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ABSTRACT
We present the first ‘clipped’ cosmic shear measurement using data from the Kilo-Degree
Survey (KiDS-450). ‘Clipping’ transformations suppress the signal from the highest density,
non-linear regions of cosmological fields. We demonstrate that these transformations improve
constraints on S8 = σ 8(�m/0.3)0.5 when used in combination with conventional two-point
statistics. For the KiDS-450 data, we find that the combined measurements improve the
constraints on S8 by 17 per cent, compared to shear correlation functions alone. We determine
the expectation value of the clipped shear correlation function using a suite of numerical
simulations, and develop methodology to mitigate the impact of masking and shot noise.
Future improvements in numerical simulations and mass reconstruction methodology will
permit the precise calibration of clipped cosmic shear statistics such that clipping can become
a standard tool in weak-lensing analyses.

Key words: gravitational lensing: weak – cosmological parameters – surveys – cosmology:
observations.

1 IN T RO D U C T I O N

The use of two-point statistics in extracting information from cos-
mological fields has been eminently successful to date. Observations
of the cosmic microwave background (CMB) temperature and polar-
ization power spectra (Planck Collaboration VI 2018), weak-lensing
shear–shear correlation functions (Hildebrandt et al. 2017; Troxel
et al. 2017) and shear–shear/convergence power spectra (Köhlinger
et al. 2017; van Uitert et al. 2018), for example, have placed mean-
ingful constraints on the cosmological model, helping forge our
current understanding of the Universe. However, some degree of
tension has emerged between state-of-the-art results from the weak-
lensing and CMB cosmological probes. Constraints from the Kilo
Degree Survey (KiDS; Hildebrandt et al. 2017) and the Canada–
France–Hawaii Telescope Lensing Survey (CFHTLenS; Heymans
et al. 2013), whilst consistent with each other are in some tension
with those of the Planck Collaboration (Planck Collaboration VI

� E-mail: bengib@roe.ac.uk

2018). The Year 1 cosmology results from the Dark Energy Sur-
vey (Troxel et al. 2017; DES Collaboration et al. 2017) ‘bridge the
gap’ between the aforementioned studies, being broadly in agree-
ment with all, as is also the case with the Nine-Year Wilkinson
Microwave Anisotropy Probe (Hinshaw et al. 2013). On the other
hand, the cosmic shear measurements from the Deep Lens Survey
(Yoon et al. 2018) are fully consistent with Planck and are in some
tension with KiDS and CFHTLenS. The range of results on this
subject highlights the necessity for more precise and accurate cos-
mological parameter constraints, thereby affirming whether or not
the existing tension is a signature of an exotic form of dark energy
or new physics within our Universe (see e.g. Joudaki et al. 2017).
It is with regards to this necessity that we review our employment
of two-point statistics for cosmology.

When considering alternatives to two-point statistics, the com-
putational and time intensiveness of collecting and reducing ob-
servations in the era of precision cosmology must also be con-
sidered. Two-point statistics alone fail to exploit the full wealth of
information within these expensive data sets, on account of the pres-
ence of regions of non-linear gravitational collapse. Consequently,
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it is crucial that we employ all possible statistical tools to capitalize
on the available data sets.

Indeed, the suboptimality of two-point statistics has driven re-
search involving non-Gaussian statistics. Counting the abundance
of convergence peaks, known as ‘peak statistics’ (Jain & Van Waer-
beke 2000), as well as extending the cosmological analysis to third
and higher order statistics (Takada & Jain 2002; Bernardeau 2005;
Kilbinger & Schneider 2005; Semboloni et al. 2011a; Fu et al.
2014) have been shown to yield improved constraints on cosmol-
ogy. In addition, one can perform transformations to enhance the
linearity of the cosmological field in question, improving the ca-
pacity of two-point statistics to constrain cosmology. For example,
Neyrinck, Szapudi & Szalay (2009) and Seo et al. (2011) found
various logarithmic transformations are sufficient for this purpose.

In particular, ‘clipping’ transformations have been shown to be
beneficial to a number of analyses. Clipping truncates the peaks
above a given threshold within a density field, thereby suppress-
ing the contributions of high-density regions to the power spec-
trum. This methodology was successfully applied to galaxy number
counts within numerical simulations, and found to increase the range
of Fourier modes in which the power spectrum and bispectrum can
be related with tree-level perturbation theory, leading to precise
determination of the galaxy bias and the amplitude of matter per-
turbations σ 8 (Simpson et al. 2011; Simpson, Heavens & Heymans
2013). Furthermore, Simpson et al. (2016a) clip galaxy number
counts from the Galaxy and Mass Assembly Survey, to reduce the
impact of non-linear processes and galaxy bias on the analysis, al-
lowing for reliable constraints on the rate of growth of structure
in the Universe. Wilson (2016) employed clipping in estimating
the growth rate of structure from the VIMOS Public Extragalac-
tic Redshift Survey as part of a redshift-space distortion analysis.
Lombriser, Simpson & Mead (2015) also demonstrate that clipping
density fields allows for modified gravity models to more easily be
distinguished from concordance cosmology.

Clipping can also be combined with standard cosmological statis-
tics, as demonstrated by Simpson et al. (2016b, henceforth ‘S15’)
in a weak-lensing analysis. They truncate the peaks in simulated
fields of the projected surface density, i.e. the convergence, and
measure the effect on the convergence power spectrum. The objec-
tive of clipping in this context is to reduce the correlations between
the Fourier modes in the convergence power spectrum in order to
unlock previously inaccessible cosmological information. An alter-
native interpretation of the information gain in clipping, is that it is
analogous to that which is found in peak statistics analyses, since
both methods selectively target high-density regions. Via a Fisher
matrix analysis, S15 predict the constraints on the amplitude of
matter perturbations, σ 8, and the matter density parameter, �m, one
would obtain from the ‘clipped’ and the conventional ‘unclipped’
convergence power spectra. They find that clipping engenders a
small clockwise rotation of the clipped contours relative to the un-
clipped, breaking the degeneracy in the �m–σ 8 parameter space
(see fig. 2 of S15). The consequence of this is that when the con-
tours from the two power spectra are combined (taking into account
the cross-covariance of the clipped and unclipped statistics, so as to
avoid double-counting) the constraints on �m and σ 8 are increased
overall by more than a factor of three. Moreover, clipping is found
to be more constraining than the alternative logarithmic transforms
proposed by Neyrinck et al. (2009).

A crucial aspect of clipping convergence fields containing regions
of non-linear gravitational collapse, is the fact that there currently
exists no analytical prescription for the clipped statistics one will
subsequently measure. This means that numerical simulations are
necessary for establishing their cosmological dependence. This is

not a disadvantage specific to clipping, given that peak statistics
(Jain & Van Waerbeke 2000; Kacprzak et al. 2016; Martinet et al.
2018) and higher order statistics (Takada & Jain 2002; Semboloni
et al. 2011a), similarly necessitate simulations for calibration. What
is more, simulations are also required for investigating the behaviour
of standard cosmological statistics on non-linear scales (Smith et al.
2003; Takahashi et al. 2012).

In this work, we apply clipping to weak-lensing convergence
fields measured from the first 450 sq deg of r-band data from the
Kilo-Degree Survey (hereafter ‘KiDS-450’). In contrast to S15,
rather than determine the effect of clipping on the convergence
power spectrum, we investigate for the first time the properties of
the clipped two-point shear correlation functions. This is to facili-
tate a direct comparison of the clipped statistics to the conventional
shear correlation functions used in constraining cosmology in the
Hildebrandt et al. (2017) analysis. By exploring the cosmological
dependence of clipping with the Dietrich & Hartlap (2010, hereafter
‘DH10’) simulations, and by measuring the covariance of these new
statistics using the Scinet Light Cone Simulations (SLICS) from
Harnois-Déraps et al. (2018), we constrain the cosmology of the
KiDS-450 data. We also characterize how clipping is affected by
masking and shape noise, and demonstrate how these can be ac-
counted for. The format of this paper is as follows; in Section 2, we
discuss the KiDS-450 data and the N-body simulations at our dis-
posal, in Section 3, we explain our methodology for measuring the
clipped shear correlation functions and discuss calibration correc-
tions, in Section 4, we present our results, and finally we conclude
in Section 5.

2 DATA AND SI MULATI ONS

The KiDS is an European Southern Observatory (ESO) public sur-
vey which will span 1350 sq deg upon completion. KiDS observes
with the VLT Survey Telescope in the ugri bands, with science
goals pertaining to cosmology and galaxy evolution. In this paper,
we focus on the KiDS-450 data release, containing the first 450
sq deg of four-band coverage (Hildebrandt et al. 2017, hereafter
‘H17’). The KiDS-450 data are divided between five patches, G9,
G12, G15, G23, and GS (de Jong et al. 2017) and consists of lensfit
(Miller et al. 2013) shear estimates for ∼15 million galaxies. The
effective number of galaxies per square arcminute in the data is
8.53 and the galaxy ellipticities have a dispersion of σ e = 0.29 per
component. The photometric redshifts of the background galaxies
are estimated from the four-band photometry using the Bayesian
photometric redshift BPZ code from Benı́tez (2000), as described in
Hildebrandt et al. (2012). In addition, three different techniques for
calibrating the effective redshift distribution n(z) are investigated in
H17 and found to produce consistent cosmic shear results. In con-
straining the KiDS-450 cosmology in this analysis, we adopt the
method favoured in H17 – the weighted direct calibration (‘DIR’).
This follows the methodology of Lima et al. (2008), where a sub-
sample of galaxies with spectroscopic redshifts are reweighted such
that the photometric observables (e.g. colours and magnitudes) of
the reweighted sample match the larger sample of galaxies with
photometric redshifts only. The reweighted spectroscopic redshift
distribution is then taken to be representative of the whole sam-
ple. We refer the reader to Kuijken et al. (2015) for more technical
discussion of the survey.

The shapes of galaxies in KiDS-450, characterized by two ellip-
ticity components, are measured with the lensfit algorithm (Miller
et al. 2013) from the r-band data, as described in Fenech Conti
et al. (2017). Lensfit models the point spread function (PSF) at the
pixel level for individual exposures, and then measures the elliptic-
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Figure 1. The 158 cosmologies of the DH10 simulations in the �m–σ 8

plane (triangles), colour coded by S8 = σ 8(�m/0.3)0.5. The fiducial cos-
mologies of DH10 and SLICS are shown by the black star and magenta
diamond, respectively. The cyan circle and grey square designate the best
fit (�m, σ 8) determined from the KiDS-450 data in H17, and from the
TT+lowE analysis of the Planck data in Planck Collaboration VI (2018),
respectively.

ity components by fitting a PSF-convolved disc and bulge model to
each galaxy via a likelihood-based method. Weights for the shape
measurement are then derived from the likelihood surface. We cal-
ibrate the shape measurements with the additive and multiplicative
corrections detailed in appendix D of H17. The former correction
is determined empirically by averaging the observed ellipticities in
the data, whereas the latter is quantified with image simulations
resembling the KiDS-450 r band.

The absence of an analytical prescription for clipped statistics
means that in order to use clipping to constrain cosmological pa-
rameters, we require a suite of numerical simulations for various
cosmologies to determine how clipping responds to changes in said
parameters. In addition, this task requires that the covariance of our
clipped statistic is accurately measured, which necessitates a large
number of independent realizations for a given cosmology. These
requirements are at odds with one another; given the computational
expense, simulators typically must choose between producing sim-
ulations for a large range of cosmological configurations, or pro-
ducing many realizations for a single cosmology. Therefore, we are
compelled to use two different simulation suites to satisfy these two
criteria – DH10 and SLICS.

