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Abstract  

Reactions of  2,6-bis(benzimidazol-2-yl)pyridine (L1), 2,6-bis(benzoxazol-2-yl)pyridine (L2), and 

2,6-bis(benzothiazol-2-yl)pyridine (L3) with [Pd(NCMe)2Cl2] in the presence of NaBF4 afforded the 

corresponding Pd(II) complexes,  [Pd(L1)Cl]BF4, PdL1; [Pd(L2)Cl]BF4, PdL2; [Pd(L3)Cl]BF4, PdL3; 

respectively, while reaction of bis[(1H-benzimidazol-2-yl)methyl]amine (L4)  with [Pd(NCMe)2Cl2] 

afforded complex  [Pd(L4)Cl]Cl, PdL4.  Characterisation of the complexes was accomplished using NMR, 

IR, MS, elemental analyses and single crystal X-ray crystallography. Ligand substitution kinetics of these 

complexes by biological nucleophiles thiourea (Tu), L-methionine (L-Met) and guanosine 5′-diphosphate 

disodium salt (5-GMP) were examined under pseudo-first order conditions. The reactivity of the 

complexes decreased in the order: PdL1 > PdL2 > PdL3 > PdL4, ascribed to electronic effects. Density 

functional theory (DFT) supported this trend. Studies of interaction of the Pd(II) complexes with calf 

thymus DNA (CT-DNA) revealed strong  binding affinities  via intercalative binding mode. Molecular 

docking studies established associative non-covalent interactions between the Pd complexes and DNA.  

The in vitro cytotoxic activities of PdL1-PdL4 were assessed in cancer cell lines HeLa and MRC5-SV2 

and a normal cell line MRC-5, using the  3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 

bromide (MTT) assay. PdL1 exhibited cytotoxic potency and selectivity against HeLa cell that was 

comparable to cisplatin’s. Complex PdL1, unlike cisplatin, did not significantly induce caspase-dependent 

apoptosis.  
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1 Introduction 

Despite the success of cisplatin in chemotherapy, its application is limited due to severe side 

effects, development of drug resistance and limited solubility [1-4]. The interaction of platinum complexes 

with sulfur containing biomolecules, such as glutathione, L-methionine and L-cysteine has been associated 

with negative effects such as gastrointestinal toxicity, nephrotoxicity, neurotoxicity, cardiotoxicity, and 

ototoxicity. These drawbacks have triggered the search for new metallo-drugs with improved specificity 

and efficacy in tumour treatment.  With the rise of an exciting number of antineoplastic properties of other 

transition metals, the attention is gradually shifting beyond the use of platinum [5-17]. It is well 

documented that among the non-platinum based compounds, Pd(II) complexes seem to be the most 

promising class due to their structural similarity to Pt(II) complexes [18-25]. In addition, Pd(II) 

compounds display higher cytotoxicity, selectivity and better solubility than those of the conventional 

platinum drugs.  

However, the rates of ligand-exchange kinetics of Pd(II) complexes are ca. 103-105 times faster 

than the corresponding Pt(II) compounds [26]. These high reactivities do not allow Pd(II) complexes to 

maintain their structural identity in the cytoplasm long enough to reach the target, DNA, and has slowed 

down their use as anti-cancer agents   To overcome this drawback, a judicious choice of the inert chelating 

ligands is crucial  to reduce the kinetic lability of the Pd(II) complexes, and hence maximise their cytotoxic 

activity [7, 27-29].   

Reports by Bugarčić [30] confirm that steric crowding improves interaction with the DNA and 

antitumour activity of metal complexes. The phenomenon, is explained by the slower kinetic reactivity of 

the complexes that enables them to reach the DNA, without much interference from other biological 

molecules in the cytoplasm. Contrarily, steric hindrance of the spectator ligands can also have a negative 

influence on the substitution kinetics, DNA-/protein-binding ability and cytotoxic activity [31, 32]. In a 

previous study, we examined the role of heteroatoms on the substitution kinetics and cytotoxicity of 

Ru(III) complexes anchored on (pyridyl)benzazole ligands [33]. The in vitro study demonstrated that the 
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complexes exhibited minimal cytotoxicity, which was attributed to their slow rate of substitution reactions. 

In this current work, our intention was to improve the cytotoxicity by regulating the rate of kinetic 

substitution using Pd(II) as a metal centre. Our hypothesis is that a combination of the slower spectator 

ligands and a more labile Pd metal would fine-tune the reactivity of the resultant complexes and give 

desirable cytotoxicity properties. In this contribution, we thus report the synthesis, structural 

characterisation of Pd(II) complexes of tridentate N^N^N 2,6-bis(benzazole) ligands and their 

substitutions reactions with biological donor nucleophiles;  thiourea, Tu, L-methionine, L-Met (and 

guanosine-5’-monophosphate, 5’-GMP. The choice of the nucleophiles was based on their high aqueous 

solubility, varied nucleophilicity and binding properties and steric influences. For example, Tu and L-

Met were chosen as model nucleophiles for sulfur-containing biomolecules, which are abundant in the 

plasma (particularly proteins); while 5’-GMP was used as a model for binding to the nucleobases that are 

the main targets for metal-based antitumour drugs. The interaction of the complexes with calf-thymus 

DNA (CT-DNA) and intercalative agent ethidium bromide (EB) were investigated. Cytotoxic activities of 

the complexes on the cancer cell lines, human cervix adenocarcinoma (HeLa), human (foetal) lung 

carcinoma (MRC5-SV2) and normal human foetal lung fibroblast) cell line, (MRC-5), were also studied 

and are herein reported.   

2. Experimental section 

2.1 General considerations  

All synthetic manipulations were performed under dry and oxygen free nitrogen atmosphere using 

standard Schlenk line techniques, unless otherwise stated.  32% hydrochloric acid (HCl), 25% ammonia 

solution, polyphosphoric acid, methanol and sodium carbonate were obtained from Merck. The chemicals, 

pyridine-2,6-dicarboxylic acid (99.0%), o-phenylenediamine (99.5%), 2-aminophenol (99.0%), 2-

aminothiophenol (99.0%), iminodiacetic acid (≥98.0%), silver tetrafluoroborate (98.0%), thiourea 

(≥99.0%), L-methionine (≥98.0%), guanosine 5′-diphosphate disodium salt (≥96.0%), Hepes buffer (N-2-

hydroxyethylpiperazine-N′-2-ethanesulfonic acid) (≥99.5%), ethidium bromide (EB) (95.0%), and calf 

thymus DNA (CT-DNA) were purchased from Merck and were used without further purification. Ligands 
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L1, L2 and L3 were synthesised according to published procedure [34]. On the other hand,  L4 was prepared 

following the synthetic procedure described by Kopel et al.[35] The starting material, PdCl2(NCMe)2 was 

synthesised based on the reported procedure [36].  

Cell culture reagents including Dulbecco's Modified Eagle Medium  (DMEM), phosphate-

buffered saline (PBS), trypsin (TrypLE), L-glutamine and antibiotic-antimycotic (anti-anti) solution were 

obtained from Life Technologies (ThermoFisher Scientific). Foetal Bovine Serum (FBS) was obtained 

from Sigma. Z-VAD-fmk was obtained from Tocris Bioscience (Bio-Techne) while DMSO (tissue culture 

grade), 3,4-Dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ), and 3-(4,5-Dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) were purchased from Sigma-Aldrich (UK). Cell 

lines were obtained originally from the European Collection of Authenticated Cell Cultures (ECACC).  

Nuclear magnetic resonance spectra were acquired at 400 MHz for 1H, 100 MHz for 13C on a 

Bruker Avance spectrometer in DMSO-d6 solution at room temperature. Chemical shifts were determined 

relative to internal tetramethylsilane and are given in δ (ppm) and all coupling constants (J) are reported 

in hertz, (Hz). Elemental analyses were carried out using CHNS-O Flash 2000 thermo scientific analyser. 

Mass spectral analyses were measured on an LC Premier micro-mass spectrometer. The infrared spectra 

were recorded on Agilent Technologies Cary 630 in the 3800- 600 cm−1 range. X-ray data were recorded 

on a Bruker Apex Duo diffractometer equipped with an Oxford Instrument. Substitution kinetic reactions 

were performed on an Applier Photophysics SX 20 stopped-flow reaction analyser coupled with an online 

data acquisition system with controlled temperature within ± 0.1 °C. The wavelengths for the kinetic 

analysis were predetermined on Varian Cary 100 Bio UV-visible spectrophotometer with an attached 

Varian Peltier temperature-controller within ± 0.1°C and an online kinetic application system. The pH 

measurements were recorded on a Jenway 4330 conductivity/pH meter equipped with a Jenway glass 

microelectrode calibrated with standard buffer solutions of pH 4.0, 7.0 and 10.0. 

2.3 Syntheses of palladium metal complexes 

2.3.1 [{2,6-bis(benzimidazol-2-yl)pyridine}PdCl]BF4 (PdL1) 



5 

 

To a solution of PdCl2(NCMe)2 (0.10 g, 0.39 mmol) in CH2Cl2 (30 mL) was added L1
 (0.12 g, 0.39 

mmol) and NaBF4 (0.04, 0.39 mmol) to give a yellow solution. The resultant mixture was stirred for 12 h 

and filtred through a short pad of Celite to remove the precipitate of NaCl. Hexane (10 mL) was added to 

the filtrate to afford PdL1 as a yellow solid. Yield: 0.12 g (57%). 1H NMR (400 MHz, DMSO-d6): δH 

(ppm):  7.24-7.33 (m, 4H); 7.57 (d, 3JHH = 8.1, 2H); 7.93 (d, 3JHH = 8.1, 2H); 8.06 (d, 3JHH = 8.0, 2H); 8.35 

(t, 1H, 3JHH = 7.9, H). 13C NMR (DMSO-d6): δC (ppm): 114.62; 116.73; 122.05; 124.91; 140.06; 142.87; 

147.54; 152.97. FT-IR (cm-1): υ(N-H) = 2728; υ(C=C) =1571; υ(C=N) = 1476. TOF MS ES+, m/z (%) = 

451 [M,100]+. HRMS-ESI [M + 3H]+: m/z calc: 449.9738; found: 449.9730. Anal. Calcd (%) for 

C19H13BClF4N5Pd: C, 42.26; H, 2.43; N, 12.97. Found (%): C, 41.95; H, 2.70; N, 12.71 

Complexes PdL2-PdL3 were prepared following the protocol described for PdL1 using appropriate 

ligands. 

