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Abstract

Group defense is a phenomenon that occurs in many predator-prey systems.
Different functional responses with substantially different properties repre-
senting such a mechanism exist. Here, we develop a functional response us-
ing timescale separation. A prey-dependent catch rate represents the group
defense. The resulting functional response contains a single parameter that
controls whether the group defense functional response is saturating or dome-
shaped. Based on that, we show that the catch rate must not increase mono-
tonically with increasing prey density to lead to a dome-shaped functional
response. We apply bifurcation analysis to show that non-monotonic group
defense is usually more successful. However, we also find parameter regions
in which a paradox occurs. In this case, higher group defense can give rise
to a stable limit cycle, while for lower values, the predator would go ex-
tinct. The study does not only provide valuable insight on how to include
functional responses representing group defense in mathematical models, but
it also clarifies under which circumstances the usage of different functional
responses is appropriate.
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1. Introduction1

Predation is a ubiquitous interaction in ecological communities (Allan,2

1995). The dynamics of mathematical models describing predator-prey rela-3

tionships depend critically on the functional response (Abrams and Ginzburg,4

2000; Gross et al., 2004; Aldebert et al., 2016). The most commonly used5

functional responses rely on the work of Holling (1959) and Holling (1961).6

These are categorized as Holling type I, II, and III functional responses. How-7

ever, a wide range of other functional responses exist as well, and even though8

the shape of the functional response is similar (for instance, the Holling type9

II and the Ivlev functional response (Ivlev, 1961)), the dynamics may change10

qualitatively (Aldebert et al., 2016). This phenomenon is called structural11

sensitivity.12

In this study, we will focus on a mathematical predator-prey model incor-13

porating a group defense of the prey. It is well known that some prey species14

adapt to predation and can develop different avoidance or defense strategies15

(Jeschke, 2006). Some bacteria, for instance, produce toxins that may be16

lethal for eukaryotic predators (Lainhart et al., 2009). However, avoidance17

strategies such as flight, freezing (Blanchard et al., 1986), using refuge ar-18

eas, or a combination of these (Blanchard et al., 1990) usually do not have19

a direct negative impact on the predator population (Edmunds, 1974). In-20

stead, decreasing the attack success due to predator confusion can reduce the21

predation without harming the predator (Allee, 1958; Jeschke and Tollrian,22

2005). For instance, moose use intimidation of wolves as a non-harmful de-23

fense strategy (Caro, 2005). Another example is given by plankton sensing24

predator kairomones leading to morphological changes, which is a success-25

ful defense strategy against size-selective predators (Lass and Spaak, 2003).26

Besides, many species warn conspecifics of the group using alarm signals27

(Klump and Shalter, 1984). Such a swarming effect often occurs in social28

populations (Tener, 1965; Ĺıznarová and Pekár, 2013).29

In mathematical models, anti-predator defense strategies have often been30

incorporated by a potentially adaptive decrease in handling time, an increase31

in attack rates, or a combination of these two (Jeschke and Tollrian, 2000;32

Ĺıznarová and Pekár, 2013; Köhnke, 2019). However, as many of the de-33

fense mechanisms depend on the population size of the prey (Krams et al.,34

2009), often also a dome-shaped functional response is used. The charac-35
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teristic feature of a dome-shaped functional response is that the consumed36

prey for a particular prey density has a maximum at finite prey densities.37

Different experiments have confirmed the dome-shape, such as Pekár (2005),38

as well as Ĺıznarová and Pekár (2013). However, group defense is likely to be39

present in many systems, although not indicated by the functional response40

(Jeschke and Tollrian, 2005). Even though, not in his classical paper about41

functional responses (Holling (1959)), in 1961, already Holling has proposed42

four functional responses, one of them incorporating a swarming effect lead-43

ing to a dome-shaped functional response. Hence, this is often referred to44

as a Holling type IV functional response (Huang and Xiao, 2004; Lian and45

Xu, 2009; Wang et al., 2009). However, classically only type I, II, and III are46

referred to as Holling types. To avoid confusion, we will stick to the term47

type IV functional response throughout this paper.48

Different expressions exist for such a type IV functional response (Tosto-49

waryk, 1972; Fujii et al., 1986; Ĺıznarová and Pekár, 2013). Particularly50

some studies use a type IV functional response with a square prey depen-51

dence in the denominator but without any linear dependence (Zhang et al.,52

2006; Baek, 2010). These usually have a form similar to53

fIV (U) =
U

1 + U2
. (1)54

This form was originally proposed by Sokol and Howell (1981) as a simpli-55

fication of a functional response that also incorporates a linear prey depen-56

dence in the denominator. Such kind of response is sometimes referred to as57

Monod-Haldane functional response (Andrews, 1968) and is commonly used58

as well (Edwards, 1970; Chen, 2004; Upadhyay and Raw, 2011). Collings59

(1997) derived a similar functional response resulting from the assumption60

that searching efficacy and handling time are decreasing and increasing with61

prey density, respectively.62

In section 2, we develop a functional response based on a quasi-steady-63

state assumption. Applying quasi-steady-state assumptions is a powerful64

tool ranging back to Bodenstein (1913). It can help to significantly simplify65

dynamical systems using the idea that processes described by the dynamical66

system happen on different timescales (Shoffner and Schnell, 2017). We will67

show that, if the catch rate is monotonically increasing with prey density, the68