The DH10 suite (Dietrich & Hartlap 2010) consists of numerical
N-body simulations ran with the TREEPM code GADGET-2 (Springel
2005) and initial conditions generated with the Eisenstein & Hu
(1998) transfer function. There are 192 DH10 simulations span-
ning 158 different flat � cold dark matter (�CDM) cosmologies.
Each simulation has 2563 dark matter particles in a box with sides
of length 140 h−1 Mpc, evolved from z = 50 to 0. The light-cone
area per simulation is 6 × 6 sq deg, and the particle mass varies
from mp = 9.3 × 109M� for �m = 0.07, to mp = 8.2 × 1010 M�
for �m = 0.62. 35 of the simulations have the fiducial cosmo-
logical parameters given by π0 = (�m = 0.27, �� = 0.73, �b =
0.04, σ8 = 0.78, ns = 1.0, h = 0.7). The remaining 157 cosmolo-
gies, each of which comprise a single N-body simulation, differ
only in �m and σ 8, the range of which is displayed in Fig. 1. Hence,

in this work we only demonstrate the power of clipping in con-
straining S8 = σ 8(�m/0.3)0.5, which probes the �m–σ 8 parameter
space in the direction approximately perpendicular to the degener-
acy between these parameters, for a flat �CDM Universe. These
constraints are obtained with the other cosmological parameters
fixed to their fiducial values.

Catalogues of the noise-free shear components for galaxies are
produced by ray tracing through each DH10 N-body simulation.
This consists of propagating light rays through the matter distri-
bution constructed by the N-body simulation, from galaxies with
a given distribution in redshift. The matter distribution exists in
the form of mass snapshots at various redshifts; the deflection of
light rays by these mass planes determines the shear of the mock
galaxies. Five pseudo-independent shear catalogues are obtained
for a given simulation by ray-tracing through five different random
angles. Thus, in this work we are using 35 × 5 shear catalogues for
the fiducial cosmological parameters, and 1 × 5 shear catalogues
for the remaining 157 cosmologies.

In order to measure the covariance of clipped statistics, we em-
ploy the public1 SLICS of Harnois-Déraps et al. (2018). The SLICS
suite evolved 15363 particles of mass mp = 4.17 × 109 M�, from z

= 120 to 0 in a box with sides of length 505 h−1 Mpc. They were cre-
ated using the CUBEP3M N-body code (Harnois-Déraps et al. 2013),
with initial conditions selected from the Zel’dovich displacement of
particles based on a transfer function from CAMB (Lewis, Challinor
& Lasenby 2000). The SLICS consist of just three cosmologies and
are therefore unable to determine the cosmological dependence of
clipping. However, on account of there being 932 realizations of
100 deg2 light-cones for the fiducial cosmology (�m = 0.2905, ��

= 0.7095, �b = 0.0473, h = 0.6898, σ 8 = 0.826, and ns = 0.969),
SLICS are very well suited to covariance estimation. In this work
we use only the SLICS with the fiducial cosmology, and assume
that the covariance measured from these realizations is robust to
changes in cosmology. This is a commonly made approximation,
as neglecting the cosmological dependence of the covariance has
been shown to have little effect on the best-fitting value of S8 if the
fiducial cosmology is sufficiently close to that of the best fit (Eifler,
Schneider & Hartlap 2009). In our case, the SLICS cosmological
parameters are close to the best fit from the H17 analysis of the
KiDS-450 data, the fiducial cosmology of DH10, and the best fit
from Planck Collaboration VI (2018), as is shown in Fig. 1. Thus,
our approximation of a cosmology-independent covariance matrix
is reasonable given the data we are working with. A comparison of
the DH10 and SLICS specifications is presented in Table 1. Both
suites consist of dark matter particles only.

The fact that galaxies can be intrinsically aligned through grav-
itational interaction, rather than have their alignments induced by
weak gravitational lensing, poses a systematic bias to cosmological
inference (Bridle & King 2007). In order to reduce the influence of
intrinsic alignments in this work, we follow Benjamin et al. (2013)
and restrict our analysis to the 0.5–0.9 photometric redshift range
in the KiDS-450 data. Within this tomographic interval, the density
of source galaxies is 3.32 gal arcmin−2 and the galaxy ellipticities
have a dispersion of σ e = 0.28 per component. We downsample the
SLICS and DH10 mock catalogues so as to have the same source
density and redshift distribution of the data, which we take to be
the KiDS-450 DIR-calibrated redshift distribution (H17), which has
mean and standard deviation of 0.76 and 0.29, respectively, in our
chosen redshift bin. We also introduce Gaussian-distributed galaxy
ellipticities to the mocks, with standard deviation, σ e, equal to that

1SLICS N-body simulations; http://slics.roe.ac.uk.
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Table 1. A comparison of the specifications of the SLICS and DH10 suites used in this paper. These simulations are
used for estimation of the covariance, and the dependence on cosmological parameters, of the clipped shear correlation
functions, ξ

clip
± , respectively.

SLICS DH10

Science case Covariance matrices Cosmological dependence
Cosmologies 1 158
Realizations per cosmology 932 35(Fiducial)+1(Other)
Light-cone area (deg2) 100 36
Box size (Mpc/h)3 5053 1403

Particles 15363 2563

Particle mass [M�] 4.17 × 109 9.3 × 109–8.2 × 1010

of the KiDS-450 data. We do not truncate the Gaussian distribution
to ellipticites between –1 and 1, since less than 0.05 per cent of
mock galaxies are allocated ellipticities outside of this range, and
their contributions to the correlation functions are negligible. We
also verified that using ellipticities directly sampled from the distri-
bution in the data, instead of from a Gaussian, does not affect our
results. Matching the shape noise (which in this work we use to re-
fer to all factors contributing to the measured galaxy shape, bar the
shear itself) and source densities, means that the noise in the covari-
ance matrices and the clipped predictions from the mocks reflect
that of KiDS-450. The effect of baryonic physics on the shear corre-
lation functions is another source of bias in weak-lensing analyses
(Semboloni et al. 2011b), and could in principle affect clipped statis-
tics differently than the unclipped. For this first proof-of-concept
analysis however, we do not contend with baryonic effects in this
work.

3 ME T H O D O L O G Y

In this section, we describe the pipeline in which we apply clipping
transformations to the mocks and KiDS-450 data, and subsequently
measure the ‘clipped’ two-point shear correlation functions ξ

clip
± .

Measuring these statistics allows for a comparison to the conven-
tional ‘unclipped’ shear correlation functions, which are directly
calculated from the observed galaxy ellipticities in the data. We
begin with a very brief summary of the key steps in our method for
easy referral. We discuss these steps in greater detail in the sections
that follow.

(i) Our pipeline takes as input catalogues of the ellipticities and
positions of galaxies. We project these onto a Cartesian grid of
pixels with a resolution of 5 arcsec, smooth these maps with a
Gaussian filter and reconstruct the projected surface mass density,
i.e. the convergence, κ , following Kaiser & Squires (1993).

(ii) We subject these convergence maps to clipping; anywhere
the convergence exceeds a certain threshold value, we set the con-
vergence equal to that threshold.

(iii) The resulting ‘clipped’ convergence map is subtracted from
the ‘unclipped’ thereby generating a map containing the projected
surface density exceeding the threshold, and zeroes elsewhere. On
this ‘residual’ convergence map, we invert the mass reconstruc-
tion process and recover the shear corresponding to these projected
peaks.

(iv) This ‘residual’ shear is subtracted from the original shear
values yielding the ‘clipped’ shear. From the clipped shear, we cal-
culate the clipped shear correlation functions, ξ clip

± , using TREECORR

(Jarvis 2015). To measure the unclipped shear correlation func-
tions, ξ

unclip
± , we feed the catalogues of the observed ellipticities to

TREECORR directly.

(v) We repeat this process for successive SLICS realizations to
measure the covariance of the ξ

clip
± and ξ

unclip
± statistics, and for

successive DH10 realizations to determine the cosmological de-
pendence of the ξ

clip
± .

3.1 Mass reconstruction

In order to clip the densest non-linear regions from our analysis,
we first produce maps of the projected surface mass density, or
convergence, κ , using the methodology of Kaiser & Squires (1993,
‘KS93’ hereafter). In this analysis, the process of ‘mass reconstruc-
tion’ begins with the observed ellipticities, which can be written in
the complex form εobs = εobs

1 + iεobs
2 (Seitz & Schneider 1996). The

observed ellipticities have contributions from the reduced shear g,
the intrinsic ellipticity εint and the shape measurement noise η via

εobs = g + εint

1 + g∗εint
+ η , (1)

where g∗ is the complex conjugate of g. The reduced shear is re-
lated to the shear γ and the convergence κ by g = γ /(1 − κ). In
a weak-lensing analysis, we assume that the magnitudes of both
the shear and the convergence are much smaller than unity, such
that the average of the observed ellipticities 〈εobs〉 � g � γ . In this
case, it is possible to reconstruct the convergence from the observed
ellipticities via the KS93 inversion method. We begin with the gravi-
tational deflection potential �(θ). This is related to the convergence
κ for a particular source redshift and angular coordinate on the sky
θ = (θ1, θ2), via Poisson’s equation,

∇2�(θ ) = 2κ(θ ) , (2)

where �(θ) is given by the line of sight integral over the 3D matter
gravitational potential �,

�(θ ) =
∫ χs

0
dχ ′ fK(χ − χ ′)

fK(χ )fK(χ ′)
�
[
fK(χ ′)θ , χ ′] . (3)

Here, χ is the comoving radial distance, χ s is the comoving radial
distance to the source, and fK(χ ) is the comoving angular diameter
distance. The potential �(θ) is related to the shear components γi(θ )
via

γi(θ ) = Di�(θ ) , (4)

where(
D1

D2

)
= 1

2

(
∂2/∂θ1∂θ1 − ∂2/∂θ2∂θ2

2∂2/∂θ1∂θ2

)
, (5)

and ∂ denotes partial derivatives. Combining equations (2) and (4)
and taking the Fourier transform yields

γ̃i(�) = Fi(�)κ̃(�) , (6)

MNRAS 480, 5529–5549 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/4/5529/5076067 by Liverpool John M
oores U

niversity user on 22 July 2020



KiDS-450: enhanced cosmic shear with clipping 5533

where(
F1

F2

)
≡

(
(�1

2 − �2
2)/�2

2�1�2/�
2

)
, (7)

and � = (�1, �2) is the 2D Fourier conjugate of θ .
From equation (6) we see that, in principle, either γ̃1(�)/F1(�)

or γ̃2(�)/F2(�) would suffice to give an estimate of κ̃(�), which can
then be inverse-Fourier transformed to recover κ(θ ). Both F1(�)
and F2(�) vanish for particular directions however, so instead we
sum over the γ̃i(�) components weighted by Fi(�) to obtain the
convergence,

2∑
i=1

Fi(�)γ̃i(�) =
2∑

i=1

|Fi(�)|2κ̃(�) = κ̃(�) , (8)

where we have employed the fact that
∑2

i=1 |Fi(�)|2 is equal to unity
(Kaiser 1992). An inverse-Fourier transform is performed to recon-
struct the κ(θ ) map, the real part of which contains the E modes,
whereas the imaginary part contains the B modes2 (Schneider, van
Waerbeke & Mellier 2002a).

The KS93 mass reconstruction can be summarized in the follow-
ing:

(i) The shear is projected onto a Cartesian grid and smoothed
with a Gaussian filter with width σ s to reduce the impact of mask
features (which removes artefacts) on the reconstruction.

(ii) A border of zero values is added to the smoothed shear map,
increasing the dimensions by 1 deg on each side, before Fourier
transforming the field. The border serves to reduce edge effects in
the transform (Van Waerbeke et al. 2013).

(iii) κ̃(�) is computed via equation (8).
(iv) An inverse-Fourier transform is performed to reconstruct the

κ(θ) map.

The steps we take in mass reconstruction follow this recipe. How-
ever, in this analysis, we are working with real data and simulations
tailored to the data in terms of the redshift distribution, source den-
sity, and galaxy shape noise. Our observed ellipticities (see equa-
tion 1), smoothed with the Gaussian filter, are treated as an unbiased
estimator for the shear and take the place of γ in the above equa-
tions. Furthermore, the KiDS-450 data have masked regions leading
to gaps in the observed patches. The Gaussian smoothing accounts
for the number of masked pixels within the smoothing window,
to minimize the bias in the resultant smoothed ellipticity (see Van
Waerbeke et al. 2013, for more details). The effect of masking on
the clipped shear correlation functions ξ

clip
± is discussed in Sec-

tion 3.4.1. We refer to the width of the Gaussian smoothing filter as
the smoothing scale, σ s, hereafter.

