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ABSTRACT 47 

The use of grout-filled double-skin tubular (GFDST) sections in civil, bridge and offshore engineering 48 

applications is rapidly increasing. The design of such composite members is not directly covered by 49 

design codes, despite recent research studies investigating their performance, proposing design 50 

equations or modifying existing codified methods. Aiming to extend the available pool of structural 51 

performance data, the current study reports the results of an extensive numerical investigation on 52 

GFDST stub-columns. Finite element (FE) models, are developed and validated against published test 53 

data. A parametric investigation is conducted to evaluate the effect of key parameters, including cross-54 

sectional slenderness, hollow ratio and the effect of concrete infill on the capacity of GFDST members. 55 

The numerically obtained load capacities along with collated test data are utilised to assess the 56 

applicability of design strength predictions based on European Code (EC4), the American Concrete 57 

Institute (ACI) and the analytical models proposed by Han et al. and Yu et al. Overall, the modified Yu 58 

et al. provided strength predictions with low scatter, whereas ACI yielded overly conservative 59 

predictions particularly for smaller hollow ratios. 60 

Keywords: Composite columns, Double skin, Grout-filled, Finite element modelling 61 

Highlights 62 

 Numerical investigations on the performance of circular grout-filled double skin stub-columns. 63 

 A parametric study was carried out to evaluate the influence of hollow ratio for varying cross 64 

sections on the compressive resistance. 65 

 Assessment of codified methods and analytical models was performed. 66 

  67 
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1. Introduction 68 

Concrete-filled tubular members are extensively employed in the construction of bridges, high-69 

rise buildings, transmission towers and offshore structures [1, 2]. The surrounding tube provides 70 

confinement to the concrete core thus increasing its strength and ductility, whilst the concrete infill 71 

prolongs the occurrence of local buckling of the steel tube [3, 4]. Hence, they possess superior stiffness, 72 

strength and ductility compared to their bare steel or reinforced concrete counterparts resulting in 73 

smaller section sizes and larger lettable areas in the lower stories of multi-storey buildings [5]. In recent 74 

years, concrete-filled double skin tubular (CFDST) sections – where concrete is used to fill the annulus 75 

of two steel hollow sections, are attracting more interest, offering a lighter-weight alternative with 76 

enhanced stiffness, greater bending capacity, along with improved fire and seismic resistance [6-10]. 77 

In offshore construction, the infill material is typically a cement-based grout, resulting in grout-78 

filled double skin tubular (GFDST) members. Such members are typically employed in oil and gas 79 

jacket platforms and offshore wind turbine foundations to form grouted connections [11] or as a 80 

remediation solution for lifetime extension as offshore structures in the North Sea are close to end-of-81 

life [12]. Tubular double-skin filled members combining carbon and stainless steel [13, 14] are also 82 

used in submarine pipelines [13]. For offshore applications, GFDSTs with circular hollow sections 83 

(CHSs) are the configuration attracting more interest, as they provide the highest level of confinement 84 

on the sandwiched grout core [9, 15]. 85 

To better understand the response of this type of composite members, several researchers have 86 

experimentally investigated the strength of CFDST stub-columns and beam-columns with CHS tubes 87 

[6, 16-21]. The performance of different cross section shapes has also been evaluated in experimental 88 

studies, including CFDST with square hollow sections [22], rectangular hollow sections [23] and a 89 

combination of CHS and square hollow sections [16]. Han et al. [24] tested CFDST beam-columns with 90 

CHS and square cross-section under cyclic loads, whereas impact [25] and torsional tests [26] are also 91 

reported in the literature. Alternatives to carbon steel have been considered for structural applications 92 

in corrosive environments such as stainless steel [27-29] and aluminium [30], while the use of 93 

alternative cementitious composites such as rubberised concrete [31] has been urged by the need to 94 

minimise carbon emissions. Along with the aforementioned studies and to enhance the design practice 95 

of double-skinned composite members, researchers have conducted numerical investigations on the 96 

influence of material and geometrical parameters to generate new data and assess existing design 97 

methods [10, 13, 32-35]. 98 

Tests on GFDST members are scarce; Li et al. [12] reported 8 tests on stub-columns, 4 beam-99 

columns and 2 on GFDST beams. Although the behaviour of the grout is often treated in a similar 100 

