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ABSTRACT
We use the cosmic shear data from the Canada–France–Hawaii Telescope Lensing Survey
to place constraints on f(R) and Generalized Dilaton models of modified gravity. This is
highly complementary to other probes since the constraints mainly come from the non-linear
scales: maximal deviations with respects to the General Relativity (GR) + � cold dark
matter (�CDM) scenario occurs at k ∼ 1 h Mpc−1. At these scales, it becomes necessary to
account for known degeneracies with baryon feedback and massive neutrinos, hence we place
constraints jointly on these three physical effects. To achieve this, we formulate these modified
gravity theories within a common tomographic parametrization, we compute their impact on
the clustering properties relative to a GR universe, and propagate the observed modifications
into the weak lensing ξ± quantity. Confronted against the cosmic shear data, we reject the
f(R) {|fR0 | = 10−4, n = 1} model with more than 99.9 per cent confidence interval (CI) when
assuming a �CDM dark matter only model. In the presence of baryonic feedback processes
and massive neutrinos with total mass up to 0.2 eV, the model is disfavoured with at least
94 per cent CI in all different combinations studied. Constraints on the {|fR0 | = 10−4, n = 2}
model are weaker, but nevertheless disfavoured with at least 89 per cent CI. We identify several
specific combinations of neutrino mass, baryon feedback and f(R) or Dilaton gravity models
that are excluded by the current cosmic shear data. Notably, universes with three massless
neutrinos and no baryon feedback are strongly disfavoured in all modified gravity scenarios
studied. These results indicate that competitive constraints may be achieved with future cosmic
shear data.

Key words: gravitation – gravitational lensing: weak – methods: analytical – methods: numer-
ical – methods: statistical – large-scale structure of Universe.

1 IN T RO D U C T I O N

Explaining the late-time acceleration of the Universe first reported
in Riess et al. (1998) and Perlmutter et al. (1999) represents a major
challenge in modern cosmology, and current interpretations mostly
rely on the inclusion of dark energy components and/or modifi-
cations to the theory of General Relativity (GR). One important
difficulty encountered in solving this puzzle relates to the fact that,
by construction, the background dynamics in viable dark energy and
modified gravity models are almost indistinguishable (Bertschinger
2006; Song, Hu & Sawicki 2007a; Brax et al. 2008). These two
frameworks only really decouple when considering the evolution of
matter density fluctuations and of perturbations associated with the
metric. In addition, there are various ways in which a modification

�E-mail: jharno@phas.ubc.ca

of gravity on large scales could account for the apparent accelera-
tion (Clifton et al. 2013; Joyce et al. 2015). Exploiting this, many
observational probes based on large-scale structure formation have
been proposed to test theories of modified gravity, including galaxy
clustering (Oyazu, Lima & Hu 2008; Pogosian & Silvestri 2008), in-
tegrated Sachs–Wolfe (ISW) effect in the cosmic microwave back-
ground (CMB) anisotropies and its cross-correlation with galaxy
density (Song, Peiris & Hu 2007b), cluster abundance (Jain & Zhang
2008; Lombriser et al. 2010), peculiar velocities (Li et al. 2013a;
Johnson et al. 2014, 2015), redshift–space distortions from spec-
troscopic surveys (Guzzo et al. 2008; Jennings et al. 2012; Asaba
et al. 2013), 21 cm observations (Hall, Bonvin & Challinor 2013)
and weak gravitation lensing (Heavens, Kitching & Verde 2007;
Schimdt 2008; Tsujikawa & Tatekawa 2008; Simpson et al. 2013;
Wilcox et al. 2015). Recent results from the Planck Collaboration
XIV (2015) combine data from the CMB temperature and lens-
ing maps with other low-redshift probes and provide constraints
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on coupled dark energy scenarios, k-essence and f(R) models. As
explained therein, the effects of modified gravity on the CMB can
affect both the largest scales – via the ISW effect or modifications
to the lensing potential for instance – and small scales – i.e. via
SZ effects. However, these measurements are restricted in angular
range (� < 200 for ISW and � < 2048 for lensing maps), and are
unfortunately not precise enough to single-out a preferred model.
Combinations with other independent measurements are therefore
highly desirable.

In this paper, we investigate the extent to which current weak
lensing surveys can constrain departures from GR. In particular, we
study the signatures of two specific classes of parametrized modi-
fied gravity theories, the f(R) and the Generalized Dilaton models
(see Joyce et al. 2015 for a review), on the cosmic shear measure-
ment extracted from the Canada–France–Hawaii Telescope Lensing
Survey (CFHTLenS; Erben et al. 2013). These models are known
to cause an enhancement of structure formation over scales in the
range [0.2–20] Mpc h−1, an effect which could be detectable with
current lensing surveys. In addition, the departure of these models
from GR is maximal at scales of k ∼ 1 h−1 Mpc, which are difficult
to interpret with other clustering data due to the large uncertainty
in the galaxy bias. This makes the weak lensing approach special,
probing modified gravity models at the scale of influence of the
‘fifth’ force. In that sense, it is very much complementary to the
CMB measurement (Planck Collaboration XIV 2015) as it provides
a strong handle on the small scales. Note that the Planck analysis
includes the cosmic shear measurement from the CFHTLenS data
(Heymans et al. 2013; Kilbinger et al. 2013), but excludes all of the
data affected by non-linear scales, in contrast with this paper.

In its approach, this paper is an extension of Harnois-Déraps, van
Waerbeke, Viola & Heymans (2015, hereafter HWVH), where the
same data were used to place joint constraints on baryon feedback
models and on the sum of neutrino mass. The general idea can be
understood as follows: on the one hand, the accuracy achieved by
modern CMB experiments (Hinshaw et al. 2013; Planck Collabora-
tion XIII 2015) on most � cold dark matter (�CDM) parameters is
at the percent level; on the other hand, the modified gravity effects
we are looking for affect the baseline signal by up to 20 per cent at
small scales. It is therefore justified to assume a fixed cosmology
and search for possible deviations. Any residual uncertainty in the
cosmology can thereafter be treated as systematic uncertainty in
the analysis. While next-generation weak lensing experiments such
as RCSLenS,1 DES,2 KiDS,3 Euclid4 and LSST5 will have enough
statistical power to repeat this analysis in a full MCMC pipeline, we
demonstrate here that we can find interesting results with simpler
tools and existing data.

This paper is organized as follows: in Section 2, we review the
theoretical formulation of structure formation in f(R) and Dilaton
gravity theories; Section 3 describes the theoretical and numerical
modelling of the weak lensing signal, and details our cosmic shear
measurement from the CFHTLenS data. In Section 4, we present
and discuss our results, and conclude in Section 5. The baseline cos-
mological parameters that are used throughout our study correspond
to the WMAP9 + BAO + SN �CDM cosmology: h = 0.6898, �m

= 0.2905, �� = 0.7095, �K = 0, w = −1, σ 8 = 0.831 and ns

1 http://www.rcslens.org
2 http://www.darkenergysurvey.org
3 http://kids.strw.leidenuniv.nl
4 http://sci.esa.int/euclid
5 http://www.lsst.org/lsst

= 0.969. The reason why we did not opt for the Planck cosmol-
ogy is to minimize the effect of the known cosmological tension
in our model rejection strategy. Otherwise, this would involve a
full MCMC calculation including all cosmological parameters and
both data sets as in MacCrann et al. (2014), which is not necessary
in our approach. In the end however, we do marginalize over this
cosmological discrepancy.

2 MO D I F I E D G R AV I T Y T H E O R I E S

Modified theories of gravity can be distinguished by their screen-
ing properties in dense environments. Indeed, given the strong
Solar system constraints, these theories need to have a built-in
screening mechanism, suppressing the deviations from GR.6 Three
types of such mechanisms have emerged in the last few years:
the Chameleon, K-mouflage and Vainshtein models (see Brax &
Valageas 2014a for a comparison between these different screening
mechanisms). On the one hand, K-mouflage and Vainshtein models
involve non-linear kinetic terms describing additional scalar fields
whose presence modifies GR predictions. On the other hand, mod-
ifications of the Chameleon type can be broadly categorized as
either containing additional couplings between the metric and new
scalar fields, or involving extra geometric terms. These two equiva-
lent descriptions can be captured by the tomographic parametriza-
tion, which will be used throughout this paper (Brax, Davis & Li
2012b,c).

In all Chameleon cases, modifications of gravity induce a global
enhancement of the effective force of gravity, due to the ‘fifth force’,
which directly translates into an increase of structure formation. A
decrease of the clustering rate on small scales can be achieved for
certain Galileon models subject to the Vainshtein screening mech-
anism (Li et al. 2013b), as the effective Newton constant becomes
less than GN in this case. These theories do not belong to the class
of models studied here as they are characterized by the Vainshtein
mechanism when the f(R) and Generalized Dilaton models obey the
chameleon mechanism.

