Sequence
Clusters Lensing Survey (Hildebrandt et al. 2016), and later re-
processed for the cosmic shear analysis presented in H17, which
is based on the first 450 deg2 of the KiDS data. This flexibil-
ity is one of the highlights of numerical simulations: once the
lensing data have been computed and stored on disk, it is rela-
tively inexpensive to reproduce the properties of many different
surveys.

This paper presents a significant expansion of the SLICS suite
from its original version, with a focus on cross-correlation science.
On top of the weak-lensing mass and shear planes introduced in
HvW15, we present here the KiDS-450- and the LSST-like ‘source’

catalogues, which emulate the two photometric surveys they are
named after. We also describe the backbone dark matter halo cata-
logues as well as three mock ‘lens’ galaxy catalogues that reproduce
properties of the CMASS and LOWZ LRG samples (Reid et al.
2016) that are part of the Baryon Oscillation Spectroscopic Survey
(BOSS), and the denser galaxy sample from the Galaxy And Mass
Assembly spectroscopic survey (Liske et al. 2015, GAMA here-
after) . We construct an additional set of galaxy catalogues (KiDS-
HOD and LSST-like HOD) specially designed to study systematic
and selection effects related to source–lens coupling (Hartlap et al.
2011; Yu et al. 2015), and finally supplement the light-cones with
simulated lensing maps of the CMB. As a direct application, we
construct a combined-probe data vector that incorporates cosmic
shear, galaxy–galaxy lensing, and galaxy clustering and present the
full covariance matrix.

Many of these simulation products already served in cosmolog-
ical analyses: the cross-correlation of weak lensing with Planck
lensing (Harnois-Déraps et al. 2016, 2017), cosmic shear (H17),
peak statistics (Martinet et al. 2017), combined-probe analyses with
redshift-space distortions (RSD, Joudaki et al. 2017; Amon et al.
2018a) and galaxy clustering (van Uitert et al. 2018), clipped lens-
ing (Giblin et al. 2018), and density-split statistics (Brouwer et al.
2018). The first part of this paper therefore serves as a reference for
those interested in the different SLICS products, where we detail
their design, performance, and limitations.

In the second part of this paper, we revisit the neighbour-exclusion
bias, a subtle selection effect first reported in Hartlap et al. (2011)
and revisited by MacCrann et al. (2017), sourced from the fact
that objects with close neighbours are more common in regions
with foreground clusters than with foreground voids. Positions and
shapes are more difficult to extract for these objects, hence they
are typically rejected or downweighted in weak-lensing analyses.
This selection therefore preferentially downsamples regions with
the highest density of foreground galaxies, which also correspond
to regions that yield the highest lensing signal. This is a form of
source–lens coupling unrelated to the photometric uncertainty or
contamination by cluster members, and which affects the cosmic
shear signal over a wide range of scales. We first investigate this
neighbour-exclusion bias in the context of a weak-lensing survey at
KiDS depth, including tomographic decomposition, different levels
of close-pairs exclusion, and two different strategies to deal with
them, then extend this measurement to LSST depth.

This paper is structured as follow. We review the configuration
of the N-body runs, our strategy to extract lensing maps and dark
matter haloes in Section 2. We then describe our different galaxy
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1340 J. Harnois-Déraps et al.

Table 2. Lens and source redshift planes used to construct our past light-cones. These are obtained by stacking half boxes, each 252.5 h−1 Mpc thick, from the
observer out to zmax ∼ 3.0. The lens planes lie at the centre of the projected volumes, and the ‘natural’ source planes correspond to the back of each half box.

zl 0.042 0.130 0.221 0.317 0.418 0.525 0.640 0.764 0.897 1.041 1.199 1.373 1.562 1.772 2.007 2.269 2.565 2.899

zs 0.086 0.175 0.268 0.366 0.471 0.582 0.701 0.829 0.968 1.118 1.283 1.464 1.664 1.886 2.134 2.412 2.727 3.084

catalogues in Section 3, we list the caveats and limits that are
known to affect the numerical products, and conclude the first part
of this paper by presenting the combined-probe covariance ma-
trix in Section 4. We next investigate the neighbour-exclusion bias
in Section 5, and conclude in Section 6. We finally present com-
plementary information about some of the mock products in the
appendices.

2 DA R K M AT T E R L I G H T- C O N E S

2.1 The N-body calculations

The SLICS are based on a series of 1025 N-body simulations pro-
duced by the high performance gravity solver CUBEP3M (Harnois-
Déraps et al. 2013). They were first presented in HvW15, and we
report here some of the key properties. The fiducial cosmology
adopts the best-fitting WMAP9 + BAO + SN parameters (Hinshaw
et al. 2013), namely: �m = 0.2905, �� = 0.7095, �b = 0.0473,
h = 0.6898, σ 8 = 0.826, and ns = 0.969. This choice lies close to
the mid-point between the cosmic shear and the Planck best-fitting
values in the [σ 8 − �m] plane. Each run follows 15363 particles
inside a grid cube of comoving side length Lbox = 505 h−1 Mpc
and nc = 3072 grid cells on the side, starting from a set of initial
conditions at zi = 120 obtained via the Zel’dovich approximation.
The N-body code computes the non-linear evolution of these colli-
sionless particles down to z = 0 and generates on-the-fly the halo
catalogues and mass sheets required for a full light-cone construc-
tion (see Sections 2.2 and 2.3). By construction, this setup makes
no distinction between baryons and dark matter, and ignores the
impact of massive neutrinos.

The complete SLICS series consists of a core ‘Large Ensem-
ble’ (the SLICS-LE suite) of 932 fully independent realizations,
augmented with five runs in which the gravitational force is re-
solved to smaller scales (with the extended particle–particle mode
described in Harnois-Déraps et al. 2013). These extra runs make
up the SLICS-HR suite, which served for convergence tests of the
SLICS-LE. We also produced an additional 73 runs at σ 8 = 0.861,
and 15 with σ 8 = 0.817 and ns = 0.960. Although restricted in their
sampling of the parameter space, these runs enable some sensitivity
tests to differences in cosmology. This paper solely focuses on the
development of simulation products performed in the LE, which we
hereafter refer to as the ‘SLICS simulations’.

Each of the SLICS realizations required 64 MPI processes, run-
ning on either 8 or 16 CPUs in an OPENMP parallelization mode,
for a total of 512–1024 cores depending on the machines. The real
runtime to reach z = 0 on the Compute Canada SciNet-GPC and
Westgrid-Orcinus clusters (intel x86 processors) was about 30 h
per simulation, depending on the architecture, on the network us-
age, and on the level of non-linear structures formed inside the
cosmological volume. CUBEP3M does not explicitly enforce load
balance across the compute nodes, hence a super-structure form-
ing inside one node will require more time to resolve, effectively
slowing down all nodes. With six phase-space elements per parti-
cle at 4 bytes each, a single particle dump takes up 87 GB of disk
space. Given our need for multiple redshift checkpoints for over

1000 realizations, storing the particle data was not an option. Once
halo catalogues and mass sheets were generated, the particles were
deleted (with the exception of the SLICS-HR suite, for which the
particle data will be made available upon request).

The particle mass is set to 2.88 × 109 h−1 M�, thereby resolving
dark matter haloes below 1011 h−1 M� and structure formation
deep in the non-linear regime. The 3D dark matter power spectrum,
P(k), agrees within 2 per cent with the SLICS-HR as well as with
the predictions from the Extended Cosmic Emulator (Heitmann
et al. 2014) for Fourier modes k < 2.0 h Mpc−1 (fig. 6 of HvW15).
Higher k modes (corresponding to smaller scales) are affected by
finite force/mass resolution, such that at k = 5.0 (10.0) h Mpc−1,
the simulated P(k) from the SLICS is 15 per cent (50 per cent)
lower than the emulator, which achieves 5 per cent precision up
to k = 10 h Mpc−1. This resolution limit inevitably propagates into
the light-cone, which then also impacts the projected measurements
such as the shear two-point correlation function or the convergence
power spectrum (see figs 1 and 7 in HvW15). As always, mass
resolution needs to be considered when deciding on the scales at
which the cosmic shear results from SLICS are reliable; this is
further discussed in HvW15 and in Section 3.1.

2.2 Gravitational lenses

We construct flat-sky weak-lensing maps with the multiple-plane
tiling technique (in many aspects similar to Vale & White 2003), in
which convergence and shear maps are extracted from a series of
18 mass sheets under the Born approximation. When the simulation
reaches pre-selected lens redshifts, zl, the particles from half the
cosmological volume are projected along the shorter dimension on
2D grids of 12 2882 pixels following a ‘cloud in cell’ interpolation
scheme (Hockney & Eastwood 1981). This process is repeated for
the three Cartesian axes, however we keep on disk only one of these
mass planes per redshift following a regular sequence (e.g. xy, xz,
yz, xy, ...). The redshifts of these planes, reported as zl in Table 2, are
chosen such that the half volumes continuously fill the space from
z = 0 to 3. This requires 18 planes in the adopted cosmology. Start-
ing from the observer at z = 0, the first mass plane corresponds to the
projection of the comoving volume in the range [0 – 252.5 h−1 Mpc],
which we assign to its centre (at 126.25 h−1 Mpc, or zl = 0.042);
the second plane projects the volume [252.5–505 h−1 Mpc], also
assigned to its centre (at 378.75 h−1 Mpc, or zl = 0.130), and so on
for all 18 planes. We turn these density maps into overdensity maps
by subtracting off the mean.

We carve out our light-cones2 by shooting rays on a regular grid
of 77452 pixels with an opening angle of 100 deg2, which corre-
sponds to the angular extension of the simulation box at redshift
z = 1.36. We extend the light-cones up to z = 3 by using periodic
boundary conditions to fill in regions of the mass sheets that fall out-
side the volume. The light-cone overdensity mass maps, which we
label δ2D(θ , zl), are obtained from a linear interpolation of the mass

2Note that the setup described here has changed since HvW15, in which the
light-cones had an opening angle of 60 deg2 with 60002 pixels.
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Combined-probe simulations 1341

Figure 1. Sample of the different simulation products presented in this paper. The background colour maps represent 256 h−1 Mpc of projected dark matter,
the red circles show the dark matter haloes with sizes scaling with their mass, and the large and small yellow squares show the central and satellite galaxies,
respectively. The left-hand panels shows the GAMA galaxies centred at redshift z = 0.221, the central panel shows the LOWZ galaxies centred at z = 0.317,
while the right-hand panel shows the CMASS galaxies, centred at z = 0.640. These three mock galaxy samples are described in Sections 3.3–3.5. The side
length of the three panels each subtend half a degree.

overdensity sheets onto the mock pixels θ after randomly shifting
the origins . This translation, together with the sequential change of
the projection axis mentioned above, are designed to minimize the
repetition of structure across redshift when constructing a light-cone
from a single N-body run.

Samples of these mass overdensity maps are presented in Fig. 1.
One direct consequence of this procedure is that correlations in the
matter field are explicitly broken between boxes. This is important
to note when measuring 3D quantities within the SLICS light-cones.

Given a discrete set of thin lenses at comoving distance χ l and
a discrete source distribution n(z) given in bins of width �χ s, we
construct convergence maps κ(θ) from a weighted sum over the
mass planes (equation 6 in HvW15):

κ(θ) = 3H 2
0 �m

2c2

χH∑
χl=0

δ2D(θ , χl)(1 + zl)χl

×
[ χH∑

χs=χl

n(χs)
χs − χl

χs
�χs

]
�χl, (1)

where χH is the comoving distance to the horizon, H0 is the value
of the Hubble parameter today, c is the speed of light, n(χ ) =
n(z)dχ /dz, and �χ l = Lbox/nc. Each of the lens redshifts is as-
sociated with a ‘natural’ source redshift zs that corresponds to an
infinitely thin plane located just behind the half box, also listed
in Table 2. We take advantage of the fact that these require no
interpolation along the redshift direction and construct 18 conver-
gence maps per light-cone, assuming n(z) = δ(z − zs). For each of
these natural source redshift planes, we also compute shear maps
γ1,2(θ ) with fast Fourier transforms (see Harnois-Déraps et al. 2012,
for details on our numerical implementation). These lensing maps
are described in HvW15, where one can find a comparison be-
tween different prediction models for the matter power spectrum
(fig. 6 therein) and shear two-point correlation functions (fig. 1);
we refer the reader to this paper for more details about such com-
parisons. It is also shown therein that the variance of lensing ob-
servables converges with the Gaussian predictions at large angular
scales, which reinforces our confidence that residual correlations be-

tween different mass sheets from the same light-cone can be safely
ignored.

2.2.1 CMB lensing maps

For each of the light-cones, we also produced convergence maps
that extend to zs = 1100, which were described and used in Harnois-
Déraps et al. (2016) for the validation of combined-probe measure-
ment techniques involving CMB lensing data. These κCMB maps
were constructed in a hybrid scheme: a single set of 10 mass
planes were generated from linear theory to fill the volume between
3.0 < z < 1100. They were first smoothed to reduce shot noise,
then placed at the back end of each of the main SLICS light-cones,
enabling ray tracing up to the CMB for all lines of sight.

The fact that the same back-end volume is used for each of the
κCMB maps effectively couples the maps across different lines of
sight, which means that the covariance matrix of the autospectrum
(or autocorrelation function) of these κCMB maps will be wrong.
However, these maps are primarily constructed for the study of
combined probes, hence any cross-correlation measurement with
z < 3.0 mock data will only see the main SLICS light-cone hence
the covariance will not be affected by this.

We additionally produced a series of κCMB maps that repro-
duce the Planck lensing measurements, which we obtained by
adding noise maps with the noise spectrum given by in the data
release3, followed by a Fourier filtering procedure that removes
the � > 2048 modes, as in the data (Planck Collaboration et al.
2016). These maps are constructed with the same foreground matter
fields hence can serve for estimator validation and covariance es-
timation in cross-correlation analyses involving the Planck lensing
data.

2.2.2 Data products: lensing maps

For all 932 light-cones, we provide the following lensing maps:

(i) δ2D(χl, θ ) for the 18 lens planes (zl) listed in Table 2

3Planck lensing package: pla.esac.esa.int/pla/#cosmology.
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Figure 2. The halo mass function at z = 0.22 in the full simulation box
and in the light-cone, compared to predictions from Sheth, Mo & Tormen
(2001). Error bars show the error on the mean, obtained from 100 lines of
sight. The agreement is similar at other redshifts.

(ii) γ1,2(θ ) for the 18 source planes (zs) listed in Table 2
(iii) Noise-free κCMB(θ ) convergence maps
(iv) Planck-like κCMB(θ ) convergence maps

These are all flat-sky, 100 deg2 maps with 77452 pixels, stored in
FITS format. The mass maps can be used to recreate convergence
and shear maps with any redshift distribution if needed, while the
shear maps can be populated with a galaxy catalogue of arbitrary
n(z) in the range [0.0, 3.0] and used to assign shear to each object.

2.3 Dark matter halo catalogues

Dark matter haloes serve as the skeleton for the galaxy population
algorithms used in this paper (Sections 3.2–3.6), hence we document
their key properties in this section. We identify haloes using a spher-
ical overdensity algorithm (detailed in Harnois-Déraps et al. 2013),
which first assigns particles onto the fine simulation grid, then looks
for maxima and ranks them in descending order according to their
peak height. The halo finder then grows a series of spherical shells
over each maximum until the total overdensity (with respect to the
cosmological background) falls under the threshold of 178.0, in ac-
cordance with the top-hat spherical collapse model. Particles within
the collapse radius are then re-examined in order to extract a number
of halo properties, including the halo mass, the position of its centre
of mass and of its peak, the velocity dispersion for all three dimen-
sions, its angular momentum and inertia matrix. We reject haloes
with less than 20 particles, which introduces a low-mass cut-off in
the reconstructed halo catalogue at Mh,min = 5.76 × 1010 h−1 M�.
In this process, particles cannot contribute to more than one halo.

The mass function of these haloes reproduces the results ex-
pected from predictions by Sheth et al. (2001), as shown in
Fig. 2. We also show in Fig. 3 the halo bias bh at z = 0.042
for four mass bins. This quantity was extracted from the simu-
lation by computing the power spectrum of the halo catalogues,
Phalo(Mh, k, z) = 〈|δhalo,Mh (k, z)|2〉, and that of the particle data, P(k,
z) = 〈|δ(k, z)|2〉. The halo density δhalo,Mh (x, z) is constructed by
placing haloes in mass bin Mh and redshift z on a 30723 grid, which
is Fourier transformed, squared, and angle-averaged to obtain the
halo power spectrum. We repeat this procedure with the full parti-
cle data to obtain δ(k, z) and P(k, z), and extract the bias via the
relation b2

h(Mh, z, k) = Phalo(k, z, Mh)/P (k, z). Note that this nu-
merical computation provides only the two-halo term contribution
to the power spectrum, which is enough to estimate the linear bias.
The one-halo term would require sub-halo catalogues, which we
have not constructed. In this calculation, the particle and halo mass
assignment scheme was corrected for by dividing the power spectra

10-2 10-1 100
0

1

2

3

Figure 3. Halo bias in the mocks for redshift z = 0.042 in four wide
mass bins, labelled in the figure in units of M�. Poisson shot noise is not
subtracted, and the error is on the mean, estimated from 100 realizations.
Shown with the red dashed lines are the linear bias predictions from Tinker
et al. (2010).

by the window function (Hockney & Eastwood 1981), but the shot
noise was not subtracted.