resulting functional response will be saturating. Otherwise, the functional69

response can be dome-shaped. We will analyze the rather general model70

analytically before we introduce a functional response incorporating a group71
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defense in section 3. The shape of this functional response can be varied72

using a single parameter. We will treat this model analytically and with73

bifurcation analysis to show that the group defense can drive the predator74

to extinction. However, we will also show that for a small parameter region,75

a paradox occurs.76

2. General model77

We start with developing a predator-prey model of the form78

dU

dT
= Φ(U)− f(U)V, U(0) = U0, (2a)79

dV

dT
= Q(f(U)V )−mV, V (0) = V0 (2b)80

with81

Φ(0) = Φ(K) = 0, Φ′(K) < 0. (2c)82
83

with all parameters being positive. Here, K represents the carrying capacity84

of the prey population. The prey U grows according to the function Φ(U) in85

absence of the predator V . This function has at least two stationary states,86

the extinction, and the carrying capacity. Furthermore, the carrying capacity87

is stable in absence of the predator. We model the mortality of the predator88

with a linear term. The term f(U) is the functional response, i.e., how the89

number of predated prey per unit time of one average predator varies with90

changing densities. Note that we are interested in group defense and thus91

assume that the functional response is only affected by the prey density. The92

function Q(f(U)V ) represents the biomass production of V due to predation,93

i.e., the numerical response.94

To develop the functional response, we assume that the predator can be95

divided into two separate states, searching and handling, i.e., V = S + H.96

Note that an alternative approach to develop a functional response is by97

argumentations on time budgets of the prey. An example regarding group98

behavior is given by Braza (2012). The dynamics of the subpopulations are99

given by100

dS

dT
= −βg(U)S + γH, S(0) = S0, g(0) = 0, (3a)101

dH

dT
= βg(U)S − γH, H(0) = H0. (3b)102

103
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This approach also allows for the derivation of a Holling type II functional104

response (Diekmann et al., 2012). Note that we neglect birth and death105

processes here, assuming that they happen on a much slower timescale (for106

a discussion on the validity of such a timescale separation see Appendix A).107

Hence, V = S + H = const. holds for this timescale. Searching individuals108

turn into handling individuals by capturing prey with a rate β depending109

on the function g(U). The function g(U) represents the rate of successful110

catch and kill per searching predator, while β represents the search rate.111

Throughout the manuscript, we will refer to g(U) as catch rate. Note that112

in this interpretation, handling individuals are all individuals that are not113

actively searching for prey, for instance, handling prey or digesting it. After114

some handling time τ = γ−1, handling individuals turn back into searching115

individuals.116

Applying time-scale separation, we can find a quasi-stationary solution117

for the searching subpopulation118

S∗ =
γV

βg(U) + γ
. (4)

Now, we assume that predation depends only on searching individuals which119

allows us to introduce the functional response120

f(U)V = βg(U)S∗ = γV
βg(U)

βg(U) + γ
. (5)

For monotonically increasing catch rates, the resulting functional response121

will also increase monotonically. Hence, dome-shaped functional responses122

only occur if the catch rate is not monotonically increasing.123

To derive the functional response in this way and not to incorporate it di-124

rectly into the model has three advantages. First, it may be easier to measure125

in some cases as the predation process is split up into two separate processes,126

i.e., searching and handling. For the conversion of searching into handling127

individuals, it is sufficient to introduce an entirely searching (not satiated)128

predator population into a prey population of different sizes to retrieve the129

catch rate depending on the prey population. For many experiments, that is130

the case anyway. However, note that one must be cautious with such mea-131

surements as a discrepancy between local measurements and a mean-field132

functional response, e.g., over a heterogeneous vertical water column, may133

exist (Morozov and Arashkevich, 2008; Morozov, 2010). Furthermore, only134
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the time between searching events needs to be measured. Second, it shows135

under which assumptions a type IV functional response of the form given by136

Eq. (1) emerges, which will show the artificiality of this form. Third and137

most important for this study, it allows us to introduce a single parameter138

later on that changes the functional response from a saturating form into a139

dome-shaped form to differentiate the effect of different group defense forms140

from other factors.141

For simplicity, we assume that the numerical response depends linearly142

on the functional response (for a discussion on alternatives see Abrams and143

Ginzburg (2000)). In particular, this means that conversion of prey biomass144

into predator biomass is proportional to the predation term with a propor-145

tionality constant e, which one can interpret as conversion efficiency. Assum-146