manner to that of concrete, for GFDSTs the grouted annulus is often very small resulting in higher 101 

hollow ratio (χ) values. Hollow ratio is the ratio of the internal steel diameter to the internal diameter 102 

of the external steel tube and is a commonly used metric in CFDSTs to provide information on the 103 
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cross-sectional geometry. Typical hollow ratios in previous experimental studies range from 0.2 to 0.7, 104 

whereas in offshore construction of GFDST, members with hollow ratios greater than 0.8 are often 105 

employed. The ultimate strength of GFDST stub columns, is a function of the steel yield strength (fsy), 106 

the grout material compressive strength (fgc) and the steel cross sectional properties (diameter to 107 

thickness ratio, D/t). 108 

The present paper aims to fill this gap of limited available data on the structural performance of 109 

GFDST cross-sections across a range of hollow ratios by generating new data on the compressive 110 

capacity of GFDST stub columns by means of numerical modelling. Initially, the developed FE models 111 

are validated against experiments and subsequently a parametric study is carried out, investigating the 112 

effect of cross-sectional slenderness in small and large-diameter GFDST stub-columns. The hollow 113 

ratios for the developed FE models range from 0.4 to 0.9. The numerically obtained strengths are 114 

subsequently compared with design strength predictions obtained from European Code EN 1994-1-1 115 

(EC4) [36], American Concrete Institute (ACI) [37] and the analytical models proposed by Han et al. 116 

[8] and Yu et al. [38]. 117 

2. Numerical modelling 118 

The general-purpose FE software Abaqus [39] was employed for the numerical computations. In 119 

order to verify the accuracy of the numerical simulations, the numerical model was validated against 120 

test data reported in two experimental studies [6, 12], which are briefly discussed in Section 2.1. 121 

Sections 2.2 and 2.3 provide a detailed description on the numerical modelling assumptions, including 122 

the type of analyses, the adopted boundary conditions, interaction properties and the employed material 123 

models for the steel and the infill. 124 

2.1 Selected experimental tests 125 

The experiments on stub columns reported by Tao et al. [6] and Li et al. [12] are used herein to 126 

validate the FE models. The infill material in the tests reported in [6] is concrete with a compressive 127 

strength of 47.4 N/mm2, whereas a grout infill with a compressive strength of 51.1 and 54.8 N/mm2 was 128 

used in the tests reported in [12]. A total of 7 cross-section geometries were considered, with duplicate 129 

tests performed for each configuration thereby resulting in 14 experimental tests. The hollow ratio of 130 

the selected experimental tests ranges from 0.28 to 0.84. The dimensions of each specimen and the 131 

corresponding material properties are reported in Table 1, where L is the length of the specimen and 132 

Do, to, Di, ti, the diameter and thickness of the external and internal steel tube respectively. A typical 133 

GFDST cross-section is shown in Figure 1, where Aso and Asi are the cross-sectional areas of the outer 134 

and the inner tube respectively, Ag the cross-sectional area of the grout and Ak the area of the hollow 135 

part. The average yield strength of the external (fsyo) and internal steel tubes (fsyi), as obtained from 136 
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tensile coupon tests, along with the cubic compressive strength (fcu) and the recorded ultimate 137 

compressive strength (Pu,test) are also reported in Table 1. 138 

 139 

Figure 1: Geometric properties and notation for GFDST members 140 

Table 1: Dimensions and material properties of circular double skin stub-column specimens used in the 141 
validation study 142 

  Dimensions (mm)  Material properties  

Source Test ID Do to Di ti L  
fsyo 

(N/mm2) 

fsyi 

(N/mm2) 

fcu 

(N/mm2) 

Pu, test  

(kN) 