Looking at the linear regime (k < 0.05 h Mpc−1), we clearly see
that the most massive haloes are the highest biased tracers of the
underlying dark matter field, and that haloes in the mass range
[1011–1013] h−1 M� have a bias lower than 1.0. Our measurements
are in excellent agreement with the predictions from the spherical
collapse model of Tinker et al. (2010) for the largest three mass
bins plotted in Fig. 3, however the [1011–1012] M� haloes exhibit a
bias that is 14 per cent higher than the predictions, (bh = 0.82 in the
mocks, compared to the predicted value of 0.72). The size of this de-
viation is similar to the differences between linear bias models (e.g.
Mo & White 1996; Sheth et al. 2001; Sheth & Tormen 1999) which
means that our halo clustering agrees well with the models within
the theoretical accuracy. The linear bias approximation holds well
at large scales (k < 0.1 h Mpc−1 for haloes with Mh < 1014 M�,
smaller k modes for heavier haloes). The bias bh(k) in all mass bins
deviates from the horizontal at k > 0.2 h Mpc−1, in part because of
the shot noise, in part because of the non-linear bias (which we do
not attempt to model in this paper). We note, however, that the shape
of the non-linear bias heavily depends on the halo mass: whereas
the bias of haloes with Mh > 1012 h−1 M� is flat at large scales then
exhibits a sharp increase at high k modes, the bias of lighter haloes
first drops between k = 0.2 and 2.0 h Mpc−1, then follows a steep
ascent at higher k. Similar shapes and mass dependencies of the
non-linear bias were recently reported in Simon & Hilbert (2018).

The requirement we have for producing a large ensemble of sim-
ulations comes at a cost, such that some key ingredients often found
in other recent halo catalogues are omitted here. For instance, and
as mentioned previously, there is no sub-halo information available,
and since the particle data are not stored, these catalogues cannot
be further improved with a more sophisticated halo finder. In ad-
dition, merger trees were not generated, which limits the use of
semi-analytic algorithms to populate these haloes with galaxies. Fi-
nally, there is no phase-space cleaning included in the halo-finding
routine, which reduces the accuracy of the inertia matrix and angu-
lar momentum measured from these haloes. These limitations have
a negligible impact on cosmic shear measurements based on these
mocks, but may affect some analyses that rely on these properties,
for example implementing intrinsic galaxy alignments or studying
environmental dependencies.

We show in Fig. 4 the angular correlation function of the light-
cone haloes in the redshift range 0.175 < z < 0.268, measured with
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Figure 4. Upper: angular correlation function measured from all haloes
combined in the range z ∈ [0.175 − 0.268], compared with non-linear
predictions with bh = 1.0. The dashed curve includes a cut in k modes larger
than the simulation box from the SLICS. The errors bars show the error on
the mean, obtained here from 100 realizations. Lower: fractional error with
respect to the predictions without the cut in k modes.

the Landy & Szalay (1993) estimator:

w(ϑ) = DD − 2DR + RR

RR
, (2)

where DD, RR, and DR refer to the pair counts of the
data–data, random–random, and data–random, respectively, as a
function of separation angle ϑ . These quantities are measured with
TREECORR (Jarvis, Bernstein & Jain 2004) and split in 50 loga-
rithmically spaced bins spanning 0.01 < ϑ < 300 arcmin. Shown in
red is the clustering measurement obtained from 100 lines of sight,
compared with theoretical predictions obtained from COSMOSIS4

(Zuntz et al. 2015) with a bias of bh = 1.0 and the SLICS input
cosmology. Throughout this paper, all clustering measurements are
extracted from the same number of independent realizations (Nsim =
100). This number was chosen because it is large enough to provide
accurate estimates of the signals in the full sample, while the error
bars in the figures remain visible and useful. We show the errors on
the mean (i.e. the 1σ scatter between the measurements, divided by√

100) in order to highlight the small residual discrepancies with
the predictions.

As seen in Fig. 4, the linear bias for this sample of haloes is on
average close to 1.0 for ϑ > 10 arcmin, but the measured ampli-
tude undershoots this constant bias model at smaller separations.
This drop is caused by the fact that a large fraction of this sample
consists of haloes with mass Mh < 1012 h−1 M�, as seen from the
mass function in Fig. 2, and the non-linear bias of this same sam-
ple decreases towards small scales (or towards high-k, see Fig. 3).
The sharp increases seen in the halo bias at very high k modes
is not seen in w(ϑ) since it mostly consists of shot noise. A full
mass-dependent, redshift-dependent, non-linear bias model would
be required to improve the match between theory and measurements
in Fig. 4, which is beyond the scope of this paper. The dashed black
curve shows the theoretical prediction for w(ϑ) after the theory
matter power spectrum has been set to zero for k modes probing
scales larger than the simulation box. This resembles the finite-box
effect observed in w(ϑ) beyond 100 arcmin, although the match
is not perfect. For this measurement to be accurate, it is critical to
construct random catalogues that properly capture the properties

4COSMOSIS: https://bitbucket.org/joezuntz/cosmosis/wiki/Home.

of the survey in absence of clustering, mainly its depth and mask.
We discuss this further in the context of our light-cone geometry in
Section 3.9.

Note that these halo catalogues serve as the input in the construc-
tion of galaxy catalogues based on halo occupation distributions
(HOD), which we describe in Section 3.2.

2.3.1 Data products: halo catalogues

For each dark matter halo, we store, in FITS format: the position of
the halo, the pixel it corresponds to in the lensing maps, the mass,
the centre-of-mass velocity, the velocity dispersion, the angular
momentum, the inertia matrix, and the rank5 within the full volume
simulation (i.e. before extracting the light-cone). The catalogues of
haloes that populate each of the light-cones will be made available
upon request.

We note here that the haloes are not available for all simulations,
notably due to an unfortunate disk failure that caused a loss of
many catalogues. For this reasons, the haloes and HOD galaxies are
available for 844 lines of sight out of the 932 for which we have
mass and shear planes.

3 MO C K G A L A X Y C ATA L O G U E S

The mock data described in this paper have already found a num-
ber of applications in the analysis of large-scale structure and/or
weak-lensing data, which required fine preparation of the simula-
tion products. To achieve this, we use different techniques to add
galaxies in the light-cones, tailored to different science targets. In
particular we:

(i) enforce a redshift distribution of source galaxies n(z) and a
number density ngal that matches the KiDS-450 data, with galaxies
put at random positions in the light-cone. This represents our base-
line mock ‘source’ galaxy sample in this paper, as it is designed to
estimate covariance matrices for cosmic shear analyses with KiDS-
450 data. We also produce a second version with a higher galaxy
density, and a third version, this time with LSST-like densities and
n(z). Details are provided in Section 3.1 and Appendix A1, respec-
tively;

(ii) generate galaxy positions, n(z) and ngal from HOD prescrip-
tions. This is our main strategy to generate mock galaxies matching
different spectroscopic surveys (i.e. CMASS, LOWZ, and GAMA),
used as ‘lens’ targets in combined-probe measurements. We also
generate two additional HOD-based mock surveys, at KiDS and
LSST depth, including lensing and photometric information. These
are described in Sections 3.2–3.7;

(iii) generate another lensing source galaxy catalogue based on (i)
but placing galaxies at positions chosen such as to produce a galaxy
density field with a known bias, which is theoretically simpler to
model than the HOD catalogues from (ii). This can be particularly
useful when one needs to include simple source clustering, or test
linear bias models as in van Uitert et al. (2018). In particular, it
requires a sampling of the mass sheets δ2D(χl, θ ), as detailed in
Appendix A2. These mocks are not a part of the release, but we
provide the code to reproduce these catalogues from the shear and
mass maps;

5This halo property refers to its rank in a mass-ordered halo catalogue,
where the lowest rank corresponds to the most massive halo.

MNRAS 481, 1337–1367 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/481/1/1337/5078872 by Liverpool John M
oores U

niversity user on 22 July 2020

https://bitbucket.org/joezuntz/cosmosis/wiki/Home


1344 J. Harnois-Déraps et al.

(iv) place mock galaxies at the positions of observed galaxies in
the KiDS-450 survey. This naturally enforces the n(z) and spatially
varying ngal of the data, which are required for analyses that are
sensitive to these properties, including the peak statistics analysis
of Martinet et al. (2017). See Appendix A3 for more details.

This is not an exhaustive list of all possibilities, but covers many
of the commonly used galaxy inpainting techniques. The following
sections describe the main strategies – (i) and (ii) from the list above
– by which source and lens galaxies are assigned to our simulations.

3.1 Mock KiDS-450 source galaxies

In this method, galaxies are placed at random angular coordinates
on the 100 deg2 light-cone, with number density and redshift distri-
bution matching a pre-specified ngal and n(z). This method is general
and can be used to emulate any weak-lensing survey. We show here
an application of this technique to the KiDS-450 data described in
H17, and present in Appendix A1 a similar emulation for an LSST-
like lensing survey that follows the specifications listed in Chang
et al. (2013).

The mock creation starts with the choice of a redshift distribution
and galaxy density. We populated the mocks with ngal = 8.53 gal
arcmin−2, matching the effective galaxy density of KiDS. The raw
galaxy number density is almost double this value but the galaxies
are then weighted in any subsequent analysis. The effective galaxy
number density is the equivalent number density of galaxies with
unit weight that have the same noise properties as the weighted
analysis (see Section 3.5 of Kuijken et al. 2015, for further discus-
sion). We use the n(z) calibrated using the ‘DIR’ method of H17,
identified as the most accurate of the four different methods applied
on the KiDS-450 data. It is based on a reweighted spectroscopi-
cally matched sub-sample of the KiDS-450 data that covers 2 deg2,
for which we can measure both the photometric and spectroscopic
redshifts. Photometric redshifts in KiDS are estimated from the
maximum of the probability distribution obtained from the photo-z
code BPZ (Benı́tez 2000), referred to as ZB. In data and mock anal-
yses, this quantity is used to define tomographic bins, but does not
enter in the estimation of the n(z). We show in the upper panel of
Fig. 5 a comparison between the DIR n(z) and the ZB distributions
measured from these KiDS-450 mocks. Given a zspec, a photometric
redshift is assigned to each mock galaxy by drawing ZB from a joint
PDF, P(ZB|zspec), constructed from the reweighted matched sample
(see the lower panel of Fig. 5).

Although n(z), ngal, and P(ZB|zspec) are the same in the mock as in
the data, subtle effects inherent to the DIR method cause the level of
agreement to reduce after selections in ZB are made. Indeed, Table 3
shows that some of the tomographic bins in the KiDS-450 data have
more galaxies than in the mocks, and some less. This is caused by
sampling variance that affects the DIR method, covering only a
small area that might not be fully representative of the full data set.
The residual difference with full data set propagates into the mocks
and causes this mismatch in galaxy density. One way around this is
to construct mocks with higher densities and to downsample them
to match exactly the ngal from the data. For this reason, we produced
a second set of mocks, the KiDS-450-dense, in which the number
density was increased to 13.0 gal arcmin−2. After tomographic
decompositions, there are more galaxies in the mocks than in the
data in all bins; one can then downsample the mocks to match
exactly the ngal per tomographic bin. Another strategy is to produce
mock catalogues for each tomographic bin, matching the n(z) and
ngal therein. This is the approach we used for the LSST-like mocks,
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Figure 5. Upper: estimate of the source redshift distribution in the KiDS-
450 mocks, described in Section 3.1 and shown with the black line. This
reproduces the ‘DIR’ n(z) in Hildebrandt et al. (2017) and is included in
the mocks as the zspec column. The red line shows the ZB distribution in
the mocks, which is used to split the samples into tomographic bins. Lower:
joint PDF between ZB and zspec constructed from the matched sample. The
grey scale shows the number of objects per matrix element in log scale.

Table 3. KiDS-450 source mocks: comparison between ngal in the main
mocks, the dense mocks and the data, after splitting the catalogues in the
four tomographic bins with ZB (see Hildebrandt et al. 2017). Numbers are
in units of gal arcmin−2. Although there is some discrepancy in the number
density, these mocks exactly reproduce the DIR n(z) in each bin, and their
shape noise has been set to σ = 0.29 per component.

ZB cut Data Mocks
KiDS-450 KiDS-450 KiDS-450-dense

0.1–0.3 2.354 2.098 3.197
0.3–0.5 1.856 2.062 3.144
0.5–0.7 1.830 1.968 2.995
0.7–0.9 1.493 1.419 2.169
0.9–10 0.813 0.690 1.050

No cut 8.53 8.53 13.0

which are described in Appendix A1, but in this case the choice of
tomographic decomposition can no longer be changed.

Once galaxies are assigned their coordinates and spectroscopic
redshifts, we next compute the lensing information. The weak-
lensing shear components γ 1, 2 are linearly interpolated at the galaxy
coordinates and redshift from the shear planes described in Sec-
tion 2.2. Note that the interpolation is only done along the redshift
direction, not in the pixel direction. In other words, galaxies at the
same redshift falling within the same pixel are assigned the same
shear. This could easily be modified, but introduces a calculation
overhead and only affects the weak-lensing measurements at scales
below 0.2 arcmin, where limitations in the mass resolution dominate
the systematic effects in the mocks.
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In addition to the cosmological shear, the observed ellipticity is
included in the catalogue and is computed from:

εobs = εint + γ

1 + εintγ ∗ + η ≈ εn + γ

1 + εnγ ∗ (3)

where ε, η, and γ are complex numbers (i.e. γ = γ 1 + iγ 2). εint

is the intrinsic ellipticity of the galaxy which is sheared by γ .
The observed ellipticity εobs is also subject to measurement noise
η. For this mock, we choose to not distinguish between intrinsic
and measurement shape noise, and make an approximation by in-
cluding both the intrinsic and measurement shape noise into one
pre-sheared noisy ellipticity εn which is assigned by drawing ran-
dom numbers from a Gaussian distribution with width σ = 0.29
per component, consistent with the weighted observed ellipticity
distribution of the KiDS data. The Gaussian is truncated such that(
εint

1

)2 + (
εint

2

)2 ≤ 1. The resulting noisy shape distribution is un-
correlated with the properties of galaxies such as colour, measured
shape weights, galaxy type, size or brightness. This is of course a
simplification of the reality, but it is not believed to be important for
the primary goal of these simulations, plus it can easily be modified
if needed in the future. Table 4 summarizes the catalogue content
for these KiDS-450 source mocks.

The shear two-point correlation functions ξ± of the SLICS were
presented in HvW15 for the case where all galaxies are placed at
a single-source redshift. We show here the measurement from the
KiDS-450 mocks, which have instead a broad redshift distribution,
and have been split into the same tomographic bins as in the KiDS-
450 cosmic shear analysis. We applied cuts on ZB to create four
bins, with ZB ∈ [0.1–0.3], [0.3–0.5], [0.5–0.7], and [0.7–0.9], each
of which by construction has a redshift distribution that matches the
corresponding DIR-estimated n(z).

We compute the two-point correlation function between tomo-
graphic bins α and β with ATHENA (Schneider et al. 2002), esti-
mated from6:

ξ
αβ
± (ϑ) =

∑
i,j wiwj

[
ei

t e
j
t ± ei

×e
j
×
]

∑
i,j wiwj

, (4)

where the sum extends over all galaxy pairs ‘(i, j)’ separated by a
position angle in the range [ϑ ± �ϑ /2] on the simulated sky. The
bin width has uniform logarithmic intervals, with log10�ϑ = 0.1.
The quantities et, × are the tangential and cross components of the
ellipticities, while the weights wi capture the quality of the shape
measurement of the object i. For the rest of the paper, these weights
are all set to unity; however, it is possible to assign different values
based on other galaxy properties. Galaxies i and j are drawn from
redshift bins α and β, respectively.

The results are shown in Fig. 6 for all tomographic combina-
tions, and ignoring shape noise (i.e. εn is set to 0 in equation 3).
These measurements are compared to theoretical predictions ob-
tained from NICAEA (Kilbinger et al. 2009), a public numerical
package that rapidly computes accurate cosmological statistics.7

The input predictions for the matter power spectrum are computed
from the revised HALOFIT code (Takahashi et al. 2012). We recover
the results presented in HvW15, namely that the angular scales
larger than 1 arcmin in ξ+ are generally accurate to better than
5 per cent when forward modelling the finite-box effects; smaller
scales suffer from limits in particle mass resolution.