2.3.2 [{2,6-bis(benzoxazol-2-yl)pyridine}PdCl]BF4 (PdL2) 

Ligand L2 (0.12 g, 0.39 mmol), PdCl2(NCMe)2 (0.10 g, 0.39 mmol) and NaBF4 (0.04 g, 0.39 

mmol). Off yellow solid. Single crystals were grown by allowing diethyl ether to diffuse into acetonitrile 

solution.Yield: 0.11 g (52%).1H NMR (400 MHz, DMSO-d6): δH (ppm):  7.53-7.55 (m, 2H, Ha,); 7.57-

7.58 (m, 2H); 7.96 (t, 3JHH = 7.8, 4H); 8.34 (t, 3JHH = 8.0, 1H); 8.57 (d, 3JHH = 7.8, 2H). 13C NMR (DMSO-

d6): δC (ppm): 111.54; 120.50; 125.31; 125.63; 126.61; 139.40; 141.14; 145.80; 150.61; 160.62. FT-IR 

(cm-1): υ(C=C) =1544; υ(C=N) = 1408; υ(C-O) = 1036. LC MS/ESI+, m/z (%) = 453 [M, 100] +. HRMS-

ESI [M + H]+: m/z calc: 453.9581; found: 453.9575. Anal. Calcd (%) for C19H11BClF4N3O2Pd.CH2Cl2: C, 

42.10; H, 2.05; N, 7.75. Found (%): C, 41.72; H, 2.19; N, 7.36.  

2.3.3 [{2,6-bis(benzothiazol-2-yl)pyridine}PdCl]BF4 (PdL3) 

Ligand L3 (0.13 g, 0.39 mmol), PdCl2(NCMe)2 (0.10 g, 0.39 mmol) and NaBF4 (0.04 g, 0.39 

mmol). Off yellow solid. Yield: 0.14 g (63%). 1H NMR (400 MHz, DMSO-d6): δH (ppm):  7.57 (t, 3JHH = 

7.2, 2H); 7.62 (t, 3JHH = 7.9, 2H); 8.17 (d, 3JHH = 8.1, 2H); 8.27 (dd, 3JHH = 8.1, 3H,); 8.49 (d, 3JHH = 7.2, 

2H). 13C NMR (DMSO-d6): δC (ppm): 122.25; 122.74; 123.51; 126.28; 126.83; 135.52; 139.79; 150.54; 
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153.76; 167.69. FT-IR (cm-1): υ(C=C) =1584; υ(C=N) = 1448; υ(C-S) = 1015. LC MS/ESI+, m/z (%) = 

485 [M, 100] +. HRMS-ESI [M + H]+: m/z calc: 485.9118; found: 485.9120. Anal. Calcd (%) for 

C19H11BClF4N3PdS2: C, 39.75; H, 1.93; N, 7.32, S, 11.17. Found (%): C, 39.44; H, 1.68; N, 6.94, S, 10.94. 

2.3.4 [{bis⟨(1H-benzimidazol-2-yl)methyl⟩ amine}PdCl]Cl (PdL4) 

To a solution of compound L4 (0.11 g, 0.39 mmol) in CH2Cl2 (15 mL) was added a solution of  

and PdCl2(NCMe)2 (0.10 g, 0.39 mmol) in CH2Cl2 (15 mL). The resultant yellow solution was stirred for 

24 h and the product precipitated by the addition of hexane (10 mL) to give a white-yellowish solid. Single 

crystals were grown via vapour diffusion of diethyl ether into a saturated solution of PdL4 in DMSO. 

Yield: 0.10 g (51 %). 1H NMR (400 MHz, DMSO-d6): δH (ppm):  4.49 (dd, 3JHH = 7.4, 2H); 4.93 (dd, 2H, 

3JHH = 7.4, 2H); 7.35-7.41 (m, 4H); 7.64-7.68 (m, 2H); 8.14 (s, 1H, NH); 8.27-8.31 (m, 2H); 13.90 (s, 2H, 

NH).13C NMR (DMSO-d6): δC (ppm): 51.39; 112.85; 116.90; 123.54; 124.09; 132.12; 138.91; 158.94. 

FT-IR (cm-1):  υ(N-H) = 3619; υ(C=C) =1589; υ(C=N) = 1433. LC MS/ESI+, m/z (%) = 417 [M, 100] +; 

838 [2M, 10%]+. HRMS-ESI [M + H]+: m/z calc: 418.0051; found: 418.0060. Anal. Calcd (%) for 

C16H15Cl2N5Pd: C, 42.27; H, 3.33; N, 15.40. Found (%): C, 41.97; H, 3.52; N, 15.09.  

2.4. Single crystal X-ray crystallography 

X-ray data for complexes PdL2 and PdL4 were recorded on a Bruker Apex Duo diffractometer 

equipped with an Oxford Instruments Cryojet operating at 100(2) K and an Incoatec microsource operating 

at 30 W power. The data were collected with Mo Kα (λ = 0.71073 Å) radiation at a crystal-to-detector 

distance of 50 mm. The following conditions were used for the data collection: omega and phi scans with 

exposures taken at 30 W X-ray power and 0.50º frame widths using APEX2 [37]. The data were reduced 

with the programme SAINT[38] using outlier rejection, scan speed scaling, as well as standard Lorentz 

and polarisation correction factors. A SADABS semi-empirical multi-scan absorption correction was 

applied to the data.  Direct methods, SHELXS-2014 andWinGX [39], were used to solve all three 

structures.  All non-hydrogen atoms were located in the difference density map and refined anisotropically 

with SHELXL-2014. All hydrogen atoms were included as idealised contributors in the least squares 
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process. Their positions were calculated using a standard riding model with C-Haromatic distances of 0.93 

Å and Uiso= 1.2 Ueq, C–Hmethylene distances of 0.99 Å and Uiso = 1.2 Ueq and C–Hmethyl distances of 0.98 

Å and Uiso= 1.5 Ueq. 

 

2.5 Kinetic and mechanistic measurements  

All kinetic measurements were studied at physiological conditions (pH 7.2) in the presence of 25 

mM Hepes buffer. In order to suppress the spontaneous hydrolysis of the complexes, 10 mM NaCl was 

added to the complex solution. The stock solution of the nucleophiles approximately 50-fold excess of the 

complex concentration was serially diluted with the aqueous solution to afford 40, 30, 20 and 10-fold in 

excess of the concentration of the complex to maintain pseudo-first-order conditions. The wavelengths 

chosen for the kinetic investigations were pre-determined by following the change in absorbance of the 

mixture of the metal complex and the nucleophile as a function of time using the UV-visible spectra. All 

reactions were initiated by mixing equal volumes of nucleophile and complex solutions directly in the 

stopped-flow instrument. Concentration dependence studies were investigated at a constant temperature 

of 298 K, while the temperature dependence reactions were studied from 298 to 328 K at an interval of 10 

K. All kinetic reactions i.e. concentration and temperature dependent were initiated by mixing equal 

volumes of ligand and complex solutions directly in the stopped-flow instrument. The pseudo-first-order 

rate constants (kobs), were obtained as the average of no less than 5-9 independent runs.  

2.6 Density Functional Theoretical calculations and molecular docking 

Computational calculations were performed using density functional theory (DFT) method 

executed by Gaussian 09W suite of programmes [40]. The structures were optimised using the 

hybrid Becke, 3-parameter, Lee-Yang-Parr at the standard Los Alamos National Laboratory 2 double ζ 

(LANL2DZ) basis set [41].  To incorporate solvent effects, the systems were fully optimised in aqueous 

solution using conductor like polarisable continuum implicit solvent model (CPCM) [42].  The 

calculations were done at a singlet spin ground state and at an overall charge of +1. Gauss View 5.0 

programme was used to visualise the optimised minimum energy structures of the complexes under 
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investigation. Electronic chemical potential (µ), chemical hardness (ɳ), chemical softness (σ) and global 

electrophilicity indices (ω) for the complexes were calculated as per literature methods [43].  Natural 

bonding orbitals (NBO) analysis was used to determine localised atomic charges in the complexes [40]. 

The complexes were PdL1-PdL4 were docked onto the right-handed helix of normal double-

stranded DNA (B-DNA) using HEX8.0 software [44]. The coordinates of all the complexes were 

optimised by Gaussian 09 programme and converted to Protein Data bank (PDB) using Mercury 3.3 

software. The crystal structure of the B–DNA dodecamer d(CGCGAATTCGCG)2 (PDB ID: 1BNA) was 

retrieved from the protein data bank [45]. The docked pose of 1BNA and each complex were viewed using 

UCSF CHIMERA software [46]. The docking protocol was repeated three times and almost similar 

docking poses were viewed in each of the runs. The E(lowest energy pose) value of each Pd complex and DNA 

interactional pose was examined. 