The KS93 methodology has been shown to be accurate for rela-
tively small fields (�100 deg2) which may be approximated as flat
(Van Waerbeke et al. 2013). Other mass reconstruction methods do
exist; for example Seitz & Schneider (1996) generalize the KS93
technique into the lensing regime where the κ � 1 approxima-
tion no longer holds, whereas Chang et al. (2017) conduct curved-
sky mass reconstruction with a spherical harmonic formalism. The
KS93 methodology is sufficiently accurate for our purposes how-
ever, since the KiDS-450 patches, DH10 mocks, and SLICS are
well described by the flat-sky approximation, and the convergence

2Hildebrandt et al. (2017) and van Uitert et al. (2018) report significant B
modes within the KiDS-450 data but as these are at such a low level in
comparison to the E-mode signal we do not consider them in this analysis.

is sufficiently small (see Section 3.3). Future clipping analyses, es-
pecially those involving data sets with larger sky coverage, will
require these improved methodologies. Convergence maps for the
KiDS-450 patches created following KS93 are presented in Ap-
pendix C.

3.2 Clipping methodology

After the convergence field is generated, it is clipped if above a
given threshold κc according to

κclip
s (θ ) =

{
κc, if κs(θ ) ≥ κc

κs(θ ), otherwise
, (9)

where the ‘s’ subscript is used to denote fields either directly
smoothed with the Gaussian filter, or those derived from fields
which have been directly smoothed. We calculate the ‘residual’
convergence �κ s, given by

�κs(θ ) = κs(θ ) − κclip
s (θ ). (10)

The �κ s map features the projected surface density exceeding the
threshold κc, and zeroes elsewhere. We subject this map to an in-
version of the mass reconstruction process following equation (6).
This generates the ‘residual’ ellipticity maps �εs, which exhibit
the strongest signal around the positions of the peaks, and weaker
signal elsewhere. The residual ellipticities are defined on a grid;
in order to obtain �εs at the locations of the galaxies in the orig-
inal, ‘unclipped’ ellipticity catalogue, θg, we perform 2D linear
interpolation from the �εs maps. The clipped ellipticity εclip

s is the
difference between the observed (unclipped) ellipticity εobs and the
residual ellipticity �εs,

εclip
s (θg) = εobs(θg) − �εs(θg). (11)

It is inadvisable to recover the clipped ellipticity, εclip
s , by conduct-

ing inverse mass reconstruction directly on the clipped convergence
map, κclip

s . This is because κclip
s has been affected by smoothing in

all regions where the convergence is below the clipping threshold
κc (those regions with convergence above κc are set to the con-
stant threshold itself), and smoothing incurs a loss of signal. This
corresponds to ∼90 per cent of the area of κclip

s being affected by
smoothing, for the κc and smoothing scale, σ s, values we identify
in Section 3.3. In contrast, if we invert the mass reconstruction on
the �κ s, only ∼10 per cent of the area of which is smoothed, and
subtract the �εs from the unsmoothed observed ellipticities, εobs,
we minimize the impact of smoothing on our overall signal.

After computing the clipped ellipticity components via equa-
tion (11), using TREECORR (Jarvis 2015) we calculate estimators
for the clipped and unclipped angular shear correlation functions in
nine logarithmically spaced angular bins, θ , with bin centres from
0.78 to 219 arcmin. We define these estimators, within a single
tomographic bin, accordingly

ξ̂±(θ ) =
∑

ab wawb

[
εt(θg,a)εt(θg,b) ± ε×(θg,a)ε×(θg,b)

]∑
ab wawb

, (12)

where the summation is over pairs of galaxies a and b positioned at
angular coordinates θg,a/b, within an interval �θ about the angular
separation θ (Bartelmann & Schneider 2001). The εt and ε× terms
designate the tangential and cross components of the clipped ellip-
ticities (in the case of the ξ̂

clip
± estimator) or the observed ellipticities

(in the case of the unclipped estimator ξ̂
unclip
± ) measured relative to

the vector θg,a − θg,b connecting the galaxy pairs. w is the weight
ascribed to the measurement of the ellipticity components, which
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comes from the lensfit algorithm in the case of KiDS-450 (refer to
Section 2 for more details) or takes the value of unity in the case
of the mocks. We treat the observed ellipticities, a combination of
the shear and shape noise via equation (1), in the mocks and data
as unbiased estimators for the shear. Accordingly we treat ξ̂

unclip
± as

an unbiased estimator of the theoretical unclipped shear correlation
functions, ξ

unclip
± , defined in equation (13). Consequently, in this

work we follow H17 and refer to the estimators for the unclipped
shear correlation functions simply as the unclipped shear correlation
functions, and omit thênotation. There is currently no established
theoretical prediction for ξ

clip
± . Thus it is not meaningful to include

thênotation nor ‘estimator’ prefix for our measured clipped statis-
tics, and we similarly drop this nomenclature henceforth. However,
we encourage the reader not to regard the clipped statistics measured
from the mocks as unbiased estimators of the clipped measurement
made in the absence of shape noise (as we do with the unclipped
statistic). The clipped statistics we measure not only depend on the
level of shape noise, but also the clipping threshold and level of
smoothing applied in the analysis (see Section 3.3).

The theoretical unclipped shear correlation functions ξ
unclip
± are

related to the convergence power spectrum Pκ (�) via

ξ
unclip
± (θ ) = 1

2π

∫
d� � Pκ (�) J0,4(�θ ) , (13)

where the zeroth J0(�θ ) and fourth J4(�θ ) order Bessel functions
of the first kind are used for ξ

unclip
+ and ξ

unclip
− , respectively. The

convergence power spectrum Pκ (�) is in turn related to the matter
power spectrum Pδ(�) via

Pκ (�) =
∫ χH

0
dχ

q(χ )2

fK(χ )2
Pδ

(
k = [� + 1/2]

fK(χ )
, χ

)
, (14)

where χH is the comoving radial distance to the horizon and k
is the Fourier conjugate of χ . Here, we have used the flat-sky
first-order extended Limber approximation, which is sufficiently
accurate for the KiDS-450 data (see Kilbinger et al. 2017). The
lensing efficiency, q(χ ), is defined as

q(χ ) = 3H 2
0 �m

2c2

fK(χ )

a(χ )

∫ χH

χ

dχ ′ n(χ ′)
fK(χ ′ − χ )

fK(χ ′)
, (15)

where a is the scale factor, n(χ ) is the probability density of galaxies
as a function of χ , H0 is the Hubble constant, and c is the speed of
light.

Constraining the cosmology of the KiDS-450 data requires co-
variance matrices for the clipped and unclipped ξ±. We measure the
covariance of these statistics across N ∼900 independent SLICS re-
alizations. The ith and jth elements of the covariance matrices are
given by

C±(θi, θj ) =
N∑
k

(ξk
±(θi) − ξ±(θi))(ξk

±(θj ) − ξ±(θj ))

N − 1
, (16)

where ξ±(θi) refers to either the mean clipped or mean unclipped
ξ±, across N realizations each numerated by k, within the ith an-
gular separation bin, given by

∑N

k ξk
±(θi)/N . When computing the

autocovariance of the clipped (or unclipped) statistic, all correla-
tion functions in equation (16) correspond to ξ

clip
± (or ξ

unclip
± ). When

computing the cross-covariance between the clipped and unclipped,
the ξ± correspond to clipped in one bracket, and to unclipped in the
other. In order to constrain the cosmology of KiDS-450, we scale
the covariance matrices measured from SLICS by the ratio of the
areas of SLICS and KiDS-450 (Schneider et al. 2002b). We note
that this is an approximation and does not account for the survey

Figure 2. Upper: PDF of the convergence κ from 50 SLICS realizations
in magenta and a Gaussian fit in dashed blue. The percentage deviations
between the Gaussian fit and the PDF(κ) at κ = (0.005, 0.010, 0.015, 0.020),
shown by the dashed lines, are detailed in the legend. Middle: the fractional
difference between the Gaussian fit and the SLICS PDF(κ). Lower: The
PDFs of the five KiDS-450 patches and their average.

geometry, as is discussed in Troxel et al. (2018). Correlation coeffi-
cient matrices, calculated from the SLICS covariance matrices, are
present in Appendix A.

3.3 Choosing the clipping threshold and smoothing scale

In a clipping analysis, the values of the convergence threshold, κc,
at which peaks are truncated and the width of the Gaussian with
which the ellipticity maps are smoothed, i.e. the smoothing scale
σ s, are free parameters. Thus an important aspect of clipping is to
identify values which are appropriate for the data one wishes to
analyse. Suitable choices of these parameters depend on the depth
and resolution of the data. These parameters are also degenerate with
one another; for a given value of κc, a lower level of smoothing
results in more of the convergence field exceeding the clipping
threshold. Similarly, for a fixed σ s, lesser values of κc correspond to
more aggressive clipping. The interplay of these parameters means
that the optimal values for constraining cosmology are costly to
determine. Consequently, in this work we only determine values
which are well suited to the KiDS-450 data. We also investigate
the effect of different choices of the smoothing scale and clipping
threshold on the clipped correlation functions.

We first establish a clipping threshold which targets the most
non-linear regions of the field, without overclipping the linear field.
An intuitive way of doing this is to first fix the smoothing scale
and determine where the PDF of the convergence deviates from
Gaussian. However, we find that even for relatively large values
of the smoothing scale, the KiDS-450 PDF(κ) is too noisy for this
test. We therefore use the SLICS, the fiducial �m and σ 8 of which
are similar to the best-fitting values from the H17 analysis of the
KiDS-data (see Fig. 1). In Fig. 2, we compare the PDF(κ) measured
from 50 SLICS with a smoothing scale of 6.6 arcmin (upper panel),
to those from the five KiDS-450 patches (lower panel). We overplot
vertical dashed lines at κ = 0.005, 0.010, 0.015, and 0.020 and
detail the deviations between a Gaussian fit and the SLICS PDF(κ)
at these convergence values in the legend. The middle panel shows
the fractional difference between the Gaussian fit and the SLICS
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Figure 3. Unclipped (left-hand panels) and clipped (right hand panels; κc

= 0.010) convergence maps for a single 100 deg2 SLICS. For the upper two
panels, the smoothing scale, σ s, is equal to 2.2 arcmin. Comparison of these
panels shows that the features in both the clipped and unclipped convergence
maps for a noise-free field (σ e = 0) change dramatically with the inclusion
of KiDS-450 level shape noise (Gaussian distributed with width σ e = 0.28).
The lower two panels however have σ s = 6.6 arcmin. Comparison of these
panels shows that the clipped/unclipped maps change less dramatically with
the inclusion of shape noise if the smoothing scale is set to the higher level.
This suggests that using σ s = 2.2 arcmin results in the clipping of mainly
pure noise features, and that σ s = 6.6 arcmin is a more appropriate level of
smoothing for clipping the KiDS-450 cosmological signal.

PDF(κ). We find that in the range −0.005 ≤ κ ≤ 0.005, the PDF
of the SLICS convergence is well described by the Gaussian, but
deviations of a few per cent arise at κ � 0.010. At the high-end tail
of the convergence, the SLICS PDF is considerably non-Gaussian,
differing by �30 per cent. This suggests that a clipping threshold
κc � 0.010 is appropriate for isolating non-linear features of the
field.

In setting the value of σ s, one should aim to reduce the promi-
nency of peaks caused solely by noise fluctuations, but not to the
extent that we lose a significant amount of the cosmological in-
formation. A comparison of the SLICS convergence maps when
clipped at different smoothing scales, with and without intrinsic
galaxy shape noise, serves as a useful visual indicator of whether
σ s is appropriate for the data. Fig. 3 illustrates the unclipped (left-
hand column) and clipped (right-hand column) convergence fields
from a single 100 deg2 SLICS realization, with a smoothing scale of
2.2 arcmin (upper two panels) and 6.6 arcmin (lower two panels).
We chose these values of σ s, simply to illustrate the substantial
differences in the clipped convergence fields these scales facilitate.
The first and third panels have no shape noise (σ e = 0), whereas the

second and fourth panels have shape noise at the level of KiDS-450
(Gaussian distributed with mean zero and σ e = 0.28). The clipped
fields here have a convergence threshold of κc = 0.010. Comparing
the first and second panels, smoothed with σ s = 2.2 arcmin, we
see that the features within the clipped and unclipped maps change
dramatically when shape noise is introduced. The third and fourth
panels however show that the maps change less dramatically with
the inclusion of shape noise when the smoothing scale is set to 6.6
arcmin. This indicates that the higher of the two smoothing scales
is better suited to SLICS and by extension the data.