6ATHENA: www.cosmostat.org/software/athena/.
7NICAEA: www.cosmostat.org/software/nicaea/.

The covariance matrix of ξ±(ϑ) extracted from the SLICS was
also presented in HvW15 and in H17, and we refer the reader to
these two papers for more details. In short, the covariance matrix was
shown to reconnect with the Gaussian predictions at large angular
scales that are mostly sensitive to the linear regime of structure
formation, while significant non-Gaussian features are present at
smaller scales. The full covariance is in general agreement with
halo-model-based predictions.

3.2 Halo occupation distribution

As demonstrated by recent analyses from KiDS and DES, con-
straints on cosmological parameters are further improved when
cosmic shear measurements are supplemented with galaxy–galaxy
lensing measurements and clustering measurements extracted from
overlapping surveys (van Uitert et al. 2018; Joudaki et al. 2017;
DES Collaboration et al. 2017). These measurements, often re-
ferred to as 3 × 2-point combined probes, have a higher con-
straining power, provided that one can accurately estimate the co-
variance matrix of the full data vectors, including the cross-terms
(see Section 4).

In this section, we describe the construction of simulation
products that are designed to estimate such matrices, tailored
for combined-probe measurements based on the CMASS (see
Section 3.3), LOWZ (Section 3.4), and GAMA (Section 3.5) spec-
troscopic surveys. We aim to match observations of the foreground
lens clustering and of the galaxy–galaxy lensing signals involving
these three samples, and we achieve this by first producing mock
lens catalogues of similar redshift distributions, galaxy densities,
and galaxy biases.

We produce mock galaxy catalogues from HOD models, which
are statistical descriptions of the data that assign a galaxy population
to host dark matter haloes solely based on their mass. Every HOD
model is calibrated to reproduce key properties of the survey it at-
tempts to recreate. For the LOWZ and CMASS mock lenses, we use
the prescription of Alam et al. (2017b), with minor modifications to
the best-fitting parameters. The GAMA mocks are based on a hy-
brid technique that mixes the prescriptions of Cacciato et al. (2013)
and of Smith et al. (2017). For the KiDS-HOD mock (Section 3.6,
distinct from the KiDS-450 mocks described in Section 3.1) and
the LSST-like HOD mock (Section 3.7, distinct from the LSST-like
source mocks described in Appendix A1), we extend the GAMA
HOD to z = 1.5 and 3.0, respectively. All these different HOD pre-
scriptions share some common ingredients and methods, which we
describe here.

Based on its mass, each halo is assigned a mean number of
central galaxies, 〈Ncen〉, which varies from zero to one, and a mean
satellite number 〈Nsat〉. The sum of these two quantities gives the
mean number of galaxies per halo, and we ensure that haloes with
no centrals have no satellites. Central galaxies are pasted at the
location of the halo peak, while satellites are distributed following a
spherically symmetric NFW profile (Navarro, Frenk & White 1997).
This is not the most sophisticated method to populate satellites,
as we ignore possible relations between their positions and the
anisotropic shape of the dark matter halo, the merging history, etc.
Note also that we have not included any scatter in the c(M) relation
into our mocks. This is fine since our purposes here are to validate
estimators, to evaluate covariance matrices and to create a relatively
realistic environment that is well controlled on which to test analysis
pipelines. We therefore argue that our choice of satellite assignment
scheme does not introduce significant additional bias for the science
cases of interest. Even more, if we used a different profile, we would
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Table 4. Organization of the different mock source catalogues (KiDS-450 and LSST-like), lens catalogues (CMASS, LOWZ, and GAMA) and hybrid
catalogues (KiDS-HOD and LSST-like HOD) described and used in this paper. The difference between ‘ray-tracing’ and ‘clustering’ coordinates is explained
in Appendix C. Note that the order of the entries in this table and in the mocks may differ. Also, for each light-cone, the (x, y)ray-tracing positions cover
10 × 10 deg2 in flat sky coordinates, hence are best described by a square patch placed at the equator (Dec. = 0) where the difference with the curved sky
coordinates is minimal.

Content Units KiDS-450 CMASS GAMA KiDS-HOD Description
+LSST-like

sources + LOWZ + LSST-like HOD

Mh h−1 M� No Yes Yes Yes Halo mass
Halo ID No Yes Yes Yes ID of the host dark matter halo
Nsat No Yes Yes Yes number of satellites (central only)
dxsat No Yes Yes Yes
dysat No Yes Yes Yes
dzsat No Yes Yes Yes

}
h−1 kpc

}
Distances to the central galaxy (satellites only)

xray-tracing Yes Yes Yes Yes
yray-tracing Yes Yes Yes Yes
xclustering No Yes Yes Yes

}
arcmin

}
Coordinates for lensing

yclustering No Yes Yes Yes

}
Coordinates for clustering

zspec Yes Yes Yes Yes Cosmological redshift
zs

spec No Yes Yes Yes Observed spectroscopic redshift
ZB Yes No No Yes Photometric redshift

Mr No No Yes Yes Absolute r-band magnitude
mr No No Yes Yes Apparent r-band magnitude
M� h−2 M� No No Yes No Stellar mass

γ 1 Yes No No Yes
γ 2 Yes No No Yes

}
Cosmic shear

εobs
1 Yes No No Yes

εobs
2 Yes No No Yes

}
Observed ellipticity

Nsim 932 844 844 120 Number of independent realizations

1 10 1 10 1 10 1 10

-0.1
-0.05
0

-0.1
-0.05
0

-0.1
-0.05
0

-0.1
-0.05
0

10 100 10 100 10 100 10 100

-0.2
-0.1
0

-0.2
-0.1
0

-0.2
-0.1
0

-0.2
-0.1
0

Figure 6. Cosmic shear measured from all combinations of the four tomographic bins from the KiDS-450 mocks, ignoring shape noise. The y-axis shows
ξ̂±/ξ± − 1, the fractional difference between the measurements ξ̂+ (left) and ξ̂− (right) from the mocks and the predictions ξ±. The finite-box effect (solid red)
is present in the mocks and modelled in these predictions: we set the theoretical matter power spectrum to zero for k modes corresponding to scales larger than
the simulation box. Removing this effect results in the red dashed lines. The x-axis shows the opening angle ϑ in arcminutes. Error bars show the error on the
mean, here computed from 932 lines of sight to highlight the accuracy of the lensing signal extracted from these mocks. The tomographic bins are labelled on
the sub-panels, where for example the notation 1–2 refers to the cosmic shear signal measured between bins selected with ZB ∈ [0.1 − 0.3] and [0.3 − 0.5].

then run into an inconsistency problem because the HOD models
were calibrated on data assuming NFW profiles. We therefore leave
investigations of this type for future work.

A key ingredient that enters the profile is the concentration param-
eter c, which strongly correlates with the halo mass. Many models
exist for this c(M) relation, and we use the models that were used
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in the original HOD prescriptions that we are reproducing. Specifi-
cally, we use the Bullock et al. (2001) relation for the CMASS and
LOWZ HOD (as in Alam et al. 2017b), and the Macciò, Dutton &
van den Bosch (2008) relation for the GAMA HOD (as in Cacciato
et al. 2013). We further scale these relations by a free multiplicative
factor to improve the match of the clustering measurements with the
data. Note that it is challenging to construct an HOD model where
this match is achieved at all scales, while preserving the redshift
distribution and the galaxy density. Our final choice of parameters
reach a compromise between all these quantities.

Of interest for combined-probe programmes is the fact that these
foreground lens samples emulate spectroscopic data, for which we
can measure RSD. The RSD are based on the measurement of
the Doppler shift caused by the peculiar velocities of the galaxies,
which induces anisotropies in the observed large-scale structures in
a manner that can be related to the underlying cosmological param-
eters (see Hamilton 1998, for a review). This phenomenon therefore
contains additional cosmological information that nicely comple-
ments cosmic shear measurements, as recently seen in Joudaki et al.
(2017). We implement the effect of RSD in our mock data by assign-
ing a peculiar velocity (along the line of sight) to every galaxy. The
radial position in redshift space is therefore given by a distortion
term �χ acting on the line-of-sight coordinate:

χRSD = χ + �χ = χ + vpec

a(z)H (z)
, (5)

where vpec is the peculiar velocity of the galaxy, and H(z) is the
redshift-dependent expansion parameter. For central galaxies, vpec

is obtained directly from the centre-of-mass velocity of the host
halo (projected on the line of sight), while for the satellites, it is
drawn from a Gaussian distribution with mean set to the centre-
of-mass halo velocity, and with variance given by the line-of-sight
component of the velocity dispersion, provided by our halo-finder.
The redshift-space position χRSD is finally converted to redshift
assuming our fiducial cosmology, and written in the catalogue as
zs

spec. We do not use this quantity elsewhere in this paper, but make
it available in the catalogues for applications based on RSD.

The following sections (Sections 3.3–3.7) contain the description
of the HOD models tailored for the different mock spectroscopic
surveys.

3.3 Mock CMASS lens galaxies

The CMASS HOD prescription is largely inspired by Alam et al.
(2017b, equation 18 therein), with some adjustments made to im-
prove the match between our mocks and the data.8 We approximate
CMASS as a volume-limited sample and construct a volume-limited
mock catalogue, avoiding the need to compute luminosity or stellar-
mass-related quantities. This means that the residual magnitude-
related features seen at high redshift cannot be implemented with a
magnitude cut from our mocks. To reproduce the decreasing num-
ber of high-redshift galaxies, we downsample the high-redshift tail
of the mock catalogues, as detailed below. Additionally, there are
noticeable differences between the target selection of the BOSS data
in the north and south Galactic cap (Reid et al. 2016), therefore we
calibrate our CMASS and LOWZ HODs on the northern patches,

8We have also experimented with the implementation from Manera et al.
(2013), an HOD calibrated on the DR10 BOSS data release. This other
calibration prefers higher number densities, but the resulting clustering am-
plitude is too low compared to the DR12 data, hence we adopted the Alam
et al. (2017b) HOD model.

Table 5. HOD parameters in the CMASS and LOWZ mocks, described
by equations (6) and (7). The parameters Mcut and M1 are both in units of
h−1 M�.

Mcut σ M1 κ α

CMASS 1.77 × 1013 0.897 1.51 × 1014 0.137 1.151
LOWZ 1.95 × 1013 0.5509 1.51 × 1014 0.137 1.551

which cover a larger area. Hereafter, when referring to CMASS
and LOWZ data/area, we are using short notation for the ‘CMASS-
NGC’ and ‘LOWZ-NGC’ sub-samples of the DR12 public data
release.9

As a first step, we assign central and satellite galaxies to dark
matter haloes over a broad redshift range, and find in a second
step the selection in the mocks that best reproduces the density and
mean n(z) of the CMASS data. For dark matter haloes of mass Mh,
the average number of central galaxies 〈Ncen(Mh)〉 varies from one
for massive haloes, to zero for light haloes. The full occupation
distribution is well described by (Alam et al. 2017b):

〈Ncen(Mh)〉 = 1

2
erfc

[
ln(Mcut/Mh)

2σ

]
, (6)

where erfc(x) is the complementary error function, Mcut controls the
minimal halo mass that can host a central galaxy, and σ introduces
a spread about this minimal mass. The average number of satellite
galaxies 〈Nsat(Mh)〉 follows a power law, assigning more satellites
to more massive systems:

〈Nsat(Mh)〉 = 〈Ncen(Mh)〉
[

Mh − κMcut

M1

]α

. (7)

Here, M1 corresponds to the average mass a halo must have to host
a single satellite, κ affects the minimal mass below which a halo
has no satellite, and α is the slope of the number of satellites as
a function of halo mass. The values of the HOD parameters are
taken from Alam et al. (2017b) and reported in Table 5. Once com-
puted, 〈Ncen(Mh)〉 and 〈Nsat(Mh)〉 are used as the means of Poisson
distributions, from which we finally sample the actual number of
objects.

The mass function of the mock CMASS galaxies is presented in
the upper panel of Fig. 7, where we see that the HOD preferentially
selects haloes in the range Mh ∈ [1012 − 1015]h-1M�, in accordance
with the survey target selection strategy (Reid et al. 2016). The
number of satellite galaxies for haloes of different masses is shown
in the lower panel of Fig. 7. The dashed blue line shows the input
HOD model (equation 7), while the points show the measurement
from one of the mock CMASS catalogues.

The redshift distribution of the CMASS mocks is shown in the
leftmost panel of Fig. 8, and compared with the distribution of
the CMASS data. After selecting the redshift range [0.43–0.7],
this public catalogue consists of about 579 000 galaxies, with an
effective area of 6851 deg2. Note that the n(z) shown here does
not include the weights applied to the CMASS data, which only
induce minor modifications to this histogram (see Reid et al. 2016,
for more details about the data and the weights).

We next implement in our volume-limited mocks the residual
incompleteness seen in the data at high redshift. We first select all
simulated CMASS galaxies in the range 0.43 < zspec < 0.7, then ran-
domly suppress a third of the galaxies in the range 0.6 < zspec < 0.7.
The resulting n(z) is not a perfect match to the data, however we

9BOSS-DR12: https://data.sdss.org/sas/dr12/boss/lss/.
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Figure 7. Upper: galaxy mass function in the GAMA, CMASS, and LOWZ
mocks, compared to the halo mass function of the mocks at z = 0.4 (dashed
blue). Also shown is the GAMA mass function before the mr < 19.8 mag
selection cut, labelled ‘ALL’ here, as it closely traces the underlying halo
mass function. Lower: number of satellites per haloes in the GAMA (black
squares), CMASS (blue circles), and LOWZ (red triangles) mocks, com-
pared to their input HODs.

achieve a 2 per cent agreement of the mean redshifts, with 〈z〉 =∑
n(z) z dz = 0.547 in the data and 0.557 in the mocks. The num-

ber densities match to within 2 per cent, with ngal = 0.0225 gal
arcmin−2 in the CMASS mocks and 0.0230 gal arcmin−2 in the
data.

3.3.1 Clustering of the CMASS mocks

We assess the accuracy of the mock lens catalogues by comparing
the angular correlation function w(ϑ), described by equation (2),
to measurements from the data and to predictions from COSMO-
SIS. Both data and mocks are obtained from TREECORR. For the
data measurement, we use random catalogues that are 50 times
denser, and include the optimal ‘FKP’ weights (Feldman, Kaiser
& Peacock 1994) for both the D and R catalogues, and ‘system-
atic’ weights in the D only (see Reid et al. 2016, for more details
on these weights). As discussed therein, one cannot measure w(ϑ)
below the fibre collisions radius of 62 arcsec. We computed w(ϑ)
in the mocks without any weights, using a set of random cata-
logues tailored for these simulations and described in Section 3.9.
The results are presented in Fig. 9, showing that the amplitude
of w(ϑ) is about 10–20 per cent lower in the mocks than in the
data in the range 2.0 < ϑ < 60.0 arcmin, just under the 1σ er-
ror. Scaling up the COSMOSIS b = 1.0 predictions by a free linear
bias parameter, we find that our CMASS mocks have a bias of
bCMASS = 2.05.

At the sub-arcminute scale, the non-linear bias in the mocks be-
comes important, as shown from the rising clustering amplitude
in Fig. 9. This should have no impact on current analyses since
these scales must be excluded from the data due to fibre colli-
sions. One could imagine, however, to extrapolate the data signal
in this region and infer new conclusions about the CMASS galax-

ies based on our mocks, however we strongly advise against this.
The reason is that the HOD and NFW parameters have been op-
timized to match the clustering only over these measured angles,
and that the mocks could potentially be very wrong at smaller
scales. At large angles, the clustering amplitude in the mocks is
again affected by finite-box effects. The dashed black lines in
the upper and middle panels of Fig. 9 show predictions exclud-
ing these super-survey modes, and the effect is relatively well
modelled. This, along with other known issues, is summarized in
Section 3.10.

We next compare the sampling variance measured from the
mocks to the JK estimation technique. Given a data vector Xj =
{X1, X2, . . . , Xi} measured Nsim times from the mocks (j = 1, 2,
. . . , Nsim), the covariance between the data elements X1 and X2 is
obtained from:

Cov(X1, X2) = 1

Nsim − 1

Nsim∑
j=1

(
X

j

1 − X1

)(
X

j

2 − X2

)
. (8)

The overbar denotes the average over the sample and the variance
is simply given by the diagonal of the matrix. The JK covariance
matrix is obtained by splitting the CMASS galaxies in 158 sub-
volumes, resampling the data 158 times removing one of the sub-
volumes at every iteration, and computing the covariance between
these JK samples. The mock covariance has been multiplied by
(100/6851) in order to area-rescale the results and thereby estimate
the covariance of a CMASS area survey.

We show in the lower panel of Fig. 9 the noise-to-signal ratio, for
both the mocks and the data. The two estimates converge to within
20 per cent below 10 arcmin, although the JK estimate is signifi-
cantly higher than the mock estimate at larger angles. This result
is consistent with previous findings (Norberg et al. 2009; Blake
et al. 2016b, who further compare mock errors with JK estimates in
clustering measurements of the RCSLenS, WiggleZ, and CMASS
data). The large cusp at ϑ ∼ 150 arcmin is caused by the signal
crossing zero.