In this section, we review two different types of modified gravity,
namely the Dilaton and the f(R) models; we describe their distinct
screening mechanisms, and detail their parametrization in the con-
text of large-scale structure formation.

2.1 Gravity in Dilaton models

The Dilaton and Symmetron7 theories of modified gravity are
Chameleon models that exhibit the Damour–Polyakov property
(Damour & Polyakov 1994), according to which the coupling be-
tween the scalar field ϕ and the rest of the matter components
approaches zero in dense environments (Pietroni 2005; Olive &
Pospelov 2008; Hinterbichler & Khoury 2010). In contrast to the
case of f(R) theories, described in Section 2.2 below, the scalar
field here takes on a small mass everywhere and thus mediates a
long-range (screened) force.

6 Note that modified gravity models that do not couple with the baryon sector
do not necessarily need screening; this is the case, for instance, in coupled
dark energy models where the coupling occurs only with the dark matter.
7 We do not further investigate the Symmetron, K-mouflage or Vainshtein
models in this paper.
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These Dilaton models are scalar–tensor theories, where the action
defining the system takes the general form

S =
∫

d4x
√−g

[
M2

Pl

2
R − 1

2
(∇ϕ)2 − V (ϕ) − �4

0

]

+
∫

d4x
√−g̃L̃m(ψ (i)

m , g̃μν), (1)

where MPl = (8πGN)−1/2 is the reduced Planck mass (in natural
units), �4

0 is the cosmological constant term today, g is the deter-
minant of the Einstein-frame metric tensor gμν and g̃ is the deter-
minant of the Jordan-frame metric tensor g̃μν . The two metrics are
connected via a conformal rescaling

g̃μν = A2(ϕ)gμν. (2)

The various matter fields ψ (i)
m are governed by the Jordan-frame

Lagrangian density L̃m and the scalar field ϕ by the Einstein-frame
Lagrangian density Lϕ = −1/2(∇ϕ)2 − V (ϕ), where V(ϕ) is the
potential of the scalar field.8 There is no explicit coupling between
matter and the scalar fields, and the fifth force on matter particles
due to ϕ arises from the conformal transformation given by equation
(2) (more precisely, through gradients of A).

In the original Dilaton model, the potential V(ϕ) and the coupling9

A(ϕ) with the metric have the following functional forms:

V (ϕ) = V∗ exp

(
− ϕ

MPl

)
, (3)

A(ϕ) = 1 + 1

2

A2

M2
Pl

ϕ2, (4)

where {V∗, A2} are the two free parameters. In regions where ϕ ≈
0, the coupling to matter is negligible, and gravity converges to GR.
However, the field nevertheless mediates a long-range gravitational
force that has an effect elsewhere, i.e. in less dense environments.
This model can be generalized to a greater class of Dilaton models,
by keeping the coupling function as in equation (4) but considering
more general potentials. Then, instead of specifying the model by
its potential V(ϕ), it is recast in the tomographic parametrization
{β(a), m(a)} in terms of the cosmological scale factor a(t), where
the coupling β(a) and the scalar field mass m(a) are defined as (Brax
et al. 2012c; Brax & Valageas 2013):

β(a) ≡ β[ϕ̄(a)] = MPl
d ln A

dϕ
(ϕ̄), (5)

m2(a) ≡ m2[ϕ̄(a), ρ̄(a)] = 1

c2

[
d2V

dϕ2
(ϕ̄) + ρ̄

d2A

dϕ2
(ϕ̄)

]
. (6)

Hereafter, we denote with an overbar unperturbed cosmological
background quantities, and with a subscript ‘0’ quantities evaluated
today. For instance, ρ̄(a) = 3�m0H

2
0 M2

Pl/a
3 is the background mat-

ter density, ϕ̄ is the mean value of the field, H0 is the current value
of the Hubbles parameter, and �m0 is the current matter density.

8 In equation (1), we explicitly added the cosmological constant term �4
0, so

that the minimum of V(ϕ) is zero and is reached for ϕ → ∞. Alternatively,
this term could also be interpreted as the non-zero minimum of the scalar
field potential.
9 This coupling is often defined as A(ϕ) = 1 + 1

2
A2
M2

Pl
(ϕ − ϕ∗)2, where ϕ∗ is

some free parameter of the model. We opted to absorb ϕ� into ϕ in equation
(4), a choice that has no physical impact anyway.

Also, c is the speed of light in vacuum. In this paper, we consider
the simple forms in m and β:

m(a) = m0 a−r , β(a) = β0 exp

[
−s

a2r−3 − 1

3 − 2r

]
, (7)

with

s = 9A2�m0H
2
0

c2m2
0

. (8)

Since the growth function involves only m(a) and β, this allows for
an efficient parametrization of both the background and the fluc-
tuations, without having to model the potential nor the coupling
function. In this framework, the Yukawa potential given by equa-
tion (3) corresponds to r = 3/2. The values of the free parameters
{m0, r, β0, s} that enter equation (7) are displayed in Table 1.
The models {A, B, C, D} were chosen such as to correspond to
those studied in Brax & Valageas (2013) and Brax et al. (2012a),
where detailed comparisons between numerical and analytical cal-
culations are presented. More specifically, the models {A, B, C}
probe the dependence on {s, β0, r} respectively, all other param-
eters being fixed, while models D probe the dependence on m0 at
fixed A2. We added the models E that probe the dependence on the
parameter m0 at fixed {s, β0, r}. These models probe deviations
from the �CDM cosmology of less than 20 per cent, in terms of the
matter power spectrum. Let us now explore the detailed mechanism
through which the power spectrum of matter fluctuations is affected
by this theory.

The increase of the gravitational interaction due to the presence
of the scalar field for all models described by the {m(a), β(a)}
parametrization results from the role played by the effective New-

ton constant Geff = GN(1 + 2β2(a)
1+m2(a)a2/k2 ) which is always larger than

one. The effective Newton constant replaces Newton’s constant GN

in the equation driving the linear growth of the density contrast.
In the non-linear regime, the scalar interaction is also attractive,
leading to an increase of the clustering rate, albeit with a decreasing
magnitude due to the Chameleon screening as one probes smaller
scales. This generic feature applies to the Generalized Dilaton mod-
els (and to all viable f(R) models, see the next section).

In these Dilaton models, the coupling function A is always very
close to unity, so that most Einstein-frame and Jordan-frame quan-
tities (e.g. Hubble expansion rates or densities) are almost identical.
Indeed, using |Ā − 1| � 1, we can see from equations (4) and (5)
that Ā � 1 + β2/(2A2). From equation (8), we also obtain A2 ∼
(cm0/H0)2. Solar system tests of gravity10 such as that analysed in
Chiba (2003) imply that m0 � 103H0/c, whence A2 � 106 and

|Ā − 1| � 10−6. (9)

Therefore, the Jordan-frame and Einstein-frame scale factors and
background matter densities, related by ã = Āa and ˜̄ρ = Ā−4ρ̄,
can be considered equal, as well as the cosmic times and Hubble
expansion rates. In the rest of this section, we work in the Einstein
frame, where the analysis of the gravitational dynamics is simpler.

In the Einstein frame, the Friedmann equation takes the usual
form

3M2
PlH

2 = ρ̄ + ρ̄ϕ + ρ̄�, (10)

10 Note that screening does not ensure zero deviation from GR, it only
suppresses the deviation as compared with the linear regime prediction.
Then, Solar system constraints need to be checked for each model. This
provides constraints on the parameters that govern the efficiency of the
screening mechanism.
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Table 1. Parameters describing the modified gravity theories considered in our study, mapped on the {β(a), m(a)} surface, parametrized with
{m0, r, β0, s} following equation (7). The first five rows correspond to different realizations of the Generalized Dilaton theories. The last two
rows show f(R) theories with n = 1 and 2, respectively, in which m0 is given by equation (24), while r ≡ 3(n + 2)/2, β0 = 1/

√
6 and s = 0.