ing that the timescale separation is valid, this yields147

dU

dT
= Φ(U)− β γg(U)V

βg(U) + γ
, U(0) = U0, (6a)148

dV

dT
= eβ

γg(U)V

βg(U) + γ
−mV, V (0) = V0 (6b)149

150

for the original predator-prey model. Note that this form is similar to151

a functional response in Jeschke et al. (2002), incorporating a probability152

of a predator searching for prey in the classical Holling type II functional153

response.154

This model has two stationary solutions, that always exist, i.e.,155

E0 = (U∗0 , V
∗
0 ) = (0, 0), (7a)156

Ec = (U∗c , V
∗
0 ) = (K, 0). (7b)157

158

Depending on the growth dynamics Φ(U), more semi-trivial solutions may159

exist. Furthermore, depending on the form of the function g(U), non-trivial160

solutions E∗n may exist. These take the form161

g(U∗n) =
mγ

β(eγ −m)
, (8a)162

V ∗n =
eΦ(U∗n)

m
. (8b)163

164

Hence, the predator can only survive in coexistence with its prey. The165

function g(U) is by definition a catch rate and, thus, g(U∗n) ≥ 0. For the166
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existence of these solutions, this yields167

eγ > m, (9a)168

Φ(U∗n) > 0. (9b)169
170

From a biological perspective, this means that the conversion efficiency e and171

the handling rate γ, which are both related to predation abilities, need to be172

larger than the mortality of the predator. As we assume that handling prey173

takes place on a shorter timescale than birth and death processes, Eq. (9a)174

likely holds. Interestingly, a higher value of the searching rate β cannot175

compensate for lower handling rates regarding the existence of the coexistence176

solution.177

For the linear stability of the stationary solutions, we consider the Jaco-178

bian179

J =

Φ′(U)− βγ2g′(U)V

(γ + βg(U))2
− βγg(U)

γ + βg(U)
eβγ2V g′(U)

(γ + βg(U))2
eβγg(U)

γ + βg(U)
−m

 . (10)

Evaluation at the trivial solution E0 yields the eigenvalues λ0,1 = Φ′(0) and180

λ0,2 = −m. Hence, the trivial solution is always a saddle in absence of a181

strong Allee effect and a stable node in presence of a strong Allee effect.182

The Jacobian evaluated at the semi-trivial solution Ec has the eigenval-183

ues λc,1 = Φ′(K), and λc,2 =
βg(K)(eγ −m)− γm

γ + βg(K)
. Hence, if no coexistence184

solutions exist, i.e., eγ ≤ m, the semi-trivial solution is a stable node. Con-185

versely, if coexistence is possible,186

g(K) <
mγ

β(eγ −m)
= g(U∗n). (11)

must hold as a stability criterion. If g(U) is monotonically increasing in U ,187

this can never hold as K > U∗n. However, for a non-monotonic predation188

rate, the carrying capacity may be stable if a coexistence solution exists.189

Hence, bistability between coexistence and carrying capacity may occur.190

We address the stability of the coexistence solution(s) using the Routh-191

Hurwitz-criterion. After some simplification involving particularly Eqs. 8,192

one gets193

Tr(J |E∗
n
) = Φ′(U∗n)− κg′(U∗n)Φ(U∗n) < 0 (12a)194

det (J |E∗
n
) =

κg′(U∗n)Φ(U∗n)

m
> 0 (12b)195

196
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with κ =
β(m− eγ)2

eγ2m
as conditions for stability of the coexistence solu-197

tion(s). If the coexistence solution(s) exist(s), only198

g′(U∗n) > 0 (13)

must hold for a positive determinant. Note that this is assured for a mono-199

tonically increasing catch rate. If this holds, Eq. (12a) can be rewritten as200

Φ′(U∗n)

g′(U∗n)Φ(U∗n)
< κ. (14)

Hence, if the conditions before hold, a sufficient condition for stability is that201

Φ′(U∗n) < 0. Clearly, if the coexistence state is unstable but existent in case202

of a monotonically increasing functional response, an asymptotically stable203

periodic solution must exist as the only possible stable attractor. If Eq. (13)204

and Tr(J |E∗
n
) = 0 hold, a Hopf bifurcation occurs (Britton, 2012). As J2,2 = 0205

at the coexistence solution, the second condition requires J1,1 = 0, i.e., the206

bifurcation occurs at the maximum of the nontrivial prey nullcline.207

From a biological perspective, the stability criterion given by Eq. (14)208

means that the growth function of the prey needs to be sufficiently high, i.e.,209

Φ(U∗n)� 0. Furthermore, the change of the catch rate with increasing prey210

densities g′(U∗n) needs to be sufficiently large. To visualize this relationship,211

Fig. 1 shows different growth functions of the prey and different functional212

responses emerging from given catch rates. The figure shows five general213

tendencies. First, logistic growth tends to stabilize coexistence compared to214

a strong Allee effect (upper panel). Second, as g′(U∗n) > 0 for monotonically215

increasing functions, the coexistence equilibrium is always stable if it exists216

in the dark blue regions for these functional responses. Third, the light blue217

line corresponds to the often used type IV functional response, cf. Eq. (1).218

As its derivative with respect to the prey is particularly high at low den-219

sities, it tends to overestimate the stability of the coexistence equilibrium220

at these densities compared to other functional responses representing group221

defense (red and green curve). Fourth, group defense with critical population222

size, i.e., a dome-shaped functional response, is more successful at high prey223