2.7 DNA-binding experiments 

2.7.1 Absorption spectral studies 

The calf thymus-DNA (CT-DNA)  binding experiments were performed at room temperature in 5 

mM tris(hydroxymethyl)amino methane, Tris-HCl/50 mM NaCl buffer (pH = 7.2), stored at 4 o C in the 

dark and used within 4 days. A stock solution of the complex (5 mM) was prepared in 50 % DMSO. The 

concentration of CT-DNA was determined from a Beer-Lambert plot by measuring the absorption 

intensity at 260 nm, where the molar absorptivity of CT-DNA is about 6600 M-1 cm-1. The absorbance 

ratio at 260 and 280 nm (A260/A280) was measured and found to be in the range of 1.8 to 1.9, indicating 

that the DNA was sufficiently free of protein.  A fixed 20 μM concentration of each chloro Pd(II) complex, 

PdL1-PdL4 was titrated spectrophotometrically with increasing CT-DNA concentrations (0 - 40 μM).  The 

absorption spectra were obtained by adding the requisite amount of CT-DNA to both reference and sample 

solutions to eliminate the absorbance of CT-DNA. The Pd(II) complex-DNA solutions were allowed to 

incubate for 10 min in cuvette before the absorption spectra were recorded. The absorption changes were 

monitored at the  metal-to-ligand charge transfer (MLCT) bands of the complexes as a function of 
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increasing concentration of CT-DNA. The binding affinities of Pd(II) complexes were calculated using 

the Wolfe-Shimer equation (1).  

                                     [DNA]/(εa-εf) = [DNA]/(εb-εf)+1/(Kb(εb-εf))                                                                   (1)                                                                                                                                                                   

where [DNA] is the concentration of CT-DNA, εa, εf and εb are the molar absorptivities of the titrated 

mixture (Aobs/[complex]), unbound Pd(II) complex and the Pd(II)/CT-DNA complex, respectively. Kb is 

calculated from the ratio of the slope to intercept in the plot of [DNA]/(εa - εf) versus [DNA].  

 

2.7.2 Fluorescence quenching studies 

The fluorescence quenching experiments were performed using 3,8-diamino-5-ethyl-6-

phenylphenanthridinium bromide (EB) to probe the competitive binding abilities of Pd(II) complexes on 

the CT-DNA. Fixed concentration of CT-DNA-EB (10 μM each of CT-DNA and EB) was prepared in 5 

mM Tris-HCl/50 mM NaCl buffer (pH = 7.2). This solution was stored for 4 h at 4 oC.  The competitive 

binding effects of the complexes, PdL1-PdL4 on the DNA-EB complex were monitored by adding aliquot 

amounts of stock Pd(II) (5 mM) complexes solutions in incremental amounts to the CT-DNA+EB 

solutions. The decrease in the fluorescence emission was recorded within the wavelength range of 520 to 

700 nm after excitation of the solutions at 500 nm. Before recording the spectra, the solutions were 

thoroughly mixed and incubated for 10 min at room temperature. The quenching efficiency of the 

complexes was analysed using the Stern-Volmer equation (2) [35].  

                                 Io/I = 1 + Ksv[Q] = 1 + kqτ0[Q]                                                                                     (2)                                                                                                                                                                                                           

where Io and I are the emission intensities of CT-DNA+EB complex in the absence and following each 

addition of complex, respectively, and [Q] is the concentration of quencher (chloro Pd(II) complex). The 

Stern-Volmer (quenching) constant, Ksv, was determined from the slope of the linear plot of Io/I versus 

[Q]. To have an insight into the kinetics of the competitive binding process, values of the bimolecular 

quenching rate constant, kq were also computed using the Stern-Volmer equation, where τ0 is the average 

fluorescence lifetime of the CT-DNA+EB complex in the absence of the quencher and its value is 23 
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nanoseconds at room temperature. The apparent binding constant, Kapp was computed from the equation 

(3). 

                                               KEtBr[EtBr] = Kapp[Q]                                                                                                           (3)                                                                                                                                                                                                                                                                                                                                                                  

where [Q] is the concentration of quencher causing 50% reduction in fluorescence intensity of CT-

DNA+EtBr complex, KEB = 1.0 x 107 M-1. Scatchard plots also gave the binding constant, KF as determined 

from the fluorescence titration using Scatchard equation (4). 

log(Io - I) / I = logKF + n log[Q]                                                                (4)                                                                                                       

where n is the number of binding sites per nucleotide. 

Filter effects were applied as described in literature proceures [47], using equation (5)  [48]. 

             Fcorr = Fobs10(Aex+Aem)/2                                                                            (5) 

where Fcorr and Fobs are the corrected and observed fluorescence intensities, respectively, caused by 

quencher/ fluorophore addition in a 1 cm path-length cuvette.   

2.8 Biological studies 

2.8.1 Cell culture and in vitro cytotoxicity 

The cytotoxic effects of the complexes were tested in three human cell lines grown as adherent 

monolayer cultures, two of which are cancer cell lines (human cervical adenocarcinoma cell line, HeLa, 

and human foetal lung cancer cell line, MRC5-SV2), while the third one is a normal cell line (human 

foetal lung fibroblast cell line, MRC5 - the parental line from which the MRC5-SV2 cell line was derived). 

This combination enabled us to assess the differences in the sensitivities of cancer cell lines to the 

complexes, as well as the differences in the sensitivities of a cancer cell line and its normal (healthy) 

parental line, in order to determine the potential cancer cell-selective toxicity of the complexes. 

Experiments were conducted as previously reported [33]. Cells were grown in 75cm2 tissue culture flasks 

using DMEM supplemented with 10% Foetal Bovine Serum, 2mM L-glutamine and 1% antibiotic-

antimycotic solution (containing penicillin, streptomycin and amphotericin B), and incubated at 37 oC in 

a humidified atmosphere of 5% CO2. To prepare culture plates, the tissue culture flask was rinsed with 

phosphate-buffered saline (PBS), trypsinised, and the cells were suspended in the growth medium. Cell 
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density was determined by the use of a haemocytometer and adjusted to 7.5 x 104 cells/ml, and 100µl of 

the suspension (7500 cells) was seeded into each well of a micro-clear, flat-bottom 96-well plates. Seeded 

plates were incubated for 24 h before the cultures were treated for up to 48 h with a range of concentrations 

of each complex or a positive control (cisplatin) prepared in growth medium (stocks were prepared in 

DMSO (cisplatin was prepared in distilled water), but the final DMSO concentration that cells were 

exposed to was not more than 0.1%v/v). Each treatment was done in triplicate. Following treatment, 

viability was assessed using the  the  (MTT) assay by adding 10µl of a 5mg/ml solution of MTT to each 

well and incubating the plates for 3 h. The content of each well was then aspirated and 100µl of DMSO 

was added to dissolve the insoluble formazan. Absorbance at 570 nm was then read on a CLARIOstar 

plate reader (BMG LABTECH, Germany). The mean of triplicate values for each treatment was 

determined and expressed relative to the mean of the triplicate negative control wells that was set to 100%.  

An Olympus CKX41 microscope fitted with an Olympus DP71 U-TVIX-2 camera was used to assess and 

image treatment-induced changes to the morphology of cells. The images were captured with the Olympus 

cellSens entry software. 

2.8.2 Assessment of intracellular levels of reactive oxygen species (ROS) 

Changes to intracellular levels of reactive oxygen species (ROS) induced by cisplatin and the complexes 

in HeLa cells were assessed using the 2',7' – dichlorofluorescin diacetate (DCFDA) Cellular ROS 

Detection Assay Kit (Abcam, Cat. No. ab113851). Experiments were conducted according to the 

manufacturer’s protocol. HeLa cells were seeded into black, clear bottom 96-well plates at a density of 

2.5 x105 cells/ml (25,000 cells per well) and incubated overnight at 37 °C in a humidified atmosphere of 

5% CO2. The medium was then aspirated from each well and cultures were washed with the buffer solution 

(1x) supplied with the kit (Abcam) before they were stained for 45 min with 25µM of the DFCDA solution 

at 100µl/well, with non-stained and blank controls included. Following the 45 min incubation the stain 

was removed and cultures were washed with buffer. They were then treated with the compounds which 

had been diluted to the desired concentrations using the full growth medium that contained no phenol red. 

Cells were then incubated and the fluorescence (Ex/Em = 485/535 nm) of the plate was read at 3 h and at 
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24 h after treatment on a CLARIO star plate reader. Treatments were done in duplicates and each 

experiment was repeated at least three independent times. Data were analysed by setting the fluorescence 

of the negative control (no compound, vehicle only) to ‘1’ (unity) and then calculating the fold change in 

fluorescence of each treatment compared to the negative control. 

2.8.3 Assessment of mechanisms of cell death 

Pharmacological assessment of the potential apoptotic or necrotic nature of the cell death elicited 

by the most promising complex (PdL1) and cisplatin was conducted in HeLa cells using Z-VAD-fmk, a 

pan-caspase inhibitor (caspases are involved in certain forms of apoptosis), and DPQ, an inhibitor of the 

nuclear enzyme poly (ADP-ribose) polymerase (PARP), which mediates parthanatos, a form of 

programmed necrosis. HeLa cells were prepared as reported earlier for cytotoxicity studies. The cultures 

were pre-treated with Z-VAD-fmk or DPQ for 1 h, after which they were treated with cisplatin or PdL1 

in the continued presence of each inhibitor. Treatments lasted for 48 h, after which MTT was used to 

assess viability as previously described in this paper.  