Model m0 (h Mpc−1) r β0 s

(A1, A2, A3) (0.334, 0.334, 0.334) (1.0, 1.0, 1.0) (0.5, 0.5, 0.5) (0.6, 0.24, 0.12)
(B1, B3, B4) (0.334, 0.334, 0.334) (1.0, 1.0, 1.0) (0.25, 0.75, 1.0) (0.24, 0.24, 0.24)
(C1, C3, C4) (0.334, 0.334, 0.334) (1.33, 0.67, 0.4) (0.5, 0.5, 0.5) (0.24, 0.24, 0.24)
(D1, D3, D4) (0.667, 0.167, 0.111) (1.0, 1.0, 1.0) (0.5, 0.5, 0.5) (0.06, 0.96, 2.16)
(E1, E3, E4) (0.667, 0.167, 0.111) (1.0, 1.0, 1.0) (0.5, 0.5, 0.5) (0.24, 0.24, 0.24)
n = 1, log10 |fR0 | = (−4, −5, −6) (0.042, 0.132, 0.417) (4.5, 4.5, 4.5) (0.408, 0.408, 0.408) (0, 0, 0)
n = 2, log10 |fR0 | = (−4, −5, −6) (0.034, 0.108, 0.340) (6.0, 6.0, 6.0) (0.408, 0.408, 0.408) (0, 0, 0)

where we explicitly separate contributions from the matter (ρ̄) and
scalar field (ρ̄ϕ) components and from the cosmological constant
ρ̄�. The background value of the scalar field potential is given by

dV̄

dϕ̄
+ β

MPl
ρ̄ = 0. (11)

Combining with equation (6), and writing m = m(a), this leads to

dϕ̄

da
= 3βρ̄

c2MPlam2
,

dV̄

da
= − 3β2ρ̄2

c2M2
Plam2

, (12)

whence

˙̄ϕ2

2ρ̄
∼

(
H

cm

)4

∼ 10−12,
V̄

ρ̄
∼

(
H

cm

)2

∼ 10−6. (13)

Thus, the scalar field energy density is dominated by its poten-
tial term, which is negligible as compared with the matter density.
Therefore, the Friedmann equation (10) is governed by the matter
density and the cosmological constant and we recover the �CDM
cosmological expansion, 3M2

PlH
2 = ρ̄ + ρ̄�, up to an accuracy of

10−6.
We now briefly consider the behaviour of metric and density fluc-

tuations. We work within the quasi-static approximation, which can
be shown to be the leading term in an expansion in (H/ω)2, where
ω2 = k2c2/a2 + m2c2 depends on both the comoving wavenumber
k and the inverse Compton wavelength m of the scalar field. For
m ∼ 0.1 h Mpc−1 and k = 0, we have (H/ω)2 ∼ 10−5; (H/ω) be-
comes even smaller as k increases. Thus, for the models that we
consider in this paper, the quasi-static approximation is valid for
both the background and large-scale perturbations, which evolve on
the Hubble time-scale, with a precision of 10−5 or better.11 In the
quasi-static limit, then, the scalar field is given by the Klein–Gordon
equation,

c2

a2
∇2ϕ = dV

dϕ
+ ρ

dA

dϕ
, (14)

and at linear order over the matter density and scalar field fluctua-
tions we obtain
δϕ

MPl
= − β

c2M2
Pl

δρ

m2 + k2/a2
, (15)

where k is the comoving wavenumber. Using equation (11), this
gives

|δA| ∼ |δρ|
ρ̄

(
H

cm

)2 1

1 + k2/a2m2
� 10−6, (16)

11 The quasi-static approximation breaks down if the scalar-field potential
or coupling function show some singularity or sharp features (see Brax &
Valageas 2013 for a detailed analysis), but we do not consider such models
here.

so that the perturbations of the conformal factor A2 are negligible
compared to unity. Also,

δρϕ

δρ
∼

(
H

cm

)2 1

1 + k2/a2m2
� 10−6, (17)

hence fluctuations of the scalar field energy density are negligible
compared with the matter density fluctuations.

Therefore, the main source that drives modifications to structure
growth is not a different background evolution, nor perturbations in
the scalar field energy density, but really the action of the fifth force
on the matter field. In the Newtonian gauge, the perturbed metric
can be written as

ds2 = −(1 + 2�) dt2 + a2(t)(1 − 2�)δij dxi dxj , (18)

where � and � are the Einstein-frame metric gravitational poten-
tials. Using equations (15) and (17), we can check that the impact of
the scalar field fluctuations on the metric potentials are negligible,
and we have within a 10−6 accuracy

� = � = �N, (19)

where �N is the Newtonian potential given by the Poisson equa-
tion,

∇2

a2
�N = 4πGNδρ = 3�m0H

2
0

2a3
δ. (20)

In the above expression, δ = δρ/ρ̄ is the matter density contrast.
However, the dynamics of matter particles are modified by the scalar
field, which gives rise to the fifth force given by F = −c2∇ ln A.
That is, in the Euler equation we must add a fifth-force potential,
�A = c2ln A, that is not negligible. When solving for structure
growth given the parameters listed in Table 1, the new term can lead
to 10–20 per cent deviations in the matter density power spectrum.

2.2 Gravity in f(R) theories

In models based on f(R) gravity, the Einstein–Hilbert action is mod-
ified by promoting the Ricci scalar R to a function of R (Buchdahl
1970; Starobinsky 1980, 2007; Hu & Sawicki 2007). The new action
S in f(R) gravity theories can be written as

S =
∫

d4x
√−g

[
M2

Pl

2
[R + f (R)] − �4

0 + Lm(ψ (i)
m )

]
, (21)

where we explicitly added the cosmological constant contribution.12

The f(R) models are most easily described in the Jordan frame,

12 The terms R and �4
0 are often included within the function f(R). Written

in the form of equation (21), f(R) describes deviations from both GR and
the �CDM cosmology.
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which is why, in this section, we denote with a tilde Einstein-frame
quantities instead of Jordan-frame ones,13 contrary to the notation
of Section 2.1. In the parametrization of Hu & Sawicki (2007), the
functional form f(R) can be expressed in the high curvature limit
as

f (R) = −fR0

n

Rn+1
0

Rn
, fR ≡ df (R)

dR
= fR0

Rn+1
0

Rn+1
. (22)

The two independent parameters, fR0 and n, can be constrained by
observations. In the above expression, R0 is the present value of
the Ricci scalar for the cosmological background. Note that this
parametrization and that of Starobinsky (2007) both reproduce the
same results in the large curvature regime.

The f(R) theories of gravity also invoke the Chameleon mech-
anism to screen modifications of GR in dense environments such
as in our Solar system. Specifically, this occurs by requiring that
all extra terms vanish in high-curvature environment, such that
f(|R| 
 |R0|) → 0. The background expansion otherwise follows
the �CDM dynamics and the growth of structure is only affected
on intermediate and quasi-linear scales.

There is an essential connection between the formulation of the
f(R) theory presented above and scalar–tensor theories of modi-
fied gravity. Upon the coordinate rescaling g̃μν = A−2(ϕ)gμν (re-
call that in this section g̃μν is the Einstein-frame metric) with
A(ϕ) = exp [βϕ/MPl] and β = 1/

√
6, the f(R) modifications to GR

are recast as arising from contributions of an extra scalar field ϕ,
subject to a potential V(ϕ) given by

V (ϕ) = M2
Pl

2

(
RfR − f (R)

(1 + fR)2

)
, fR = exp

[
−2βϕ

MPl

]
− 1. (23)

In that sense, f(R) theories are equivalent to a scalar–tensor theory
expressed in the Einstein frame (Chiba 2003; Nunez & Solgnaik
2004). In this new formulation, the screening mechanism takes
another form: the mass of the scalar field grows with matter density,
and a Yukawa-like potential suppresses the fifth force in dense
environments. This can be conveniently reformulated by saying that
screening takes place wherever the scalar field is small compared
to the ambient Newtonian potential.

It turns out that all Chameleon-like models such as f(R) theories
can again be parametrized by the value of the mass m(a) and the
coupling β(a) of the scalar field, in terms of the scale factor a and
the associated background matter density ρ̄(a). With the specific
functional form of f(R) given by equation (22), we can directly
relate {n, fR0} to {β(a), m(a)} via

m(a) = m0

(
4��0 + �m0a

−3

4��0 + �m0

)(n+2)/2

,

m0 = H0

c

√
�m0 + 4��0

(n + 1)|fR0 |
, β(a) = 1√

6
. (24)

In this paper, we consider values of n = {1, 2} and |fR0 | =
{10−4, 10−5, 10−6}. The larger value of |fR0 | is currently ruled out

13 We have decided to define the Generalized Dilaton models in the Einstein
frame and the f(R) models in the Jordan frame, mainly for simplicity in the
notation. The f(R) models can be recast in the Einstein frame (with equation
23) if necessary. Note that in the Einstein frame, there is only one metric
potential, as � = � = �N in equation (19), whereas in the Jordan frame
the two metric potentials are distinct, � �= �, see equation (28). In the
end however, the weak lensing potential (equation 32) is uniquely defined
and coincides in both frames. As a result, we freely use either frames when
convenient.

by other independent probes, so this serves as a consistency test.
The numerical values for {β(a), m(a)} corresponding to these three
models are listed in Table 1.

As for the Dilaton models described in Section 2.1, the f(R) mod-
els that we consider in this paper follow very closely the �CDM
cosmology at the background level, mainly because |fR0 | � 1. In-
deed, from the action (equation 21) one obtains the Friedmann
equation as (Tsujikawa 2007)

3M2
Pl

[
H 2 − f̄R(H 2 + Ḣ ) + f̄ /6 + f̄RRH ˙̄R

]
= ρ̄ + ρ̄�, (25)

where the dot denotes the derivative with respect to cosmic time t and
fRR = d2f/dR2. In the background, we have R̄ = 12H 2 + 6Ḣ and
we can check that all extra terms in the brackets in equation (25) are
of the order of |fR0 |H 2, so that we recover the �CDM expansion,
3M2

PlH
2 = ρ̄ + ρ̄�, up to an accuracy of 10−4 for |fR0 | � 10−4.