densities as it makes the stability of the coexistence equilibrium unlikely.224

Conversely, group defense leading to a saturation (green curve) is more suc-225

cessful for equilibria at low prey densities. Fifth, if the prey population obeys226

a strong Allee effect with a higher Allee threshold than the threshold of the227

group defense, coexistence can never be stable.228
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Figure 1: A type IV functional response as in Eq. (1) overestimates stability of
coexistence solutions at low prey densities. The upper panel shows logistic growth
and growth with a strong Allee effect. For stability, Eqs. (12) need to holds. If g′(U∗n),
shown in the lower panel, is negative, stable coexistence is not possible. If it is positive,
stability is guaranteed in the dark blue regions in the upper panel. Otherwise, coexistence
becomes more likely with higher Φ(U∗n) as indicated by the blue shade and higher g′(U∗n).
The panel in the middle shows the value of different functional responses f(U) (ordinate)
depending on the prey density. The colors indicate the underlying catch rates g(U).

3. Model with a given catch rate229

Depending on the catch rate, the resulting functional response could rep-230

resent diverse biological phenomena, such as saturation, e.g., g(U) = U or231

prey switching, e.g., g(U) = U2. Here, we want to investigate the potential232

impact of group defense. Group defense can be represented by the catch rate233

g(U) =
U

1 +
(
U
C

)ν . (15)

The form of this function is arbitrary to a certain extent. However, we will see234

that the shape of the functional response changes by varying ν from satura-235

tion to different dome-shaped functional responses. Most studies assume an236

exponent ν ≥ 1. However, some studies also indicate ν < 1 for species with237
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herding behavior such as group defense (Braza, 2012). If ν > 1, a dome-238

shaped functional response emerges while if ν ≤ 1, a saturating functional239

response emerges. If C � K, the resulting functional response coincides240

with the Holling type II functional response. However, if the critical value241

is C < K, it controls the impact of a higher prey density if ν ≤ 1. In case242

of ν > 1, it represents a critical value beyond which the group defense has a243

high impact. In the following, we will refer to it as the critical defense value.244

The derivative of this function at low densities is given by245

lim
U→0

g′(U) = 1. (16)

Hence, the rate of change at low densities is not affected by this function,246

but it impacts the shape of the curve at higher densities.247

In particular,248

lim
U→∞

g′(U) = 0 (17)

holds at high densities. For ν ≤ 1, this leads to saturation of the catch rate249

like in the Holling type II functional response, whereas for ν > 1, the catch250

rate has a maximum at251

Umax = C(ν − 1)−
1
ν (18)

meaning that higher prey densities lead to lower predation success. Even with252

ν > 1, the model can represent different dome-shaped functional responses253

such as one with a linear and quadratic term (Ĺıznarová and Pekár, 2013) or254

with a linear and cubic term (Tostowaryk, 1972) in the denominator.255

Incorporating this function in the general model, i.e., Eq. (6), yields256

dU

dT
= Φ(U)− V βγU

γ + βU + γ(U/C)ν
, (19a)257

dV

dT
= eV

βγU

γ + βU + γ(U/C)ν
−mV. (19b)258

259

It can be seen that the linear term can be neglected as in Eq. (1) only if260

the search rate of the predator β and handling time γ−1 are sufficiently small261

and/or if C � K. In this case, the nonlinear term in the denominator is the262

leading term.263

Regarding the stability of the carrying capacity, we already know that it264

is stable if no coexistence solution exists. Otherwise, eγ > m holds and given265

the functional response above266

K

1 +
(
K
C

)ν < g(U∗n) (20)
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needs to hold for stability. This demonstrates that low critical defense values267

and high group defense strengths increase the likelihood that the carrying268

capacity is stable.269

Regarding the number of coexistence solutions, we can simplify Eq. (8a)270

to271

U∗n
ν =

Cν

g(U∗n)
U∗n − Cν . (21)

Hence, a necessary condition for the existence of a coexistence solution is272

U∗n > g(U∗n). Depending on ν, the potential number of stationary coexistence273

solutions differ. Only in the non-monotonic case, i.e., ν > 1, more than one274

coexistence solution can exist.275

In particular, if ν < 1, U∗n
ν is a concave function. As the right hand side276

of Eq. (21) is a straight line intersecting the abscissa at U = g(U∗n) > 0, one277

intersection always exists. If ν = 1, the left-hand side and the right-hand278

side intersect at279

U∗n =
Cg(U∗n)

C − g(U∗n)
. (22)

Hence, C > g(U∗n) needs to hold for the existence of a coexistence solution.280

Furthermore, Φ(U∗n) > 0 must hold for feasibility.281

If ν > 1, U∗n
ν is a convex function. Hence, either zero or two solutions282

exist for almost all parameter combinations satisfying Φ(U∗n) > 0. However,283

note that Φ(U∗n) > 0 may also just hold for one of the nontrivial solutions. In284

this case, the other vertical predator nullcline is at positive densities but is285

not biologically meaningful as it is beyond the carrying capacity. Rewriting286

Eq. (21) yields287

φ(U∗n) = U∗n
ν − Cν

g(U∗n)
U∗n

ν + Cν = 0. (23)