2.8.4 Data presentation and statistical analyses 

Values are expressed as Mean ± SEM (standard error of the mean) or as otherwise stated. GraphPad 

Prism (Version 8.3.0) (GraphPad Software, Inc., CA, USA) was used for statistical analyses and the 

assessment of significant differences between means was done using analysis of variance (ANOVA) 

followed by a post-hoc test for multiple comparisons (Tukey test), with a p-value of less than 0.05 

considered statistically significant. The IC50 value for each compound was also determined using 

GraphPad Prism by fitting the data to the non-linear regression “log [inhibitor] versus normalised 

response” or “log [inhibitor] versus response (three parameters),” as appropriate. To calculate the 

Selectivity Index (SI) for each compound, the IC50 value for its cytotoxic effect in the normal cell MRC5 

was divided by the IC50 value for its cytotoxic effect in the cancer variant MRC5-SV2.   

3. Results and discussion  

3.1. Syntheses and characterisation of the compounds 
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Ligands L1-L3 were synthesised in good yields by the condensation reactions of pyridine-2,6-

dicarboxylic acid with the corresponding aniline derivatives following literature procedures [34]. On the 

other hand, L4 was synthesised in good yields (79%) by reactions of o-phenylenediamine with 

iminodiacetic acid according to the synthetic procedure reported by Kopel et al [35], (Scheme 1). 

Complexes PdL1-PdL3 were afforded by the treatment of equimolar amounts of L1-L4 with 

PdCl2(NCMe)2 in the presence of NaBF4 in CH2Cl2 at room temperature. On the other hand, PdL4 was 

obtained by the reaction of  L4 with  PdCl2(NCMe)2 in a 1:1 mole ratio in dichloromethane at room 

temperature (Scheme 1). 

 

Scheme 1: Synthesis of 2,6-bis(benzazole) ligands L1-L4 and corresponding Pd(II) complexes PdL1-

PdL4. 

The identities of PdL1-PdL4 were established by a combination of 1H and 13C NMR (Figures S2-

S9), FT-IR spectroscopies (Figures S10-S13), mass spectrometry (Figures S14-S17), elemental analyses 

and single crystal x-ray analyses. Comparison of 1H and 13C NMR spectra and FT-IR spectra of ligands 

L1-L4 to the spectra of their corresponding Pd(II) complexes PdL1-PdL4 established  their formation and 

identities. For example, 1H NMR spectra of PdL4 showed two doublets for the two CH2 linker protons at 

4.46 ppm and 4.96 ppm compared to the singlet peak, 4.03 ppm, in the respective ligand L4 (Figure S1). 

The appearance of two doublets of the CH2 signals in PdL4 has been reported and is associated with 

increased rigidity (resulting in the existence of chair and boat conformations) in the complex relative to a 
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more fluxional behaviour in the free ligand [49]. In the 13C NMR spectral data,  the signature carbon peak 

of the CH2 group of PdL4 was observed at 51.39 ppm compared to the peak at 46.48 ppm in the respective 

ligand.  In the IR spectral data, a shift of the absorption band of the υ(N-H) at 2877 cm-1 in L4 to 3104 cm-

1 in PdL4 (Figure S13) was  observed and confirmed the formation of the complex [50]. Mass spectrometry 

also proved useful in the elucidation of the molecular formulae of the complexes. For example, the mass 

spectrum of PdL4 showed peaks at m/z (%) = 417 [M, 100]+, 838 [M, 12]+ which corresponds to the 

molecular ion of the complex (Figure S17).  

3.2. X-ray molecular structure of complex PdL2 and PdL4 

Single crystal suitable for X-ray analyses of PdL2 and PdL4 were obtained by slow diffusion of 

diethyl ether into concentrated solutions of the complexes in CH3CN and DMSO, respectively at room 

temperature.  Table S1 contains crystallographic data and structural refinement parameters, while Figures. 

1 and 2 show the molecular structures and selected bond parameters of complexes PdL2 and PdL4, 

respectively.  

 

Figure 1: Molecular structure of PdL2, with atom numbering Scheme. The displacement ellipsoids of 

atoms are shown at the 50% probability level. The BF-
4 counter-anion has been omitted for clarity. 

Selected bond lengths [Å]:  Pd(1)-N(3), 2.024(19); Pd(1)-N(1), 2.017(18); Pd(1)-N(2), 1.968(17); Pd(1)-

Cl(1), 2.284(5). Selected bond angles (˚): N(3)-Pd(1)-N(1), 160.04(7); N(3)-Pd(1)-N(2), 80.09(7); N(1)-

Pd(1)-N(2), 79.94(7); N(3)-Pd(1)-Cl(1), 99.80(5); N(1)-Pd(1)-Cl(1), 100.16(5); N(2)-Pd(1)-Cl(1), 

179.15(5). 
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Figure 2: Molecular structure of PdL4, with atom numbering Scheme. The displacement ellipsoids of 

atoms are shown at the 50% probability level. Selected bond lengths [Å]:  Pd(1)-N(3), 2.011(3) ; Pd(1)-

N(1), 2.019(3); Pd(1)-N(2), 2.037(3); Pd(1)-Cl(1), 2.308(8). Selected bond angles [˚]: N(3)-Pd(1)-N(1), 

163.79(10); N(3)-Pd(1)-N(2), 82.59(10); N(1)-Pd(1)-N(2), 81.97(11); N(3)-Pd(1)-Cl(1), 98.05(7); N(1)-

Pd(1)-Cl(1), 97.87(7); N(2)-Pd(1)-Cl(1), 173.20(9). 

In both structures, the coordination around the Pd metal centre consists  of one tridentate ligand 

and one chloride ligand to give four-coordination environments. The cis angles, for instance N1-Pd1-N2 

of 79.94(7)° (PdL2) and  81.97(11)° (PdL4) deviate from the ideal 90°. This is also reflected in the trans 

angles, of  N2–Pd1–Cl1 of 179.15(5)º for PdL2 and 173.20(9)º for PdL4 which deviate somewhat from 

the linearity. Thus, PdL2 and PdL4, adopt slightly distorted square planar geometries, consistent for d8 

Pd(II)  complexes [51]. The five membered chelate ring, N(1)-Pd(1)-N(2) of 79.94(7) °  in complex  PdL2 

is smaller than the angle in complex  PdL4,  for N(1)-Pd(1)-N(2)  of  81.97(11).° This can be assigned to 

the the rigid pyridine ring, when compared to the more flexible CH2 linker in PdL1 and PdL4 respectively.  

The bond distances Pd(1)-N(3) of 2.024(19) Å and Pd(1)-N(3) of 2.011(3) Å in PdL2 and PdL4, 

respectively, are statistically similar, presumably due to the remote proximity of the heteroatoms to the 

palladium metal centre. A similar trend is observed in the bond lengths for Pd(1)-N(1) of 2.017(18) Å and 

2.019(3) Å for PdL2  and  PdL4 respectively. The shorter bond length for Pd(1)-Cl(1) of 2.284(5) Å in 

complex PdL2 compared to the  Pd(1)-Cl(1) bond distance of 2.308(8) Å in PdL4 may be attributed to the 

aromatic pyridine ring in L2, which is a pi-acceptor (less trans-effect) in comparsion to the sigma-donor 

N-H group in L4.  The Pd-Cl bond lengths of 2.284 (5) Å for PdL2 is  within the average bond distance of 

2.289 Å obtained  for 20 related Pd complexes. Similarly, the Pd-Cl bond length of 2.308(8) Å in PdL4 

falls within the average bond distance of  2.327 ± 0.017 Å reported for 19 similar structures [52]. The 
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Pd(1)-Npy bond distance for PdL2 of 1.968(17) Å agrees well with the averaged bond lengths of 1.950 ±  

0.039 Å reported in 15 structures. Likewise, the bond distance of Pd-Nim of 2.037 (3) is comparable to 

the bond distance of Å 2.048 ±  0.025 Å (PdL4), averaged for 16 related structures  [40]. The mean bond 

distances of Pd–N(1&3) of 2.021(19) Å  and 2.015(3) Å for PdL2, and PdL4, compare well with the 

averages of 2.025 ± 0.031Å  (16 structures) and 1.980 ± 0.053 (15 structures) obtained for similar 

complexes respectively [53]. 

3.4 Kinetic and mechanistic measurements with biomolecules 

The rate of the displacement of the coordinated chloro ligand from the four complexes was studied 

with three biologically-relevant nucleophiles: Tu, L-Met and 5’-GMP, under pseudo-first order conditions. 

Representative plots of kobs versus the concentration of the entering ligand, [Nu], for PdL1 is given in 

Figure 3; similar plots for PdL2-PdL4 are presented in the supporting information (Figure S18-S20). The 

second order rate constants (k2) were derived from the slopes of the graphs and are given in Table 1. Since 

the zero y-intercept were observed in all the plots, the relationship between kobs and the concentration of 

the entering ligand can be best described by equation (6). 

                                                                   kobs =k2[Nu]                                                                              (6)   
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Figure 3: Dependence of kobs on the nucleophile concentration for chloride substitution from PdL1 at T = 

298 K in aqueous solution, 25mM Hepes buffer (pH =7.2) and 10 mM NaCl. 
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Comparing the rates of the substitution of the chloride ligands from the complexes by incoming 

nucleophiles, the reactivity decreases in the order PdL1 ˃ PdL2 ˃ PdL3 ˃ PdL4 (refer Table 1). The 

marked differences in the observed reactivity can be rationalised in terms of the presence of electronic 

interactions between inert tridentate ligands and Pd(II) metal centre. Significantly, the reactivity of PdL1-

PdL3 are controlled by the identity of the heteroatoms on the spectator ligands(s) around the metal centres. 