Moreover, the conformal factor A(ϕ) is given by A = (1 + fR)−1/2,
so that |Ā − 1| � 10−4 and the background quantities associated
with the Einstein and Jordan frames can be considered equal (and
equal to the �CDM reference) up to an accuracy of 10−4.

Considering the metric and density perturbations, we can again
write the Newtonian gauge metric as in equation (18) (but this is
now the Jordan-frame metric). Then, in the small-scale sub-horizon
limit k/a 
 H/c, the modified Einstein equations lead to (Tsujikawa
& Tatekawa 2008)

∇2

a2
� = − c2∇2

2a2
δfR + 4πGNδρ, (26)

∇2

a2
� = c2∇2

2a2
δfR + 4πGNδρ, (27)

where δfR = fR − f̄F , δρ = ρ − ρ̄, and using the approximation
|fR| � 1. Therefore, in terms of the Newtonian gravitational poten-
tial �N defined as in GR by equation (20), we have

� = �N − c2

2
δfR, � = �N + c2

2
δfR. (28)

Thus, because we work in the Jordan frame (in contrast with the
Dilaton case presented in Section 2.1), the modification of gravity
directly appears through the metric potentials. The fluctuations of
the new degree of freedom δfR are given by

3c2∇2

a2
δfR = δR − 8πGNδρ. (29)

Finally, the dynamics of the matter particles is given by the geodesic
equation, where the Newtonian potential that appears in GR is re-
placed by the potential � given in equation (28).

3 W EAK LENSI NG

3.1 Theory

3.1.1 Weak lensing convergence power spectrum

In all the cosmologies considered in this paper, we work in the
Newtonian gauge with the perturbed metric given by equation (18),
where � and � are the metric gravitational potentials.14 In practice,

14 In the Dilaton models, this is understood as the Einstein-frame metric
while in the f(R) models this is the Jordan-frame metric, following the
approach described in Section 2. In any case, we can work in either frame
as the observational results do not depend on this computational choice.
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we measure the statistical properties of weak lensing distortions by
summing over many galaxy images. This means that the measured
signal is an integral over selected sources with a broad redshift
distribution n(zs) dzs (mapped to n(χ ) dχ in terms of the radial
distance, given the Jacobian dχ/dz) that we normalize to unity.
Thus, introducing the kernel g(χ ) that defines the radial depth of
the survey:

g(χ ) =
∫ ∞

χ

dχsn(χs)
χs − χ

χs

, (30)

the integrated convergence field at a position θ on the sky reads as

κ(θ) =
∫ ∞

0
dχ

χ

c2
g(χ )∇2�wl(χ, χθ). (31)

We assumed a flat background universe in the above equation, and
introduced the weak lensing potential, defined by

�wl = � + �

2
, (32)

which is convenient when computing weak lensing modifications
to GR. Solving equation (31) in multipole space and taking the
ensemble average of the squared complex norm, we obtain the
convergence power spectrum

Cκ
� =

∫ ∞

0
dχ

g(χ )2

c4

�4

χ4
P�wl (�/χ ; z) (33)

as an integral over the weak lensing power spectrum P�wl (k; z). Note
that the above also assumes both Limber and Born approximations.
From this, we also derive predictions for the cosmic shear two-point
correlation functions ξ±(θ ), computed as

ξ±(θ ) = 1

2π

∫
Cκ

� J0/4(�θ ) � d�, (34)

where J0/4(x) are Bessel functions of the first kind.

3.1.2 Cκ
� in GR

In the �CDM cosmology + GR case, we can exactly express the
weak lensing convergence power spectrum (33) in terms of the total
matter power spectrum P(k) via Poisson equation. Indeed, we can
safely neglect the anisotropic stress, and GR gives

�wl = � = � = �N, (35)

where �N is the Newtonian potential given by Poisson equation
(equation 20). Therefore, we recover

P�wl (k; z) =
(

3�m0H
2
0

2ak2

)2

P (k; z), (36)

and the convergence power spectrum (33) becomes

Cκ
� =

∫ ∞

0
dχW (χ )2P (�/χ ; z), (37)

with

W (χ ) = 3�m0H
2
0

2c2
g(χ )(1 + z). (38)

3.1.3 Cκ
� in theories of modified gravity

For the Dilaton models, we have seen in equation (19) and in
Section 2.1 that the two Einstein-frame metric potentials are equal
to the Newtonian potential up to order 10−6 accuracy, and that back-
ground cosmological quantities such as the Hubble expansion rate

and the radial comoving distances are equal to those of the �CDM
reference within that same accuracy. This means that equations (35)
and (36) apply as in GR, and that Cκ

� is again given by equations
(37) and (38). Therefore, in terms of this weak lensing statistics, the
modification of gravity and the departures from the �CDM+GR re-
sults only appear through the modified matter density power spectra
P(k; z), which we describe in Section 3.2.3.

In the case of f(R) models, we have seen in equation (28) that the
two Jordan-frame potentials are different from the Newtonian po-
tentials, receiving contributions from terms linear in δfR. However,
these two extra terms exactly cancel in the weak lensing potential
(equation 32) such that �wl = �N. Therefore, we recover equations
(36)–(38) in f(R) models too. Moreover, we have seen that both the
Jordan-frame and Einstein-frame background quantities are equal
to the reference �CDM background quantities up to an accuracy of
10−4 for |fR0 | � 10−4. This means that weak lensing statistics can
again be computed in the reference background cosmology, so long
as the modified matter density power spectrum is used.

3.2 Non-linear matter power spectrum

The choice of non-linear power spectrum to insert in equation (37)
depends on the cosmology under investigation. In this paper, we
are interested in constraining modified gravity models, but with
respect to a �CDM baseline, these are strongly degenerated with
universes that include baryon feedbacks and/or massive neutrinos.
In the context of cosmic shear, these phenomena are therefore in-
trinsically connected and must be jointly analysed. We detail in this
section how we combine all these effects in the construction of our
theoretical predictions.

3.2.1 Dark matter only

The first choice we make concerns the dark matter model PDM(k),
which is a delicate issue that has been thoroughly investigated in
HWVH in a very similar context. Following this work, we choose
the dark matter only (DM-ONLY) model that best reproduces the re-
sults from a number of �CDM N-body simulations, then implement
the combined effect of modified gravity, baryon feedback and mas-
sive neutrinos relative to this DM-ONLY baseline. Our DM-ONLY
prediction is a hybrid model that combines the Extended Cosmic
Emulator (Heitmann et al. 2014) with the recalibrated HALOFIT code
by Takahashi et al. (2012). Its convergence properties have been
well examined in HWVH, and it was shown to have the best agree-
ment with independent high-resolution simulation suites, compared
with other models. In addition, HWVH examined the scatter across
multiple models, and estimated the theoretical uncertainty on the
global DM-ONLY prediction for ξ±. In this paper, we also incor-
porate this model uncertainty in the analysis pipeline, at the level
of the χ2 calculation (see Section 4.1).

3.2.2 Neutrino and baryon feedback

Following HWVH, we model the impact of massive neutrinos and
baryon feedback on the matter power spectrum as separate effects
that can be expressed with multiplicative feedback terms, namely,

P DM+ν+b(m)(k, z) = P DM(k, z) × b2
Mν

(k, z) × b2
m(k, z). (39)

The underlying assumption is that both biases are independent,
which is reasonable since baryons were found to have a 1 per cent
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effect on the neutrinos bias for k < 8 h Mpc−1 (Bird, Viel & Haehnelt
2012).

We compute the neutrino feedback bias term b2
Mν

with the CAMB

cosmological code (Lewis, Challinor & Lasenby 2000), which is
reported to be accurate to better than 10 per cent at k = 10 h Mpc−1

(Bird et al. 2012). We assume one massive neutrino flavour, and
fix the cosmology at high redshift – i.e. we keep the primordial
amplitude As fixed but let σ 8 vary. We justify this choice from
the fact that the former quantity is measured very accurately by
CMB observations, whereas our estimation of the latter quantity is
much less accurate due to galactic and cluster bias. We construct
the neutrino bias as

b2
Mν

(k, z) ≡ P
DM+Mν
CAMB (k, z)

P DM
CAMB(k, z)

, (40)

where the Mν (=0.0, 0.2, 0.4 or 0.6 eV) superscript specifies the
total neutrino mass considered, and the subscript ‘CAMB’ specifies
that both quantities are measured from this cosmological numerical
code.