3.4 Mock LOWZ lens galaxies

We construct a suite of LOWZ mock galaxy catalogues that is meant
to reproduce the clustering, density, and redshift distribution of the
BOSS DR12 LOWZ data. The HOD follows the same prescription
as the CMASS mocks (i.e. Section 3.3, with equations 6 and 7),
but with parameter values now given by the second row in Table 5.
The mass function dN/dlogMh and satellite function 〈Nsat(Mh)〉 are
presented in Fig. 7. They generally follow the CMASS mocks, but
with noticeable differences at the high-mass end.

The redshift distribution in the mocks is selected in the same
range as the data, requiring z ∈ [0.15 − 0.43] (see the central
panel in Fig. 8). After this selection, we are left with a sample of
255 387 LOWZ galaxies from the BOSS NGC region, spread over
an effective area of 5836 deg2. The mean values of the distributions
are in good agreement, with 〈z〉 = 0.31 in the data and 0.32 in the
mocks, a 3 per cent difference. The effective number density of
galaxies in the mocks is ngal = 0.012galarcmin−2, which is within
2 per cent agreement of the data.

3.4.1 Clustering of the LOWZ mocks

Our measurement of the angular correlation function from the
LOWZ mocks is presented in Fig. 10 and compared against data
and predictions assuming our best-fitting galaxy bias of bLOWZ =
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Figure 8. Redshift distribution of the CMASS (left), LOWZ (centre), and GAMA (right) mock galaxies, for satellites (blue), centrals (red), and all combined
(black). Solid lines are obtained from the data. Although the shape of the distributions differ between data and mocks, the mean redshifts and number densities
are in good agreement, as discussed in the main text.

Figure 9. Upper: angular correlation function of the CMASS mocks (red
squares), compared to the CMASS-NGC data (blue triangles). The mocks
are averaged from 100 lines of sights, the error bars are on the mean; the
error on the data comes from JK resampling. The predictions shown in solid
black assume the SLICS cosmology and the best-fitting bias of bCMASS =
2.05. The dashed black line illustrate the impact on theory of excluding the k
modes larger than the simulation box. Middle: fractional difference between
the measurements and the predictions. The clustering signal in the mocks is
about 10 per cent lower than in the data. Lower: error over signal, for the
mock and the JK estimates of the covariance.

1.9. The measurement strategies for mock and data are identical
to those used for CMASS (see Section 3.3). We observe that the
model agrees well with the mocks and the data for ϑ > 3 arcmin,
and the amplitude of the clustering is about 10 per cent larger in
the data than in the mocks. The non-linear bias behaves differently
in the mocks than in the data at smaller scales, such that there is a
10–20 per cent excess in clustering in the former. A similar effect
was also observed in the CMASS mocks but for ϑ < 1 arcmin
(see Fig. 9), and we note here again that these small angular scales
are not well fitted by the HOD model and should therefore not be
overinterpreted. At the largest scales, the finite-box effect is visible
and well captured by our modelling that excludes the super-box k
modes.

As for the CMASS mocks, we see that the (area-rescaled) error
estimated from the LOWZ mocks reconnects with the JK estimate

100 101 102

10-2

100

Mocks
LOWZ

100 101 102
-1

-0.5

0

0.5

1

Theory, b=1.9
k-cut

100 101 102

10-1

100 Mocks
JK

Figure 10. Same as Fig. 9, but for the LOWZ mocks, LOWZ-NGP data
and predictions. The bias in the mocks is comparable to that in the data, with
bLOWZ = 1.9.

for ϑ < 10 arcmin, and that the latter exceeds the former at larger
angular separations.

3.5 Mock GAMA lens galaxies

The KiDS overlaps with the GAMA survey (Liske et al. 2015), a
spectroscopic survey designed to resolve galaxy groups with un-
precedented completeness. With mean redshift of about z = 0.23,
GAMA probes lower redshifts compared to BOSS, and has been
used in combination with KiDS in a number of galaxy–galaxy lens-
ing analyses that measure halo properties (see Viola et al. 2015;
Sifón et al. 2015; van Uitert et al. 2016), scaling relations in groups
(Jakobs et al. 2017) or combined-probe cosmological analysis (van
Uitert et al. 2018). Of particular interest, the GAMA galaxies are
marked as satellites, centrals of field galaxies in a group catalogue
(Robotham et al. 2011), which enables astrophysical investigations
based on these properties. The additional complication in mod-
elling mock catalogues here is that GAMA is a magnitude-limited
survey, which means that in order to match the redshift and cluster-
ing of the spectroscopic data, we must first reproduce its apparent
magnitude. This also means that the volume-limited CMASS and
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LOWZ HODs that we used in the last sections are not suitable
here.

The GAMA HOD prescription follows the model of Smith et al.
(2017), which is based on a conditional luminosity function (CLF).
In this approach, the mean numbers of satellites and centrals depend
on the mass of the host halo and on the luminosity range, which in
absolute magnitude we set to [−26.7 < Mr <−18.0]. The number of
central galaxies is obtained by integrating the central CLF over that
luminosity range. Given a halo mass Mh and minimum luminosity
threshold Lmin, the number of central and satellite galaxies are given
by equations (6) and (7), provided that we include a luminosity
dependence in the following quantities10 :

Ncen(Mh) → Ncen(>Lmin|Mh)

Mcut → Mcut(Lmin)

σ → σ (Lmin) (9)

and

Nsat(Mh) → Nsat(>Lmin|Mh)

M1 → M1(Lmin)

κ → κ(Lmin)

α → α(Lmin) (10)

Therefore, most of the GAMA HOD parameters depend on the
host halo mass, on the redshift and on the luminosity limit of the
mock survey. To ease the reading, we report the calculation of
these dependencies in Appendix B, and skip ahead to describe how
the luminosity is assigned in the first place. The luminosity–mass
relation of the central galaxies is constructed from a mean function
〈Lcen(Mh, z)〉 that is then multiplied in log10-space by a scatter
function implemented from a Gaussian with σ = 0.314. This scatter
has been chosen such as to introduce stochasticity in the luminosity–
mass relation that closely matches the spread in luminosity of the
GAMA data. We use the modelling and parameter values of Smith
et al. (2017) for the mean luminosity–mass function, taken from
Zehavi et al. (2011):

〈Lcen(Mh, z)〉 = L�

[
At(Mh/Mt)

αM exp

(−Mt

Mh
+ 1.0

)]
× 100.4Q(z−0.1). (11)

It behaves as a power law with index αM = 0.264 at the high-
mass end, that is exponentially suppressed at the low-mass end.
The transition occurs around Mt = 3.08 × 1011 h−1 M�, and is
modulated by an amplitude parameter At = 0.32 in units of
L� = 1.20 × 1010 h−2 L�. The redshift evolution is captured by
the parameter Q = 0.7, which can be turned off by setting Q = 0.

The CLF-based HOD described above provides a luminosity–
mass relation and a number of satellites as a function of a luminosity
range. The luminosity–mass relation is used to assign luminosity
to the central galaxies, but this relation does not apply to the satel-
lites, hence we need a different approach. We first split the wide
[−26.7 < Mr < −18.0] absolute magnitude range into 30 finer bins,
then use the CLF (equation 7) to compute the number of satellites
per fine bin:

〈Nbin
sat 〉 = 〈Nsat(>Lmax|Mh)〉 − 〈Nsat(>Lmin|Mh)〉, (12)

10Note that the HOD parameters in equations (6) and (7) are named differ-
ently in the papers where they are first introduced. There is nevertheless a
one-to-one correspondence between our notation (Mcut, σ , M1, κ , α) and
that used in Smith et al. (2017): (Mmin, σlogM, M0,M

′
1, α).

Figure 11. Apparent and absolute r-band magnitudes of the GAMA mocks,
compared to the data. There are missing faint objects in the mocks, as seen
in the right-hand part of these two panels.

where Lmin and Lmax are the fine bin boundaries. These detected
satellite objects are then written to the catalogue, and their lumi-
nosities are randomly drawn from the luminosity range of the fine
bin under study. At this stage, every object has been assigned a
luminosity, which we then convert into absolute and apparent mag-
nitudes (the apparent magnitudes have been K-corrected11 in the
data and in the mocks to z = 0.1, see details in Appendix B). The
GAMA mock data are then selected with z < 0.5 and mr < 19.8.

In this section and the next, these GAMA mocks are compared
with the DR3 release12 of the GAMA data (Baldry et al. 2018),
for which the central/satellite status and stellar mass assignments
have been estimated (Robotham et al. 2011; Taylor et al. 2011).
Note that the distinction between centrals and satellites is not as
accurate in the data as in the mocks; GAMA data assign three
classes of galaxies: centrals, satellites, and ‘other’, of which the
last is interpreted as a field galaxy, or a central with no observed
satellites. Apparent and absolute magnitudes are extracted from
the ‘Rpetro’ and ‘absmag r’ catalogue entries respectively,
and the same z < 0.5 and mr < 19.8 cuts are applied here as
well.

The r-band magnitude distributions from the mocks and from the
data are both plotted in Fig. 11, showing a good overall agreement,
even though the details are not exactly reproduced. For instance,
there is an excess of faint centrals in the mocks (blue line and
symbols), but a deficit of faint satellites (green), and these do not
perfectly cancel out, as the deficit is also seen in the combined
sample (black). Nevertheless, this disagreement only has a minor
impact on the covariance estimates. The galaxy mass function and

11The K-correction that is discussed here enters in the conversion between
absolute and apparent magnitude. It is not to be confused with the k-mode
correction mentioned previously, which has to do with missing Fourier
modes in a finite volume simulation box.
12GAMA:www.gama-survey.org.
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Figure 12. Upper: angular correlation function of the GAMA mocks, com-
pared to the measurement presented in van Uitert et al. (2018). Data and
mocks are split in two redshift bins, F1 (z < 0.2) and F2 (z > 0.2), shown in
blue and magenta, respectively. The F1 data, mocks, and theory lines have
been multiplied by 10 for improved readability. The mocks are averaged
from 100 lines of sight, the error bars are on the mean. Predictions assume
a constant galaxy bias of bGAMA = 1.2, which match well the mocks but is
10 per cent higher than the data. Lower: fractional difference with respect
to the theoretical predictions.

HOD prescription are presented in Fig. 7, where we see that GAMA
galaxies can be hosted by dark matter haloes down to 1011 M�/h,
explaining the higher number density relative to BOSS galaxies.
The resulting n(z) is shown in the right-hand panel of Fig. 8, where
the mean redshift of the GAMA data (〈z〉 = 0.227) and mocks (〈z〉 =
0.253) differ by 0.025, or 11 per cent. The number densities match
to better than 6 per cent, with ngal = 0.244 (0.260) gal arcmin−2 in
the mocks (data).

3.5.1 Clustering of the GAMA mocks

The clustering in the GAMA mocks is presented in Fig. 12, which
shows results for all mock galaxies in black, and for two subsets:
F1 selects the z < 0.2 objects shown with downward-pointing trian-
gles, while F2 selects 0.2 < z < 0.5, shown with upward-pointing
triangles. These are compared to predictions (in black) and to the
measurements from van Uitert et al. (2018, in blue and magenta).
The clustering measurements in the mocks are generally 20 per cent
higher than those from the data (bias is 10 per cent higher). We note
some deviations from the theory at large scales in the F1 mock data,
where the clustering from the mocks overshoots the model by up
to 20 per cent at ϑ = 20 arcmin. Scaling the predictions by a free
amplitude parameter, we conclude that our mock GAMA sample
has a galaxy bias of bGAMA = 1.2. Interestingly, the non-linear bias
seen at small scales in the mocks is similar to that observed in the
data. The area of the GAMA survey is too small to allow for JK
resampling, hence we do not show a comparison between the mocks
and the JK error estimates.

3.5.2 Stellar mass in the GAMA mocks

We show in this section how each GAMA galaxy is assigned a
stellar mass, thereby opening the possibility of further expanding
the data vector in combined-probe analyses. The central galaxies
are assigned a stellar mass based on the conditional stellar mass
function described in van Uitert et al. (2016) and Dvornik et al.
(2018), with its parameters derived directly from fitting the model

9 9.5 10 10.5 11 11.5 12
10-8

10-6

10-4

10-2

Data
Mocks

Figure 13. Stellar mass function (SMF) observed in the GAMA survey
(blue), compared to that in the GAMA mocks (red). Error bars are the 1σ

scatter, scaled to the survey area. In both data and mocks, we applied a
cut on redshift, requiring 0.01 < zspec < 0.15. The SMF from the mocks
significantly undershoots the data below 109.5h−2 M�.

to the GAMA data (van Uitert et al. 2016). The stellar masses
for the satellites are assigned with a different method, due to the
difficulty in dealing with the sparsity at the low-mass end of the
conditional stellar mass function. Instead, we take advantage of the
linear relation between the absolute r-band magnitude and mean
stellar mass 〈M sat

� 〉, which for the GAMA satellites in the data can
be well fitted by:

log10(〈M sat
� 〉/h−2M�) = −0.47Mr + 0.56. (13)

To this linear relation, a magnitude-dependent scatter is added to
obtain the satellite stellar mass, with:

M sat
� = 〈M sat

� 〉 + σMsat
�

. (14)

The scatter σMsat
�

is extracted from the data and increases mono-
tonically as the luminosity becomes fainter. The typical scatter of
log10(M sat

� ) at the low Mr end (Mr � −19) is constant at ∼0.25, but
narrows to 0.14 at the brighter end (Mr ∼ −22), where the data start
to become sparse.

We note that for the purpose of generating mock covariance esti-
mates involving galaxy–galaxy lensing in stellar mass bins, assign-
ing the correct stellar mass to the centrals is more important than
for the satellites. This is because (1) the centrals tend to be more
massive, dominating the signal at the high-mass end, (2) centrals
in the mocks are directly correlated to the halo centre, hence to the
peak of the lensing signal, and (3) there are far fewer satellites than
centrals in the data and in the mocks. We also note that the mock
satellites are not correlated to any sub-halo mass concentrations,
yielding less lensing signal than would be expected in true data at
the small scales (i.e. within a halo). Instead, the lensing signal from
mock satellites is on average close to the expected signal at large
separations.

The combined centrals+satellites stellar mass function is shown
in Fig. 13, for galaxies with 0.01 < zspec < 0.15. This redshift
cut is imposed in order to construct a volume-limited sample from
the GAMA data, which is necessary for the stellar mass/absolute
magnitude relation to stay linear (van Uitert et al. 2016). We see
a deficiency in the overall galaxy counts in the mock, which only
comes from the difference in number densities at low redshifts (see
central right panel in Fig. 8). These mass function data points are
nearly fully covariant, and since the mock agrees with the data
within a little over 1σ , we can expect the error bars derived from
the mocks to be representative of the true covariance. We also see
that the mock galaxy counts start to drop significantly relative to
the true GAMA counts at stellar masses lower than 109.5h−2M�.
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1352 J. Harnois-Déraps et al.

Therefore, we recommend that the covariance estimate from the
GAMA mocks should be limited to stellar masses above this value.

3.6 KiDS-HOD mocks

We describe in this section a distinct simulation product in which
galaxies are assigned via an HOD up to zspec = 2.0, each con-
taining spectroscopic and photometric redshifts, as well as lensing
information. These galaxies can therefore be used both as sources
and lenses, which can help to explore systematics effects related
to weak lensing in a realistic environment. Given the large size of
these catalogues and their specific application, we generated these
mocks only for a subset of the full SLICS, providing 120 lines of
sight.

These catalogues are a straightforward extension of the GAMA
HOD model, which is representative of the KiDS data for apparent
r-band magnitudes down to 19.8 and z < 0.5 by construction, and
provides empirically motivated mock catalogues at fainter magni-
tudes and higher redshifts. Photometric redshift estimates ZB are
based on the joint PDF presented in Fig. 5 and the lensing quan-
tities γ 1, 2 and εobs

1,2 are computed from the shear maps, the latter
assuming εn = 0.29 per component.

Important features of these HOD galaxies relevant for weak-
lensing measurements are:

(i) the spectroscopic n(z) and number density naturally emerge
from the HOD,

(ii) all objects are clustered in a realistic manner,
(iii) the CLF-based calculation allows for selection strategies

based on apparent or absolute magnitude,
(iv) by construction, the different light-cones have different num-

bers of haloes, hence different numbers of galaxies.

This mock can be used, for example, to validate redshift recovery
methods based on cross-correlations (Morrison et al. 2016; Davis
et al. 2017), to verify the residual impact of source–lens coupling
(Forero-Romero et al. 2007), or to study detailed selection effects
caused by close neighbours (see Section 5).