An additional test of whether the chosen (κc, σ s) combination
is suitable comes from inspection of the clipped and unclipped
correlation functions. The optimal choices for these parameters
will facilitate clipping of the non-linear regions exclusively, leaving
the linear signal untouched. In this case, the unclipped and clipped
ξ+ should converge on the larger, linear angular scales. In Fig. 4,
we present how the ξ

clip
+ measured from the SLICS are affected by

variations in the clipping threshold, smoothing scale and the galaxy
shape noise. Similar trends are seen for the ξ

clip
− statistic at higher

angular scales (we refer the reader to Section 4). The left-hand
panels in this figure display θξ+, where ξ+ is the mean unclipped (in
solid grey) or clipped (other colours) correlation function measured
from the SLICS realizations. The right-hand panels display the
various correlation functions normalized to that of the unclipped.
In calculating the error on the ratios, we take into account the
cross-covariance between the clipped and unclipped statistics. The
magenta line on all panels is the same and corresponds to κc =
0.010 and σ s = 6.6 arcmin with KiDS-450 level shape noise.

The upper panel of Fig. 4 illustrates the effect of increasing the
clipping threshold from κc = 0.005 to 0.010 to 0.015, whilst the
smoothing scale is fixed to 6.6 arcmin and the shape noise is fixed to
the KiDS-450 level. On average, 26 ± 3 per cent of the area of the
field is clipped in the case of the most aggressive clipping threshold,
κc = 0.005, and 3 ± 1 per cent is clipped in the case of the least
aggressive, κc = 0.015. We see that when adopting κc = 0.005,
the clipped signal exhibits a large reduction in power at angular
scales around 6 arcmin and a failure to converge with the unclipped
at the larger angular scales. The power deprecation is caused by
overly aggressive clipping; subtracting too much of the shear signal
engenders anticorrelations in the ξ

clip
+ . The excess power at large θ

is caused by the smoothing transferring small-scale power to larger
scales. This effect is illustrated by considering the convolution of
a single δ-function with a Gaussian smoothing kernel; the signal is
spread by an extent given by the width of the Gaussian. This panel
suggests that κc = 0.010 and 0.015 are more appropriate thresholds
as they better recover the large-scale behaviour of the ξ

unclip
+ .

The variations in the ξ
clip
+ when the smoothing scale is altered,

whilst κc is fixed to 0.010 and the shape noise is fixed to KiDS-450
level, are shown in the middle panel of Fig. 4. We note the lack of
convergence between the unclipped and the clipped signal with σ s

= 4.4 arcmin, indicating overclipping of the convergence field. We
also see that the angular scale at which the loss of power in the ξ

clip
+

is maximized translates right with increasing smoothing scale. This
is due to the loss of signal incurred from smoothing over features
of this angular size. The upper and middle panels of Fig. 4 illustrate
the importance of identifying a clipping threshold and smoothing
scale which are high enough to diminish the clipping of pure noise
features, but low enough to avoid smoothing out the cosmological
content in the clipped statistic.

The lower panel of Fig. 4 illustrates the sensitivity of the ξ
clip
+

to the shape noise, whilst κc and σ s are fixed to 0.010 and 6.6
arcmin, respectively. Where σ e > 0 the shape noise is sampled
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Figure 4. The mean unclipped (solid grey) and clipped (other solid colours) ξ+ correlation functions measured from the SLICS realizations. The dashed
black line is the theoretical unclipped prediction from equation (13). The left-hand panels display θξ+, the right-hand panels the measurements normalized
to the unclipped statistic from SLICS. The annotation in the lower right hand corner of each panel specifies which of the parameters are held constant in the
calculations. The upper panel is concerned with variations in the clipping threshold, κc, with fixed smoothing scale, σ s, and shape noise characteristics, σ e.
The middle and lower panels present variations in the smoothing scale and shape noise, respectively. The magenta line in all cases depicts the measurement for
the fiducial parameters: κc = 0.010, σ s = 6.6 arcmin, and σ e = 0.28. The error bars are the error on the mean measurement.

from a Gaussian distribution with width equal to σ e, whereas σ e

= 0 refers to a measurement made in the absence of shape noise.
Shape noise sampled from the broader Gaussian with σ e = 0.4,
causes greater proportions of the convergence map to exceed the
clipping threshold and hence we see a greater reduction in the power
after clipping. This demonstrates the importance of matching the
shape noise properties of galaxies in the mocks to the data in order
to get a simulated model of the clipped correlation functions. We
also note that we see only a small reduction in the power in the
shape-noise-free clipped relative to the unclipped, suggesting that
most of the clipped content is shape noise rather than non-linear
regions. Nevertheless, we find that this small amount of clipping of
non-linear cosmological signal, is sufficient for informing the pa-
rameter inference with some independent information, as evidenced
by the constraints obtained in Section 4 and the cross-correlation
coefficient matrices in Appendix A.

Having quantified the effect of different choices of the clipping
threshold and smoothing scale with the SLICS, in clipping the
KiDS-450 data we adopt the most aggressive clipping parameters
that satisfy our requirement that the clipped and unclipped ξ+ con-
verge within 1σ mean, where σ mean is the error on the mean mea-
surement, on large angular scales. This is in order to maximize the
difference between the clipped and unclipped statistics and thus en-
hance the cosmological parameter constraints. Henceforth, we set
κc = 0.010 and σ s = 6.6 arcmin, and conduct clipping with these
parameters on the KiDS-450 data and all simulations.

3.4 Calibration corrections

In this section, we discuss various calibration corrections which are
necessary in order to use clipping to constrain cosmological param-

eters in this proof-of-concept study. These corrections, necessitated
by the imperfect mass reconstruction due to the presence of masks,
as well as the finite box size and low-level bias in the simulations,
are not intrinsic to the clipping methodology.

3.4.1 Mask bias

Real data are subjected to masking, which complicates all methods
seeking to transform the density field. This is because it is unclear
how to interpret regions where the density field is unknown. In order
to investigate how masking affects the clipped correlation functions,
we take a 5 × 10 deg2 section of the G9 mask (H17) and concatenate
it with a copy of itself, in order to fit the 10 × 10 deg2 field of view
of SLICS. We apply the resultant mask to each of the realizations.

As expected, the change in the ξ
unclip
± from SLICS when a mask is

applied is small, in line with the sampling variance on the measure-
ment. However, we find considerable deviations between the mea-
surements of ξ

clip
± from the masked and unmasked SLICS. Fig. 5

shows the fractional difference between the masked and unmasked
clipped and unclipped ξ± measured from the SLICS with κc = 0.010
and smoothing scale of 6.6 arcmin. The fractional difference for the
ξ

unclip
± (in grey) differs from zero by less than 5 per cent across

all angular scales whereas that of the clipped (magenta) features
considerable deviations at angular scales below 20 arcmin. Devi-
ations of similar magnitude and shape arise when we use masks
which have different geometry but reduce the field area by simi-
lar amounts. We refer to the influence which the mask has on the
clipped measurements as the mask bias.

The mask bias arises from the way we handle masks and edge
effects in mass reconstruction. We follow the methodology of Van
Waerbeke et al. (2013) by setting the convergence to zero in regions

MNRAS 480, 5529–5549 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/480/4/5529/5076067 by Liverpool John M
oores U

niversity user on 22 July 2020



KiDS-450: enhanced cosmic shear with clipping 5537

Figure 5. The effect of the mask bias for the clipped and unclipped ξ+

(upper) and ξ− (lower) from SLICS. The grey curve shows the fractional
difference between the masked and the unmasked ξ

unclip
± – the fact that

this curve has a 5 per cent consistency with zero across all angular scales
illustrates that the ξ

unclip
± is fairly unaffected by masking. The magenta

curve shows the fractional difference between the masked and unmasked
ξ

clip
± – the significant deviation from zero illustrates the biasing caused by

the mask. The orange curve displays the fractional difference between the
masked ξ

clip
± , once corrected for the bias with 100 noise realizations via the

methodology discussed in the text, and the unmasked ξ
clip
± . The correction

reduces the mask bias to�5 per cent in the case of the ξ
clip
+ ; the ξ

clip
− however

still suffers residual mask bias at a level of ∼10 per cent between 20 and 50
arcmin after we employ our masking correction. The clipped measurements
were made with κc = 0.010 and σ s =6.6 arcmin, and the error bars are
measured from the SLICS realizations.

where more than 50 per cent of the volume of the Gaussian smooth-
ing window is centred on masked pixels. Where masked regions
coincide with high convergence regions, this process causes the
convergence surrounding the masked regions to be underestimated,
and the overall power in the ξ

clip
± statistics to be diminished. This

does not affect the ξ
unclip
± since no mass reconstruction is performed

in arriving at these measurements. This issue is not a problem
intrinsic to clipping, so much as it is a general issue with mass
reconstruction methodology in the presence of masks. This is an
active topic of research (see e.g. VanderPlas et al. 2012; Liu et al.
2014; Jullo et al. 2014; Chang et al. 2017) and rigorously solving
this problem is beyond the scope of this paper. We instead opt to
numerically calibrate and correct for the effect of the mask on our
clipped statistics.

We find that for κc = 0.010 and σ s = 6.6 arcmin, mask bias
is negligible in the absence of galaxy shape noise. Consequently,
we assume that for our chosen clipping threshold and smoothing
scale, the mask bias is dependent on the level of shape noise and
the mask geometry, and independent of the cosmology. This is a
reasonable assumption given the statistical power of KiDS-450.
Our assumption prompts us to investigate the effect of the mask on
fields consisting of pure galaxy shape noise and zero lensing. We
model the mask bias correction to the clipped correlation function
as

mask bias = ξ±mask, noise − ξ±no-mask, noise , (17)

where ξ±mask, noise and ξ±no-mask, noise are the average measurements
from fields of pure Gaussian shape noise, with mean zero and σ e

= 0.28, which are masked/unmasked, respectively. By subtracting
the mask bias correction from the clipped correlation functions

calculated with a mask applied, we find that the influence of the
mask can be mostly corrected for.

Fig. 5 displays the ξ
clip
± corrected for the mask bias (modelled in

equation 17), using 100 noise fields, in orange. The mask applied
here is that of the G9 patch reformatted to fit the SLICS light-cone,
but we verify that we obtain the same results for the corrected
ξ

clip
± if we apply a different mask to the SLICS and recompute

the correction specific to said mask. We find that the corrected
ξ

clip
+ is consistent with the measurement made in the absence of

masking to within 5 per cent. Although the corrected ξ
clip
− is much

closer to the unmasked than the masked measurement, we find that
the mask bias remains present at a ∼10 per cent level at angular
scales of ∼30 arcmin. A larger number of noise realizations do not
reduce the mask bias further, implying that a more sophisticated
treatment of the masks is critical if clipping is to be used in future
cosmological analyses. The residual mask bias affecting the ξ

clip
−

measurement, combined with the fact that ξ unclip
− is the least powerful

shear correlation function in terms of constraining cosmological
parameters, motivates us to continue in this analysis using the ξ

clip
+

and ξ
unclip
+ statistics only.

We proceed to compute and correct the mask bias for each of
the KiDS-450 patches individually. The corrections for each of the
patches are similar, which is expected given the masks cause a
similar reduction in effective area per patch. All clipped correlation
functions from KiDS-450, presented in this paper and used in the
likelihood analysis in Section 4, have been corrected for mask bias,
whereas all those from the simulations were computed without
masks applied. As this is a proof of concept, we do not propagate the
error on the mask bias through to the cosmological constraints with
KiDS-450, as we want to see the improvement obtained through
clipping in a scenario where the mask bias is under control.