The baryonic feedback bias is estimated from two hydrodynam-
ical simulations ran in the context of the OverWhelmingly Large
(OWL) Simulation Project (Schaye et al. 2010). The DM-ONLY run
is a purely collisionless N-body calculation and acts as the baseline
for this baryon feedback measurement only. The active galactic
nucleus (AGN) simulation run contains gas dynamics with physi-
cal prescriptions for cooling, heating, star formation and evolution,
chemical enrichment, supernovae feedback andAGN feedback (see
van Daalen et al. 2011 for details about these simulations). Fol-
lowing van Daalen et al. (2011) and Semboloni et al. (2011), we
measure the baryonic feedback bias by taking the ratio between the
AGN and the DM-ONLY models15:

b2
m(k, z) ≡ P

DM+b(m)
OWL (k, z)

P DM
OWL(k, z)

, (41)

where the index b(m) refers to either DM-ONLY or AGN, and
the subscript ‘OWL’ specifies that these quantities were measured
specifically from the OWL simulation suite.

Fig. 1 shows the impact of different combinations of baryons and
massive neutrinos on the matter power spectrum. Figs 2 and 3 show
the equivalent effects on the weak lensing power spectrum Cκ

� and on
the shear two-point correlation function ξ±(θ ), respectively. We can
see from the three figures that all models converge to DM-ONLY at
large scales (low k, low � and high θ ), and that the combined effect
can suppress more than 50 per cent of the power, depending on
the models and neutrino mass. Also, it becomes clear that surveys
probing small patches (restricted to � > 500 for example) would
have difficulties to distinguish between the two feedback processes.
This degeneracy can only be broken with the inclusion of lower �

multipoles, where baryon feedback is minimal but massive neutrinos
still leave a signature (Natarajan et al. 2014).

3.2.3 Combined feedback with modified gravity

The evolution of perturbations in the context of large-scale struc-
tures has been carefully studied in f(R) and scalar–tensor theo-
ries’ gravity (Koivisto 2006; Zhang 2006; Bean et al. 2007; Hu &
Sawicki 2007; Song et al. 2007a,b; Carloni, Dunsby & Troisi 2008;
Pogosian & Silvestri 2008; Koyama, Taruya & Hiramatsu 2009;

15 The power spectrum measurements from the OWL simulation suite are
publicly available at http://vd11.strw.leidenuniv.nl

Figure 1. Combined effect from baryon feedback and massive neutrinos on
the matter power spectrum P(k), evaluated at z = 1. Results are shown with
respect to the DM-ONLY non-linear predictions (thick solid line). From top
to bottom, the (blue) dashed lines represent the effect of massive neutrinos
with Mν = 0.2, 0.4 and 0.6 eV, respectively. The combinations of massive
neutrinos with baryon feedback are shown with the thin (red) solid lines.

Figure 2. Combined effect from baryon feedback and massive neutrinos on
the weak lensing power spectrum, assuming the source redshift distribution
given by equation (45) and the baseline WMAP9 cosmology. As for Fig. 1,
results of different combinations are shown with respect to the DM-ONLY
non-linear predictions (thick solid line), and the sum of neutrino masses
shown are, from top to bottom, Mν = 0.2, 0.4 and 0.6 eV.

Figure 3. Left: combined effect from baryon feedback and massive neu-
trinos on the weak lensing two-point correlation function ξ+. The open
symbols represent our measurements from CFHTLenS data, shown with
1σ error bars. Right: same as the left-hand panel, but for the ξ− estimator.
We used the same y-axis range for both panels to emphasize on the differ-
ences across the models, hence the leftmost point falls outside the frame, at
ξ−/ξDM− = −3.8.
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Motohashi, Starobinsky & Yokoyama 2009; Brax et al. 2011; Li &
Hu 2011; Li, Zhao & Koyama 2012; Linares & Mota 2013; Brax
& Valageas 2013; Taddei, Catena & Pietroni 2014). In this paper,
we focus on the matter density power spectrum P(k; z), or more
precisely, on the weak lensing convergence power spectrum Cκ

� ,
which can be computed from P(k; z) through the modified Poisson
equations that relate the metric gravitational potentials to the matter
density fluctuations.

Therefore, before computing weak lensing statistics, we first need
to describe gravitational clustering and the 3D matter density power
spectrum for all cosmological scenarios that we investigate. We use
the approach first developed in Valageas, Nishimichi & Taruya
(2013) for the �CDM cosmology, generalized afterwards to vari-
ous modified-gravity scenarios in Brax & Valageas (2013, 2014b).
This is an analytical approach that combines perturbation theory up
to one-loop order (i.e. up to order P 2

L , where PL is the linear mat-
ter density power spectrum) with a phenomenological halo model.
Namely, we are splitting the matter power spectrum as

P (k) = P2H(k) + P1H(k), (42)

where P2H(k) is the ‘two-halo’ term associated with pairs of par-
ticles that are enclosed in two different haloes, whereas P1H(k) is
the ‘one-halo’ term associated with pairs enclosed in the same halo.
This construction allows us to obtain predictions for the non-linear
matter power spectrum covering the linear, quasi-linear and highly
non-linear scales. We refer the reader to the work cited above for
complete details and validations of equation (42), but nevertheless
provide an overview of the method in Appendix A for quick ref-
erence. We note that other prescriptions exist for modelling P(k)
in modified gravity scenarios, i.e. Zhao (2014) for the f(R) model.
However the modelling we adopt here applies also to f(R) with n
�= 1 gravity, to Dilaton gravity, and in fact to any modified gravity
model expressed in the tomographic parametrization, which makes
it general and accurate at the same time.

In analogy with equations (40) and (41), we define the modified
gravity bias:

b2
MG(α)(k, z) ≡ P

MG(α)
VNT (k, z)

P DM
VNT(k, z)

, (43)

where MG(α) refers to the gravity model, with α = 0 corresponding
to GR, α = [1, 2, 3,. . . ,15] specifying dilation models [A1, A2,
A3,. . . , E4], α = [16, 17, 18] specifying f(R) models with n = 1
and |fR0 | = 10−4, 10−5, 10−6, and finally α = [19, 20, 21] the f(R)
models with n = 2 and the same |fR0 | values. The subscript ‘VNT’
indicates quantities that are computed in the framework of Valageas
et al. (2013), i.e. with equation (42).

Bringing all the pieces together, we construct the matter power
spectrum for any combination of baryon feedback, neutrino mass
and modified gravity by multiplying the DM-ONLY model by the
corresponding biases:

P DM+ν+b(m)+MG = P DM × b2
Mν

× b2
m × b2

MG(α). (44)

We have removed the dependences on scale and redshift for each of
these terms to clarify the notation. This modelling assumes that the
effect of modified gravity on the baryon and neutrino feedbacks can
be neglected, allowing for the convenient factorization presented
in equation (44). This seems to be a valid approximation for some
models, as it was shown in Hammami et al. (2015) that the mod-
ified gravity bias measured in DM-ONLY matched to better than
5 per cent the same measurement done in full hydrodynamical sim-
ulations, for f(R) models with n = 1 and |fR0 | ∈ [10−4 to 10−6].
However, the same group also observed larger deviations in many

Figure 4. Combined effect from baryon feedback and massive neutrinos on
the matter power spectrum P(k) assuming different modified gravity models,
again evaluated at z = 1. Results are shown with respect to the DM-ONLY
non-linear predictions (thick horizontal solid line). From top to bottom at k
= 0.2 h Mpc−1, the solid lines represent Dilaton models B4, A3, E3, D1 and
C1, respectively. The thick red dashed lines correspond to f(R) gravity with
n = 1. Top to bottom are for |fR0 | = 10−4, 10−5 and 10−6, respectively.
We do not show the n = 2 results to avoid overcrowding the figure, but they
are qualitatively similar in shape to the n = 1 case, albeit with a smaller
departure from �CDM. Different panels show different combinations of
massive neutrinos and baryon feedback on these same models, all computed
with equation (44).

symmetron models, up to 20 per cent by k = 10 h Mpc−1 in some
cases. This places a limit on the accuracy of equation (44), and calls
for more hydrodynamical simulation runs where bm and bMG(α) are
merged into one term, bm, MG(α), measured for each combination of
{α, m}. This is unfortunately not available at the moment, hence
equation (44) is currently our best shot at this joint measurement.
On the neutrino sector, results by Baldi et al. (2014) are further
encouraging: they looked at joint simulations of modified gravity
and massive neutrinos and came to the conclusion that one could
consider the effect of each almost independently, supporting the
validity of equation (44).

For each combination, we compute predictions for the weak lens-
ing quantity with equations (37) and (34). We report our results on
P(k) and Cκ

� in Figs 4 and 5, respectively. Whereas modified gravity
is generally boosting the clustering compared to a �CDM uni-
verse, the inclusion of massive neutrinos and/or baryonic feedback
is working in the opposite direction. It becomes clear that a pre-
cise distinction between these three feedback contributions poses a
challenge to clustering and weak lensing experiments.