[6] cc2a 180 3 48 3 540  275.9 396.1 47.4 1790 

 cc2b 180 3 48 3 540  275.9 396.1 47.4 1791 

 cc3a 180 3 88 3 540  275.9 370.2 47.4 1648 

 cc3b 180 3 88 3 540  275.9 370.2 47.4 1650 

 cc4a 180 3 140 3 540  275.9 342 47.4 1435 

 cc4b 180 3 140 3 540  275.9 342 47.4 1358 

 cc5a 114 3 58 3 342  294.5 374.5 47.4 904 

 cc5b 114 3 58 3 342  294.5 374.5 47.4 898 

[12] GC1-1 140 2.5 114 2 420  307 321 51.1 751.80 

 GC1-2 140 2.5 114 2 420  307 321 51.1 698.86 

 GC2-1 140 2.5 76 1.6 420  307 321 51.1 935.81 

 GC2-2 140 2.5 76 1.6 420  307 321 51.1 928.62 

 GCL-1 450 8 400 8 700  365 363 54.8 8867.92 

 GCL-2 450 8 400 8 700  365 363 54.8 8735.85 

2.2 Modelling assumptions 143 

The loading and support conditions used in the experimental set-up were reflected in the 144 

boundary conditions and constraints adopted in the FE models. The boundary conditions were applied 145 

to two reference points, one on each end of the member, to which the degrees of freedom of the nodes 146 

of top and bottom cross-section of the model were tied. For each of the modelled tests the employed 147 

boundary conditions and constraints are shown in Figure 3a. Translation along the z-axis (i.e. parallel 148 

to the member axis) was allowed at the top reference points, with all remaining degrees of freedom 149 

restrained at both reference points. The FE models were based on the reported dimensions [6, 12] and 150 
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the steel and grout parts were discretised using linear solid elements with reduced integration (C3D8R). 151 

A mesh convergence study has been initially performed and a minimum of three elements have been 152 

used along the thickness of the steel plates and grout [40], respectively, as shown in Figure 3b, to 153 

produce accurate and computationally efficient results. 154 

A quasi-static explicit solution scheme was selected in order to avoid convergence difficulties 155 

arising during the conventional implicit analysis due to the non-monotonic nature of the concrete 156 

response [41]. This approach alleviates convergence issues, however it is sensitive to the selected 157 

loading rate requiring engineering judgment on the computational results.  158 

In this case, the step time was set at 10 s and a sufficiently small time increment was selected 159 

(10-4) through a sensitivity analysis, ensuring that the inertia effects and artificial strain energy were 160 

negligible during the simulations. This was subsequently verified by ensuring that the kinetic energy 161 

remained smaller than 2% of the internal strain energy throughout the analysis. As an example this is 162 

illustrated in Figure 2. The load was applied using displacement control with a smooth amplitude 163 

function. Contact at the steel-grout interfaces was modelled using the general contact algorithm. In the 164 

normal direction, a hard contact formulation was chosen and a friction coefficient (μ) of 0.4 was 165 

assigned for the tangential direction [41]. 166 

Geometric imperfections and residual stresses are known to affect the response of axially loaded 167 

compressive tubular members. However, in GFDST members their influence is considerably reduced 168 

due to the presence of the infill material providing lateral restraint, which lessens the sensitivity of the 169 

tubes to local buckling and can therefore be ignored in the numerical analysis. This is in line with past 170 

studies [27] and as shown in Section 3, this assumption did not have any implication on the accuracy 171 

of the FE models. 172 

 173 

Figure 2: Comparison between internal and kinetic energy for specimen cc4a, b 174 
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 175 

Figure 3: a) Boundary conditions on stub column finite element model and b) Typical mesh discretisation 176 

2.3 Material modelling 177 

For the steel tubulars the von Mises yield criterion with an isotropic hardening behaviour was 178 

used. The behaviour of the steel tubes was defined with a multi-linear stress-strain curve employing the 179 

yield and ultimate stress values and corresponding strains, which were experimentally obtained and 180 

reported in [12]. Cold-formed steel tubes were used in the experiments conducted by Tao et al. [6]. The 181 

yield strength for each steel section is given in Table 1, whereas the Poisson’s ratio (ν) was set at 0.3. 182 

The engineering stress (σeng) and strain (εeng) values were converted to true stress (σtrue) and strain (εtrue) 183 

following equations (1) and (2): 184 

σtrue=σeng(1+εeng) (1) 

εtrue= ln(1+εeng) - (
σtrue

E
) (2) 