3.4.2 Finite box effects

The DH10 simulations span a broad range in the �m-σ 8 parameter
space at the cost of having a small number of realizations per cos-
mology and a small box size relative to the SLICS (see Fig. 1 and
Table 1 for details). In simulations, the finite size of the box means
that the matter power spectrum Pδ(k, χ ), appearing in equation (14),
is limited by two scales: kmin = 2π /Lbox, where Lbox is the size of
the simulation box, and kmax = 2π /Lres, where Lres is the smallest
scale which can be resolved in the simulation. The missing modes
with k < kmin cause the unclipped shear correlation functions ex-
pressed in equation (13) to lose power at large angular scales (see
e.g. Harnois-Déraps & van Waerbeke 2015). Similarly, the missing
modes with k > kmax engender a loss of power at small θ . The ef-
fect of the resolution of DH10 is not prominent at the angular scales
probed by our measured shear correlation functions, as is evidenced
by the consistency between the theoretical and mock ξ

unclip
+ at an-

gular scales <10 arcmin, shown in Fig. 6. On the other hand, the k
modes absent due to the box size do cause the DH10 ξ

unclip
+ to be

underestimated on angular scales >10 arcmin. We therefore need
to correct for the effect of the finite box in order to constrain the
cosmology of the real Universe using the DH10 ξ

clip
+ measurements.

We obtain cosmology- and angular-scale-dependent corrections
for the finite box effect on ξ

unclip
+ by measuring the difference

between the theoretical prediction from equation (13) in a non-
truncated box, and the prediction within a box of size Lbox. For
these predictions, we use the NICAEA code from Kilbinger et al.
(2009) with the HALOFIT model from Smith et al. (2003), since it
is a better match to the DH10 ξ

unclip
+ than that of Takahashi et al.
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Figure 6. Upper: the noise-free ξ
unclip
+ measured for the fiducial cosmology

of the DH10 simulations (data points), the theoretical prediction from a
non-truncated box (dark blue; equation 13), and the theoretical prediction
from a truncated box of size Lbox = 250 h−1Mpc (magenta). The error bars
on the data points come from the dispersion across the 175 realizations
(35 simulations × 5 ray-tracing angles) for this cosmology. The difference
between the dark blue and magenta lines is the finite box correction we
apply to the DH10 measurement. Lower: the fractional difference between
the theoretical ξ

unclip
+ predictions and the DH10 measurement.

(2012). The correction for the loss of power at large angular sep-
arations, due to the finite box, is robust to the choice of HALOFIT

model however, since Smith et al. (2003) and Takahashi et al. (2012)
converge at these scales.

The obvious choice for the size of the truncated box used in cali-
brating the finite box effect is that in which the DH10 were created,
140 h−1 Mpc. The theoretical ξ

unclip
+ from a box of this size how-

ever overestimates the loss of power at large θ seen in DH10. This
is because the simulations are constructed as a light-cone through
the box, resulting in a smooth decay in the power, in contrast to
a sharp cut-off at the Lbox scale. We follow Sellentin, Heymans &
Harnois-Déraps (2017), by modelling the finite box effect with an
effective cutoff, performing a χ2 fitting of the theoretical ξ

unclip
+ for

different values of the box size to the shape-noise-free mean mea-
surement from the fiducial DH10 cosmology. We fit the box size for
the fiducial cosmology only, on account of there being the largest
number of realizations and thus the lowest sampling variance overall
(though we stress that the corrections we apply are specific to each
cosmology). We use the covariance matrix measured from the 175
realizations for the fiducial DH10 cosmology, rather than the one
from SLICS, since the former will better describe the uncertainty on
DH10. Furthermore, we use only the five angular separation points
>10 arcmin in the fitting as we are most interested in finding the
effective box size that best describes the large-scale behaviour of
the mocks where the effect of the finite box size becomes relevant.
We find that the ξ

unclip
+ for the fiducial cosmology of DH10 is best

described by the prediction in an effective box size of 250 h−1 Mpc.
This prediction, shown by the magenta curve in Fig. 6, fits the DH10
measurement well, with a χ2 of 4.99 for the 4 degrees of freedom.
The correction for the finite box size for this cosmology is the dif-
ference between the theoretical prediction from the non-truncated
box (shown in dark blue), and the truncated box prediction.

The lack of a theoretical prediction for ξ
clip
+ limits our inference

of the finite box effect for this statistic. We assume therefore that the

loss of power in the clipped correlation functions due to the finite
box effect is equal to that of the unclipped, and so the calibration
correction we derive for the unclipped correlation functions per
cosmology, is applicable also to the clipped. This assumption is
likely to be valid since the effect of the finite box is most prominent
on scales where ξ

unclip
+ and ξ

clip
+ converge. We also test how much

the marginalized means and 68 per cent confidence intervals on
the cosmological parameters change when the finite box correction
is included/omitted and find that the effect is small and does not
change our conclusions. This approach is suitable for this proof-of-
concept analysis and the correction can easily be circumvented in
the future with the use of larger simulations such as the Mira Titan
suite (Heitmann et al. 2016).

We compute individual calibration corrections for each of the
158 DH10 cosmologies, using the box size fit to the fiducial cos-
mology. We then additively scale up the whole angular separation
range of the clipped and unclipped ξ+ from the simulations (the
small scales remaining practically unchanged by the calibration).
An additive, rather than a multiplicative, correction is appropriate
for accounting for the missing k modes in the integration over Pδ(k,
χ ) in equation (14). The correction we apply also has the benefit of
not inflating the noise in the DH10 predictions.

The SLICS are also affected by the limitations of a finite box,
though the box size is larger than that of DH10, engendering a loss
of power at the largest angular scales that is of order 10–30per cent
(we refer the reader to the ratio of the theoretical and SLICS ξ

unclip
+

shown in Fig. 4). In genera,l the covariance that we calculate from
SLICS will be affected by the loss of power in the correlation
functions, but since the correction for the finite box in DH10 has a
very small impact on the cosmological parameter constraints, and
this effect is much smaller for SLICS, we therefore treat the SLICS
covariance matrices as unbiased by the box size. We note however
that returning to the effect of the finite box on covariance estimation
is an important topic for future work.

3.4.3 Cosmological bias

In Fig. 6, we show that the fiducial DH10 cosmology reproduces the
expected ξ

unclip
+ , modulo a small correction for the finite box effect

on large scales. In the upper panel of Fig. 7, we compare noise-free
measurements of ξ

unclip
+ , corrected for the box size, with theoretical

predictions (equation 13), now for the full range of 158 cosmologies
spanned by the DH10 simulations. Binning the relative difference
by the input cosmology S8 (see colour bar), we see a trend where
the low S8 simulations tend to underestimate ξ

unclip
+ by ∼7 per cent

between angular separations of 1 and 110 arcmin, whereas high S8

simulations overestimate by ∼10 per cent in this range. The cause of
this cosmological bias, which is present irrespective of whether the
finite box correction is applied, is currently unknown. Uncovering
its origin is part of an ongoing analysis where we are building a next
generation of varying cosmology lensing simulations. However, the
bias is less than the level of uncertainty due to shot noise and
sampling variation in the DH10 ξ

clip
+ predictions (see Section 3.5)

that increases from 5 to ∼100 per cent over the full angular range,
shown by the grey shaded region in the lower panel. It is there-
fore accounted for, to some extent, in our clipped analysis that in-
cludes an error budget to account for this level of uncertainty in the
DH10 predictions. Nevertheless, we employ a correction scheme
to ensure that this systematic does not artificially contribute to
the improvements yielded by the combined clipped-and-unclipped
analysis.
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Figure 7. Upper panel: the fractional difference between the 158 shape-noise-free DH10 ξ
unclip
+ measurements and the theoretical predictions (equation 13)

binned in terms of S8 = σ 8(�m/0.3)0.5, with the colours designating the mean S8 in each bin. We see that the low S8 measurements underestimate ξ
unclip
+ ,

whereas the high S8 measurements overestimate. Lower panel: the same measurements but corrected for the cosmological bias via the methodology discussed
in the text. Any remaining bias can be compared to the uncertainty on the clipped predictions (shaded grey) that is included in our analysis when using the
DH10 simulations.

We determine a cosmological bias correction by averaging the
relative difference between the shape-noise-free DH10 and the-
oretical ξ

unclip
+ between 1 and 60 arcmin, where the bias varies

slowly, in each of the five S8 bins shown in Fig. 7. This produces
a smooth mean-bias function which monotonically increases from
−5 per cent in the lowest S8 bin to +8 per cent in the highest. We
obtain the mean bias for each of the 158 DH10 cosmologies by
linearly interpolating/extrapolating from this function for the simu-
lation S8 values. The corrected ξ

unclip
+ is obtained by multiplicatively

scaling the DH10 measurements by 1/[1 + b(S8)], where b(S8) is
the mean-bias corresponding to the S8 value of a given simulation.
The relative differences between the corrected DH10 ξ

unclip
+ and the

theoretical measurements are shown in the lower panel of Fig. 7 for
the five S8 bins, and can be compared to the uncertainty included in
the clipped predictions ξ

clip
+ (shaded grey), which is incorporated in

our cosmological parameter constraints.
As was the case with the finite box effect (Section 3.4.2), it is

not possible to ascertain the extent to which the clipped predictions
are affected by the cosmological bias in DH10, owing to the lack
of a theoretical clipped statistic. Hence we again assume that the
ξ

clip
+ is biased in the same way as the corresponding ξ

unclip
+ measure-

ment. We find that our conclusions are not significantly changed
however if the cosmological bias is unaccounted for; the combined
clipped-and-unclipped analysis increases the constraining power by
20 per cent, instead of 15 per cent when the bias is corrected. We
note that this bias was unaccounted for in the peak statistics anal-
yses of DH10, Kacprzak et al. (2016), and Martinet et al. (2018),
and their results will likely be affected.

3.5 Cosmological dependence of clipping

Although there is a large number of shear catalogues for the fidu-
cial DH10 cosmology (35 independent simulations × 5 pseudo-
independent catalogues corresponding to five different ray-tracing
angles), there exist only five catalogues for the remaining 157 cos-
mologies. The average ξ

clip
± , measured across each set of non-

fiducial DH10 cosmologies, is therefore more significantly im-
pacted by shot noise in comparison to the fiducial set. In the case
of the unclipped correlation functions, one can simply turn off the
noisy galaxy ellipticities. However, as is discussed in Section 3.3,

we find that the clipped correlation functions are critically depen-
dent on the shape noise. This necessitates the inclusion of shape
noise such that the noise properties of the mocks match the data.

In order to reduce the impact of the shot noise whilst still includ-
ing the effects of the galaxy shape noise, we determine the clipped
correlation functions from DH10 with different realizations of the
shape noise. We find that averaging ξ

clip
+ across 75 or more noise

realizations is sufficient for the measurement from each of the in-
dividual catalogues of the fiducial DH10 cosmology to stabilize.
This averages away any bias in the measurement caused by a single
realization of the shape noise. We proceed to compute 75 noise real-
izations per catalogue for all of the DH10 cosmologies; the ξ

clip
+ for

each cosmology appearing in the likelihood analysis is the average
over these. The remaining source of noise in the DH10 mocks is
then the sampling variance across different catalogues of a given
cosmology. In order to include this source of uncertainty in our like-
lihood analysis, we measure the covariance across the 175 clipped
and unclipped ξ+ from the fiducial DH10 cosmology, each of which
is averaged across 75 noise realizations, via equation (16). These
covariance matrices, which are at the level of 5 per cent in the first
angular separation bin (0.8 arcmin), increasing to ∼100 per cent
in the last bin (220 arcmin; see Fig. 7), encompass our uncertainty
on the model, both in terms of sampling variance and cosmological
bias (see Section 3.4.3). We add this error in quadrature to the error
measured from the SLICS which describes the uncertainty in the
data itself. This is discussed in more detail in Section 4.1.