3.3 Data

Our measurement of the shear correlation functions ξ± is based on
the public release of the CFHTLenS.16 The CFHTLenS covers a
total area of 154 deg2, which is reduced to 128 deg2 after mask-
ing bright stars, foreground moving objects and faulty CCD rows.
Full details about the data reduction pipeline are provided in Er-
ben et al. (2013). Source redshifts are obtained from the five bands
u′griz photometric observations (Hildebrandt et al. 2012) and were

16 CFHTLenS: www.cfhtlens.org
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Figure 5. Same as Fig. 4, but for the weak lensing power spectrum.

carefully tested in Benjamin et al. (2013); shape measurements are
performed on the r-band images with the LENSFIT Bayesian code de-
scribed in Miller et al. (2013). A detailed assessment of the residual
systematics is provided in Heymans et al. (2012), and we refer the
reader to these references for more information on the CFHTLenS
data.

As described in Heymans et al. (2012), the public shear data must
be recalibrated with additive and multiplicative factors, commonly
referred to as the c and m corrections. In contrast with this reference,
we use a different c correction, as detailed in HWVH, which is less
model dependent. Although the overall change on the correction is
marginal, the number of CFHTLenS pointings that are flagged as
bad is reduced by almost a half.

Following the recommendations of Heymans et al. (2012) and
Benjamin et al. (2013), we minimize the systematic contamination
from badly reconstructed photometric redshifts by applying the se-
lection cut 0.4 < zphot < 1.3. We construct the redshift distribution
n(z) for the selected galaxies from the LENSFIT-weighted stacked
probability distribution functions of the galaxy sample. As shown
in HWMH, the distribution is well described by the following ana-
lytical expression:

n(z) = N0e−(z−z0)2/σ 2
0 + N1e−(z−z1)2/σ 2

1

+ N2e−(z−z2)2/σ 2
2

1.0 + e−10.0(z−0.6)
, (45)

where (N0, z0, σ 0, N1, z1, σ 1, N2, z2, σ 2) = (0.144 38, 0.760 574,
0.145 94, 0.514 894, 0.498 379, 0.156 08, 1.744 35, 0.445 019,
0.684 098). There is a 0.4 per cent difference in the mean redshift
between the fit and the distribution, which yields a small error
well below the other sources of error in our analysis. We therefore
neglected this contribution to the systematic budget.

We construct our shear correlation function estimator following
Kilbinger et al. (2013):

ξ±(θ ) =
∑

i,j wiwj

[
et (θi)et (θj ) ± er (θi)er (θj )

]
∑

i,j wiwj

. (46)

All galaxy pairs (i, j) separated with angular distance |θ i − θ j| ∈ θ

contribute to the same bin, with their contribution weighted by the
product of their LENSFIT weights wiwj (Miller et al. 2013). The shear
quantities et and er are the tangential and cross-component of the
galaxy ellipticity, measured in the coordinate system of the galaxy

pair. We account for the shear calibration by measuring

1 + K(θ ) =
∑

i,j wiwj (1 + mi)(1 + mj )∑
i,j wiwj

(47)

and dividing ξ± by 1 + K. As a rule of thumb, K is ∼−0.11 at
all angular scales, with variations smaller than 0.1 per cent. We
finally exclude all pairs with θ < 12 arcsec in order to minimize
contamination by post-stamp leakage across LENSFIT templates. We
perform this measurement with ATHENA,17 and show our results in
Fig. 3.

3.4 Simulations

In order to achieve a high-precision cosmic shear measurement,
not only must the data be thoroughly tested for subtle systematics
residuals, but the sampling variance must be accurately estimated, a
quantity that is very hard to assess from the data. To overcome this
difficulty, we rely on a suite of weak lensing simulations based on
WMAP9 + SN + BAO cosmology. As detailed in Harnois-Déraps
& van Waerbeke (2015), the SLICS-LE suite consists of 60 deg2

light cones extracted from 500 independent N-body realizations.
The numerical weak lensing signal is precise to better than 10 per
cent for ξ+ with θ > 0.4 arcmin (and θ > 5 arcmin for ξ−). We
construct the mock maps by combining the different redshift planes
with a redshift source distribution that mimics that of the data. We
then sample the simulated shear maps with 105 points randomly
located, and compute the shear two-point correlation functions ξ±
of these mock ‘galaxies’ with the same pipeline as the data (i.e.
from equation 46).

4 R ESULTS

In this section, we first review our error budget, we then describe
how different components combine in our model rejection proce-
dure, and finally present our results.

4.1 Error budget

This analysis closely follows that of HWVH; we summarize here
the main ingredients, and refer the reader to the reference for more
details. The sources of error in this analysis can be broken into three
terms: (1) uncertainty on the cosmic shear measurement, (2) uncer-
tainty in the theoretical model describing the non-linear regime of
structure formation and (3) uncertainty on the fiducial cosmology.

(1) The error on our cosmic shear measurement is dominated by
shape noise at small angles and sampling variance at large angles.
The angular scales at which these two errors contribute equally
occur at θ = 2 and 30 arcmin for ξ+ and ξ−, respectively. In
addition, the variance-shape noise mixed term contributes to about
a third of the error on ξ+ at large angles, but is negligible in ξ−,
as seen in Kilbinger et al. (2013). We have estimated the sampling
variance from the SLICS-LE weak lensing simulations, and added
an extra contribution from the halo-sampling variance, following
the modelling of Sato et al. (2009), which provides at most a 10 per
cent correction on the overall error. Our measurement is minimally
affected by intrinsic alignment of galaxies, since we do not perform
tomographic analysis (see Heymans et al. 2013 for more details on
intrinsic alignments in the CFHTLenS data). The error from shape
reconstruction is already included in the statistical term, hence does

17 ATHENA: http://cosmostat.org/athena.html
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Figure 6. Same as Fig. 4, but for ξ+. The open symbols represent our
measurements from the CFHTLenS data, exactly as in Fig. 3. Shown are the
1σ error bars.

not require an extra term. Photometric redshift uncertainty enters
the measurement through modification of the source distribution
n(z), but this effect is negligible compared with other sources of
error hence is not included.

(2) The uncertainty on the DM-ONLY non-linear model has been
carefully assessed in HWVH by comparing five different predic-
tions: HALOFIT2012, HALOFIT2011 + small scale empirical recali-
bration, Cosmic Emulator + power-law graft, Cosmic Emulator +
HALOFIT2012 graft and, finally, the mean over five independent high-
resolution simulations – the SLICS-HR suite described in Harnois-
Déraps & van Waerbeke (2015). These five models agree very well
over most angular scales, and the 1σ scatter among them is taken
as the (θ -dependent) theoretical error. For ξ+, angles larger than
5 arcmin achieve a 1 per cent precision, while smaller angles reach
a 4 per cent precision. For ξ−, angles larger than 3 arcmin have a
4 per cent precision, while smaller angles are only accurate to 8
per cent. The poorer precision on ξ− is explained by the fact that it
probes much deeper in the non-linear regime. Let us re-iterate that
the precisions above mentioned represent the theoretical error on
our weak lensing signal for a fixed �CDM cosmology universe, in
which there is no modified gravity, baryonic feedback nor massive
neutrinos. Also, we do not assign a theoretical error to the baryonic
feedback model, but rather treat it as an exact effect that can be
switched on and off (see Section 4.2). This is of course not exactly
representative of the real Universe, and a full MCMC could be run
on the parameters that describe the baryonic feedback, but leave
this for a future study.

(3) The uncertainty in the cosmological parameters is set by the
WMAP9 precision (Hinshaw et al. 2013), whose dominant contri-
bution on the weak lensing uncertainty arises via the parameters
�M and As. With the inclusion of the BAO and SN external data,
these two parameters are allowed a 3.4 and 3.3 per cent variation
about their mean values (1σ ). Since the amplitude of ξ± roughly
scales as (As�M)2, we expect the combined error to be of the order
5 per cent of the �CDM baseline signal, assuming no prior on the
joint contour.

Note that the cosmological error and the modelling error (terms
2 and 3) enter in our analysis as systematic uncertainties, therefore
we add them in quadrature and marginalize over them (see details
in Section 4.2). Also note that the Planck cosmology {�M, As} falls

Figure 7. Same as Fig. 6, but for ξ−. Note the different y-axis range
compared to Fig. 6.

within our 3σ search limits, although closer to the edge of the search
zone. (See Figs 1 and 7 from HWMH for a quantitative assessment
of these different sources of uncertainty.)

4.2 Model rejection strategy

As seen in Figs 6 and 7, the effects of baryons, massive neutri-
nos and modified gravity are significantly degenerate on ξ±. Given
the noise levels in the current data and the number of internal pa-
rameters that describe these different mechanisms, performing a
full MCMC analysis is not convenient to extract meaningful con-
straints. A more appropriate and direct way is to sample a finite
set of model combinations and examine their agreement with the
data. This case-by-case strategy has the potential to reject models
that are inconsistent with the data, which can then be translated into
constraints on the underlying free parameters.