The higher reactivity of PdL1 (N-H), 6146 M-1 s-1 (Tu),  than PdL2 (O),  5433 M-1 s-1  (Tu) and PdL3 (S), 

3908 M-1 s-1 (Tu) is attributable to the presence of the acidic amine proton, which is more electron deficient 

and thus aids the withdrawal of the electrons from the metal centre and hence creating a more electrophilic 

Pd(II)  metal centre.  A comparison of the reactivity of PdL2 and PdL3 shows that, PdL2 is more reactive 

due to the presence of a more electronegative oxygen on the spectator ligand [33]. With respect to the 

solid-state structure of complexes PdL2 and PdL4, one would expect a higher rate of substitution of the 

Cl ligand in PdL4 due its longer Pd - Cl bond (2.308 (8) Å) in comparison to complex PdL2 (Pd - Cl = 

2.284 (5) Å). In contrast, the higher reactivity of complex PdL2 thus implicates nucleophilic attack to the 

Pd atom as the rate determining step, rather than Pd-Cl breakage, consistent with an associated mode of 

substitution reactions.   

In order to verify the observed reativity trend of the Pd complexes, we performed DFT calcuations 

to determine the electronic and steric properties of the respective compounds (Tables S2 and S3). The 

observed kinetics trend is supported by the DFT data indicating the decrease in the negative NBO charges 

of the heteroatoms from PdL1 to PdL3, leading to a decrease in the removal of electron density from the 

Pd(II) ion. This is also supported by the electrophilicity indices (ω, see Table S3) of the complexes which 

corroborates with the reactivity. In addition, the chemical hardness  and electrochemical potentials are 

also in line with the experimental reactivity trend of the complexes.  Similarly, it is also clear that PdL1 is 

≈ 45 times more reactive than PdL4. The enhanced reactivity of PdL1 in relation to PdL4 may be attributed 

to the effective π back-bonding of the in-plane-coordinated pyridine moiety with non-bonding d-electrons 

that increase electrophilicity of the metal ion [32, 54]. The enhanced π-acceptor ability of PdL1, compared 

to PdL4, is further evidenced by the high electrophilicity index of PdL1 than PdL4 (Table S3). Further, 
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the non-planar geometry of PdL4 in comparison to PdL1- PdL3 (Table S2) offers a slight steric hindrance 

between the ipso-hydrogen and the incoming nucleophile, thus lowering its reactivity. In addition, DFT 

computations support the role of the π-back donation of the pyridyl moiety from the dipole moments of 

15.5524 and 11.0864 for PdL1 and PdL4, respectively (Table S3).  Likewise, the diminution of the 

HOMO-LUMO energy separation of complexes at ground state [55], illustrates an upward trend as one 

moves from PdL1 to PdL4, thus confirming the more stable nature of PdL4 than the other complexes. 

Overall, DFT calculated data shows higher ionisation potential, high chemical hardness, and smaller 

ΔELUMO–HOMO values for complex PdL4 compared to the other complexes.  

With respect to the incoming biological nucleophile, the reactivity of the three nucleophiles 

follows the order; Tu > L-Met > 5’-GMP (Table 1). Tu is relatively less sterically demanding in 

comparisons to L-Met > 5’-GMP  nucleophiles (Figure 4). The higher reactivity of L-Met than 5’-GMP, 

can be explained by the presence of sulfur donor atom, which is known to have a higher affinity for soft 

Pd(II) cation than the nitrogen atom [56]. Notably, lower reactivity exhibited by 5′-GMP nucleophile, may 

be ascribed to the presence of the  N-donor atom and the steric bulk of the 5′-GMP.  

 

Figure 4: Molecuar structures of the investigated biological nucleophiles.  

To determine the thermodynamic properties of the substitution process, the reaction temperature 

was varied from 298 to 328 K at an interval of 10 K. Activation parameters (∆H≠ and ∆S≠) were calculated 

using the Eyring equation [26]. Typical Eyring plots obtained for complex PdL1 are shown in Figure 5 

and the values of ∆H≠ and ∆S≠ are given in Table 1. The Eyring plots and values for the other three 

complexes PdL2-PdL4 are presented in the supporting information (Figures S21-S23).  For all the 

investigated complexes, the activation enthalpies (ΔH≠) and entropies (ΔS≠) were positive and negative, 

respectively. The large sensitivity of the rate constants for the σ-donor properties of the nucleophiles is in 
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tandem with an associative mode of substitution [56]. Furthermore, the activation parameters, (ΔH≠ > 0, 

ΔS≠ < 0) support an associative mechanism,  in agreement with square-planar d8 metal complexes [57, 

58].  
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Figure 5: Eyring plots for the reaction of PdL1 with the nucleophile in aqueous solution, 25 mM Hepes 

buffer (pH =7.2) and 10 mM NaCl. 

Table 1: Summary of the second order rate constants, k2 and activation parameters, ∆H≠ and ∆S≠ for the 

substitution reactions of complexes PdL1-PdL4 by Tu, L-Met and 5-GMP.a  

Complex Nu k2/M-1 s-1 ΔH≠/ kJ mol-1
 ΔS≠/J mol-1K-1 

 

PdL1 

Tu 6146 ± 78 27 ± 1.0 -83 ± 3.0 

L-Met 2877 ± 28 30 ± 1.0 -79 ± 3.0 

5-GMP 927 ± 13 30 ± 1.4 -86 ± 4.4 

 

PdL2 

Tu 5433 ± 41 33 ± 2.5 -62 ± 8.0 

L-Met 2072 ± 18 35 ± 1.0 -62 ± 3.0 

5-GMP 830 ± 3 33 ± 2.2 -78 ± 7.0 

 

PdL3 

Tu 3908 ± 30 32 ± 0.3 -69 ± 1.0 

L-Met 1363 ± 17 34 ± 0.3 -72 ± 1.0 

5-GMP 599 ± 4 37 ± 1.0 -68 ± 3.3 

 Tu 1072 ± 9 34 ± 1.3 -73 ± 4.2 
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PdL4 L-Met 486 ± 3 33 ± 1.0 -85 ± 3.3 

5-GMP 178 ± 3 34 ± 1.0 -90 ± 3.1 

     aReactions performed in aqueous solution, 25mM Hepes buffer (pH =7.2) and 10 mM NaCl at 

298 K. 

3.5 CT-DNA interactions 

3.5.1 UV-visible absorption measurement 

The interactions between metal complexes and duplex CT-DNA were monitored by following the 

changes in the absorbance upon addition of CT-DNA to a fixed concentration of the Pd(II) complex.  

Typical graphs are given in Figure 6 (PdL1) and Figures S24- S26 (PdL2 –PdL4) for the spectral charges 

due to the Pd – CT-DNA interactions. The spectral titration curves showed a common hypochromic shift 

with an increase in CT-DNA concentration. The observed hypochromism may be attributed to π–π 

stacking interaction between the aromatic chromophore of the complexes and DNA base pairs, consistent 

with intercalative binding mode, while the red-shift was  indicative of the stabilisation of the DNA duplex 

[59]. The binding constants obtained in this study of between 0.2  x 105 and 5.0 x  106 M−1  are comparable 

to those obtained for other metal complexes [59-64]. The higher DNA binding of PdL1, PdL2 and PdL3 

may be assigned to the planarity of the complexes, consistent with the DFT calculations. The Kb values of 

PdL1-PdL3 are within the classical intercalator EB binding affinity for CT-DNA of Kb, = 1.4 x 106 M-1 

[65].  
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Figure 6: Absorption spectra of PdL1 complex (20 μM) in Tris-HCl/50 mM buffer at pH 7.2 upon addition 

of CT-DNA (0 - 40 μM). The arrow shows the change in absorbance upon increasing the CT-DNA 

concentration. Inset: plot of [CT-DNA] versus [DNA]/(εa- εf). 

3.5.2 Competitive CT-DNA-EB binding studies 

To further support the interaction mode of the complexes with DNA,  competitive binding studies 

were performed by following the quenching of the fluorescence emission intensity of CT-DNA-EB 

complex after each addition of the Pd(II) complex.  In all cases, the intensity of emission was quenched 

with a notable red shift of λmax (Figures 7, S27 - S29).  These  point to the existence of strong interactions 

between Pd(II) complexes and CT-DNA. The quenching data were fitted to the Stern-Volmer equation 

which gave linear Stern-Volmer quenching constant, Ksv. Typical Stern-Volmer plot for the reaction 

between PdL1 and CT-DNA is given in Figure 7a. The Ksv values of PdL1-PdL4 (~104 M-1), suggest that 

the complexes efficiently  replaced EB through intercalative binding to CT-DNA (Table 2) [59]. The 

values of apparent binding constant, Kapp,  (Table 2) followed the same trend observed for Ksv values.  

Table 2: The binding constants and quenching constants for PdL1-PdL4 complexes with CT-DNA 

 

Complex 

UV titration                            EB fluorescence exchange titration 

Kb x 106, M -1   Ksv x 104, M-1   Kapp x 106, M-1  kq x 1012, M-1 s-1 KF x 105, M-1 n 

PdL1 5.53 5.43 ± 0.21 2.96 ± 0.19 2.36 ± 0.27 16.59 ± 0.13 1.34 

PdL2 2.20 2.84 ± 0.17 1.07 ± 0.15 1.24 ± 0.21 6.88 ± 0.10 1.39 

PdL3 1.01 1.92 ± 0.13 0.80 ± 0.09 0.84 ± 0.14 0.44 ± 0.08 1.00 

PdL4 0.53 0.54 ± 0.08 0.16 ± 0.03 0.23 ± 0.10 0.09 ± 0.19 1.17 

Intrinsic binding constant, Kb is given in M-1; stern-volmer quenching constant, Ksv expressed in M-1;  

apparent binding constant, Kapp given in M-1; bimolecular quenching rate constant, kq provided in M-1s-1  

binding constant,  KF  presented in M-1; and  number of DNA binding sites, n. 