Typical cement-based grouts exhibit similar behaviour to concrete in compression, although a 185 

larger scatter is to be expected in test results. For this purpose, for the subsequent analyses an analytical 186 

concrete model has been employed to describe the behaviour of the infill material in compression. In 187 

addition, to account for the restraint on the core from the steel tubes, a confined concrete model 188 

described in Ref. [15] was selected. An exemplary stress-strain curve when using the aforementioned 189 

analytical model is depicted in Figure 4 comprising three stages and is described herein. The first part 190 

of the confined stress-strain curve (AB) is described by equation (1), which was suggested by Mander 191 

et al. [42]. 192 
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σc=
f
cc

'
λ(εcc εcc

'⁄ )

λ-1+(εc εcc
'⁄ )λ

 , εc<ε
cc
'  (3) 

where λ=
Εc

Ec-(f
cc

'
εcc

'⁄ )
 (4) 

and f’cc, ε’cc are the confined compressive strength and corresponding strain, εc the compressive strain 193 

and Ec the Young’s modulus. In this study the experimentally defined Young’s modulus, reported in 194 

[12] is used in the numerical models. 195 

f
cc

'
=γ

c
f
c

'
+k1frp (5) 

εcc
' =εc

' (1+k2

f
rp

γ
c
f
c

'
) (6) 

 196 

Figure 4: Exemplary stress-strain curve for confined concrete 197 

For the constants k1 and k2, values of 4.1 and 20.5 as suggested in Richart et al. [43] were used, whereas 198 

ε’c is the unconfined concrete strain at f’c and γc a strength reduction factor to account for material 199 

imperfections and Dg is the diameter of the grout core. The lateral confining pressure (frp), on the grout 200 

is obtained from equation (9) as it satisfies the cross-sections under investigation. 201 

εc
' =0.002+ (

γ
c
f
cc

'
-28

5400
) , 28≤γ

c
f
c

'
≤82 (7) 

γ
c
=1.85Dg

-0.135, 0.85≤γ
c
≤1.0 (8) 

f
rp

= (0.006241-0.0000357
D

t
) f

syo
, 47≤ D

t⁄ ≤150 (9) 

The second (BC) and third (CD) stages of the stress-strain curve are described by equations (10) and 202 

(11) respectively. 203 
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σc=β
c
f
cc

'
+ (

εcu-εc

εcu-εcc
'

) (f
cc

'
-β

c
f
cc

' ), εcc
' ≤εc≤εcu (10) 

σc=β
c
f
cc 

'
, εc>εcu (11) 

where βc accounts for any confinement after the peak load was reached and was expressed in [44] as 204 

follows: 205 

β
c
=0.0000339+ (

D

t
)

2

-0.10085 (
D

t
) +1.3491 (12) 

Subsequently, the analytical compressive stress-strain curve was converted to true values and 206 

employed in the finite element model with the Concrete Damaged Plasticity model. In this study, 207 

following a sensitivity analysis, a dilation angle equal to 20º was found to result in good agreement with 208 

the experimental tests. For the remaining parameters, the eccentricity was set equal to 0.1, the ratio of 209 

equibiaxial to uniaxial compressive stress fb0/fc0 was taken equal to 1.16 and finally the ratio of the 210 

second stress invariant on the tensile meridian to that on the compressive meridian at initial yield was 211 

set equal to 0.725 as per [45]. The tensile strength of the grout was estimated from equation (13) as 212 

suggested in [46] and a stress-displacement curve was defined for the tensile response of the infill 213 

material. 214 

f
gt

=0.3(f
ck

)
2

3⁄
 (13) 

3. Validation 215 

The FE models were verified against the experimental tests reported in Refs. [6, 12]. The comparison 216 

between the tests and the numerical models was based on the load-displacement response, the observed 217 

failure modes and the ultimate axial capacity. In Figure 5 the experimental and the numerical load – 218 

axial displacement response is compared. The initial stiffness has been accurately simulated in all the 219 

examined cases, demonstrating that the elastic constants and boundary conditions were accurately 220 

modelled. In all the models the ultimate load is also well captured. The ultimate load (Pu, test), is 221 

compared with the numerically-obtained one (Pu, FE) in Table 2, showing very good agreement, with an 222 

average ratio of 1.018 and a COV of 0.033. Typical buckling modes in filled double-skin members 223 

include outward buckling of the external tube, inward/outward buckling of the internal tube and 224 

crushing/cracking of the infill medium. This is confirmed in Figure 6, where a comparison of the 225 