As this function has a minimum at the positive value288

U∗nmin = ν−1

√
Cν

νg(U∗n)
(24)

and φ(0) = Cν > 0, φ(U∗nmin) < 0 must hold for the feasibility of two289

coexistence solutions. This corresponds to290

g(U∗n) < g(U∗n)crit =
(ν − 1)(C−ν(ν − 1))−

1
ν

ν
. (25)

11
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Figure 2: The likelihood of the feasibility of a second coexistence solution
tends to increase with a higher critical defense value and higher group de-
fense strength. The threshold g(U∗n)crit given by Eq. (25) is visualized. Low values
denoted by blue colors correspond to situations in which the feasibility of two coexistence
solutions is unlikely. Note that for ν ≤ 1, two coexistence solutions are never possible.

At g(U∗n) = g(U∗n)crit, a saddle-node bifurcation takes place. The threshold291

g(U∗n)crit is visualized in Fig. 2. The color scale shows the maximum value292

of g(U∗n) for feasibility of two coexistence solutions. For higher values of C,293

the critical value of g(U∗n) increases monotonically. Hence, a higher critical294

defense value makes the feasibility of two coexistence solutions more likely.295

This relationship becomes more complex regarding the strength of the group296

defense. The function g(U∗n)(C, ν) shows a minimum at ν = 2. This cor-297

responds to the classical function of group defense, which thus may tend to298

underestimate the existence of two coexistence solutions. However, note that299

this effect is very weak.300

Now, we consider the stability of the coexistence solutions. By Eqs. (13)301

and (12a), we know that302

g′(U∗n) =
Cν(Cν − (ν − 1)U∗n

ν)

(Cν + U∗n
ν)2

(26)
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is a crucial expression for the stability of the nontrivial equilibrium. In303

particular, a necessary condition for stability is g′(U∗n) > 0, which always304

holds if ν ≤ 1. However, if a maximum of the catch rate exists at finite305

population densities, i.e., ν > 1,306

U∗n < η(ν) = ν

√
Cν

ν − 1
(27)

must hold for stability. Note that this corresponds to the maximum of the307

catch rate given by Eq. (18), meaning that in case of group defense, stable308

coexistence is only possible at prey densities smaller than the prey density309

at the maximum of the catch rate. Note that this is already visualized in310

Fig. 1. From this condition, we can see (Appendix B) that311

lim
ν→∞

η(ν) = C (28)

and312

lim
ν→1+

η(ν) =∞. (29)

Furthermore, for ν = 2, η(ν) = C holds. Hence, for high group defense313

values as well as for ν = 2, prey and predator can only coexist at values314

U∗n < C underlining the criticality of this parameter. There is no biologically315

meaningful threshold close to saturation of the catch rate. Note that this is316

only a necessary condition for stability. As a sufficient condition, g′(U) needs317

to be sufficiently large. It is obvious that318

g′′(U∗n) = −νC
νU∗n

ν−1 ((1 + ν)Cν − (ν − 1)U∗n
ν)

(Cν + U∗n
ν)3

(30)

is negative if ν ≤ 1. Furthermore, if ν > 1, g′′(U∗n) is negative if319

U∗n
ν <

(1 + ν)Cν

ν − 1
. (31)

As320

Cν

ν − 1
<

(1 + ν)Cν

ν − 1
, (32)

one can say from Eq. (27) that g′(U∗n) is a monotonically decreasing function321

in U∗n as long as g′(U∗n) is positive. Thus, with smaller values of U∗n, stability of322

the equilibrium gets more likely. However, in these regions, stable coexistence323
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is unlikely due to the growth functions (see Fig. 1). In particular, if a strong324

Allee effect is present, this makes coexistence unlikely as Φ(U∗n) > 0 needs to325

hold as well. Hence, a strong Allee effect prevents stable coexistence at low326

densities while group defense prevents stable coexistence at high densities.327

Thus, a combination of a strong Allee effect in the prey and group defense328

may be detrimental for predators.329

Tab. 1 summarizes the feasibility and stability conditions of model (19).

Table 1: Feasibility and stability of solutions for model (19) assuming that Φ(U) = 0 only
at U = 0 and U = K, i.e., in absence of a strong Allee effect.

Solution Feasibility Stability

(U0, V0) = (0, 0) unconditionally feasible unconditionally unstable

(Uc, V0) = (K, 0) unconditionally feasible if eγ ≤ m
or if g(K) < g(U∗n)