The values of bimolecular quenching rate constant, kq, were also computed using the KSV = kqτ0 

and recorded in the  order of ~ 1012 M-1 s-1 and followed the trend of PdL1 > PdL2 > PdL3 > PdL4 (Table 
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2). These values are  higher than the known  strong biopolymer fluorescence quenchers (1010 M-1 s-1), and 

thus it can be deduced that the complexes quench EB fluorescence statically rather than dynamically [66].  

The Scatchard equation, log(Io - I) / I = logKF + n log[Q] was used to determine the number of binding 

site, n and binding constant, KF (Table 2). Linear plots of PdL1 is given in Figure 7, while supporting  

Figures S27-S29 represent plots for complexes PdL2 – PdL4 respectively. The n values obtained for all 

the complexes were approximately equal to 1, demonstrating that the complexes bind to CT-DNA in a 1:1 

mole ratio. EB, which shows a KF of ~ 105 M-1, was assumed to occupy more than one DNA binding site 

[67]. The magnitude of the binding constants and quenching rate constants decrease according to the 

ability of the complexes to displace EB of the base pairs and followed the trend PdL1 > PdL2 > PdL3 > 

PdL4. Complex PdL4 displayd the lowest binding affinity, consistent with the DNA binding data 

described vide supra.  
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Figure 7: (a); Fluorescence emission spectra of EB bounded to CT-DNA in the presence of PdL1: [EB] 

= 6.5 μM, [CTDNA] = 6.5 μM and [PdL1] = 0-200 μM. The arrow shows the intensity changes upon 

increasing the PdL1 complex concentration.  (b); Stern-Volmer plot of Io/I versus [Q]. (c); Scatchard plot 

of log[(Io–I)/I] versus log[Q]. 
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3.6 Molecular docking with B-DNA 

To further elucidate the observed spectroscopic binding trends of PdL1-PdL4, molecular docking 

simulations were performed to determine the minimum energy of DNA-complex structure and the 

preferred binding site and best orientation of the complexes within the DNA groove.  The complexes were 

docked onto B-DNA and the minimum energy of the docked poses for PdL1-PdL4 revealed that the 

complexes fitted into the curved contours of the B-DNA located in the G–C (~13.4 Å) bases sequence 

(Figure S30). The minimised free energies of the docked structures of complexes PdL1, PdL2, PdL3, and 

PdL4 were found to be -270.07, -268.81, -266.11 and -263.96 kJ mol-1, respectively (Figure S30). The 

observation is consistent with the DNA binding propensity of the complexes (Table 2).  

3.7 Cytotoxic activities of cisplatin and the complexes PdL1-PdL4 against HeLa, MRC5-SV2 and 

MRC5 cells 

The cytotoxicities of Pd(II) complexes and cisplatin (used as a reference drug) were investigated 

in two malignant cell lines (HeLa, MRC5-SV2) and in a healthy cell line (MRC5) using the MTT assay, 

following up to 48 h  of treatment. Figure 8 shows  the effects of complexes PdL1-PdL4 and cisplatin on 

the viability of HeLa, MRC5-SV2 and MRC5 cells, while Figure S31 depicts morphological damage to 

each of the cell lines, using cisplatin as the standard drug control. Cisplatin and the complexes (6.25 – 100 

µM) each reduced the viability of each of the three cell lines in a concentration-dependent manner (Figure 

8).  In addition, we confirmed that the effects of both cisplatin and PdL1 were also time-dependent, as the 

reductions in viability at 48 h were significantly higher than at 24 h (Figure 8a and 8c). In fact, at 25, 50 

and 100 µM concentrations, both cisplatin and PdL1 revealed profound differences between their toxic 

effects at 24 h and at 48 h, with toxic effects (indicated by reduction in viability) at 48 h almost double or 

triple those at 24 h. The three cell lines exhibited differential sensitivities to cisplatin and the Pd(II) 

complexes. Based on the calculated IC50 values (Table 3), cisplatin was equipotent (IC50 of 11.4µM) in its 

toxicity against the cancer cells lines HeLa and MRC5-SV2, while it was less cytotoxic against the normal 

cell line MRC5. The IC50 of PdL1 for the HeLa cells (16.3 ± 4.9) was not statistically significantly different 

from that of cisplatin, demonstrating the equipotency of PdL1 and cisplatin against the HeLa cell. 
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However, all the four complexes were less potent than cisplatin against the MRC5-SV2 cell, with PdL1 

being twice less potent than cisplatin. PdL2, PdL3 and PdL4 were each much less potent than PdL1 or 

cisplatin against the HeLa cell (four-, five- and nearly 5-fold less potent, respectively, compared to PdL1), 

whereas PdL2 and PdL3 were almost equipotent with PdL1 against the MRC5-SV2 cell, and PdL4 was 

only one-and-a-half times less potent than PdL1 against the MRC5-SV2 cell. The orders of potencies 

against HeLa and MRC5-SV2 cells, respectively, are PdL1 > PdL2 > PdL4 > PdL3 and PdL3 > PdL2 > 

PdL1 > PdL4.  

 

Figure 8: Effects of complexes PdL1-PdL4 and cisplatin on the viability of HeLa, MRC5-SV2 and MRC5 

cells. (a) Concentration-dependent effects of cisplatin on HeLa cell viability. (b) Effects of 48 h treatment 

with cisplatin on the viability of MRC5-SV2 and MRC5 cells. (c) Concentration-dependent effects of 

PdL1 on HeLa cell viability. (d) Effects of 48 h treatment with PdL1 on the viability of MRC5-SV2 and 
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MRC5 cells. (e) Effects of 48 h treatment with PdL2 on the viability of HeLa, MRC5-SV2 and MRC5 

cells. (f) Effects of 48 h treatment with PdL3 on the viability of HeLa, MRC5-SV2 and MRC5 cells. (g) 

Effects of 48 h treatment with PdL4 on the viability of HeLa, MRC5-SV2 and MRC5 cells. Each value is 

expressed as Mean ± SEM of 3 or 4 independent experiments. *P<0.05, **P<0.01 (or bP<0.01) and 

***P<0.001 (or aP<0.001) compared to the negative control; ##P<0.01 and ###P<0.001 for the 

comparison of the effects at 24 h and 48 h. 

Overall, PdL4 exhibited the least cytotoxic effects on the tumour cell lines (not much different to 

PdL2 or PdL3 in its effect against HeLa, but about twice less potent than PdL1-PdL3 against MRC5-SV2). 

The presence of the pyridyl rings in PdL1-PdL3 is thought to increase the hydrophobicity of the PdL1-

PdL3 complexes and could have eased their passage through the cell membrane to allow more complexes 

into the cells [68]. However, the reduced toxicity of PdL4 suggests that the removal of a pyridine ring 

(reduced  number of conjugation) on the inert ligand architecture leads to  a decrease in  cytotoxic (anti-

tumour) activity [69]. The lower cytotoxic activity of PdL4 could also be due to the steric hindrance caused 

by methylene moiety, as illustrated by the planarity diagram in DFT (Table S2) and lower DNA binding 

constants (Table 3). The minimal cytotoxicity of PdL4 could also be attributed to its slower ligand 

exchange kinetic behaviour, since the complex was the least reactive as per the kinetics data in Table 1 

[33].  

As a major goal in chemotherapy is to selectively target cancer cells while relatively sparing 

normal cells, we assessed the cancer-cell selectivity of cisplatin and the complexes, based on the 

Selectivity Index (SI) parameter. As shown in Table 3, both cisplatin and PdL1 had similar SI values of 

1.6 and 1.5, respectively, which depicts that they are almost twice as potent in killing cancer cells as they 

are in killing normal cells. Of all compounds tested, PdL4 had the highest SI (2.4), which could be 

attributed to its low potency in general. On the other hand, both PdL2 and PdL3 yielded very low SI values 

(1.2 and 1.1, respectively), suggesting that they had little selectivity for cancer cells over normal cells and 

are thus, in drug discovery context, not optimal in their current forms for therapeutic applications. In 

general, among the Pd(II) complexes investigated, the effects of the complexes on cell viability and their 

cancer-cell selectivities reveal PdL1 as the most promising compound.  
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Table 3: Cytotoxic potencies and cancer-cell selectivities of cisplatin and PdL1-PdL4 

  

  

IC50 (µM)    

HeLa MRC5-SV2 MRC5 Selectivity Index (SI) 

Cisplatin  11.4 ± 3.5  11.4 ± 0.5 18.7 ± 1.3 1.6 

PdL1   16.3 ± 4.9 25.0 ± 0.3 37.3 ± 0.2 1.5 

PdL2    70.3 ± 16.6 21.1 ± 4.0 26.1 ± 3.3 1.2 

PdL3   88.4 ± 21.5 18.5 ± 2.6 20.5 ± 1.9 1.1 

PdL4  73.6 ± 7.0 39.8 ± 3.4  96.8 ± 0.7 2.4 

IC50 values, rank orders of cytotoxic potencies and selectivity indices (SI) for cisplatin (as the standard) 

and PdL1-PdL4 against two cancer cell lines (HeLa and MRC5-SV2 cells) and a normal (healthy) cell line 

(MRC5) that is parental to the MRC5-SV2 cell. SI is calculated as a ratio of the IC50 for the compound 

against the normal cell line (MRC5) and its IC50 against the cancer cell line (MRC5-SV2). Each IC50 value 

is expressed as Mean ± SEM. 