experimental and numerical failure modes is made. The observed outward buckling of the external and 226 

internal steel tubes and grout/concrete crushing is accurately captured for different models. As shown 227 

in Figure 5, the post-peak behaviour which was recorded in some of the experiments has not been very 228 

well captured by the numerical model, which is possibly attributed to the employed analytical concrete 229 

model and the plateau it forms until it reaches the ultimate strain, as illustrated in Figure 4 and was also 230 
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suggested by Thai et al. [47]. It is considered that this did not have any impact on the primary focus of 231 

this paper, i.e. the ultimate load that has been captured with great precision. Overall, it is demonstrated 232 

that from the validation study the numerical models provide an accurate representation of the real 233 

conditions and a precise prediction of the experimentally observed ultimate load and corresponding 234 

failure modes which are subsequently used for the analytical assessment. 235 

Table 2: Comparison of ultimate strength of FE models against test results 236 

Source Test ID Pu, test (kN) Pu, FE (kN) Pu, test/FE 

Tao et al. [6] cc2a 1790 1780.19 1.005 

 cc2b 1791 1780.19 1.006 

 cc3a 1648 1668.61 0.987 

 cc3b 1650 1668.61 0.988 

 cc4a 1435 1311.05 1.094 

 cc4b 1358 1311.05 1.035 

 cc5a 904 854.54 1.057 

 cc5b 898 854.54 1.050 

Li et al. [12] GC1-1 751.80 731.10 1.028 

 GC1-2 698.86 731.10 0.956 

 GC2-1 935.81 933.60 1.002 

 GC2-2 928.62 933.60 0.995 

 GCL-1 8867.92 8622.52 1.028 

 GCL-2 8735.85 8622.52 1.013 

Average    1.017 

COV    0.033 
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 237 

 238 

 239 

Figure 5: Comparison of axial load-shortening curves for experimental and FE models for stub-columns 240 
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 241 

Figure 6: Failure mode comparison between experiments and FE models for tests a) GC1-2, b) GC2-1, c) GCL-242 
1, d) cc3a and infill material crushing for GCL-1 and cc3a 243 

4. Parametric study 244 

Upon successful validation, the numerical models were utilised to conduct an extensive 245 

parametric analysis, aiming to investigate the effect of key parameters on the structural response of 246 

GFDST stub-columns. The validated models included two cross-sections with external diameters equal 247 

to 140 mm and 450 mm. Using these models as a basis, two groups were considered; one with a small 248 

(group GCS) and one with a large diameter (group GCL). In order to get an accurate representation of 249 

the cross-sectional response, for the numerical models the length of the stub-columns was taken equal 250 

to 3 times the external diameter. The effect of the diameter-to-thickness ratio was examined and four 251 
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cross-sectional slenderness values equal to 50, 60, 70 and 80 (abbreviated as Dt50, Dt60, Dt70 and 252 

Dt80) were investigated for each of the GCS and GCL groups. For the parametric study, the external 253 

and internal steel tubes were set to have equal D/t ratios on all FE models and the hollow ratio effect is 254 

further investigated in the remaining sections. 255 

4.1 Cross-sectional slenderness 256 

For each one of the D/t values, six hollow ratio values ranging from 0.4 to 0.9 with a step of 0.1 257 

were considered. By maintaining a constant diameter to thickness ratio for both the external and the 258 

internal steel tube, the same hollow ratio value χ can be achieved by either varying the diameter and the 259 

thickness of the outer tube and keeping the inner tube dimensions constant or vice versa. Both cases 260 

have been investigated and are designated as I (followed by the χ value) or O (followed by the χ value), 261 

depending on whether the inner or outer tube dimensions have been modified. Adopting the same 262 

assumptions described in Section 2, a total of 96 nonlinear analyses were carried out and the results are 263 

reported in this section. 264 

The full load-displacement path was captured during the analysis and typical cases for a small 265 

scale and a large scale stub column with D/t=60 are shown in Figure 7a and Figure 7b respectively. 266 