(Un,1, Vn,1) nec.: U∗n > g(U∗n) nec.: if ν ≤ 1

or if ν > 1 ∧ Un,1 < ν

√
Cν

ν − 1

(Un,2, Vn,2) ν > 1 ∧ g(U∗n) < g(U∗n)crit(C, ν) ∧ Φ(U∗n) > 0 nec.: Un,2 <
ν

√
Cν

ν − 1

330

For the numerical investigation of the model, we have chosen a logistic331

growth function332

Φ(U) = rU − cU2 (33)

where rc−1 represents the carrying capacity K. Fig. 3 shows a bifurcation333

diagram for the two parameters representing the group defense. For the334

remaining parameters, we used estimations based on an ecological micro-335

tine rodent mustelid model from Huisman and De Boer (1997) and Hanski336

and Korpimäki (1995) satisfying the conditions for timescale separation, see337

Appendix A. The usage of this case study makes sense as rodents show anti-338

predator behavior such as ultrasonic vocalizations as an alarm signal that339

can be interpreted as group defense (Blanchard et al., 1990).340

C is the critical defense value, while ν shapes the form of the functional341

response. Recall that for high C, the functional response tends to the Holling342

type II functional response. Hence, it is evident, that group defense is bene-343

ficial for the prey as it increases the likelihood that the carrying capacity is344

the only stable stationary solution.345
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Figure 3: Group defense can lead to extinction of the predator. A two-dimensional
bifurcation diagram with ν, and the critical defense value C as bifurcation parameters is
shown. In the squared region, the prey exists at its capacity. The solid black line corre-
sponds to a transcritical bifurcation leading to a stable coexistence state (white region).
This stable coexistence state loses stability via a Hopf bifurcation (blue line), resulting in
a stable limit cycle (dotted area). For higher ν, the limit cycle is destroyed via a homo-
clinic bifurcation that takes place simultaneously with a transcritical bifurcation (dashed
black line). Note that between green, blue, and black solid lines, the system is bistable. It
depends on the initial conditions, whether the system converges to the stable coexistence
state or the carrying capacity of the prey. BT indicates the Bogdanov-Takens bifurcation
point. From this point, a homoclinic bifurcation (red dotted line) emerges. Below this
line, a small parameter region corresponding to bistability between a limit cycle and the
carrying capacity exists. The remaining parameters are as stated in Appendix A. We
computed the bifurcation curves using XPPAUT (Ermentrout, 2002).

At higher values of ν or low values of C, the carrying capacity of the346

prey is the only stable stationary solution. Hence, it is evident that stronger347

group defense is beneficial for the prey population for most parameter regions.348

Note that the exact values of ν and C depend on the parameter set. The349

values stated in the following are just for reference regarding Fig. 3. For350

ν / 1.4, a stable coexistence solution emerges for high values of C via a351

transcritical (solid black line) bifurcation. Increasing the value of C even352
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further, this equilibrium undergoes a Hopf bifurcation (blue line), leading353

to a limit cycle. For ν ' 1.4, this limit cycle vanishes via a homoclinic354

bifurcation (dashed line) for sufficiently low C. This homoclinic bifurcation355

coincides with a transcritical bifurcation. Fig. C.7 illustrates the homoclinic356

orbit. Furthermore, for ν > 1, i.e., if group defense is dome-shaped, a saddle-357

node bifurcation exists (green line). However, note that we have only plotted358

the saddle-node bifurcation in the parameter regions in which it takes place359

at biologically meaningful densities. Furthermore, note that the green line360

corresponds to a particular isocline of Fig. 2. Hence, it has a maximum value361

ν = 2.362

Note that bifurcations have been extensively studied for predator-prey363

models with Holling type II functional response as well as with type IV364

functional response. However, this bifurcation diagram allows seeing the365

impact of defense directly. In particular, if C is sufficiently low, i.e., C / 16.1,366

a saturating group defense functional response is sufficient. In this case, the367

carrying capacity is the only stable solution already at ν = 1 corresponding368

to a saturating functional response. For values higher than this threshold,369

group defense makes leading to a non-monotonic functional response makes370

sense as it may turn the carrying capacity into a stable equilibrium via a371

transcritical bifurcation. However, at high values of C, corresponding to high372

critical defense values, the transcritical bifurcation curve (and the homoclinic373

bifurcation curve) tends to saturate. In this case, group defense does not374

change the system dynamics. As already stated above, for very large values375

of C, the functional response converges to the Holling type II functional376

response. Hence, from the bifurcation diagram, it is evident that group377

defense, in general (independent of the exact form), has the potential to378

drive the predator to extinction.379

On the left-hand side of the Bogdanov-Takens bifurcation, bistability can380

occur. As the parameter regions corresponding to bistability are very small,381

Fig. 4 shows a sketch of this region. It demonstrates that above the saddle-382

node bifurcation, bistability can occur either with one stationary coexistence383

state and the carrying capacity or with a stable limit cycle and the carry-384

ing capacity. This is a phenomenon that only occurs for a non-monotonic385

functional response. Hence, catch rates with a critical value increase the386

complexity of the model. Furthermore, in a small parameter region, a para-387

dox can occur. On the left-hand side and above of the red dotted homoclinic388

bifurcation curve, the capacity is the only stable stationary solution. Increas-389

ing the strength of collective defense by increasing ν or decreasing the critical390
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Figure 4: In case of a non-monotonic functional response, group defense can
lead to complex dynamics including a paradox. A sketch of the region around the
Bogdanov-Takens bifurcation in Fig. 3 is shown. The small plots represent sketches of the
phase plane. Circles denote stable limit cycles; the black dots represent stable equilibria.
Note that for convenience, we did not show the trivial nullclines. The paradox is visualized
by the arrows. Here, increasing the group defense by increasing ν or decreasing C can
prevent the predator from extinction.