 

3.7.1 ROS generation as potential mechanism for the cytotoxicity of complexes 

Cytotoxic and chemotherapeutic compounds could engage a variety of mechanisms to induce their 

cytotoxicity in cancer and normal cells, including the generation of significant levels of reactive oxygen 

species (ROS) within the cell [70]. The ROS could trigger a host of downstream toxic responses 

culminating in cell death, including damage to lipids, proteins and DNA [71]. For example, cisplatin 

chemotherapy generates oxidative stress in normal cells, which is responsible for its non-specific toxicity. 

We, therefore, explored, using HeLa cells, whether the complexes could induce significant ROS levels 

intracellularly. Interestingly, contrary to previous reports [72], we did not find any evidence within our 

experimental system that the reduction in cell viability (toxicity) induced by cisplatin was dependent on 

its generation of a significant level of ROS (Table 4), as the ROS levels at 3 h and 24 h following treatment 

with cisplatin up to 100 µM were not different from the basal ROS level (Table 4). This suggests that 

cisplatin’s toxicity could depend on contributions from ROS-dependent and independent processes, a 

phenomenon which could depend on other factors including the cellular environment. Similarly, PdL1 did 

not initially have any effect on basal ROS level (3 h) but decreased (at 25 µM and 100 µM) basal ROS 

level at 24 h (Table 4), a time point at which it had begun to elicit moderate but significant toxic effects, 
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thus presenting a conundrum. We opine that, for PdL1, cytotoxic mechanisms other than raised levels of 

ROS might operate in a much greater proportion that overwhelms any beneficial and, perhaps, transient 

anti-ROS effect induced by PdL1, thus resulting in a net toxic effect. 

PdL2 and PdL4 did not have any significant effect on intracellular ROS levels. While PdL3 was 

five times less potent than PdL1 in its toxicity against the HeLa cell, it was the only complex that induced 

a significant increase in intracellular ROS. At 100 µM, PdL3 increased ROS level significantly and 

relatively quite early on in the treatment (3 h), nearly doubling ROS level compared to the basal (control) 

level, an effect that was sustained up to the much later 24 h time point. This clearly indicates that the 

generation of ROS contributes to the cytotoxicity of PdL3, unlike was the case for the other complexes. 

We, therefore, on the basis of ROS, identified the four complexes as belonging to two mechanistic groups: 

one which induces cytotoxicity through ROS, and the other whose cytotoxicity is rather ROS-independent.   

  Table 4: Changes to intracellular ROS levels induced by cisplatin and PdL1-PdL4 

 Intracellular Reactive Oxygen Species (ROS) levels (fold change vs. control) 

3 h 24 h 

6.25µM 25µM 100µM    6.25µM     25µM       100µM 

Cisplatin 

PdL1 

PdL2 

PdL3 

PdL4 

1.1 ± 0.1 

1.1 ± 0.0 

1.1 ± 0.1 

1.1 ± 0.1 

1.0 ± 0.0 

1.1 ± 0.1 

1.0 ± 0.0 

1.2 ± 0.0 

1.4 ± 0.1 

1.1 ± 0.1 

1.1 ± 0.1 

1.1 ± 0.1 

1.2 ± 0.1 

1.8 ± 0.2* 

1.3 ± 0.1 

0.8 ± 0.1 

0.9 ± 0.0 

1.0 ± 0.0 

1.0 ± 0.0 

0.8 ± 0.1 

0.7 ± 0.1 

0.7 ± 0.0* 

0.9 ± 0.0 

1.1 ± 0.0 

0.9 ± 0.1 

0.7 ± 0.1 

0.6 ± 0.0*** 

1.1 ± 0.1 

1.7 ± 0.2* 

1.1 ± 0.2 

Effects of cisplatin and complexes PdL1-PdL4 on the intracellular levels of reactive oxygen species 

(ROS) as measured by DCFDA. Following treatment of HeLa cells with the indicated compounds, the 

fluorescence of DCFDA was read at 3 h and 24 h at an excitation wavelength of 485 nm and an emission 

wavelength of 535 nm (fluorescein). Values represent Mean ± SEM (n=3 or 4 independent experiments) 

of fold change in ROS levels (compared to the negative control that was set to unity). Values are rounded 

up to 1 decimal place. *P<0.05, ***P<0.001 compared to the control.   
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3.7.2 Nature of cell death induced by cisplatin and PdL1 

Cytotoxic or chemotherapeutic agents induce cellular damage, which could result in one or, more 

usually, a combination of some of the various forms of cell death, including but not limited to apoptosis 

and necrosis [73]. We, therefore, investigated the potential proportions of apoptosis or necrosis in the cell 

death induced by PdL1, the most promising of the complexes, and cisplatin. The cultured HeLa cells were 

treated with either cisplatin or PdL1 in the absence or presence of a chemical inhibitor of apoptosis or 

necrosis. The inhibitor of apoptosis used, Z-VAD-fmk, blocks caspases, whichmediate apoptosis, while 

DPQ, an inhibitor of the enzyme poly (ADP-ribose) polymerase (PARP), blocks parthanatos (PARP-1-

dependent cell death) [74], now considered a type of programmed necrosis [75]. The results are as 

presented in Figure 9.  
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Figure 9: Induction of apoptotic or necrotic cell death by cisplatin (CPT) and PdL1 (48 h treatment). (A) 

Concentration-dependent protective effects of the pan-caspase inhibitor, Z-VAD-fmk (25 -100 µM), 

against the cytotoxic effect of low (25 µM) and high (100 µM) concentration of cisplatin. (B) Lack of 

effect of the PARP inhibitor, DPQ (12.5 – 50 µM), against the cytotoxic effect of low (25µM) and high 

(100 µM) concentration of cisplatin. (C) Lack of effect of the pan-caspase inhibitor, Z-VAD-fmk (25  - 

100 µM), against the cytotoxic effect of low (25 µM) and high (100 µM) concentration of PdL1. (D) Lack 

of effect of the PARP inhibitor, DPQ (12.5 – 50 µM), against the cytotoxic effect of low (25µM) and high 

(100 µM) concentration of PdL1. Each value is expressed as Mean ± SEM of 3 independent experiments. 

***P<0.001 compared to the negative control; #P<0.05, ##P<0.01 and ###P<0.001 compared to CPT 

alone or PdL1 alone. 

 

The cytotoxic effects of cisplatin, whether at a low or a high concentration, were significantly 

ameliorated by the pan-caspase inhibitor, Z-VAD-fmk, but not affected by the PARP inhibitor DPQ, 

suggesting that, at least, the cell death induced by cisplatin was significantly apoptotic in nature, with little 

evidence of necrosis, consistent with earlier reports [76].  On the other hand, the cytotoxic effects of PdL1 

were not affected by the inhibitors, implying that caspase-dependent apoptosis and PARP-dependent 

programmed necrosis of parthanatos might not play a significant role in PdL1-induced cell death, at least 

within the context of our experimental system. The differences both in the cell death mechanisms 

predominantly engaged by cisplatin and PdL1 and in the manner of their inducing changes to, or not 

affecting, intracellular ROS levels, support the establishment of the fact that cisplatin and PdL1 do not 

share exactly the same mechanisms of action. This could be advantageous in the development of novel 

metallodrugs that are endowed with toxic mechanisms dissimilar to those of cisplatin.  

4. Conclusions 

Palladium(II) complexes of tridentate bis(benzazole) ligands  have been synthesised and 

structurally characterised. The solid-state structure of the complexes established a tridentate coordination 

mode of the ligands to give  square planar complexes. The rates of substitution kinetics of the Pd(II) 

complexes were mainly controlled by the electronic properties of the auxiliary ligands and incoming 

nucleophile. DFT calculations supported the reactivity trends. The values of activation parameters, ΔH≠ 

and ΔS≠ support an associative mode of activation. The competitive CT-DNA binding affinities are 

controlled by the steric bulk of the ligands, consistent with molecular docking experiments. Complex PdL1 

displayed cytotoxic potency and selectivity comparable to those of cisplatin. Only PdL3 significantly 
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increased ROS levels while PdL4 was the most cancer cell-selective but the least potent. There was no 

evidence that PdL1 induces significant apoptotic cell death, unlike cisplatin. Complexes PdL1 and PdL2 

showed good correlations on the rates of substitution kinetics, DNA binding affinities and cytotoxicity 

activities, thus providing evidence on the  use of substitution kinetics and DNA binding studies  to probe 

the cytotoxicity of these types of Pd(II) complexes. 