The construction of the KiDS-HOD mocks starts with the same
steps as the GAMA mocks (same HOD parameters, same luminos-
ity function, see Section 3.5). Instead of applying a K-correction
followed by a redshift and magnitude cut however, we match the
KiDS-450 DIR redshift distribution (assuming a cut in photometric
redshift of ZB ∈ [0.1 − 0.9]) by downsampling the volume-limited
mock catalogue. In particular, we want to preserve the shape of the
n(z) for z < 0.4, but at the same time we need to suppress higher
redshift galaxies in a manner that reproduces the tail seen in the
data. After exploring a few different methods, we find a good match
by filtering the galaxy sample with a downsampling function f(zspec)
defined as:

f (zspec) =
{

0.95
17.0(zspec−0.4)4+1.0

for zspec > 0.4

0.95 for zspec < 0.4
(15)

In other words, we randomly select a fraction f(zspec) of all galaxies
with spectroscopic redshift zspec. This empirical function suppresses
the high-redshift objects by the right amount up to zspec = 2.0.
The resulting n(z) is shown in the upper panel of Fig. 14, which
highlights the match between the KiDS mocks and the KiDS-450
data. The mean redshift in the mocks is 〈z〉 = 0.69, whereas it is
4 per cent higher in the data with ZB ∈ [0.1 − 0.9]. The number
density is ngal = 7.55 gal arcmin−2 in the mocks and matches
the data to better than a percent, where ngal = 7.53 gal arcmin−2.

Figure 14. Redshift distributions of the KiDS-HOD (upper) and LSST-like
HOD (lower) mock catalogues, both based on the GAMA HOD prescription
described in Section 3.5. The solid black line in the upper panel is from the
KiDS DIR estimate of the distribution after requiring 0.1 < ZB < 0.9; in
the lower panel, we show the forecast by Chang et al. (2013). The sawtooth
distributions are caused by the multiple-plane tiling algorithm that introduces
step functions in the comoving volume as a function of redshift. This occurs
at every boundary redshifts listed as zs in Table 2.

Alternatively, we could have downsampled the mocks to match the
KiDS DIR n(z) bin-by-bin, however this distribution is relatively
noisy, and we opted instead for a strategy that did not introduce
more features.

We measure the clustering w(ϑ) from these mocks, shown in
Fig. 15, where we compare the results to a theoretical calculation
with the same n(z) and scale by a free linear bias parameter. We see
that the mocks and predictions agree over a range of scales, from
which we deduce that the bias in our mock data is bKiDS = 1.18.
Departure from the linear bias model apparent for ϑ < 2.0 arcmin,
and significant for ϑ < 0.2 arcmin.

Since the number density of galaxies fluctuates between lines of
sights, the distributions of the sources and of the lenses would both
contribute to the covariance in a weak-lensing measurement. This
would introduce an additional variance compared to a suite of mock
catalogues all constructed with a fixed n(z), such as the KiDS-450
source catalogue presented in Section 3.1. Depending on the error
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Figure 15. Upper: angular correlation function of the KiDS-HOD mocks
compared to the predictions, assuming a galaxy bias of bKiDS = 1.18. The
mocks are averaged from 100 lines of sight, their error bars are on the mean.
This measurement has not yet been carried out in the KiDS-450 data. Lower:
fractional difference with respect to the predictions.

analysis strategy, this additional variance might already have been
included elsewhere, such that there is a risk of double counting that
component to the uncertainty. This is why we advocate against using
these KiDS-HOD mocks for cosmic shear covariance estimation.

We also want to stress that there is no guarantee that the (low-
redshift) GAMA luminosity function is accurate once extrapolated
to higher redshifts. This could have an impact on some science
applications, but not if the requirements on the mocks are only to be
realistic and representative, such as for the study of the neighbour-
exclusion bias (see Section 5).

3.7 LSST-like HOD mocks

Although the KiDS-HOD mock presented in the previous section
is designed to emulate current weak-lensing surveys, its galaxy
number density is lower than the forecasted values of future surveys.
Following the same procedure, we describe here a separate mock
that can be used for upcoming experiments: we extend the GAMA
HOD up to z = 3 and produce an LSST-like mock13 with the
redshift distribution presented in the lower panel of Fig. 14. This
corresponds to a magnitude-limited survey with a cut at mr = 26.8,
and has a number density of ngal = 25.8 gal arcmin−2.

We observe that the redshift distribution is shifted to higher red-
shifts compared to the Chang et al. (2013) forecast, due to the
difficulty to produce as many low-redshift galaxies as required by
the forecasted n(z). This would require the SLICS to resolve lower
mass haloes, or the HOD to populate each halo with more satellites,
or even to include these missing objects as ‘field galaxies’, placed
at random in the light-cones. It is not clear which of the above-
mentioned methods would provide the most realistic mock data,
hence we decided to simply extrapolate the GAMA HOD to larger
redshifts and find the apparent magnitude cut that best reproduces
the object density, at the cost of biasing the mean redshift towards
higher values. Overlooking this difference, these LSST-like mocks
are representative of what future lensing data might look like, and
can be used to test different aspects of the weak-lensing analyses

13Note that this mock product differs from the other LSST mock presented
in Appendix A1, in which the n(z) is imposed and galaxy positions are
placed at random in the light-cones.

that require an HOD backbone construction (source–lens coupling,
close neighbours studies, etc.). In particular, we use them in our
analysis of the neighbour-exclusion bias in Section 5.

3.8 Preparing mocks for other surveys

HOD prescriptions similar to those presented in the preceding sec-
tions can be used in conjunction with the halo catalogues to generate
mock galaxy catalogues that emulate other surveys. This task can
be made easier when the data selection strategy resembles that of
a surveys for which mocks are already available. For example, the
galaxy selection of the 2-degree Field Lensing Survey LRG sample
(Blake et al. 2016a, 2dFLenS) is very close to the BOSS CMASS
and LOWZ targets, with the main difference being a lower redshift
completeness (Blake et al. 2016a). We hence do not need to con-
struct a separate 2dFLenS mock sample, as it is possible to match
the density of the data simply by randomly downsampling the BOSS
mocks by 50 per cent. This approach has been used in Blake et al.
(2016a) and Amon et al. (2018a).

Our HOD method could be used to construct mock data that
resemble the DES lens sample (the redMaGiC sample, see Rozo
et al. 2016), the WiggleZ spectroscopic galaxy sample (Drinkwater
et al. 2018) or upcoming data from LSST14 or DESI15, as they
become available.

3.9 Random catalogues

When measuring clustering in configuration space (with i.e. the
Landy–Szalay estimator described in equation 2), a ‘random’ cat-
alogue must be provided. Extra care must be taken to ensure that
the random catalogue reproduces the n(z) and the 2D geometry of
the data (or mocks), otherwise the estimator is no longer unbiased,
and can contain significant systematic features. The density of the
randoms is typically increased compared to the data, while the mask
and survey boundaries are preserved. It has become common for
public releases of clustering data to also provide a set of random
catalogues tailored for the survey, and we describe in this section
how we construct a similar set of randoms to be used with our
simulated data products.

This is not as straightforward as it seems, owing to the fact
that the SLICS simulations are produced from the multiple plane
approximation (see Section 2.2). The 3D volume that ends up in
the light-cone is not a cone or a pyramid, but a sequence of steps.
It is essential that the randoms follow this 3D selection function
inherent in the mocks. Also, since the randoms must be tailored to
the mock data for which we wish to measure w(ϑ), they follow the
n(z) from the mock surveys (and not the n(z) from the data).

We populate the randoms with 10 times the density of the mock
data, and distribute the galaxies randomly within the pixels of
the 100 deg2 light-cone (what we call the ‘ray-tracing’ coordinate
frame). We finally transform these positions into ‘clustering coor-
dinates’, a procedure that imparts the 3D geometry of the SLICS
light-cones (see Appendix C for details on these two coordinate
frames). We produce randoms for the CMASS, LOWZ, GAMA,
and KiDS-HOD mocks, as well as for the z = 0.2 halo sample
used in Fig. 4. These catalogues contain three quantities per object:
(xclustering, yclustering, zspec), and are used in all w(ϑ) measurements
presented in this paper.

14LSST: https://www.lsst.org.
15DESI: desi.lbl.gov.
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3.9.1 Data products: galaxy catalogues

We provide the following galaxy catalogues:

(i) KiDS-450 and KiDS-450-dense source galaxies, whose posi-
tions are placed at random in the light-cone (see Section 3.1);

(ii) LSST-like source galaxies, whose positions are placed at ran-
dom in the light-cone (see Appendix A1);

(iii) CMASS, LOWZ, and GAMA spectroscopic lens galaxies,
whose positions emerge from the HODs (see Sections 3.3–3.5);

(iv) KiDS-HOD and LSST-like HOD galaxies, whose positions
emerge from the HODs (see Sections 3.6–3.7).

(v) Random catalogues for clustering measurements with the
CMASS, LOWZ, GAMA, and KiDS-HOD catalogues.

Additionally, we provide mock KiDS-450 observations cover-
ing the full mosaics, with mock galaxies placed at the exact same
location as in the data. This additional mock is meant to be used
primarily for peak statistics (as in Martinet et al. 2017) or other
measurements sensitive to variations in source number density, and
is described in Appendix A3.

3.10 Summary of known limitations

Numerical simulations, including all those listed in Table 1, always
have built-in limitations that must be documented and acknowl-
edged, especially when choosing the regime where the mocks are
accurate and suitable for their science case. It is sometimes possible
to forward model these limitations in a comparison between mock
measurements and predictions, as for the case of mass resolution or
finite-box effect. When this is possible, the observed mismatches are
significantly reduced and can be ignored, especially when using the
mocks for the calibration of estimators. However, fully accounting
for these systematic effects is generally less obvious, for example
for the estimation of covariance matrices, as discussed in HvW15.
It is advisable then to exclude the elements of the data vectors for
which the contamination level is important.

We list in this section all the known limitations from the SLICS
mock catalogues that might or might not affect the analyses they are
used for. These were previously discussed in the main text, and we
strongly recommend that the users carefully read them in order to
make precise statements about their measurements from the SLICS
simulations.

(i) There are no neutrino nor baryon feedback mechanisms: these
mocks emulate a post-recombination universe in which all matter
behaves as collisionless dark matter, with the imprint from the
baryonic acoustic oscillations.

(ii) The particle mass resolution is 2.88 × 109 h−1 M�, and
haloes made of less than 100 particles are not fully resolved. This
incompleteness is visible from the halo mass function, in Fig. 2, and
could be inconsistent with some data samples that have a significant
fraction of these low-mass haloes.

(iii) Finite resolution affects small angles (i.e. ϑ � 1 arcmin in
ξ+ at z ∼ 0.5, and ϑ � 5 arcmin in ξ−). For the w(ϑ) measurement,
this effect is degenerate with the non-linear halo bias that occurs at
small scales. Generally, k modes smaller than 2.0 h Mpc−1 are well
resolved.

(iv) Finite-box effects affect large angles (i.e. ϑ � 1 deg in w(ϑ)
and ϑ � 0.5 deg in ξ+(ϑ)). These can be identified and modelled
from predictions in which k modes larger than 2π/(505 h−1 Mpc)
have been removed. The sampling variance extracted from the
SLICS mocks should also be scaled using this modelling, as shown
in HvW15.

(v) The correlation across mass sheets has been explicitly bro-
ken, hence any 3D measurement should be performed only inside
individual lens sub-volumes. We refer the reader to the values of
zs in Table 2 in order to split the mock data in a manner that is
insensitive to this. The data should then be split in the same way for
consistency.

(vi) Although the n(z) and ngal of the KiDS-450 mocks match the
data without the ZB cuts, discrepancies are observed in tomographic
analyses (see Table 3). In that case, the n(z) still matches the data
by construction, but ngal does not. Since this can be critical to many
analyses, we recommend to use the KiDS-450-dense mock instead,
then downsample the catalogues to recover the ngal from the data in
whatever ZB slice is being analysed.

(vii) We have only measured the angular correlation function in
broad redshift bins. Finer tomographic binning may reveal larger
discrepancies.

(viii) Clustering measurements in our mocks are generally in
close agreement with the data, but the linear bias sometimes differs
by about 10 per cent. This is partly caused by differences in cosmol-
ogy, which affects the clustering. We nevertheless recommend to
consider and propagate these differences in data analyses, possibly
by rescaling the mock measurements.

(ix) In the GAMA mocks, the K-corrections are degenerate with
the redshift evolution of the luminosity function. We calibrate these
together to empirically reproduce the n(z) given an apparent magni-
tude cut. However, the underlying luminosity function in the mocks
might no longer be a good match to that of the data without the
K-correction.

(x) Satellite galaxies are placed according to spherical NFW pro-
files. We have decided not to use the triaxial profiles as there is no
strong consensus that sub-haloes necessarily trace the dark mat-
ter. Additionally, the HOD prescriptions are calibrated assuming
spherical NFW, which could make the interpretation less accurate.
However, this means that the galaxy–galaxy lensing signal from the
satellites is weaker than in the data, in which many satellite galaxies
are believed to reside in sub-haloes/cores.

(xi) The concentration parameter is allowed to vary in order to
maximize the agreement with the data in clustering measurements.
This means that a detailed study of the one halo term – i.e. precise
reconstruction of the halo profiles – might differ between the data
and the mocks.

(xii) The inertia matrix provided by our halofinder is not very
accurate since no phase-space cleaning has been applied before
measuring this quantity. Certainly, the shapes are not reliable for
haloes made of less than 400 particles, possibly more.

Despite these limitations, the SLICS mocks stand out as a particu-
larly useful tool for combined probe studies involving weak lensing
and remains accurate within the dynamical range listed above.

4 C OMBI NED-PROBE A NA LY SES

Different cosmological probes are sensitive to different redshifts
and/or dynamical ranges of the underlying large-scale structure for-
mation. Differences in instruments and measurement strategies also
mean that the systematic effects are typically distinct and uncorre-
lated. Combinations of probes at the data vector level exploit these
advantages and offer complementary cosmological information and
opportunities for self-calibration (see van Uitert et al. 2018; Joudaki
et al. 2017; DES Collaboration et al. 2017, for recent combined-
probes analyses). Control samples such as the SLICS are critical
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for the estimation of the correlation between the elements of the
combined-probe data vector.

In the next sections, we first carry out a galaxy–galaxy lensing
measurement in the mocks by combining our KiDS-450 source
catalogues with different spectroscopic lens catalogues, comparing
our results with measurements from the data. We then construct a
larger data vector by adding (1) the clustering of the lenses and
(2) the cosmic shear of the sources. We present the full covariance
matrix of this combined data vector as a demonstration of what can
be achieved with the SLICS.

4.1 Galaxy–galaxy lensing

In a galaxy–galaxy lensing measurement, foreground galaxies serve
as tracers of the foreground mass concentrations around which the
shapes of background sources are analysed. Even though the full
matter distribution is responsible for the lensing signal, we here-
after refer to the foreground tracers as ‘the lenses’. This is usually
performed with a γ t(ϑ) measurement, obtained by stacking the tan-
gential component of the source ellipticities ε

jk
t for all pairs of lenses

and sources (labelled k and j, respectively) separated by an angular
distance ϑ . Lenses and sources are generally assigned weights, wk

and wj respectively, and the estimated γ̂t is given by:

γ̂t(ϑ) =
∑Npairs

j,k ε
j
t wjwk∑Npairs

j,k wjwk

. (16)

The sums are over all pairs for which ϑ jk falls within predetermined
bins.

Although γ t is straightforward to implement in cosmological
analyses, it is not necessarily the most optimal choice. Instead, one
can extract instead the differential surface mass density ��(R),
defined as16:

��(Rcom) = γt(ϑ)�cr,com, (17)

where R ≡ Rcom = ϑχ (zl) is the comoving distance perpendicular
to the line of sight, and

�crit = c2

4πG

D(zs)

D(zl)D(zl, zs)

1

(1 + zl)2
, (18)

is the comoving critical surface mass density. In the above expres-
sion, c is the speed of light in vacuum, G is Newton’s constant,
while D(zs), D(zl), and D(zl, zs) are the angular diameter distances
to the sources, to the lenses, and between the sources and the lenses.
This estimator is more optimal than γ t since the geometrical term
downweights source–lens pairs that are close in redshift and that
hence carry only little signal (Mandelbaum et al. 2005). In the case
where the source redshift is not known for individual objects but
estimated for a population, we measure instead

��(R) = γt/�−1
cr,com, (19)

where now the comoving critical surface mass density is measured
for a given lens redshift zl:

�−1
cr,com[zl] = 4πG

c2
(1 + zl)

2D(zl)
∫ ∞

zl

n(z′)
[

1 − D(zl)

D(z′)

]
dz′. (20)

16We use the galaxy–galaxy lensing notation from Dvornik et al. (2018):
��com(R) and �cr, com are sometimes labelled ��(R) and �crit, respec-
tively. This is to be distinguished from measurements in ‘proper’ distance,
which we do not use in this section.