In the upper panel of Fig. 8 we present the clipped (upper), un-
clipped (middle), and the ratio (lower) for all of the DH10 cosmolo-
gies, each of which is averaged over the 75 realizations of the shape
noise, with κc = 0.010 and σ s = 6.6 arcmin. All measurements
have been corrected for the finite box effect and the cosmological
bias (Sections 3.4.2 and 3.4.3). In general, the power in the ξ

clip
+

increases with S8 in a similar capacity to the ξ
unclip
+ . The prominent

reduction in power at angular scales ∼5 arcmin is also a common
feature for all of the cosmologies. We observe a number of the low
S8 cosmologies with small or negative ratios at small angular sepa-
rations. This effect is not caused by these cosmologies experiencing
a greater degree of clipping; indeed we see that in general less of
the field is clipped for lower S8 cosmologies as expected. Rather,
this is the result of these fields being dominated by shape noise.
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Figure 8. Upper panels: θξ
clip
+ , θξ

unclip
+ , and the ratio for all of the DH10

cosmologies, each of which is averaged over 75 shape noise realizations,
colour-coded by S8. The clipping threshold and smoothing scale are κc

= 0.010 and σ s = 6.6 arcmin respectively, selected via the methodology
in Section 3.3. The low clipped-to-unclipped ratios seen at <10 arcmin
for low S8 cosmologies are brought about by clipping shape noise only.
Lower panels: the same measurements but with zero shape noise. The low
S8 cosmologies are not subject to clipping in this case, and the clipped and
unclipped ξ+ converge at all angular scales. All measurements have been
corrected for the finite box effect and cosmological bias (see Sections 3.4.2
and 3.4.3).

Smoothing these fields correlates the shape noise, and clipping then
leads to a reduction in power and even anticorrelations to be seen
in the ξ

clip
+ for these low S8 cosmologies. This is not observed in

the higher S8 measurements which have higher signal to noise, and
consequently maintain larger power in the correlations throughout
the clipping pipeline. In the case of the low S8 cosmologies, smaller
values of σ s and κc would have been more suitable for the clipped
analysis.

The lower panel of Fig. 8 shows these measurements in the ab-
sence of shape noise, to verify that in this case the low S8 cosmolo-
gies experience no clipping, and the ξ

clip
+ and ξ

unclip
+ converge at all

scales. Intuitively, we see lower clipped-to-unclipped ratios as S8

increases, due to the greater degree of clipping of the cosmological
signal. As with the shape-noise-free ξ

clip
+ from SLICS presented in

Section 3.3, we see once again that clipping the non-linear signal
causes only a small change in the correlation functions relative to the
unclipped, but this small effect is ample for considerably informing
the parameter inference (see Section 4). This highlights the impor-
tance of selecting a smoothing scale and clipping threshold which
are well suited to the properties of the data, in order to clip the cos-

mological signal rather than just the noise. One need not alter κc and
σ s for our analysis however; the cosmologies in the extreme S8 tail,
are flagged as ill-fitting cosmologies to the data in our likelihood
analysis, by virtue of the low power correlations/anticorrelations
brought about by clipping noise only.

4 R ESULTS

In Fig. 9, we present the ξ
clip
± measured from KiDS-450 and SLICS

produced with a clipping threshold of κc = 0.010 and smoothing
scale σ s = 6.6 arcmin (see Section 3.3). The left-hand panels of this
figure display θξ±, the right displays the measurements normalized
to the unclipped. The error bars come from the SLICS covariance
(rescaled to the effective area of KiDS-450 in the case of the data),
and we include the cross-covariance between the clipped and un-
clipped in the error on the ratios. We see similar trends in the clipped
measurements between the mock and the data, which is expected
given that SLICS are tailored to reflect KiDS-450.

4.1 Likelihood analysis

We proceed to the likelihood analysis to constrain S8 =
σ 8(�m/0.3)0.5, with the other parameters fixed to the DH10 fidu-
cial values, �b = 0.04, ns = 1.0, and h = 0.7. We use only the
clipped and unclipped ξ+, omitting the ξ− for the reasons argued
in Section 3.4.1, and all nine θ -bins, logarithmically spaced from
∼0.8 to ∼220 arcmin. The products required to constrain these
cosmological parameters are the clipped and unclipped auto- and
cross-covariance matrices from SLICS, which describe the uncer-
tainty on the data, those measured from the fiducial cosmology
of DH10, which describe the uncertainty on the predictions them-
selves, and the ξ

clip
+ predictions from DH10. Rather than use the

ξ
unclip
+ from DH10 in the likelihood analysis, we use the more accu-

rate theoretical predictions (see equation 13) evaluated at the DH10
cosmologies, from NICAEA, which are free of the noise and low-level
cosmological bias (Section 3.4.3) present in the simulations. When
constraining the cosmology of a test data set from DH10 of known
cosmology, we use the HALOFIT model from Smith et al. (2003),
as this matches these simulations more closely than the HALOFIT

model from Takahashi et al. (2012). However, when constraining
the cosmology of KiDS-450 we use the latter model, since it better
describes the ξ

unclip
+ on small, non-linear angular scales. We find that

the combined clipped-and-unclipped analyses improve cosmologi-
cal parameter constraints over the unclipped alone, irrespective of
whether we use the simulated or theoretical ξ unclip

+ . This is discussed
further in Appendix B1. We also find that the combined constraints
are an improvement upon the unclipped irrespective of which θ -
scales are used in the likelihood analysis. The improvements do
however tend to zero when the angular scales are restricted to the
range where the clipped and unclipped converge.

The Bayesian posterior probability distribution for a particular
set of cosmological parameters π given a data vector d is given by

p(π |d) = L(d|π)p(π)

E
, (18)

where L(d|π) is the likelihood, p(π) is the prior probability of
the cosmological parameter configuration π , and E is the evidence,
which normalizes the integral of the posterior over all possible
values of π to unity. We adopt a wide tophat prior over π which
goes to zero where the likelihood becomes very small. Hence, in
this case the posterior probability is simply proportional to the
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Figure 9. The clipped and unclipped ξ+ (upper) and ξ− (lower) for KiDS-450 (data points) relative to those from the fiducial cosmology of SLICS. The
left-hand panels display θξ±, and the right-hand panels the ratio of the clipped and unclipped measurements. The errors plotted for SLICS are that of the mean
measurement. The error bars on KiDS-450 are equal to those of SLICS scaled by the ratio of the effective unmasked areas. The mock and the data were clipped
with the fiducial parameters κc = 0.010 and σ s = 6.6 arcmin.

likelihood given by

L(d|π ) ∝ exp

(
−1

2
[d − m(π)]ᵀ �−1 [d − m(π)]

)
, (19)

where the model prediction m(π) represents either the theoreti-
cal ξ

unclip
+ from equation (13), or the ξ

clip
+ from DH10. The data

vector d of course takes the form of the clipped and unclipped
ξ+ from the data. � is the true covariance matrix describing the
uncertainties affecting statistical inference. When computing the
combined clipped-and-unclipped constraints, � is built out of the
autocovariance matrices for the unclipped and clipped ξ+, as well
as the cross-covariance between them. Typically, uncertainties arise
from the sampling variance in the data; here, we approximate this
with the covariance matrix, Cdata, measured from the SLICS and
rescaled to the effective area of the data. However, in this analysis,
we also have uncertainty on the clipped model predictions owing
to the noise in the DH10 simulations. We incorporate these two
independent sources of error by assuming � � C = Cdata + Cmodel,
where Cmodel describes the covariance of the predictions m(π). The
clipped autocovariance component of Cmodel is measured across the
various noise realizsations for each of the catalogues for the fiducial
DH10 cosmology, as is discussed in Section 3.5. Using the theo-
retical predictions from equation (13) for ξ

unclip
+ , which are free of

noise, causes the unclipped autocovariance, as well as the clipped-
unclipped cross-covariance components within Cmodel to be zero. If
we were to use the DH10 unclipped predictions instead, these ele-
ments are non-zero, and are again measured from these mocks (see
Appendix B1). In this case, comparison of the diagonal elements of
the clipped and unclipped parts of Cdata and Cmodel, reveals that Cdata,
and hence the survey size of KiDS-450, is the dominant source of
uncertainty, by a factor of ∼20 in the lowest angular separation bin,
decreasing to ∼2 in the largest bin.

Although the approximated covariance, C, is assumed to be an
unbiased estimate of the true covariance, �, since it is calculated
from simulations featuring noise, its inverse, C−1, is a biased es-

timate of �−1 which appears in equation (19). This means that
one cannot readily substitute C−1 into this expression. Hartlap, Si-
mon & Schneider (2007) advocate a correction whereby the inverse
covariance is rescaled3 according to,

Ĉ−1 = N − D − 2

N − 2
C−1. (20)

Here, N is the number of simulations employed in estimating the
covariance matrix C containing D × D elements. In our analysis, C
is the summation of Cdata and Cmodel, each of which have different
Hartlap correction factors. This complicates efforts to obtain an
unbiased estimate of the inverse covariance. However, the number
of realizations, N, used to calculate the two matrices (906 for the
data4 and 175 for the clipped model) greatly exceeds D, the number
of θ bins in our correlation functions, (equal to 9 in the case of the
separate clipped and unclipped analyses, and 18 for the combined).
Thus, Cdata and Cmodel are sufficiently well estimated for us to safely
neglect the Hartlap correction in our likelihood analysis.

Our cosmological constraints derive from an evaluation on a fine
grid within the parameter space. In the case of the clipped analysis,
we obtain 2D likelihood surfaces by interpolating from the DH10
cosmologies onto �m–σ 8 and �m–S8 grids. Our 1D constraints on S8

are then obtained by marginalizing in the �m–S8 space. Although
we have a theoretical prescription for the ξ

unclip
+ as a function of

cosmology (equations 13 and 14), we chose to also interpolate the
theoretical unclipped model from the DH10 cosmologies in order

3Although see Sellentin & Heavens (2016) for a more rigorous correction
scheme.
4After our clipping pipeline was run on these 906 SLICS realizations, 26
more were added to the ensemble presented in Harnois-Déraps et al. (2018).
Given the negligible impact this would have on our analysis, we did not
include them.
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to facilitate a direct comparison between the clipped and unclipped
results.

An open question is whether this interpolation should be per-
formed at the level of the clipped and unclipped ξ+ or at the level
of the likelihoods. If one interpolates the model, the cosmological
parameter constraints are dependent on the square of any systematic
bias which could potentially reside in the interpolation, whereas the
dependence is only linear if one interpolates the likelihoods. We try
both methods and find that extrapolating the likelihoods outside of
the range of the DH10 cosmologies, is more reliable than extrapo-
lating the model. Thus in this section, we present the results having
interpolated the DH10 likelihoods. We demonstrate in Appendix B2
however, that overall our conclusions are unchanged for a range of
different interpolation schemes. We follow Martinet et al. (2018)
and interpolate from the DH10 cosmologies using radial basis func-
tions (RBFs), employing the scipy.interpolate.Rbf PYTHON function
set to the multiquadratic model.5 Whereas the unclipped predic-
tions are noise-less and come from theory, the clipped predictions,
from DH10 have added uncertainty. Consequently, the interpolated
clipped and combined likelihoods are fairly noisy, featuring spuri-
ous spikes which fracture the 68 per cent and 95 per cent clipped
and combined contours. We apply a small amount of smoothing
in the interpolation to reduce this effect and obtain cohesive con-
tours. So that the clipped and combined contours can be directly
compared to the unclipped, we apply the same level of smoothing
when interpolating the unclipped predictions also. We verify with
the unclipped statistic that the interpolation does not considerably
affect the recovered cosmology relative to a standard grid-based
likelihood method without interpolation.

4.2 Cosmological constraints

4.2.1 DH10 constraints

Before constraining the cosmology of the KiDS-450 data, we in-
vestigate the power of combining the clipped and unclipped ξ+

statistics for a case where the cosmology is already known. Since
we only have clipped measurements at the cosmologies of the var-
ious simulations at our disposal, the natural choice for the ‘data’
in this test is the clipped and unclipped ξ+ corresponding to the
fiducial DH10 cosmology. Specifically, we take a subset of the
simulations with this cosmology spanning 360 deg2, the unmasked
area of KiDS-450, as the data. We also omit the ξ

clip
+ and ξ

unclip
+

with the fiducial cosmology from the predictions, such that there
is no ‘perfect match’ between the predictions and the data we are
constraining the cosmology of, as is the case when working with
real data. All cosmological constraints presented hereafter have the
corrections for the finite box size and cosmological bias applied,
not only to the predictions, but also to the data from DH10. We
have verified that we better recover the known input cosmology
with these calibrations included.