Supplementary information 

Supplementary materials contain additional NMR and IR spectroscopic spectral data, mass spectra 

of the palladium complexes and X-ray crystallography files. The CCDC data entries for the structures are 

CCDC: 1992172 and 1992173 for compounds PdL2 and PdL4, respectively. The material also contains 

additional kinetics plots, DNA binding UV-visible and fluorescence spectra,  optimised DFT structures 

and results, molecular docking diagrams and cell morphology images. 
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Figure S1: 1H NMR overlay for ligand L4 and PdL4 

 



35 

 

 

Figure S2: 1H NMR spectrum of PdL1 

 

 

 

Figure S3: 13C NMR spectrum of PdL1  
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Figure S4: 1H NMR spectrum of PdL2 

 

Figure S5: 13C NMR spectrum of PdL2  
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Figure S6: 1H NMR spectrum of PdL3 

 

Figure S7: 13C NMR spectrum of PdL3  
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Figure S8: 1H NMR spectrum of PdL4 

 

 

Figure S9: 13C NMR spectrum of PdL4  
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Figure S10: FTIR overlay for L1 and PdL1 

 

 

Figure 

S11: FTIR overlay for L2 and PdL2 
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Figure S12: FTIR overlay for L3 and PdL3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S13: FTIR overlay for L4 and PdL4 
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Figure S14: Mass spectrum of PdL1 showing the m/z = 451 corresponding to its molar mass 

 

 

Figure S15: Mass spectrum of PdL2 showing the m/z = 453 corresponding to its molar mass 
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Figure S16: Mass spectrum of PdL3 showing the m/z = 485 corresponding to its molar mass 

 

Figure S17: Mass spectrum of PdL4 showing the m/z = 417 corresponding to its molar mass 
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Figure S18: Dependence of kobs on the nucleophile concentration for chloride substitution from PdL2 at 

T = 298 K, 25mM Hepes buffer (pH =7.2) and 10 mM NaCl. 
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Figure S19: Dependence of kobs on the nucleophile concentration for chloride substitution from PdL3 at 

T = 298 K, 25mM Hepes buffer (pH =7.2) and 10 mM NaCl. 
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Figure S20: Dependence of kobs on the nucleophile concentration for chloride substitution from PdL4 at 

T = 298 K, 25mM Hepes buffer (pH =7.2) and 10 mM NaCl. 
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Figure S21: Eyring plots for the reaction of PdL2 with nucleophiles in aqua, 25 mM Hepes buffer (pH 

=7.2) and 10 mM NaCl. 
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Figure S22: Eyring plots for the reaction of PdL3 with the nucleophiles in aqua, 25 mM Hepes buffer 

(pH =7.2) and 10 mM NaCl. 
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Sum of 
Squares
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4

6.07496E-6 1.78697E-4

Pearson's r -0.99971 -0.99999 -0.99978

Adj. R-Squar 0.99914 0.99998 0.99933

Value Standard Erro

Tu Intercept 10.05406 0.17549

Slope -3240.7130 54.80446

L-Met Intercept 7.69241 0.02397

Slope -2777.5027 7.48613

5-GMP Intercept 6.76394 0.13001

Slope -2712.2356 40.60173

 

Figure S23: Eyring plots for the reaction of PdL3 with the nucleophiles in aqua, 25 mM Hepes buffer (pH 

=7.2) and 10 mM NaCl. 
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Figure S24: Absorption spectra of PdL2 complex (20 μM) in Tris-HCl/50 mM buffer at pH 7.2 upon 

addition of CT-DNA (0 - 40 μM). The arrow shows the change in absorbance upon increasing the CT-

DNA concentration. Inset: plot of [CT-DNA] versus [DNA]/(εa- εf). 
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Figure S25: Absorption spectra of PdL3 complex (20 μM) in Tris-HCl/50 mM buffer at pH 7.2 upon 

addition of CT-DNA (0 - 40 μM). The arrow shows the change in absorbance upon increasing the CT-

DNA concentration. Inset: plot of [CT-DNA] versus [DNA]/(εa- εf). 
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Figure S26: Absorption spectra of PdL4 complex (20 μM) in Tris-HCl/50 mM buffer at pH 7.2 upon 

addition of CT-DNA (0 - 40 μM). The arrow shows the change in absorbance upon increasing the CT-

DNA concentration. Inset: plot of [CT-DNA] versus [DNA]/(εa- εf). 
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Figure S27: Fluorescence emission spectra of EB bounded to CT-DNA in the presence of PdL2: [EB] = 

6.5 μM, [CTDNA] = 6.5 μM and [PdL2] = 0-200 μM. The arrow shows the intensity changes upon 

increasing the PdL2 complex concentration;  (a) Stern-Volmer plot of Io/I versus [Q];   (b) Scatchard plot 

of log[(Io–I)/I] versus log[Q]. 
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Figure S28: Fluorescence emission spectra of EB bounded to CT-DNA in the presence of PdL3: [EB] = 

6.5 μM, [CTDNA] = 6.5 μM and [PdL3] = 0-200 μM. The arrow shows the intensity changes upon 

increasing the PdL3 complex concentration;  (a) Stern-Volmer plot of Io/I versus [Q]; (b) Scatchard plot 

of log[(Io–I)/I] versus log[Q]. 
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Figure S29: Fluorescence emission spectra of EB bounded to CT-DNA in the presence of PdL4: [EB] = 

6.5 μM, [CTDNA] = 6.5 μM and [PdL4] = 0-200 μM. The arrow shows the intensity changes upon 

increasing the PdL4 complex concentration; (a) Stern-Volmer plot of Io/I versus [Q];  (b) Scatchard plot 

of log[(Io–I)/I] versus log[Q]. 
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PdL1 PdL2 PdL3 PdL4 

Figure S30: Computational docking models illustrating the interactions of PdL1, PdL2, PdL3, and PdL4 

with B-DNA duplex, with docking score of -270.07, -268.81, -266.11, and -263.96 Kcal/Mol, respectively. 
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Figure S31: Morphological damage for each of the cell lines  
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Figure S32: Molecular structure of Pdl2 

 

 

Figure S33: Molecular structure of PdL4 
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Table S1: Summary of the crystallographic data and structure refinement for complexes PdL2 and PdL4. 

Parameter PdL2 PdL4 

Empirical formula C21H14BClF4N4O2Pd C18 H21 Cl2 N5 O Pd S 

Formula weight 583.02 532.76 

Temperature 100 (2) K 101(2) K 

Wavelength 0.71073 Å 0.71073 Å 

Crystal system Monoclinic Orthorhombic 

Space group P 21/c P b c a 

Unit cell dimensions 

a (Å) 

b (Å) 

c (Å) 







 

6.6715(4)     

  

19.527(3)     

12.8094(7)   

24.5913(14) 

90 

91.713(2) 

19.008(3) 

11.4356(19) 

90  

90.000(7) 

90 90 

Volume 2100.6(2) Å3 4244.5(12) Å3 

Z 4 8 

Density (calculated) 1.844 Mg/m3 1.667 Mg/m3 

Absorption coefficient 1. 075 mm-1 1.244 mm-1 

F(000) 1152.0 2144 

Crystal size 0.220 x 0.180 x 0.150 mm3 0.800 x 0.240 x 0.160 mm3 

Theta range for data collection 1.657 to 28.985°. 2.086 to 28.377°. 
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Table S2: DFT optimised HOMO, LUMO frontier molecular orbitals, with respective planarity structures 

of Pd(II) complexes at B3LYP/LANL2DZ theory level (Iso value = 0.02) 

 

Complex Optimised 

structure 

HOMO map LUMO map planarit

y 

PdL1 

    
     

PdL2 

    
     

PdL3 

    
     

PdL4 

    
The DFT optimised structures reveal that the electron densities of the HOMO orbitals are predominately 

contributed by the 4d-orbitals of Pd(II) metal centre and the π-system of the entire inert ligand architecture, 

and in the case of PdL4 the electrons are also contributed by the 3p-orbitals of the chlorine atoms. On the 

other hand, the LUMO electron clouds are mainly localised on the pyridyl ligand moiety and Pd(II) ion,  

and in the case of PdL4, the electrons are also distributed on the chloride atom. The planarity around the 

Pd(II) metal centre, as made possible through the in-plane pyridine/benzoazole ligand system, seems to 

offer  little or no steric hindrance to the incoming nucleophile in PdL1, PdL2, and PdL3. Conversely, the 

auxiliary ligand in PdL4 suffers a slight distortion from planarity with the absence of the pyridine ring.  

 

 

 

 

 

 

 

 

 

 

 

Table S3: Summary of selected computational data for the investigated complexes 
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Complexes PdL1 PdL2 PdL3 PdL4 

NBO Charges     

Pd2+ 0.675 0.619 0.549 0.482 

Cl- -0.508 -0.485 -0.496 -0.505 

Ntrans to Cl -0.427 -0.427 -0.427 -0.636 

Ncis to Cl -0.513 -0.497 -0.478 -0.540 

X = Heteroatom -0.548 -0.499 0.416 -0.557 

Bond lengths (Å)     

TransN-Pd-Cl 179.98 179.99 178.00 171.49 

HOMO-LUMO energy / eV     

LUMO/eV -3.693 -3.514 -3.233 -2.754 

HOMO/eV -7.190 -7.084 -6.848 -6.750 

ΔE/eV 3.497 3.570 3.615 3.996 

Chemical hardness (η) 1.749 1.785 1.807 1.9982 

Chemical softness (σ) 0.572 0.560 0.553 0.501 

Electronic chemical potential (μ) -5.442 -5.299 -5.040 -4.752 

Electrophilicity index (ω) 8.468 7.864 7.028 5.651 

Dipole moment (Debye) 15.552 13.733 12.946 11.086 

The slight increase in the HOMO energy level across the series of Pd(II) complexes, indicates that electron 

donation density around Pd(II) metal increases, while the increase on the LUMO energy in a similar 

fashion demonstrates  a reduction in π-acceptability of the ligand system in the complexes. The computed 

energy gap, ΔELUMO–HOMO gradually increases from PdL1 to PdL4.It is noticed that the LUMO energies 

of PdL1-PdL3 are raised in the increasing order of the electronegativity of the heteroatom on the spectator 

ligand. This indicates that the HOMOs are stabilised and LUMOs are destabilised, as a result smaller 

ΔELUMO–HOMO causing an observed decrease in reactivity.  It is clear that PdL4 shows relatively high 

ΔELUMO–HOMO when compared to PdL1.This can be attributed to the absence of pyridine ring on the head 

of the ligand system on PdL4, which indicates the absence of π-back bonding. 
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Figure S32: Molecular structure of Pdl2 

 

 

Figure S33: Molecular structure of  PdL4 

 

 

 