Figure 16. Upper three panels: differential surface mass density, ��, as
measured in the KiDS-450 and CMASS/LOWZ/GAMA mocks, and com-
pared to the measurement from the data by Amon et al. (2018a). The error
bars on the mocks are on the mean, while that on data are from the mocks,
scaled to the overlapping survey areas. Lowest panel: comparison between
the error obtained from the mock covariance about the LOWZ × KiDS-450
measurement, and the JK estimate from the data.

We then compute γ t, �−1
crit and ��(R) in thin lens slices of width

�zl = 0.01 and stack the signals, weighted by the number of lens per
slice. The angular scales are converted to comoving scales with the
relation ϑ = R/χ (zl). To reduce the contamination from foreground
galaxies, we only consider source galaxies whose photometric red-
shift satisfy ZB > zl + 0.1 (see Amon et al. 2018b, for full details
about the measurement).

We compare in Fig. 16 the ��(R) signal extracted from the
KiDS-450 mock sources around the CMASS/LOWZ/GAMA tar-
gets, with the measurements from data presented in Amon et al.
(2018a). To further ease the comparison with the measurements of
w(ϑ) for these three mock surveys presented in Figs 9, 10, and 12,
it is convenient to note that at their mean redshift (〈z〉 = 0.58, 0.32,
0.25), the angles subtended by the comoving size R = 1.0 h−1 Mpc
are respectively 2.4, 3.9, and 4.8 arcmin.

The mocks and data agree within 1σ over a range of scales,
however some discrepancies are observed. There is a noticeable
difference in the signal at small angular scales for the GAMA sur-
vey, which is sourced by the implementation of the satellites in the
mocks. Whereas the satellite galaxies in the data are believed to be
highly correlated with sub-haloes (Velliscig et al. 2017), the satel-
lites in the mocks are placed at random positions within a NFW
profile (see Section 3.2), which destroys the satellite contribution to
the galaxy–galaxy lensing signal. The LOWZ and CMASS mocks
are less affected by this missing signal because of the smaller satel-
lite fraction, compared to GAMA.

In absence of an ensemble of mock data, the errors on galaxy–
galaxy lensing measurements are often estimated from analytical
calculations that neglect the sampling variance, or from bootstrap
or JK resampling of the data, which are generally accurate at small
scales but perform less well at larger angles (see fig. 5 in Viola et al.
2015, for a comparison between these methods). Galaxy–galaxy
lensing analyses interested in intrahalo properties need not to worry
about this, but the same cannot be said about measurements that
target the two-halo term, e.g. to constrain the galaxy bias.

The SLICS simulations are ideal to test the accuracy of these
assumptions, since the error estimated from them contains both
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the shape noise and the sampling variance. A comparison between
the SLICS and an analytical covariance is presented in Brouwer
et al. (2018). We show here, in the lowest panel of Fig. 16, a
comparison between the error on ��(R) obtained from the mocks
in a LOWZ × KiDS-450 analysis, versus a JK estimate from the
data. Both error estimates are normalized by the data signal to
improve the readability, and their measurements of the noise-to-
signal ratio agrees to within 10 per cent at the smallest scales shown
here, but differ by up to a factor of two for R > 0.7h−1 Mpc.

A clear asset of the SLICS mocks is that they can provide error
estimates even for surveys of smaller area (e.g. GAMA), where
internal resampling is not reliable. One can also inspect with these
mocks the relative contributions to the covariance from the shape
noise and the sample variance, and/or combine the data vectors with
other cosmological probes, as shown in the next section.

4.2 Covariance for 3 × 2 point data vectors

We present here the covariance matrix of a mock measurement sim-
ilar in nature to that presented in van Uitert et al. (2018) and DES
Collaboration et al. (2017), which combined three measurements
of two-point correlation functions related to the foreground matter
field. The data vector we analyse here consists of the ξ±(ϑ) cos-
mic shear data points measured from the KiDS-450 mock sources
selected with 0.5 < ZB < 0.7 (presented in Section 3.1), the an-
gular correlation function w(ϑ) measured from the LOWZ mock
spectroscopic survey (Section 3.4) and the galaxy–galaxy lensing
signal measured from their combination (Section 4.1). In the latter
case, the source galaxies are not binned in ZB, and the signal is
promoted from γ t(ϑ) to ��(R) when compared to the two data
analyses mentioned above.

We merge the mock data vector from each line of sight as X =
[ξ+(ϑ), ξ−(ϑ), w(ϑ), ��(R)] and compute the full covariance ma-
trix from 844 lines of sight with equation (8). We present the results
in Fig. 17, normalized such that the diagonal is equal to one. The
different blocks represent distinct components of the combined data
vector, separated by thick black lines. We use a large number of bins
in order to highlight the structure of the matrix, however most of the
points are highly correlated; far fewer points are required to capture
the same information content.

The lensing data used in this calculation include shape noise as
an option, which downweights the off-diagonal components of the
normalized matrix when turned on (see the lower triangle part of
Fig. 17). Even in this case, it is possible to observe some structured
correlation in most blocks, although the noise level on individual
elements is significant. The noise-free case is shown in the upper
triangle part of the matrix in Fig. 17, where we can distinguish
significant amounts of cross-correlation between most blocks.

The covariance matrix presented here is only one example of a
3 × 2 point data vector that can be formed from the SLICS, and
it is straightforward to expand on this and include other data types
such as RSDs, CMB lensing, void lensing, or lensing peak count,
just to name a few. In some cases, a combined-probe covariance
matrix can be estimated analytically, which provides an opportu-
nity to validate the two approaches. Indeed, the halo model offers
a prescription to compute this quantity via the trispectrum (Takada
& Jain 2009; Krause & Eifler 2017). Some measurements however
are harder or currently impossible to integrate in this framework
(RSDs, void lensing, peak counts, non-linear transforms, etc.), but
are fully accessible with the SLICS mocks. The caveat, of course,
is that the covariance estimated from the mocks will be at a fixed
cosmology, and subject to a limited precision due to the finite num-

Figure 17. Cross-correlation coefficient, rij = Covij /
√

Covii Covjj , for
a combined-probe measurement involving cosmic shear ξ±(ϑ) from the
KiDS-450 mocks, galaxy clustering w(ϑ) from the LOWZ mocks, and
galaxy–galaxy lensing ��(R) from the combination of both. The cosmic
shear segments of the data vector represent a single tomographic bin of
the KiDS-450 mock data, selected with ZB ∈ [0.5 − 0.7]. The sources are
not binned in the galaxy–galaxy lensing signal. Shape noise is included in
the lower triangle part of this matrix, which explains why the off-diagonal
components of the lensing data are suppressed compared to the upper triangle
part.

ber of mocks. Lastly, as mentioned in the Introduction, the estimate
will be biased low due to the missing SSC term. In practice, this
term can be evaluated with response functions from ‘separate uni-
verse’ simulations (Li et al. 2014), by comparing the results to
simulations with larger volumes (e.g. the HSC mocks presented in
Table 1) or from Gaussian realizations. In van Uitert et al. (2018),
it was shown that the SLICS mocks contain some contribution to
the SSC term from the simulation volume outside of the light-cone.
The missing contribution would inflate the cosmic shear error by
10–70 per cent depending on the angular scale, but has no effect on
the galaxy–galaxy lensing error. This is indeed an important ingre-
dient that must supplement the covariance estimate extracted from
the SLICS.

5 N EI GHBOUR-EXCLUSI ON BI AS O N C O S MIC
SHEAR

In this second part of the paper, we make use of the 120 KiDS-
HOD and LSST-like HOD mocks described in Sections 3.6 and 3.7
to revisit a selection effect related to close neighbours that was first
identified in Hartlap et al. (2011). The general idea is that isophote
overlap makes the positions and shape measurement generally dif-
ficult, inaccurate or biased for these objects. For this reason, they
are either fully removed or downweighted, depending on the anal-
ysis strategy, and this choice introduces a selection effect that is
not random on the sky due to clustering. Indeed, galaxy clusters
have the highest density of objects, hence they have higher chances
to contain close neighbours and blended objects. This effect exists
even in smaller systems, since any background galaxy that exactly
aligns with a foreground massive dark matter halo is obscured by
the central galaxy. This translates into an effective downsampling
of the foreground overdensities compared to the rest of the sky, a
bias that affects the cosmic shear signal. As a corollary, voids in the
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foreground have lesser chances of containing close neighbours and
are thus given more weight.

Hartlap et al. (2011) studied this effect using the Millennium
Simulations, and reported an impact of a few per cent to tens of
per cent on cosmic shear measurements, depending on the scales,
redshifts, and definition of ‘close galaxy pairs’ that are excluded.
MacCrann et al. (2017) studied this effect – which they referred
to as the blend-exclusion bias – in a cosmic shear analysis of the
DES-Science Verification (SV) data targeted at small scales. They
estimated its impact from image simulations and provided a physi-
cally motivated model of this bias, and finally investigated different
degeneracy directions, notably with the sum of neutrino mass and
with baryon feedback parameters. In this paper, we term this effect
the neighbour-exclusion bias on the weak-lensing signal, following
the terminology of Samuroff et al. (2018)17, in which a number of
neighbour-induced biases have also been studied in the context of
cosmic shear measurements with the first year of DES data. Their
strategy was different as they used pairs of simulations with and
without clustering, and merged multiple shear biases into a scale-
dependent multiplicative correction term. This method is accurate,
but its calibration also depends on the survey depth, redshift distri-
bution, and on the exact galaxy sample used. In the end, mock data
such as the SLICS are required for validating the framework.

We build on these preceding results by exploring the impact on
different cosmic shear analysis pipelines with shallow and deep
mock data, with an eye on the signal in cross-tomographic bin
combinations and on the residual effect at large angles. We focus at
first on the (shallower) KiDS-450 survey, and discuss the (deeper)
LSST-like survey afterward.

5.1 Measurement from mocks

We start by identifying close pairs in the full KiDS-HOD mocks
with a KDTree (Friedman, Bentley & Finkel 1977) algorithm.18

During this stage, we use different definitions of close pairs: objects
separated by less than: 1.0, 2.0, 3.7, and 5.0 arcsec on the sky.
These exclusion angles are meant to represent the variable shape
measurement quality confronted to realistic seeing conditions, and
the largest three of these are taken from Hartlap et al. (2011) for
validation and cross-reference; the 1.0 arcsec separation targets
future surveys. We next adopt two strategies to deal with the close
pairs we have found. Either we reject the faintest of the two galaxies
in a pair – we refer to this technique as ‘FAINT’ – or we remove both
galaxies from the catalogues – we refer to this as ‘BOTH’. These
two cases emulate different pipelines currently used in weak-lensing
analyses.

Removing close pairs from the catalogues has two effects: (1)
it modifies the mean redshift distribution, preferentially remov-
ing high-redshift galaxies since their mean angular separation is
smaller due to their larger distance from us, and (2) it preferentially
reduces the number of galaxy pairs aligned with foreground struc-
tures, which is the anisotropic selection effect at the core of this

17The neighbour-exclusion bias is the exact same phenomenon that was
coined the blend-exclusion bias in MacCrann et al. (2017), but this latter
name can lead to a confusion since by definition, ‘blended’ galaxies refer
to nearly complete overlap of two objects that makes them nearly undis-
tinguishable. These normally appear as a single catalogue entry with high
shape noise. Our naming captures the fact that this selection effect operates
mainly on pairs of galaxies that are close but distinguishable.
18We used the PYTHON module scipy.spatial.KDTree.

Figure 18. Effect of the close pair selection on the number density of objects
in the 120 KiDS-HOD mocks galaxy catalogues, presented as the ratio
between the filtered and original N(z). Different colours represent different
opening angles in the close pairs selection criteria, solid lines represent the
FAINT rejection scheme, and dashed lines show BOTH. Approximately
twice as many objects are rejected in the latter case.

study. The first effect does no harm to a data analysis as it is ef-
fectively a downsampling of the data: as long as the estimated final
n(z) is accurate, the inferred cosmology will not be affected by this.
The second effect is more problematic however as it correlates with
the foreground matter distribution. This is similar to the selection
effect described in Simet & Mandelbaum (2015), who examined the
impact of cluster obscuration on cluster mass reconstruction with
stacked shear and magnification signals (see also Hoekstra et al.
2015).

To isolate the neighbour-exclusion bias, we need to factor out the
first effect. Following the ‘FIX’ criterion (Hartlap et al. 2011), we
proceed as follows:

(i) Find and remove close pairs from the KiDS-HOD mocks. The
outcome of this are ‘filtered catalogues’. We repeat this for the range
of exclusion angles and for the two selection criteria, BOTH and
FAINT.

(ii) Split the original and filtered catalogues in four tomographic
bins. For this work, we reduce the complication arising from photo-
metric error and split our data according to their true redshift: zspec

∈ [0.1 − 0.3], [0.3 − 0.5], [0.5 − 0.7], and [0.7 − 0.9].
(iii) Measure the ξ̂ ij ±(ϑ) signal from the original and filtered

catalogues, in all pairs of tomographic bins (i, j).
(iv) Measure the original and filtered n(z), and compute the as-

sociated theoretical predictions ξ
ij
± (ϑ).

The neighbour-exclusion bias can then be quantified as:

β
ij
± (ϑ) =

(
ξ̂ ij ±(ϑ)

∣∣
filtered

ξ̂ ij ±(ϑ)

)
×

(
ξ

ij
± (ϑ)

ξ
ij
± (ϑ)

∣∣
filtered

)
(21)

with i, j = 1, . . . 4. The second factor on the right-hand side of
equation (21) removes the effects of the modified n(z) after filtering,
and leaves β

ij
± sourced only by the neighbour-exclusion effect. In

the absence of selection effects, both brackets would cancel out
exactly, resulting in β

ij
± = 1.0.

We show in Fig. 18, the ratio between the redshift distributions
of the full sample, with and without filtering, for the FAINT and
BOTH techniques and for the different exclusion angles. As redshift
increases, all curves first show that the filtering removes an increas-
ing number of galaxies, which simply reflects the fact that more
galaxies are contained within the same solid angle. This trend starts
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Figure 19. Effect of the close-pair selection on ξ+ signal in the KiDS-HOD mocks galaxy catalogues. Left- and right-hand panels show the FAINT and BOTH
prescriptions, respectively. y-axes show β+, defined in equation (21), while x-axes show the separation angle in arcminutes. Different colours represent different
opening angles used in the definition of close pairs. Upper left to lower right show the results for tomographic bins with increasing redshift. Dashed black
lines represent the best fit from equation (22). Right-hand panels: same as left, but for the BOTH prescription. The KiDS-450 cosmic shear analyses included
angular scales down to 0.5 arcmin in their analysis (Hildebrandt et al. 2017), while the smallest angles included in the DES cosmic shear measurement went
from 7 arcmin at lower redshifts to 3.5 arcmin at higher redshifts (Troxel et al. 2017).

Figure 20. Same as Fig. 19, but this time for β−. Note the change in y-scaling. The KiDS-450 cosmic shear analyses included angular scales down to
4.2 arcmin in their analysis, while the DES cosmic shear measurement excluded scales smaller than 70 arcmin at low redshift and 35 arcmin at high redshift.

to reverse beyond redshift z = 0.7, where the n(z) of the KiDS-HOD
mocks begins to fall off (see the top panel of Fig. 14). The BOTH
filter rejects approximately twice as many objects as the FAINT as
expected; the FAINT filter preferentially rejects objects at higher
redshift that appear dimmer, and preserves almost all low-redshift
objects.

Our measurements of β
ij
+ (ϑ) and β

ij
− (ϑ) are presented in Figs- 19

and 20, respectively. We see that larger exclusion angles exhibit
larger effects, as expected from the larger fraction of objects with
close neighbours. These results are in excellent agreement with
the equivalent results from Hartlap et al. (2011, see their ‘FIX’
method). We additionally find that higher redshift measurements
are more affected by this selection bias due to the higher fraction

of close pairs, and that cross-tomographic signals are impacted as
well. Because the neighbour-exclusion bias mainly occurs at small
scales, the measurement of ξ̂− suffers from a stronger bias than ξ̂+,
at fixed angle.

MacCrann et al. (2017) have developed two models to describe
this effect, the first one calculated from a third-order correction
to the shear–shear correlation, and the second one as a toy model
based on the luminosity of the neighbouring cells. These two models
were compared to simulations and to the DES-SV catalogue, and
were shown to reproduce most of the features of the neighbour-
exclusion bias, but not all. Given the relative size of this effect and
the complexity to model and measure it with high accuracy, we
instead propose here a simple parametric description that can be
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Figure 21. Distributions of the best-fitting parameters α1,2, which model
the neighbour-exclusion bias according to equation (22). These histograms
could be used as informative priors on these two parameters in a procedure
that marginalizes over this selection effect.

included in an MCMC with two extra nuisance parameter. We find
that the shape of both β+ and β− is well modelled by:

βfit(ϑ) = 1

(1 + ϑ−α1 )α2
, (22)

with α1 > 0, and ϑ in arcmin. At large angles, ϑ−α1 tends to zero,
hence βfit(ϑ) approaches unity. We fit our tomographic measure-
ments of β+ in the range 0.5 < ϑ < 317 arcmin, whereas we restrict
β− at small angles to ϑ > 1.6 arcmin in order to minimize the im-
pact of the noise seen in some panels. The best fits are shown as
dashed lines in Figs 19 and 20, with parameter values spanning the
range α1 ∈ [0.0, 3.0] and α2 ∈ [−0.02, 0.05], shown in Fig. 21. This
fit was carried out on the mean measurement of β

ij
± (ϑ), averaged

over all lines of sight. The scatter per realization would be larger,
but we are not interested in that noisy quantity.