The upper panel of Fig. 10 shows the clipped (magenta), un-
clipped (orange), and combined (black) 68 per cent and 95 per cent
constraints on the fiducial DH10 cosmology, in the �m–σ 8 param-
eter space. The lower panel of this figure shows the constraints in
the �m—S8 parameter space, where S8 = σ 8(�m/0.3)0.5. We note
first of all that we do not see the clockwise rotation of the clipped
contours relative to the unclipped, predicted by S15. In answer to

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.R
bf.html

Figure 10. The unclipped (orange), clipped (magenta), and combined
(black) 68 per cent and 95 per cent confidence intervals for the fiducial cos-
mology from DH10 (shown by the yellow star) in the �m–σ 8 and �m–S8

parameter spaces. We use only a subset of the fiducial cosmology simu-
lations for the data vector in this test, corresponding to a KiDS-450-like
survey of 360 deg2. The unclipped contours are smooth as their theoret-
ical expectation value is noise-free. In contrast the clipped likelihood is
interpolated across sparse measurements from DH10. The resulting clipped
and combined contours are therefore noisy in comparison to the unclipped
constraints.

this, we remind the reader that this prediction was for a Euclid-like
5000 deg2 survey, whereas our constraints correspond to a 360 deg2

survey. It is possible that a rotation becomes evident given smaller
error bars. If we were to scale the covariance on the data, Cdata,
so as to correspond to a survey of Euclid-like proportions, the co-
variance on the clipped predictions from DH10, Cmodel, becomes
the dominant source of uncertainty. This prevents us from making
a meaningful prediction for the cosmological constraints for a sur-
vey of this size. In the future, larger simulation suites will facilitate
interesting predictions for larger size surveys.

The combined constraints shown in Fig. 10 recover the input
cosmology, offering a significant improvement on the unclipped
constraints. For example, the combined 95 per cent confidence in-
tervals are 18 per cent and 29 per cent smaller in area than those of
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Table 2. The marginalized means and 68 per cent confidence intervals on
S8 = σ 8(�m/0.3)0.5 for a subset of independent DH10 simulations with the
fiducial cosmology spanning 360 deg2. The improvements in the constraint
over the unclipped are presented in bold to the nearest percentage.

Input S8 = 0.740
Unclipped 0.725 ± 0.042
Clipped 0.710 ± 0.037 (11 per cent)
Combined 0.710 ± 0.033 (22 per cent)

the unclipped, in the �m–σ 8 and �m–S8 parameter spaces, respec-
tively. In comparison, the clipped contours are of comparable size
to the unclipped in either parameter space.

Table 2 displays the marginalized mean and 68 per cent confi-
dence intervals on S8 from the clipped, unclipped, and combined
contours in the �m–S8 plane. The improvement in the size of the
confidence intervals offered by the combined analysis relative
to the unclipped is 22 per cent. This improvement, which is not
changed considerably by the corrections for the finite box effect
and cosmological bias in DH10, is indicative of the independent
information in the clipped and unclipped statistics. Indeed, this is
evidenced by the cross-correlation coefficient matrices presented in
Appendix A.

The clipped analysis alone yields S8 constraints which are
11 per cent tighter than the unclipped. For the clipped analysis
to outperform the unclipped, the loss of information in clipping
must be outweighed, by either the gain of phase information on
the peaks, or the improvement in the clipped statistic for probing
the more linear, clipped field. In this test however, we find that the
success of the clipped analysis relative to the unclipped depends
on the details of our interpolation scheme (see Appendix B2). The
combined analysis consistently outperforms the unclipped in con-
straining the cosmology of the DH10 data set however, with all
interpolations considered.

4.2.2 KiDS-450 constraints

After verifying that the combined clipped-and-unclipped analyses
improve cosmological parameter constraints with a mock data set,
we proceed to constrain the cosmology of the KiDS-450 data.
Fig. 11 displays the 68 per cent and 95 per cent confidence re-
gions in the �m–σ 8 and �m–S8 parameter spaces for this data set.
The best-fitting cosmology from the H17 cosmic shear analysis is
designated by the yellow star. Once again we have applied the finite
box and cosmological bias calibration corrections to the clipped
predictions from DH10. We have also interpolated from the DH10
cosmologies with RBFs, and applied the same degree of smoothing
as in Fig. 10. The slight discontinuities in the tails of the clipped and
combined contours in the �m–σ 8 space, seen also by Martinet et al.
(2018) in their analysis involving the DH10 mocks, are a product
of the sparsity of the simulated cosmologies, and disappear if we
apply a greater degree of smoothing.

In both the �m–σ 8 and �m–S8 parameter spaces, we see that the
clipped and combined contours are consistent with the best-fitting
cosmological parameters from H17, despite the differences in the
analyses. In addition to accounting for more systematics, the H17
result was obtained using four tomographic bins in the 0.1–0.9 pho-
tometric redshift range, as opposed to our single 0.5–0.9 bin. H17
also used both the ξ

unclip
+ and ξ

unclip
− , but omitted the largest two and

smallest three θ bins for these statistics, respectively. In the �m–σ 8

and �m–S8 parameter spaces shown in Fig. 11, the 95 per cent con-

Figure 11. The unclipped (orange), clipped (magenta), and combined
(black) 68 per cent and 95 per cent confidence intervals for the KiDS-450
data in the �m–σ 8 and �m–S8 parameter spaces. The yellow star depicts the
best-fitting cosmological parameters from the H17 cosmic shear analysis.
The unclipped contours are smooth as their theoretical expectation value is
noise-free. In contrast the clipped likelihood is interpolated across sparse
measurements from DH10. The resulting clipped and combined contours
are therefore noisy in comparison to the unclipped constraints.

fidence intervals from the combined analysis are about 13 per cent
and 10 per cent smaller than the unclipped, respectively, whereas
those of the clipped analysis are considerably larger. There are a
number of extra sources of noise when working with the KiDS-450
data, which could cause the clipped contours to inflate relative to
the unclipped, in contrast to what was observed when working with
the DH10 data vector. These include galaxy shape measurement,
baryonic effects and n(z) uncertainties; this is discussed further in
Appendix B2.2.

The marginalized constraints on S8 from the �m–S8 plane are
shown in Table 3; again bold percentages detail improvements in
the confidence intervals relative to the unclipped. As we saw with
the DH10 data vector in Section 4.2.1, the combined analysis of-
fers improvements on the unclipped constraint, by 17 per cent. This
is comparable to the ∼20 per cent improvement in S8 found by
Martinet et al. (2018) when constraining the KiDS-450 cosmol-
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Table 3. The marginalized means and 68 per cent confidence intervals on
S8 = σ 8(�m/0.3)0.5 for KiDS-450. The improvement in the constraint over
the unclipped are presented in bold to the nearest percentage. We remind the
reader that the results of this work are not directly comparable to the H17
result, owing to the differences in the analyses discussed in the text.

H17 S8 = 0.745+0.038
−0.038

Unclipped 0.754 ± 0.036
Clipped 0.760 ± 0.051
Combined 0.734 ± 0.030 (17 per cent)

ogy with combined peak statistics and standard shear correlation
functions.

5 C O N C L U S I O N S

In this paper, we have performed a proof-of-concept analysis
demonstrating that clipping transformations, which suppress the
contribution from overdense regions to the weak-lensing signal, can
be used alongside a conventional ‘unclipped’ cosmic shear analy-
sis to improve cosmological parameter constraints. Our pipeline
reconstructs the projected surface mass density, performs clipping,
determines the shear corresponding to the overdensities, and ob-
tains ‘clipped’ shear correlation functions. We have experimented
with the threshold controlling the severity of the clipping transfor-
mation, and the smoothing employed in mass reconstruction, and
found values well suited to the KiDS-450 data set.

There is currently no analytical prediction for clipped statistics
as a function of cosmology, and so we calibrate the clipped shear
correlation functions with numerical simulations spanning a broad
range of �m and σ 8. Consequently, we show that the combined
clipped-and-unclipped analysis facilitates tighter constraints on S8

= σ 8(�m/0.3)0.5, at fixed values of �b, ns, and h, than the conven-
tional unclipped analysis alone. For a mock data set with known
cosmology, we find that the 68 per cent confidence interval on S8

is improved upon the unclipped by 22 per cent. In the case of the
KiDS-450 data, the improvement is 17 per cent. The combined
constraints from clipping could improve further given optimization
for the clipping threshold and mass reconstruction smoothing scale,
though we leave this for future work on account of the computa-
tional cost.

The DH10 mocks with the calibration corrections are sufficiently
accurate for modelling in this work. However, the limitations of
the mocks that we have examined here do impact the improvement
reported for clipping and are likely to affect peak statistic studies
also, reinforcing our conclusion that the success of these new statis-
tics is intimately linked with the future accuracy and abundance of
cosmological simulations. With new suites of simulations, the level
of improvement seen in our joint analysis will increase in the future,
as it will no longer be limited by the ∼7–100 per cent uncertainty
that we currently include with DH10 predictions. We note that a
joint analysis of peak counts, cosmic shear and clipping both peaks
and voids, also poses an interesting topic for further investigation.

Our best-fitting S8 = 0.734 ± 0.030 for the KiDS-450 data, in-
ferred from a single photometric redshift bin in the range 0.5–0.9, is
in good agreement with the tomographic cosmic shear analysis of
H17, who found S8 = 0.745 ± 0.038. We note that H17 marginal-
ized over �b, ns, and h whereas our constraints are made at fixed
values of these parameters. In the future, larger suites of numeri-
cal simulations will permit investigation of how clipped statistics
vary with these cosmological parameters. H17 also marginalize over
photometric redshift uncertainties, the effects of baryons and intrin-

sic alignments, which we have not contended with here. In order
for clipping to become a standard tool for constraining cosmology,
work must be done to fold these extra systematic uncertainties into
the clipped analysis. Finally, mass reconstruction methods with a
more sophisticated handling of the masks are needed to reduce the
bias imposed by this essential part of the clipping pipeline. Never-
theless, the results obtained in this work robustly demonstrate that
clipping improves constraining power and should be explored in
future cosmic shear analyses.
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APPENDI X A : SLI CS C OVARI ANCE MAT RICES

Our likelihood analysis for cosmological parameters necessitates
autocovariance matrices for the clipped and unclipped statistics,
as well as the cross-covariance between the two. Non-Gaussianity
in cosmological density fields engenders correlations between the
different angular scales probed by these measurements which are
not well described by theory. Therefore, we use the SLICS nu-
merical simulations to model these covariance matrices. From the
SLICS covariance matrices, defined in equation (16), we calculate
correlation coefficient matrices, defined as

CC±(θi, θj ) = C±(θi, θj )√
C±(θi, θi) × C±(θj , θj )

, (A1)

Figure A1. The correlation coefficient matrices measured from SLICS
(featuring shape noise typical of KiDS-450) for the clipped and unclipped
ξ+ (upper panel) and ξ− (lower panel). Each panel consists of the following
components. Lower left: the autocorrelations for the ξ

unclip
± . Upper right:

the autocorrelations for the ξ
clip
± . Upper left (and lower right): the cross-

correlations between ξ
unclip
± and ξ

clip
± (and its transpose).
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where C±(θ i, θ j) represents either the auto-covariance matrices for
the ξ

unclip
± or ξ

clip
± statistics, or the cross-covariance matrix between

the clipped and unclipped statistics. In the correlation coefficient
matrix, the covariance is normalized to a value of unity for the
strongest positive correlations on the leading diagonal, and values
between −1 and 1 for all other elements.

In Fig. A1, we display correlation coefficient matrices for the
clipped and unclipped ξ+ in the upper panel, and for the ξ− in
the lower panel. Each of these matrices are built out of the fol-
lowing components. The autocorrelation coefficient matrix for the
unclipped statistic is in the lower left corner, the clipped is in the
upper right corner, the matrix describing the cross-correlation co-
efficients between these two statistics is in the upper left, and its
transpose is in the lower right.