value C, the system becomes bistable. In this case, a stable limit cycle or a391

stable stationary coexistence state exists. Fig. 5 shows such a transition as392

an illustration of this paradox. At low critical defense values, the system is393

bistable in this case. Starting in the region separated by the stable manifold,394

the system converges to a limit cycle. Increasing the value of C which can be395

interpreted as decreasing the collective defense efficacy leads to an increase396

in the amplitude of the predator-prey oscillations. At some point the limit397

cycle vanishes via a homoclinic bifurcation. The homoclinic orbit is shown in398

the middle panel. Without the stable limit cycle, the system is monostable399

and every initial condition converges to the prey carrying capacity. Hence,400

increasing the critical defense value is beneficial for the prey in this case. The401

same can happen with an increase of the defense strength ν.402
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Figure 5: Increasing the critical defense value can drive the predator to ex-
tinction. The phase plane for three different parameter combinations are shown to
illustrate the paradox. Black lines are sample trajectories, blue and red lines repre-
sent predator and prey nullclines, respectively. The dotted green lines represents the
stable manifold of the saddle (right coexistence state). Parameters are ν = 1.38,
Clow = 24.3, Chomoclinic ≈ 24.32, Chigh = 24.35. The remaining parameters are as
stated in Appendix A.

4. Discussion and Conclusion403

In this study, we proposed a functional response incorporating group de-404

fense based on timescale separation arguments. Here, a dome-shape may or405

may not emerge. In particular, if the catch rate increases monotonously with406

increasing prey density, the resulting functional response is also a saturating407

function, although it incorporates group defense. However, compared to the408

Holling type II functional response, the saturation value is lower. We pro-409

vided an example for that, cf. green curve in Fig. 1. Group defense that410

is not leading to a dome-shaped functional response is commonly found in411

experiments (Jeschke and Tollrian, 2005; Olson et al., 2013). Thus, with412

our approach, we obtain a class of group defense functional responses that413

can represent at least two biologically meaningful shapes. Hence, with the414

derivation, we also underpin the idea that group defense is likely to be present415

in many systems, although not clearly indicated by the measured functional416

response (Jeschke and Tollrian, 2005).417
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The dome-shaped functional response emerges only if a critical prey den-418

sity exists beyond which the catch rate decreases again, cf. the red curve in419

the lower panel of Fig 1. This is a valuable finding as the mechanisms lead-420

ing to dome-shaped functional responses are not fully understood for some421

systems (Mezzalira et al., 2017).422

From a modeling perspective, we have shown that the type IV functional423

response, as in Eq. (1), potentially overestimates stable coexistence at low424

prey densities. If the prey population exists at low densities, the type IV425

functional response without linear prey dependence in the denominator seems426

to be a good approximation. However, we have shown that the linear term427

in the denominator is only negligibly small if the searching rate and the428

handling time are low and/or the critical defense value is much lower than429

the carrying capacity of the prey. This is a strong assumption for many430

predator-prey relationships. Indeed, some ecological studies even lead to the431

conclusion that the linear component in the denominator in the functional432

response is much more pronounced than the quadratic component (Ĺıznarová433

and Pekár, 2013). If this is not clear, a functional response, as proposed in434

this study, should preferably be used.435

For a saturating functional response, only one nontrivial equilibrium can436

exist, while for a dome-shaped functional response, up to two coexistence437

equilibria can occur. This allows for the possibility of a homoclinic bifurca-438

tion in the model and increases the complexity of the behavior in general.439

Regarding the stability of coexistence, a strong Allee effect in the prey com-440

bined with a dome-shaped functional response shrinks the interval of the prey441

density in which stable coexistence is possible. Furthermore, we have applied442

bifurcation analysis for the defense parameters showing that group defense443

increases the extinction probability of the predator. However, for low critical444

defense values, a saturating functional response is sufficient as the carrying445

capacity of the prey is the only stable attractor. The same holds for very high446

critical defense values. In this case, group defense does not have a qualitative447

impact and should thus be omitted if it is related to costs.448

Finally, we have shown that for a small range of parameters, a paradox449

can occur. Lowering the critical defense value or increasing the strength450

of the group defense gives rise to stable coexistence (either stationary or451

oscillatory) that is not possible at slightly higher critical defense value or452

lower strength of the group defense. However, it needs further investigations453

to know whether this paradox can occur over larger parameter regimes and454

thus would have ecological relevance.455
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Appendix A. Timescale separation456

One necessary assumption for the validity of the timescale separation457

is that birth and death processes happen on another timescale compared458

to other processes such as predation or competition. In particular, following459

Segel (1988), we can find a characteristic timescale for the processes described460

by Eq. (3). Assuming that changes in U and V are sufficiently small compared461

to changes in S and H, we set U = U0 and V = V0 and rewrite Eq. (3a)462

yielding463

dS

dt
= −(βg(U0) + γ)

(
S − γV0

βg(U0) + γ

)
. (A.1)