Additionally, given that the shapes of β± are similar to those
arising from the impact of baryon feedback on the matter density
field (Semboloni et al. 2011), this contribution must be included
in the interpretation of the measured baryon feedback parameters,
something omitted in previous analyses (H17, Harnois-Déraps et al.
2015) and forecasts (Foreman, Becker & Wechsler 2016), but first
pointed out in MacCrann et al. (2017). Alternatively, marginalizing
over the baryon feedback parameters and/or over the reduced-shear
model should, at the same time, mitigate this selection effect, whose
amplitude is lower than some of the most extreme feedback models.

We now investigate the importance of this effect on two current
weak-lensing measurement strategies.

5.2 Neighbour-exclusion bias in a lensfit-like pipeline

As a first example, we examine the KiDS-450 analysis pipeline of
H17. It first uses SEXTRACTOR (Bertin & Arnouts 1996) to pro-
vide a catalogue of deblended objects. These catalogue entries are
then passed to lensfit (Miller et al. 2007, 2013), which performs
the galaxy shape measurement on the images with as few cuts as
possible on the selected objects, as described in H17. lensfit masks
neighbouring objects when measuring each target object, but as this
process does not fully correct for light leaking outside the neigh-
bours’ masked regions, a ‘contamination radius’ statistic, to test for
the presence of close neighbours, is also measured, calculating the
distance to the nearest detected neighbour (Miller et al. 2013). If
the contamination radius is less than 4 pixels, the object is flagged
and excluded from the analysis. The flagging system is described
in Miller et al. (2013), and captured by the FITCLASS flag in the
KiDS-450 data and image simulation catalogues. For the KiDS-
450 cosmic shear analysis, a stricter criterion of 4.25 pixels was

employed to minimize additive bias (see Appendix D in H17). In
this method, the effect of blending at a given centroid-to-centroid
separation strongly depends on the galaxy sizes and is found to pref-
erentially remove fainter galaxies. With a pixel size of 0.214 arcsec,
this means that the blending strategy here corresponds closely to
the FAINT technique, with full blending occurring approximately
at 0.9 arcsec.

A second selection is at play in this shape measurement strategy:
the presence of a close neighbour may affect the weight assigned
to that galaxy: close neighbours tend to be measured as being more
elliptical and to have higher weights than they would if they had
been measured in isolation. Although these objects are not excluded
from the analysis, their detection rate and weight are affected by
the presence of neighbours, which can be related to an ‘effective’
exclusion angle. In order to study this, we make use of image sim-
ulations similar to those on which lensfit was calibrated for the
KiDS-450 cosmic shear analysis (Fenech Conti et al. 2016). These
improved simulations are augmented with realistic input galaxy
properties which are inferred from the Hubble Space Telescope
COSMOS data. This current study, however, uses only a subset
of the full suite designed for shear calibration; we investigate the
effect of bad and good seeing conditions, but do not include vari-
ations in the lensing shear or galaxy rotations. These are required
for a full shear calibration, but have minimal impact on close pairs
selection. We run the lensfit shape measurement tool on these sim-
ulations and constructed object catalogues based on the input (the
‘true’ objects) and output (the ‘lensfit measurement’ of these ob-
jects). For each input object, the catalogues contain the input and
detected positions and magnitudes, a shape weight, a ‘source-type’
flag (FITCLASS) that identifies stars, galaxies, blends, badly mea-
sured objects, etc., and a flag for objects that were not matched to the
simulation input. Our matching condition requires that the centroid
of an observed object resides within a 3 pixel radius of an input
centroid.

We construct our baseline catalogue by first removing all the input
stars, then applying an mr < 24.5 cut such as to mimic the observed
data. Ignoring this step would overestimate the effect by artificially
boosting the depth. We next construct the lensfit measurement cat-
alogue by requiring FITCLASS = 0 and by rejecting unmatched
galaxies. We then count the close pairs that are present in the ‘true’
and ‘filtered’ catalogues (optionally summing the lensfit weights, in
the second case) as a function of separation, and finally take the ratio
between the two measurements. We normalize the ratio to unity at
6 arcsec, where filtering should be minimal. This ratio is shown in
the lower panel of Fig. 22, where we see that close pairs are in fact
unaffected by close-neighbours selection for angular scales larger
than 3 arcsec, but reliable shape measurements for more than half
the close pairs are not produced by the pipeline below 1.8 arcsec.
This means that the KiDS-450 measurement strategy can be repre-
sentatively identified as the dark blue lines in Figs 19 and 20, in the
left-hand panels describing the FAINT technique.

In the cosmic shear analysis of H17, the ξ̂+ and ξ̂− measurements
extend from ϑ > 0.5 and 4.2, respectively. From Figs 19 and 20, we
can therefore expect the KiDS cosmic shear signal to be affected by
the neighbour-exclusion bias by less than a percent.

5.3 Neighbour-exclusion bias in an NGMIX-like pipeline

As a second example, we examine one of the pipelines used by
the DES Collaboration on their SV data, presented in Becker et al.
(2016) and re-examined in MacCrann et al. (2017). In their strategy,
the NGMIX shape measurement pipeline with meta-calibration (Shel-
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Figure 22. Upper: ratio between the number of pairs in the DES-SV cata-
logue with and without applying the SEXTRACTOR flag. Lower: ratio between
the number of pairs in the image simulations that mimic the KiDS-450 data,
with and without including the effect of the lensfit measurement.

don & Huff 2017) was run on all objects that passed the SEXTRACTOR

FLAG i<2 cut, which rejected both blended objects identified by
SEXTRACTOR. Once that was done however, all shapes were given
the same weight. This is similar in nature to the filter BOTH pre-
sented in Section 5.1. The question now is to find the effective
exclusion angle at which the filter operates.

We measure this by running our close-pairs finder algorithm
on the public SV catalogue,19 with and without applying the
FLAG i<2 filter. We then compare the number of close pairs in the
upper panel of Fig. 22, again normalizing the ratio to unity at the
largest angle. The effect of the selection becomes apparent already
at 4 arcsec, and by 2.5 arcsec almost half of the pairs are filtered
out. Note that this measurement differs in nature from that carried
out on the KiDS image simulation, since we do not know the ‘input’
here, but only the objects detected by SEXTRACTOR. This explains
why the ratio does not converge to zero at zero lag: many pairs
separated by less than 1 arcsec were not even detected to start with
due to obscuration by the foreground member.

According to this figure, this measurement strategy has a close
pair definition bracketed between 2 and 3.7 arcsec, plotted as blue
and green symbols on Figs 19 and 20. This is in excellent agreement
with the results on the impact of close pairs reported in MacCrann
et al. (2017) for the same DES-SV data, which provides robust
validation of both approaches.

We emphasize that the results quoted in this section cannot be
directly applied to the DES data, since this survey has a differ-
ent depth and density than the KiDS-HOD mocks analysed here.
Instead, one should think of our results as the outcome of a DES-
like analysis (notably the shape measurement method) performed
on KiDS-like data. The technique is general though, and hence
some conclusions can be reached for the DES-year1 cosmic shear
analysis of Troxel et al. (2017). While the neighbour-exclusion
bias significantly deviates from unity at small scales, their cos-
mic shear analysis is protected against this effect for three reasons:
(1) their upgraded meta-calibration strategy no longer requires the
FLAG i<2 cut, reducing even more the size of the effect, (2) they
have folded this effect into their new shear calibration (Samuroff
et al. 2018), and (3) they applied aggressive angular cuts on the mea-

19DES-SV data: https://des.ncsa.illinois.edu/releases/sva1/doc/gold.

Figure 23. Zoom-in on the neighbour-exclusion bias model at large angles
in mock data at KiDS-depth, estimated from the fit function (equation 21).
Upper and lower panels show β+ and β−, respectively; right- and left-hand
panels show FAINT and BOTH methods, respectively. The different colours
(cyan, blue, and green) match the different separation angles presented in
Fig. 19 (1, 2, and 3.7 arcsec, respectively), and the different lines of the
same colour show the fits from the 10 panels in that figure.

surements: in order to minimize the contamination from baryon
feedback, they excluded angular scales smaller than 3.5 (7.0) ar-
cmin in the highest (lowest) tomographic bin for ξ+, and 35 (70)
arcmin in the highest (lowest) tomographic bin for ξ−. As seen
in the right-hand panels of Figs 19 and 20, the amplitude of the
neighbour-exclusion bias on these angular scales is less than a
percent.

5.4 Future surveys

The upcoming weak-lensing experiments such as LSST and Eu-
clid are expected to achieve sub-percent precision on cosmologi-
cal parameters from cosmic shear measurements. The neighbour-
exclusion bias must therefore be accurately captured in order to
interpret the measurement correctly. At KiDS depth, this effect is
mostly significant on smaller angular scales, but a residual effect
propagates to all scales. We illustrate this in Fig. 23, which zooms-
in on the fit function described by equation (21), over the range
5 < ϑ < 100 arcmin. The different colours match the separation
angles presented in Fig. 19, and the four panels show β± for the
FAINT and BOTH methods. All tomographic bins are overplotted.
Even at large angular separations, these models are mostly con-
sistent with the measurements. The agreement is not perfect in all
tomographic bins, but the trends are captured with enough accuracy
to support our result: the effect on ξ+ is below 0.3 per cent at all
scales, but ξ− can be affected by 0.5 per cent at 20 arcmin.

We investigate this further with the LSST-like HOD mocks pre-
sented in Section 3.7, where the number density is almost four times
higher than the KiDS-HOD mocks, with a redshift distribution that
now extends to z = 3. We carry out a single 2D cosmic shear anal-
ysis over 20 of these mocks, and extract the neighbour-exclusion
bias for the BOTH and FAINT cases, assuming that rejection of
close neighbours occurs at 1.0 or 2.0 arcsec separation. The results,
presented in Fig. 24, indicate that the ξ+ and ξ− measurements are
affected by half a per cent and up to 2 per cent, respectively, when
the exclusion angle is set to 2 arcsec. If we reduce the exclusion
angle down to 1 arcsec separation, then the ξ+ and ξ− measurements
are affected by 0.2 and 0.5 per cent, respectively.
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Figure 24. Neighbour-exclusion bias measured from the LSST-like HOD
mocks with 1 and 2 arcsec exclusion angles, compared to the best-fitting
models estimated from the KiDS-HOD reported in Fig. 23. Upper and lower
panels show β+ and β−, respectively; and left- and right-hand panels show
FAINT and BOTH methods, respectively.

Also shown in Fig. 24 are the best-fitting models estimated from
the shallower KiDS-HOD mocks, previously reported in Fig. 23.
We clearly see that the LSST-like data points are systematically
lower than the KiDS-HOD best-fitting lines. We can further read
off from this figure that, at fixed close-pairs model and exclusion
angle, the neighbour-exclusion bias affects more severely our LSST-
like mock data compared to the KiDS-HOD mock data, by about
a factor two, which means that if we are to marginalize over the
neighbour-exclusion bias using α1, 2 as nuisance parameters, then
their priors need to be revisited.

There is a key caveat in our analysis which stems from our choice
to populate the mocks with unit weight sources that match the ef-
fective number density of the KiDS and LSST surveys (8 and 26
gal arcmin−2, respectively), rather than matching the raw number
density with non-unit weights. The number of close pairs in the raw
data is larger, hence the neighbour-exclusion bias is expected to be
larger. Furthermore our study does not include any dependence on
the size distribution that slowly varies with redshift and magnitude.
The technique presented here will therefore be extended in future
analyses to extend the complexity of the mock source sample in
order to determine a more accurate amplitude for the neighbour-
exclusion bias. For future high-precision surveys, we would ad-
vocate marginalizing over a model given by equation (22) using
informative priors on the two nuisance parameters from a mock
galaxy analysis.

6 C O N C L U S I O N S

We describe a suite of numerical simulation products tailored for
the estimation of covariance matrices in combined-probe analy-
ses involving weak-lensing data from the KiDS. Many of these
have already been used to date, hence the first part of this paper
serves as the main reference for the description of the methodol-
ogy and performance of the mock data used in these analyses. More
specifically, we generate 844 fully independent realizations of mock
lensing data that emulate the KiDS-450 and an LSST-like survey
described in Chang et al. (2013), in individual patches of 100 deg2

each. In the same simulated light-cones, we also include mock cat-
alogues that emulate spectroscopic galaxy surveys such as GAMA,

CMASS, LOWZ, and 2dFLenS, as well as CMB lensing conver-
gence maps. Used in conjunction with the lensing mocks, these
different simulation products can serve for pipeline validation and
uncertainty estimation in combined-probe analyses involving e.g.
cosmic shear, galaxy–galaxy lensing estimators, galaxy clustering,
RSDs, and their cross-correlation with the CMB lensing data. We
quantify the accuracy of the galaxy catalogues by comparing the
redshift distributions and clustering with the data they are meant to
emulate; we reach 20 per cent agreement or better on the two-point
correlation function w(ϑ) over a range of dynamical scales, with
residual differences partly caused by our choice of cosmological
parameters. At small angular scales, the variance obtained from
the mock clustering and galaxy–galaxy lensing measurements are
consistent with JK estimations of the error; we identify from the
mocks scales where the latter becomes unreliable. We generate a
3 × 2-point function data vector that includes cosmic shear, lens
clustering, and galaxy–galaxy lensing measurements, and present
an estimation of the covariance matrix for these combined probes.

In the second part of the paper, we demonstrate how these mocks
can be used to estimate the neighbour-exclusion bias at KiDS and
LSST depth, inspired by the early work of Hartlap et al. (2011).
For this particular science case, we produce two additional suites
of mock data, in which both the lenses and the sources catalogues
are extracted from an HOD prescription. These are meant to be
representative of the KiDS-450 and LSST surveys, and include
realistic levels of source–lens coupling, photometric uncertainty,
galaxy clustering, and redshift distributions. We identify galaxies
with close neighbours in our mock lensing data with four different
exclusion angles, and investigate two methods to cope with them,
representative of the shape measurement techniques used in the DES
and in the KiDS-450 data. We compare the cosmic shear signal
with and without the filtering of these close pairs, in the context
of a four-bin tomographic analysis. We find a redshift dependence
in the selection effect: the neighbour-exclusion bias is larger at
higher redshift due to the increase in number of objects at fixed
solid angle. At KiDS-depth and assuming poor seeing conditions
blurring objects separated by less than 5 arcsec, the impact on the
ξ+ measurement is of the order of a few percent, while it reaches
up to 10 per cent for the same angular scales for ξ− (see Figs 19
and 20). In all cases, the angular dependence of this effect has a
simple shape that we model with a two-parameter function (see
equation 22). We measure the distribution of these two parameters
over all tomographic bins, which could serve as a prior in an MCMC
marginalization pipeline for current surveys. This prior will however
need to be revisited for future deeper surveys using the methodology
outlined in this paper.

We investigate the sensitivity of current cosmic shear analyses
to this selection bias by identifying the filtering technique that best
matches the data measurement procedure. The NGMIX pipeline uses
SEXTRACTOR flags to reject blended objects, which effectively sup-
presses most pairs separated by less than 2.5 arcsec, as verified on
the DES-SV data. Given the conservative cuts that were applied on
the angular scales, we find that this ξ± measurement is affected by
less than a percent. The DES year 1 results are further protected
since the updated meta-calibration method does not require the cut
of SEXTRACTOR flags. The KiDS-450 pipeline uses the lensfit shape
measurement tool, which returns a shape weight that is affected
by the proximity of close neighbours. We measure the effective
close-pairs exclusion radius from KiDS-like image simulations and
find that more than half the close pairs are rejected when separated
by less than 1.8 arcsec. The KiDS-450 cosmic shear analysis ex-
tended to 0.5 arcmin in ξ+ and 4.2 arcmin in ξ−, at which scales
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the amplitude of the neighbour-exclusion bias is always less than a
percent.

We next measure this bias in deeper and denser mock data in
a non-tomographic setup, and find that the amplitude of the ef-
fect is about twice the size measured from the shallower KiDS-
HOD mocks. For future lensing surveys like LSST, the neighbour-
exclusion bias needs to be understood with high accuracy since it
is degenerate with baryon feedback parameters (MacCrann et al.
2017) and can be mostly addressed with an angle-dependent shape
calibration technique (Samuroff et al. 2018). In any case, these
future measurements will need to be calibrated against numerical
simulations such as those presented in this paper, possibly upgraded
with actual images for each object.