The metric we adopt for this type of analysis is the p-value, which
measures the probability that the data are consistent with the model,
if the model is true. It is given by the integral over the χ2 probability
density function, where the lower bound is the measured χ2 and the
upper bound is infinity. As a rule of thumb, models with p-values
<10 per cent are rejected with more than 90 per cent confidence, and
1σ , 2σ , 3σ . . . rejection measurements are obtained for p-values of
0.317, 0.046, 0.003.... Our strategy therefore consists to measure
the χ2 and p-value associated with each combination of baryon
feedback, neutrino mass and modified gravity model, and to flag
every combination with p < 0.1 as being disfavoured.

The uncertainty arising from statistical and sampling variance
naturally enters this calculation through the evaluation of the χ2,
which involves the inversion of the cosmic shear covariance matrix.
The systematic uncertainty, however, is trickier to capture. In our
cosmic shear measurement, it mainly manifests itself as shifts in the
amplitude of the signal, as described in Section 4.1. The systematic
error is higher at smaller angles and represents at most an error
of ∼9 per cent on the ξ± model amplitude. In order to marginalize
over this effect, for each model, we allow the theoretical signal to
shift up and down by 3σ syst, corresponding to vertical excursion of
27 per cent in Figs 6 and 7, keeping the error bars (statistical +
sampling) fixed. We then compute an array of p-values in this
excursion range, and record only the largest measurement (i.e. the
least restrictive).
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The exact number of degrees of freedom (d.o.f.) that enters the
χ2 distribution function must be carefully chosen. To begin with,
each of the two cosmic shear observables is organized in 11 angular
bins, yielding a maximum of 22 d.o.f. However, assigning one
d.o.f. per angular bin would be incorrect, for the following reason.
In a statistical sense, our model rejection method is completely
equivalent to fitting the parameter combination (A2

s �
1.8
M ) from the

amplitude of the ξ± signals, followed by an extraction of the most
likely neutrino mass for each baryon feedback and modified gravity
model from the largest p-value. This implies that the number of
degrees of freedom should be reduced by two (one for fitting A2

s �
1.8
M ,

one for fitting Mν) in the conversion between χ2 and p-values.
Note that for a given angular scale, both ξ+ and ξ− probe dif-

ferent physical scales, the latter focusing on structures about five
times smaller. It is therefore relevant to examine the constraining
power of ξ+ first, and to add ξ− to the data vector as a second
step. When both are combined, the full data covariance matrix in-
volves the cross-correlation region, as described in HWVH. The
resulting p-values are summarized for all our results in Table 2,
for Mν ≤ 0.2 eV. No conclusions can be drawn from models with
higher total neutrino masses, as the p-values for any combination is
always greater than 0.175. The models rejected at more than 1.64σ

(i.e. 90 per cent confidence interval, CI) are highlighted in bold
font.

4.3 Discussion

One of the main results recovered from Table 2 is that the f(R)
model with {|fR0 |, n} = {10−4, 1} is strongly disfavoured by the
cosmic shear data, regardless of the baryonic feedback model or
sum of neutrino mass, consistent with independent constraints. The
f(R) and f(R) + AGN models are rejected by at least 3σ , but combi-
nations including massive (0.2 eV) neutrinos tend to weaken these
constraints. This can be understood by the fact that massive neu-
trinos and modified gravity partly compensate for one another, re-
ducing the global departure from �CDM. Also, f(R, n = 2) models
are generally in better agreement with the data compared to their
(n = 1) counterpart. This is so simply because higher values of n
rapidly suppress the f(R) term, hence deviations from GR, as seen
in equation (22).

The next important result is that the rejection of massless neu-
trinos + DM-ONLY is robust against all modified gravity models
we have tested, and typically made stronger. The cosmic shear data
clearly prefer lower values of ξ± at small angular scales, and mod-
ified gravity pulls the other way. Also, 9 out of the 21 modified
gravity models are still consistent with the ξ+ data alone.

The inclusion of baryon feedback reduces to about two-thirds the
number of models rejected with 90 per cent CI. For instance, dilation
models A2, A3, B3, B4, C1, C3, D1, E3 and E4 are disfavoured;
these are the most discrepant with GR+�CDM. Referring to Table
1 and the model descriptions in Section 2.1, this can be interpreted
as follow. In a tomographic parametrization of modified gravity
centred on {m0, r, β0, s} = {0.334, 1.0, 0.5, 0.24}, excursions in
the s, β0 and r directions are studied with models A, B and C,
respectively, and the data favour lower parameters values. Model E
explores the m0 direction, and the data prefer higher values. Model
D explores the diagonal direction in the {m0, s} plane at fixed A2

(see equation 8), where here we observe instead that the data prefer
lower m0 values.

In comparison with the combined ξ+ξ− vector, the ξ+ data vector
provides a qualitatively similar result, except with a rejection power
a bit lowered. There is thus a net gain in using the combined vector,

even though the smallest angular scales of ξ− are heavily down-
weighted due to theoretical uncertainties.

We note that there is a mild effect seen in the ‘AGN’ column
of Table 2, where the addition of ξ− to the data vector sometimes
increases the p-value by a small amount. This can be attributed to
the fact that at small angles, ξ− prefers amplitude even lower than
ξ+, compared to the DM-ONLY model. Adding baryon feedback
therefore produces a lower rejection rate in the former than in the
latter quantity.

When neutrino masses are allowed to reach 0.2 eV, only the
f(R){10−4, 1}, f(R){10−4, 2} and the Dilaton B4 and E4 models
remain in tension with the data. With AGN + Mν = 0.2eV, no
models are rejected, aside from the most extreme case considered
in this paper: f(R){10−4, 1}.

This means that given the current cosmic shear data and levels
of systematics, it is possible to accommodate most models, as long
as either massive neutrinos or strong baryon feedback mechanisms
counter-balance the effect of the fifth force on the matter cluster-
ing. As upcoming independent cosmological probes will tighten the
uncertainty on neutrino masses and significantly improve the sta-
tistical and sampling errors, we expect the next generation of such
analysis to be much more constraining. Once at this stage, it will
be instructive to propagate our measurements on to {m(a), β(a)}
contours and provide a Fisher matrix for joint probes analyses. If,
for instance, the total mass turns out to be much smaller than 0.2 eV,
then the current AGN column should give a very good approxima-
tion of the rejection power from the CFHTLenS cosmic shear data.
Precise modelling of the baryon feedback is likely to take more time
to reach, due to the higher level of complexity intrinsic to these as-
trophysical phenomena. Intermediate solutions will involve a series
of tuneable parameters, also to be constrained.

On a separate note, we stress that the constraints can be further
tightened using additional information about the weak-lensing ob-
servables, such as the non-Gaussian features (Munshi et al. 2012),
or by combining the results with external probes such as redshift
distortions, peculiar velocity, etc.

5 C O N C L U S I O N

Cosmic shear is a promising tool for probing deviations from GR,
since these are maximal at scales of a few Mpc, where the lens-
ing signal-to-noise ratio is the highest. These same scales are very
challenging to probe with other types of large-scale structure ob-
servables, mainly because of the galaxy bias that is largely unknown.
At the same time, this complementarity offers a number of oppor-
tunities for strong constraints based on joint data sets.

One of the main challenges in working with these non-linear
scales is the large theoretical uncertainties due to the unknown
neutrino masses, the precise baryonic feedback mechanisms and,
to a lesser extent, inaccuracies in the clustering of dark matter.
However, a lot of effort is invested in all these areas, such that
it becomes possible to place joint constraints on these degenerate
physical effects.

This paper presents the first constraints on modified gravity
obtained from cosmic shear measurements alone; the results are
derived by studying the impact of modified gravity on matter clus-
tering and comparing the predictions with the public CFHTLenS
data. Limiting the background �CDM cosmology to the 3σ range
in {As, �M} allowed by WMAP9 + SN + BAO, we compared the
ξ± data against predictions including f(R) and Dilaton models in
a number of parameter configurations. We carried a model rejec-
tion analysis accounting for possible degeneracies with massive
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Table 2. Distribution of p-values for different combinations of baryon feedback models, neutrino masses and
gravity models (see main text for details). The parameters listed in the leftmost column of the f(R) models are
{n, |fR0 |}. Dilaton models are described in Table 1. For this calculation, we fit all data in the range 0.2 < θ <

167 arcmin. Specifically, each entry in this table represents the largest p-value probed inside a 3σ syst region about
the mean of the model. Values in bold face highlight the model combinations that are excluded by the data with
more than 1.64σ significance (p-value < 0.1, equivalent to a CI of 90 per cent). Models with Mν > 0.2 eV are not
listed, as none has value lower than 0.176.