The fact that many of the off-diagonal elements of these matrices
are non-zero (varying in the range −0.1 to 0.8 in either panel), in-
dicates the need for simulations in order to model the correlations
not only across angular scales, but also the correlations between
the clipped and unclipped statistics. The cross-correlation matrices
reveal that the clipped and unclipped statistics are not perfectly cor-
related and thus contain some independent information. It is also
interesting to note that the clipped auto-correlation matrices seem
to feature slightly weaker correlations between scales around ∼10
and ∼100 arcmin in the upper and lower panels, respectively, than
the unclipped autocorrelation matrices. This is consistent with the
clipped field being more Gaussian than the unclipped. We note that
the correlation between the clipped and unclipped measurements
does not tend to unity on the largest scales probed in this analysis.
This is a reflection of that fact that the largest scale clipped and
unclipped measurements for our fiducial analysis also do not con-
verge. We find that for a less aggressive clipping threshold, (see
the upper panel in Fig. 4), both the cross-correlation coefficients
and the ratio between the clipped and unclipped measurements do
however converge to unity as expected. For our fiducial set-up, we
would expect perfect correlation between the clipped and unclipped
signals to occur on scales that are larger than we can currently test
with the SLICS or KiDS-450 survey area.

A P P E N D I X B: C O S M O L O G I C A L
C O N S T R A I N T S

B1 Sensitivity to the unclipped predictions

In Section 4.2.1, we use the theoretical ξ
unclip
+ from equation (13)

to constrain the cosmology of the subset of DH10 simulations with
the fiducial cosmology spanning 360 deg2. We could alternatively
have used the unclipped predictions from the simulations them-
selves, though these predictions are subject to the finite box effect,
cosmological bias, and additional uncertainty, as discussed in Sec-
tions 3.4.2, 3.4.3, and 3.5, respectively. The noise-free theoretical
predictions (e.g. from NICAEA) are a more suitable choice for con-
straining cosmology where such predictions are available (which is
of course not so, in the case of the clipped statistic). Nevertheless,
we verify that one still obtains improved cosmological constraints
in the combined analysis irrespective of whether we employ the
theoretical or simulated ξ

unclip
+ .

Fig. B1 compares the marginalized means and 68 per cent con-
fidence intervals on S8 from the �m–S8 parameter space when we
use the unclipped predictions from equation (13) and from DH10.
These constraints are clearly consistent with one another and the
input S8, but differ in their details, as is shown in Table B1. The
theoretical unclipped better recovers the input S8 indicating again
that they should be used over DH10 whenever possible. One con-

Figure B1. The marginalized means and 68 per cent confidence intervals
on S8 from the �m–S8 plane for the DH10 fiducial cosmology data vector,
depending on whether the ξ

unclip
+ derive from equation (13) or from the

DH10 mocks themselves. The input S8 is designated by the horizontal green
line. The corrections for the finite box size and cosmological bias have been
applied to the predictions from DH10.

sequence of this choice however, is that we find it leads to a ∼0.4σ

difference in the mean marginaliszd constraints on S8 when com-
paring the clipped and unclipped analyses in Table B1. Given the
high correlation between these two statistics, shown in Fig. A1, we
would expect better agreement, which we indeed find when using
the DH10 measurements for both the clipped and unclipped predic-
tions. In this case, the mean S8 agree to within 0.05σ . When using
DH10 for both the clipped and unclipped predictions, our finding
that the combined clipped-and-unclipped analyses improves cos-
mological parameter constraints holds but in this case the level
of improved constraining power decreases to 12 per cent. We find
these conclusions are robust to different realizations of the DH10
data vector.

B2 Sensitivity to the interpolation method

Qualitatively, our finding that the combined clipped-and-unclipped
analyses improves cosmological parameter constraints holds irre-
spective of how we choose to interpolate from the DH10 cosmolo-
gies onto the �m–σ 8 and �m–S8 grids. Quantitatively however there
is a dependence of the marginalized constraints on these choices,
particularly for the highly degenerate �m and σ 8 parameters. This
is to be expected given the level of noise in the predictions and the
sparsity with which the predictions are sampled across the parame-
ter space. We find that the measurement of S8 is the least sensitive
to the interpolation scheme adopted, motivating the use of this
statistic to highlight the benefit of clipping throughout this paper.
In this appendix, we compare our marginalized S8 constraints for
KiDS-450 and the DH10 mock data for four different interpolation
methods.

B2.1 DH10 constraints

The first method we consider for interpolating the likelihoods from
the DH10 simulations, is the interpolation with RBFs, smoothing
the contours as described in Section 4. Secondly, we have the RBF
interpolation with no contour smoothing. Thirdly, we have simple
2D linear interpolation. We also consider the results of interpolat-
ing the clipped and unclipped DH10 ξ+ statistics, for each θ bin
individually, rather than the likelihoods, onto the �m–S8 plane. We
use the smoothed-RBF method when interpolating the correlation
functions in this comparison. By comparing the theoretical ξ

unclip
+

with those extrapolated outside of the range of the DH10 cosmolo-
gies, we find that the extrapolation of the correlation functions is
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Table B1. The marginalized means and 68 per cent confidence intervals on the DH10 data vector from Fig. B1
expressed in tabular form. Improvements over the unclipped confidence intervals are detailed in bold to the nearest
percentage. The corrections for the finite box size and cosmological bias have been applied to the predictions from
DH10.

Theoretical unclipped DH10 unclipped

Input S8 = 0.740
Unclipped 0.725 ± 0.042 0.708 ± 0.041
Clipped 0.710 ± 0.037 (11 per cent) 0.710 ± 0.037 (8 per cent)
Combined 0.710 ± 0.033 (22 per cent) 0.709 ± 0.036 (12 per cent)

Figure B2. The marginalized means and 68 per cent confidence inter-
vals on S8 from the �m–S8 plane for the DH10 fiducial cosmology data
vector, via different interpolation methods listed on the horizontal axis.
From the left-hand side, the first three methods are likelihood interpola-
tions. ‘RBF+Smooth’ refers to the likelihood interpolation with RBFs and
contour smoothing. ‘RBF’ refers to this interpolation with no smoothing,
and ‘2D Lin Int’ designates simple 2D linear interpolation. ‘ξ+-Int’ refers to
interpolating the clipped and unclipped shear correlation functions, instead
of the likelihoods, again with the smoothed-RBF method. The input S8 is
designated by the horizontal green line. The corrections for the finite box
size and cosmological bias have been applied to the ξ

clip
+ predictions from

DH10. The ξ
unclip
+ predictions come from equation (13) and are calculated

using NICAEA.

inaccurate. Thus we impose a prior which sets the likelihoods cal-
culated from the extrapolated clipped and unclipped ξ+ to zero.
Since we find good agreement between theory and the mocks when
we extrapolate the unclipped likelihoods instead of the unclipped
correlation functions, we do not impose this prior when performing
the likelihood interpolations. Indeed, we find it does not change our
results significantly when it is imposed.

Fig. B2 and Table B2 present a comparison of the marginalized
means and 68 per cent confidence intervals on S8 for the DH10 data
set. Featured, are the three likelihood-interpolation methods and one
ξ+-interpolation method. Clearly, all of the marginalized constraints
from the different ways of interpolating are consistent with one an-
other, and with the true cosmological parameters to <1σ . We see
that the combined analysis invariably is an improvement upon the
unclipped, with 68 per cent confidence intervals that are between
12 per cent and 22 per cent tighter. The combined analysis also
yields improvements on �m and σ 8, of 28 per cent and 24 per cent,
respectively, in the standard analysis with the DH10 data set pre-

Figure B3. The same as Fig. B2, but for the KiDS-450 data. The light-
green region corresponds to the 68 per cent confidence region from the H17
cosmic shear analysis.

sented in Section 4. Though the greater sensitivity of these results
to the interpolation scheme means that we ascribe more confidence
in our measurement of S8.

B2.2 KiDS-450 constraints

The marginalized constraints on the KiDS-450 data fluctuate more
than those on the DH10 data vector across the different interpolation
schemes (described in Appendix B2.1). This is to be expected given
that KiDS-450 features extra sources of noise, such as galaxy shape
measurement, baryonic effects, and n(z) uncertainties which have
not been accounted for in this proof-of-concept analysis. These may
engender spurious peaks in the interpolated likelihoods which bias
some interpolation methods more than others. What is more, the
nuisance cosmological parameters �b, ns, and h are almost certainly
mismatched between the data and the predictions. In principle, this
could affect the ξ

clip
+ differently than the ξ

unclip
+ predictions.

We find that the improvements over the unclipped found in the
combined marginalized S8 constraints, displayed visually in Fig. B3
and numerically in Table B3, are consistent for the interpolation
schemes which incorporate smoothing, ‘RBF+Smooth’ and ‘ξ+-
Int’, between 14 per cent and 17 per cent. The interpolation schemes
without smoothing however, ‘RBF’ and ‘2D Lin Int’, yield little to
no improvement in the combined constraints. This is because the in-
terpolated clipped and combined likelihoods for the KiDS-450 data
set are reasonably noisy, and the methods without smoothing are
more strongly affected by this. The smoothing reduces the impact

Table B2. The marginalized means and 68 per cent confidence intervals on S8 for the DH10 data vector from Fig. B2 expressed in tabular form. Improvements
over the unclipped confidence intervals are detailed to the nearest percentage in bold.

RBF+Smooth RBF 2D Lin Int ξ+-Int

Input
S8 = 0.740
Unclipped 0.725 ± 0.042 0.725 ± 0.043 0.727 ± 0.040 0.727 ± 0.040
Clipped 0.710 ± 0.037 (11 per cent) 0.717 ± 0.039 (9 per cent) 0.718 ± 0.039 (3 per cent) 0.724 ± 0.041
Combined 0.710 ± 0.033 (22 per cent) 0.713 ± 0.034 (21 per cent) 0.716 ± 0.033 (17 per cent) 0.726 ± 0.035 (12 per cent)
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Table B3. The same as Table B2, but for the KiDS-450 data. Improvements over the unclipped confidence intervals are detailed to the nearest percentage in
bold. We remind the reader that the results of this work are not directly comparable to the H17 result, owing to the differences in the analyses discussed in the
text.

RBF+Smooth RBF 2D Lin Int ξ+-Int

H17
S8 = 0.745+0.038

−0.038
Unclipped 0.754 ± 0.036 0.754 ± 0.038 0.754 ± 0.035 0.755 ± 0.036
Clipped 0.760 ± 0.051 0.798 ± 0.067 0.789 ± 0.063 0.773 ± 0.052
Combined 0.734 ± 0.030 (17 per cent) 0.740 ± 0.035 (6 per cent) 0.744 ± 0.036 0.749 ± 0.031 (14 per cent)

of spurious noise spikes in the likelihoods biasing the parameter
constraints. Thus, we regard the constraints obtained with these in-
terpolations as more accurate, and maintain that the improvement
found by combining the clipped and unclipped analyses is around
the 17 per cent level for the KiDS-450 data.

APPENDIX C : K IDS-450 MASS MAPS

In Figs C1 and C2, we present convergence maps for the north
and south KiDS-450 patches, respectively. In producing these

maps, we follow the mass reconstruction methodology of Kaiser &
Squires (1993) as detailed in Section 3.1. The maps are smoothed
with a Gaussian filter with width σ s = 6.6 arcmin, and the re-
gions exceeding the clipping threshold κc = 0.010 are highlighted
with the green contours. We follow Van Waerbeke et al. (2013)
and set the convergence to zero in regions where more than
50 per cent of the Gaussian smoothing window is centred on masked
pixels.

Figure C1. Maps of the convergence, κ , for the three KiDS-450 north patches, G9 (upper), G12 (middle), and G15 (lower). The maps have been smoothed
with a Gaussian filter with width σ s = 6.6 arcmin. Unobserved/masked regions are given zero convergence, as is described in the text. The regions highlighted
by the green contours, exceed the clipping threshold, κc = 0.010, and are therefore clipped in our pipeline. The clipped regions make up 12 ± 1 per cent of the
effective area of the five KiDS-450 patches.
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Figure C2. The same as Fig. C1, but for the two KiDS-450 south patches, GS (upper) and G23 (lower).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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