In this form, the stationary solution, as well as the characteristic timescale464

tS = l−1 = (γ + βg(U0))
−1 is directly visible. If l is large compared to the465

vital parameters of the populations, U and V do not change significantly in466

this time, and the timescale separation is valid. In particular, this approach467

illustrates that the parameters β and γ need to be large compared to the468

magnitude of Φ(U) and m representing birth and death processes.469

More specifically, this holds if the upper bound of the flow per character-470

istic time interval is significantly small. An approximation for this is given471

by472

max

(∣∣∣∣tS dU

dT

∣∣∣∣|max, ∣∣∣∣tS dV

dT

∣∣∣∣|max)� Υ. (A.2)

Here, Υ depends on the order of magnitude of the state variables. Note that473

this is just an estimation as the flow may be changing in the time interval474

[t, t + tS]. However, as the flow depends continuously on the state variables475

and the time interval is small, this estimate will give a reasonable value.476

To investigate whether the timescale separation is valid, we use a logistic477

growth function and parameterize the model with the same two parameter478

sets as in Huisman and De Boer (1997). In particular, they use one parameter479

set from Scheffer and De Boer (1995) corresponding to an algae zooplankton480

model and one parameter set from Hanski and Korpimäki (1995) correspond-481

ing to a microtine rodent mustelid model. As our functional response looks482

slightly different from the classical Holling type II functional response, we483

estimate the parameters β and γ with a Gradient method, see, e.g., Polak484

(2012).485

The adjusted parameters for the algae zooplankton model are r = 0.5486

day−1, c = 0.05 l (day mg DW)−1, e = 0.6, β = 0.67 l (day mg DW)−1,487

γ = 0.4 day−1, m = 0.15 day−1. If either the equation for the prey or the488
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predator changes significantly, the timescale separation approach is not valid.489

For convenience, we let V → 0 and examine only |Φ(U)tS| depending on the490

exact form of g(U). This is a biologically relevant parameter choice as it may491

correspond to a predator invading into a habitat with only prey. Fig. A.6 a)492

shows the dependence on the density of the prey and on ν. It can be seen that
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Figure A.6: For the algae zooplankton model, the timescale separation is not
valid while it is valid for the rodent mustelid model. The expression z = |Φ(U)tS |
is plotted for different defense strengths ν and different population sizes of the prey U . The
right panel refers to the rodent mustelid model. In this case, the steady-state assumption
is valid based on this expression, while it is not valid for the zooplankton model (left
panel). Furthermore, it can be seen (contours in the U, z − plane) that stronger group
defense make the validity of the quasi-steady-state assumption less likely while it seems
to be most likely for low or high prey densities.

493

the quasi-steady-state assumption does not hold for this parameter set for494

most values of U . Furthermore, higher values of ν tend to increase the length495

of the time interval and thus make the quasi-steady-state assumption even496

worse. Note that a reason for the failure of the timescale separation may497

be the short lifespan of microorganisms. This becomes directly apparent,498

comparing the intrinsic death rate m with the predation parameters β and499

γ.500
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The adjusted parameters for the rodent mustelid model are r = 4.05501

year−1, c = 0.054 ha (individuals year)−1, e = 0.0023, β = 118.7 ha (indi-502

viduals year)−1, γ = 600.7 year−1, m = 1 year−1. In this case, the rate of503

change of the growth function is comparably low (Fig. A.6 b)). Note that504

in the predation terms, the validity does not only depend on one species but505

on both species. However, for relevant combinations of U and V , i.e., com-506

binations with densities that are realistic in the phase plane, the timescale507

separation still holds in this case As before, higher values of ν tend to increase508

the rate of change. However, for the predation term, this only holds until a509

maximum of ν ≈ 2. Beyond this threshold, the function is decreasing again.510

Nevertheless, in models without group defense, the validity of the timescale511

separation seems to be more likely.512

Appendix B. Limit of η(ν)513

lim
ν→∞

ν

√
Cν

ν − 1
= lim

ν→∞
exp ln ν

√
Cν

ν − 1

= lim
ν→∞

exp
ln

Cν

ν − 1
ν

= exp lim
ν→∞

lnCν − ln (ν − 1)

ν

The numerator grows asymptotically slower than ν, thus limν→∞−
ln (ν − 1)

ν
=514

0. Furthermore, as lnCν/ν = ν lnC/ν = lnC, limν→∞
ν

√
Cν

ν − 1
= C holds.515

Appendix C. Homoclinic orbit516

Fig. C.7 illustrates a sample trajectory close to the homoclinic orbit that517

coincides with the transcritical bifurcation. At the transcritical bifurcation,518

the right predator nullcline gives rise to a second coexistence equilibrium.519
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Figure C.7: The homoclinic orbit destroying the limit cycle in the monostable
case coincides with a transcritical bifurcation. The phase plane for three different
parameter combinations are shown to illustrate the paradox. The black line is a sample
trajectory close to the homoclinic orbit, blue and red lines represent predator and prey
nullclines, respectively. Parameters are ν = 1.36 and C = 24.2. The remaining parameters
are as stated in Appendix A.
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