DM-ONLY AGN 0.2 eV AGN+0.2 eV
Model ξ+ ξ+ξ− ξ+ ξ+ξ− ξ+ ξ+ξ− ξ+ ξ+ξ−

GR
�CDM 0.132 0.065 0.119 0.150 0.331 0.297 0.289 0.444

Generalized Dilaton
A1 0.126 0.058 0.116 0.141 0.323 0.282 0.284 0.431
A2 0.088 0.030 0.093 0.099 0.269 0.203 0.256 0.363
A3 0.037 0.008 0.060 0.051 0.184 0.105 0.207 0.265
B1 0.120 0.054 0.113 0.135 0.315 0.273 0.281 0.424
B3 0.043 0.010 0.064 0.054 0.195 0.113 0.212 0.272
B4 0.008 0.001 0.032 0.019 0.107 0.037 0.150 0.161
C1 0.080 0.022 0.100 0.098 0.259 0.171 0.271 0.365
C3 0.104 0.040 0.098 0.111 0.293 0.239 0.261 0.385
C4 0.114 0.049 0.104 0.122 0.307 0.259 0.267 0.402
D1 0.063 0.013 0.100 0.085 0.232 0.132 0.276 0.347
D3 0.127 0.060 0.115 0.141 0.325 0.286 0.282 0.431
D4 0.131 0.064 0.119 0.149 0.331 0.295 0.288 0.441
E1 0.118 0.049 0.117 0.135 0.314 0.260 0.289 0.425
E3 0.047 0.013 0.053 0.049 0.200 0.132 0.186 0.257
E4 0.026 0.007 0.032 0.027 0.156 0.094 0.138 0.188

f(R)
{1, 10−4} 0.001 0.000 0.005 0.003 0.051 0.018 0.054 0.057
{1, 10−5} 0.058 0.013 0.072 0.062 0.222 0.134 0.222 0.292
{1, 10−6} 0.129 0.054 0.125 0.145 0.328 0.271 0.298 0.437
{2, 10−4} 0.011 0.003 0.020 0.014 0.112 0.056 0.104 0.131
{2, 10−5} 0.095 0.030 0.094 0.097 0.277 0.200 0.254 0.354
{2, 10−6} 0.137 0.063 0.126 0.154 0.338 0.292 0.299 0.449

neutrinos and baryonic feedback mechanisms, and investigated
which combinations of models were mostly disfavoured by the
data. As summarized in Table 2, the f(R) model with |fR0 | = 10−4

is strongly disfavoured even in the presence of realistic levels of
baryonic feedback and massive neutrinos reaching Mν = 0.2 eV. A
universe with no baryonic feedback and massless neutrinos is also
rejected with 2σ or above in most modified gravity scenarios. We
are not yet able to identify a preferred model with the current level of
statistical accuracy, but we expect future weak lensing experiments
to improve significantly in this direction.

In our analyses, we have used the simplifying assumption that
the biases due to massive neutrinos, baryon feedback and modified
gravity were uncorrelated, which is justified to some extend based
on the several numerical results. However, precise correlations will
need to be studied for a number of models, a task that involves suites
of large cosmological hydrodynamical simulations including all the
ingredients at once.

One important future task will be to map observational detec-
tions of modifications to GR on to parameter constraints such as the
{m(a), β(a)} pair. However, the current data are not quite there
yet. Several theories can accommodate similar phenomenologi-
cal effects, and model-independent parameterizations such as that
presented in Leonard, Baker & Ferreira (2015) might prove helpful
for this.

This paper used the impact of modified gravity on the clustering
properties of matter and their propagation on to the weak lensing
cosmic shear signal. Other avenues of probing deviations from GR

with weak lensing data are complementary, including direct com-
binations with baryonic probes or tomographic decomposition, and
worth exploring in the near future.
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A P P E N D I X A : D E TA I L S O N T H E
T H E O R E T I C A L M O D E L L I N G O F P(k)
I N M O D I F I E D G R AV I T Y SC E NA R I O S

This appendix discusses the construction strategy of the matter
density power spectrum P(k; z) in the presence of f(R) or Dilaton
modifications to GR; full details are provided in the references
contained herein.

A1 Two-halo term: P2H(k)

The power spectrum analytical prediction is constructed from
a halo model approach, following equation (42). The two-halo
term, which dominates on large scales, is computed from a
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Lagrangian-space resummation of standard perturbation theory that
is exact up to order P 2

L and contains partial resummations of higher
order terms. It is also supplemented with non-perturbative contri-
butions that take into account some aspects of shell crossing and
ensure that all particle pairs are counted only once in the sum.
Within this framework, the large-scale term P2H(k) essentially con-
tains no free parameter. It can therefore be computed in �CDM and
modified-gravity scenarios by using perturbation theory up to order
P 2

L (which requires going to order δ3
L in terms of the density field

itself).
In the case of the �CDM cosmology, this perturbative expan-

sion follows the standard approach (Bernardeau et al. 2002), where
the density and velocity fields are written as perturbative expan-
sions over powers of the linear density field δL; subsequent or-
ders are computed by substituting into the continuity and Euler–
Poisson equations. In the case of the modified-gravity scenarios
considered in this paper, we follow the same approach but re-
quire an additional expansion to write the fifth force in terms of
the non-linear density fluctuations. Indeed, using the quasi-static
approximation, we can relate the scalar field ϕ to the matter den-
sity field ρ, typically through a non-linear Klein–Gordon equation.
Then, we can solve for ϕ as an expansion over the non-linear den-
sity fluctuations δρ. This allows us to obtain both the Newtonian
potential and the fifth-force potential as functionals of the non-
linear matter density fluctuations. However, while the Newtonian
potential is given by the linear Poisson equation, the fifth-force
potential is usually given by a non-linear equation that involves
new time and scale dependences. In terms of the diagrammatic
expansion of the non-linear power spectrum P(k) over PL(k), this
implies that the linear propagators and the vertices are modified
with new diagrams associated with the new non-linearity of the
modified Poisson equation, see Brax & Valageas (2013) for more
explanations.

A2 One-halo term: P1H(k)

The one-halo term is obtained from the halo mass function and
the halo density profile, with the addition of a counter-term first
introduced in Valageas & Nishimichi (2011) that arises from mass
conservation. This also ensures that P1H(k) decays at low k and
becomes subdominant as compared with P2H(k), whereas the usual
formulation gives a spurious white-noise tail that dominates on very
large scales. We take into account the impact of modified gravity
through its effect on the halo mass function (i.e. through the ac-
celeration or slowing down of the spherical collapse), but neglect
the impact on the halo shape and profile. This should be sufficient
for our purposes, because we only consider cosmologies that re-

main close to the �CDM reference, and these modified gravity
models have a much stronger impact on the halo mass function,
especially on its large-mass tail, than on the halo profile. As shown
in Valageas (2013), at z = 0, a 10 per cent change to the mass–
concentration relation only yields a 2 per cent change of P(k) at
1 h Mpc−1, whereas a 10 per cent change to the halo mass function
yields a 2 per cent change of P(k) at 0.35 h Mpc−1 and a 7.5 per cent
change at 1 h Mpc−1. Generally, the concentration parameter always
remains in the range 3–10 for typical haloes and does not vary by
much more than 10 per cent for realistic scenarios, whereas the mass
function at M ∼ 5 × 1014 h−1 M� can vary by more than 50 per cent
(Lombriser et al. 2012, 2013). The interior of haloes is mostly af-
fected by screening anyway, further justifying this approximation.

A3 Comparison with numerical simulations

The modelling described above for the matter density power spec-
trum has been checked in details against numerical simulations in
Valageas et al. (2013) for �CDM cosmologies, and in Brax &
Valageas (2013) for the class of modified gravity models that we
consider in this paper. In the case of �CDM, it provides an accu-
racy of 2 per cent up to comoving wavenumber k ∼ 0.9 h Mpc−1,
and 15 per cent up to k = 15 h Mpc−1 down to z = 0.35. In terms of
the real-space correlation function, this translates into an accuracy
of 5 per cent down to the comoving scale r = 0.15 h−1 Mpc. For the
f(R) theories, it is able to reproduce very well the deviations from
the �CDM scenarios up to k = 3 h Mpc−1 (the highest wavenum-
ber available from the simulations) at z = 0, for |fR0 | = 10−4, 10−5,
and 10−6. In particular, it accurately captures the relative effect on
the power compared to the �CDM reference due to the non-linear
Chameleon mechanism. For the Dilaton models, the agreement with
the numerical simulations depends somewhat on the model param-
eters but it typically gives a good quantitative estimate of the de-
viations from �CDM up to k = 5 h Mpc−1 (the highest wavenum-
ber available from the simulations). When there is a noticeable
departure from the simulations, it corresponds to an underestima-
tion of the amplification of the power spectrum at k � 2 h Mpc−1,
which may be due to our neglect of the impact of modified gravity
on the halo concentration parameter. Therefore, in such cases our
approach provides a conservative estimate of the deviations from
�CDM. Again, this modelling is able to capture the decrease of
the deviations from the �CDM reference due to the non-linear
Damour–Polyakov mechanism.
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