The SLICS mocks can find a number of applications in data
analyses, for estimator validation and calibration, in the data pro-
cessing, for estimation of covariance matrices in combined-probe
measurements, for studies of statistical properties of covariance and
likelihood functions, or for the investigation of systematic effects.
Many of these applications are relatively new and would require
further exploration in order to reach the level of accuracy and con-
trol required for future lensing surveys. To encourage and accelerate
this progress, we make all simulation products publicly available at
http://slics.roe.ac.uk.
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A P P E N D I X A : A D D I T I O NA L SO U R C E G A L A X Y
C ATA L O G U E S

A1 Mock LSST-like source galaxies

Following the same procedure as for the mock KiDS-450 source
galaxies described in Section 3.1, we produce mock galaxy
catalogues with LSST-like specifications, based on forecasted
survey specification from Chang et al. (2013):

nlsst(z) = zαexp

[
−

(
z

z0

)β]
(A1)

with α = 1.25, β = 1.0, and z0 = 0.5, and assuming a galaxy
number density of 26 gal arcmin−2. We split this distribution
in ten tomographic bins of equal number density, we convolve
each of these with a Gaussian function that varies with red-
shift, i.e. σ = σ z(1 + z) where σ z = 0.02, and we finally
truncate these distributions such that data lies in the range z ∈
[0.1 − 3.0]. The resulting tomographic distributions are shown in
Fig. A1.

0 0.5 1 1.5 2 2.5 3
0

1

2
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Figure A1. Redshift distributions used for the 10 tomographic bins of the
LSST-like source catalogues, assuming the survey specifications presented
in Chang et al. (2013) with α = 1.25, β = 1.0, and z0 = 0.5.

We compute the shear two-point correlation function from these
mocks using equation (4), and the results are shown in Fig. A2 for
all combinations involving the first five tomographic bins, and with-
out shape noise. We recover the results presented in Section 3.1 and
in HvW15, namely that the angular scales comprised in the range
[1–50] arcmin in ξ+ are generally modelled to better than 5 per cent,
however smaller scales suffer from limits in particle mass resolu-
tion, while large scales are affected by the finite simulation box
size.

A2 Source galaxies with clustering at fixed bias

In addition to the random position and HOD approaches, we have
produced mock galaxy catalogues in which the position of the galax-
ies trace the underlying dark matter with a controlled bias. We do
this by sampling the projected 2D density mass sheets δ2D(χ l, θ ) at
random such that the density distribution of galaxies in each redshift
slice is proportional to the mass distribution projected within the
slice. This has the advantage that it contains lens clustering, but the
bias is a controlled parameter, as opposed to being redshift, scale,
and mass dependent. This is helpful when comparing measurements
to theoretical models that assume linear bias (see H17, van Uitert
et al. 2018, for two applications of these mock data).

A3 Source galaxies with positions set by data

We have developed another type of mock catalogues also based
on the SLICS light-cones, and in which the position of the galaxies
exactly match those of the KiDS-450 data. The prime application of
this approach is to reproduce the observed variation in source den-
sity, which modulates the local noise properties and affect statistics
such as weak-lensing peak counts (for a detailed discussion on the
importance of this, see Martinet et al. 2017).

Since we cannot capture all the data in one light-cone, we break
the observed sky coverage into 100 deg2 patches, and tile the mocks
into a mosaic, as illustrated in Fig. A3. The five KiDS-450 fields are
decomposed into 17 ‘mock regions’, shown as red boxes. Unfortu-
nately, the KiDS mosaic is not efficiently decomposed into 10 × 10

Figure A2. Cosmic shear measured from the first five tomographic bins of the LSST-like source mocks, ignoring shape noise. The y-axis shows the fractional
difference between the measurements of ξ+ (left) and ξ− (right) from the mocks and the predictions obtained from NICAEA with the input cosmology and n(z).
The x-axis shows the angular separation ϑ in arcminutes. Error bars show the error about the mean, and the tomographic bins are labelled on the sub-panels.
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Figure A3. Tiling configuration of the 17 SLICS simulations onto the 5
KiDS patches. The red squares represent the area of individual light-cone.
The axes are in the xy coordinate frame of the masks, in units of arcminutes.
Each black point corresponds to a galaxy in the KiDS catalogue.

regions, which is why these 450 deg2 of data take significantly more
than 4.5 mock light-cones to be covered. However, many mock re-
gions contain very little data and we could recycle some unused
coverage, keeping this to a minimum in order to avoid unphysical
correlations. After this tiling technique, the position of every galaxy
in the KiDS-450 data passing a 0.1 < ZB < 0.9 cut is matched to a
pixel in one of 13 SLICS light-cones, organized into 17 regions. To
be clear, there is no correlation between the location of these mock
galaxies and the large scale structure from the mocks.

The next step is to assign a shear to these objects, which requires
knowledge of their redshift in the simulation. To achieve this, we
draw a zspec value from the DIR n(z) and use this redshift to inter-
polate the two shear components from the shear planes described in

Table A1. Additional content of the mock galaxy catalogue at the KiDS-
450 galaxy positions – all columns from the KiDS-450 source catalogues
described in Table 4 are included as well. The XY are in the coordinate
frame of the mask, and related to the RA–Dec. with the WCSTOOLS sky2xy
or xy2sky.

Content Units Description

X
Y

}
Sky coordinates

w lensfit weight from the data
FieldPos Telescope pointing

Section 2.2, at the pixel location. We include in the mock the origi-
nal coordinates of the galaxy, the coordinate in the mock light-cone,
the original observed ellipticity, the shear extracted from the SLICS,
the ZB and zspec redshifts, as well as the shape weight and the Field
ID. These quantities, summarized in Table A1, are all required by
peak statistic analyses such as the one carried out in Martinet et al.
(2017). We generated with that method a total of 67 independent
mock replicas of the KiDS mosaic, based on tiling 871 SLICS light-
cones. Note that the n(z) is similar but not exactly identical to that
of the ‘main’ KiDS-450 sample (described in Section 3.1), causing
variations of order 10 per cent on the cosmic shear signal.

It is important to note that the simulated data contained in differ-
ent mock regions (the red boxes in Fig. A3) are not correlated, as
they originate from different light-cones. In contrast, these correla-
tions exist in the data, which means that care must be taken to avoid
being affected by this difference. For example, one should not com-
pute correlation functions on the full mock mosaic, otherwise the
broken correlation across the regions will result in a significantly
lower signal, compared to both the data and the predictions. Instead,
analyses should be carried out within the individual mock regions.
The peak statistics analysis described in Martinet et al. (2017) is
protected against this, since the shear peaks are found from an aper-
ture mass algorithm that works on individual camera pointings that
each cover about 1 deg2.

A P P E N D I X B: MO R E D E TA I L S O N T H E G A M A
H O D

We describe in this appendix the ingredients that allow us to
model the GAMA mock survey including the redshift and lu-
minosity dependence of the HOD parameters. We closely fol-
low the modelling of Smith et al. (2017), but include some de-
tails relevant to this mock production. This HOD is also used in
the production of the KiDS-HOD and LSST-like HOD mocks,
described in Sections 3.6 and 3.7, respectively. First, as noted
explicitly in equation (11), the relation between luminosity and
halo mass changes with redshift, and its evolution is character-
ized by the parameter Q. Second, the dependence on luminosity
requires the construction of relations between L, Mmin, and M ′

1,
which are given by the same functional form as equation (11),
but replacing some terms. To establish the M ′

1(L) relation, we re-
place (Mh, L�At, Mt, αM) by (M ′

1(L), 3.70 × 109 h−2L�, 4.78 ×
1012 h−1 M�, 0.306), while for the Mmin(L) we replace them by
(Mmin(L), 3.92 × 109 h−2 L�, 3.07 × 1011 h−1 M�, 0.258).

Following the scaling relations from Smith et al. (2017), we next
include a luminosity dependence of M0(L), α(L), and σlog10M as:

M0(L) = 101.78L−5.98 (B1)

α(L) = log10

[
(0.0983L)80.3 + 10.0

]
(B2)
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Figure B1. Luminosity function of the GAMA mocks that includes redshift
evolution of the HOD and K-correction. The black line represents the effect
of removing the mr < 19.8 requirement, keeping otherwise all galaxies up
to z = 0.5.

σlog10M = 0.0258 + 0.655

1.0 + 2.5exp
[
Mr + 21.05

] (B3)

After inspection, it is hard to reconcile this prescription with the
satellite number in the data, and we notice how the fit for M0 in
fig. 4 of Smith et al. (2017) is inaccurate at the faint end, which
otherwise best matches our observations. We improve the match
by dividing the resulting M0 by 100.0. Similarly, we also divide
Mmin by 50.0 to bring more galaxies into our selected sample and
improve the clustering agreement. The redshift evolution of the
HOD is finally obtained by multiplying the three mass parameters
M0(L), M ′

1(L), and Mmin(L) by the function fz(Mr), which we extract
from fig. 6 of Smith et al. (2017). We interpolate the value of this
function at the redshift of the host halo when assigning galaxies to
it.

The SLICS GAMA mocks do not include the hybrid
SDSS/GAMA luminosity function described in Smith et al. (2017),
and our K-correction differs from their Table 1 as well. Our approach
is instead to combine the uncertainty on the redshift evolution into
an empirical K-correction that we apply to the mocks and fit to the
K-corrected data. Modelling the correction term k(z) as:

k(z) = a0z
4 + a1z

3 + a2z
2 + a3z + a4 and mr(z) = mr + k(z),

(B4)

we find (a0, a1, a2, a3, a4) = (−9.0, 8.4, 0.8, −1.5, 0.15). This K-
correction is applied to the apparent magnitude of every galaxy as
a function of its spectroscopic redshift, which shifts higher redshift
galaxies to brighter apparent magnitude. This provides a better fit
to the data when a magnitude cut enters in the selection function.
The underlying (K-corrected) luminosity function is presented in
Fig. B1, which matches reasonably well with the results from Smith
et al. (2017, their fig. 9).

APP ENDIX C : R AY TRAC ING V ERSUS
CL U STERIN G C OORDINATES

As mentioned earlier, the SLICS mocks are based on the flat sky
multiple plane geometry (described in Section 2.2), which is an ex-
cellent approximation for current cosmic shear analyses that probe
the lensing signal out to angular scales as large as 10 deg. By con-
struction, the cosmological volume that contributes to a pixel θ in
the ith mass plane δ2D(zi

l , θ ) comes from the projection of half the
simulation box (with thickness Lbox/2 = 256.5 h−1 Mpc) along one
of the Cartesian axis. Assuming the flat sky and far-field limits, this

axis is therefore identified as the radial direction and used there-
after in the assignment of both redshifts and comoving distances for
haloes and galaxies living in the light-cones. This is no longer accu-
rate for near-field objects, or for projected quantities involving less
than five parallel planes, especially when looking at clustering of
these low-redshift lenses, and requires a correction that we describe
here. Since we know the exact 3D position of each halo and galaxy
from the simulation, we can compute the correct angular coordi-
nates of the objects (i.e. projecting radially, not along a Cartesian
axis), and store these quantities as well.

For the sake of precision, there is thus a need for two coordi-
nate systems to describe the lenses in our simulations. We define
the ‘ray-tracing’ coordinate, or θ ray−tracing, as the mass projection
coordinate. That is, all objects that contribute to the same pixel in
the mass map (or shear map) share the same θ ray−tracing coordinate.
Their true coordinate, which we refer to as the ‘clustering coor-
dinate’, or θ clustering, can be significantly different on account of
the differences in the projection, especially for lower redshift ob-
jects. This is illustrated by the left-hand panel of Fig. C1. The thin
horizontal lines represent the 18 lens planes listed in Table 2, each
subtending 10 deg and 7745 pixels in both direction. The vertical red
‘sticks’ show how volume elements are projected at their centres,
as part of the mass plane construction. These red sticks represent
the clustering coordinates, sampled at 13 angles, and clearly show
the discontinuities20 that occurs between the mass planes.

The black lines in the left-hand panel of Fig. C1 show the
θ ray−tracing coordinates of the same objects, which are continuous
at all redshifts. These coordinates are not physical, and rather serve
as a label that connects haloes with mass sheets. Note that both coor-
dinate systems coincide on the lens planes and at the very centre of
the light-cone. Their difference increases for objects that approach
the edges of the light-cone, the junction redshifts, and at lower red-
shift in general. We show in the right-hand panel of Fig. C1 the
θ clustering and θ ray−tracing coordinates of the same red sticks, but as
seen in the θ ray−tracing frame. The black curved lines from the left-
hand panel become straight lines of constant RA, while the large
differences between the two coordinate systems become even more
apparent.

We emphasize again that θ clustering corresponds to the actual po-
sition of the object in the simulation, and hence should be used for
clustering measurements such as w(ϑ), w(rp), void-finding, etc. In
contrast, θ ray−tracing traces the projection used in the making of the
mass sheets and should be used for lensing measurements (γ t, ξ±,
etc.). As an example, we show in Fig. C2, the angular correlation
function w(ϑ) of all redshift z ≡ 0.22 haloes, previously presented
in Fig. 4. For this measurement to be accurate, it is critical to have
random catalogues that properly capture the properties of the survey
in absence of clustering. We discuss this further in the context of our
light-cone geometry in Section 3.9. Shown in red is the clustering
measurement from θ clustering, i.e. at their correct positions, compared
with theoretical predictions that assume a bias of 1.0. In black is
the same measurement carried out with θ ray−tracing instead, which
shows clear unphysical features. This illustrates the importance of
using the correct column in the mocks.

20Because of these discontinuities in redshift, the full 3D correlation is bro-
ken across these boundaries, which will affect 3D clustering measurement
such as ξ (r) or w(rp). This does not prevent the application of the SLICS
to such data analyses, but might shape the data vector such as to impose
similar selection cuts in the data.
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Figure C1. Illustration of the two coordinate systems needed by the mock data. Left: the data points in each red ‘stick’ represent example of objects that share
the same θ ray−tracing coordinates, even though their θclustering coordinates differ. In the multiple lens technique, the photon trajectories descend along red sticks
that are connected by a common black line. They are then assigned to pixels with coordinate θ ray−tracing, traced by the black lines. In the far-field limit, the
red and black align. Right: the θclustering coordinate of the same red points, as seen from lines of constant θ ray−tracing. In this frame, the θ clustering coordinates
extend outside the 10 × 10 deg2 patch.

Figure C2. Same as Fig. 4, but here including the measurements from the
two coordinates described in the main text: θclustering (red) and θ ray−tracing

(blue). Clustering measurements must use the former, lensing measurements
the latter.

For example, in a mock joint-probe analysis involving cosmic
shear from the KiDS-450, galaxy–galaxy lensing from KiDS-450
combined with CMASS, and clustering of CMASS, the measure-
ment would involve:

(i) θ ray−tracing in the KiDS-450 mocks for the cosmic shear mea-
surement,

(ii) θ ray−tracing in the KiDS-450 mocks and θ ray−tracing in the
CMASS mocks for the tangential shear measurement, and

(iii) θ clustering in the CMASS mocks for the w(ϑ) measurement.

To make this easy for the user, we provide both coordinates in
our halo and galaxy catalogues. We also include simple codes to
switch between these two coordinate systems, made available with
the simulation products.

APPENDIX D : FLAT SKY APPROX IMATIO N

In this appendix, we verify the validity of the flat sky assumption in
the SLICS simulations. The 3D coordinates of the galaxies/haloes

Figure D1. Fractional error between flat sky and curved sky redshifts, for
objects at different positions on the light-cone. Objects shown with redder
lines are closer to the edges of the simulation box, where the correction is
more important. The dashed line marks the 1 per cent error.

in the simulation box are first given in Cartesian coordinates, then
transformed into angles and redshifts. In this process, the third
Cartesian axis is assumed to be equivalent to the radial direction,
which is only valid in the far-field limit. The two angles are not
affected by this approximation, but the redshift is. For example, a
galaxy located at a large angle (for example at X = Y = 5 deg)
and very close to the front of the simulation box (for example at 15
h−1 Mpc) appears at redshift z(χ = 15h−1 Mpc) = 0.005. However,
its true distance to the observer is χ = 15.11 h−1 Mpc, which is a
sub-percent effect. Moreover, only a minor fraction of objects at
very low redshifts will suffer from error larger than 1 per cent
coming from the flat sky approximation.

To show this, we populate a light-cone with a number of objects
covering all angles and redshifts present in the mocks. We then
calculate the fractional effect of the approximation on the computed
redshift at all these coordinates and show the results in Fig. D1. We
recover that only the lowest redshifts are affected by this, which
are heavily downweighted in any lensing analysis, hence conclude
that this is not an issue for the science cases targeted by the SLICS
simulations.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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