Note that for the cases with flat load-displacement post-elastic response, where a clear peak value was 267 

not observed, the maximum load that was recorded during the simulation was considered to be the 268 

ultimate load. In both cases, the effect of the change in the hollow ratio value is evident. In Figure 7a 269 

the inner steel tube has been kept constant, while in Figure 7b, the outer steel tube geometric properties 270 

are constant for the examined hollow ratios. As anticipated, a smaller hollow ratio that corresponds to 271 

a larger grout thickness increases the axial capacity the GFDST stub-column. This is more pronounced 272 

in Figure 7a where the outer tube has been modified indicating that the influence of the external steel 273 

tube is higher. In most cases, the overall response does not present a sudden loss of strength but rather 274 

a stable ductile post-peak response, which is similar to the behaviour reported in the experiments (see 275 

Figure 5). 276 
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 277 

Figure 7: Typical load-displacement curves from parametric models for a) varying external tube and b) varying 278 
internal tube 279 

In Figure 8 and Figure 9 the numerically obtained failure loads are normalised against the 280 

squash load (Fy), and are plotted against the hollow ratio for the small (GCS group) and large diameter 281 

(GCL group) FE models respectively. The squash load is defined as the sum of three terms, which are 282 

the products of the yield strength and the cross section of the two steel tubes and the product of the 283 

compressive strength of the grout with the cross section of the grout. For each group two cases were 284 

investigated, one with a constant outer steel tube and one with a constant inner steel tube. As previously 285 

observed in Figure 7, an increase in the value of hollow ratio, decreases the normalised compressive 286 

strength of the stub column for all the considered models of the GCS group (Figure 8a, b). The same 287 

conclusions are also drawn from the FE models in the GCL group specimens for constant outer and 288 

inner tubes, as shown in Figure 9a and Figure 9b respectively. In particular, for GCS with constant 289 

external tube, the normalised load was in the range of 1.28 to 1.05 for hollow ratio equal to 0.4 and 0.9, 290 

respectively. The same ratios were equal to 1.29 to 1.02 for GCS with constant inner tube, 1.36 to 1.03 291 

for GCL with constant external tube and 1.29 to 1.04 for GCL with constant inner tube. In addition, no 292 

clear effect of the D/t value on the normalised load was observed. 293 
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 294 

Figure 8: Effect of steel tube cross section on the axial compressive strength of FE models in group GCS for a) 295 
constant external tube and b) constant inner tube 296 
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 297 

Figure 9: Effect of steel tube cross section on the axial compressive strength of FE models in group GCL for a) 298 
constant external tube and b) constant inner tube 299 

4.2 Effect of grout thickness 300 

For the GCS group with D/t=80, the axial stresses for increasing grout thickness are visualised 301 

in Figure 10. The grout thicknesses at Figures 10(a) to 10(d) were 6.35 mm, 24.51 mm , 38.13 mm and 302 

85.81 mm and the corresponding ultimate loads Pu were  436.99 kN, 871.11 kN, 1260.64 kN, 3099,45 303 

kN respectively. In all cases, the bottom cross-section shows the stress distribution in N/mm2 when the 304 

failure load (Pu) was reached and the top cross section shows the stresses at P=0.25Pu, during the elastic 305 

stage of the load-axial shortening curve. For the examined FE models, the stresses on the grout core 306 

indicate a smooth transition along the thickness during the elastic stage. For example for the models 307 

with intermediate thicknesses (see Figure 10(b) and (c)), the stresses appear to be in the range of 7 to 308 

10 N/mm2  and 8 to 12 N/mm2 for 0.25 Pu, respectively. Similar are the conclusions for the specimens 309 

with higher and lower grout thickness. 310 

On the contrary, once the ultimate load is reached the distribution of stresses from the inner to 311 

the outer steel tube, is significantly higher for all models. For example as shown in Figure 10(d), the 312 

concrete stresses closer to the inner tube are as low as 9 N/mm2 and reach values as high as 61 N/mm2 313 

once closer to the external tube, demonstrating an increase of 52 N/mm2 towards the outer tube. Similar 314 
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is the range for all four cases of Figure 10 with an axial stress range within 48 - 57 N/mm2. This is 315 

owing to the larger confinement that is provided on the grout core from the external steel tube when 316 

compared to the internal tube. This is also in agreement with findings presented in section 4.1. 317 

 318 

Figure 10: Distribution of stresses on concrete core for varying hollow ratio and constant D/t=80 319 

Typical failure modes that were observed in the numerical models are shown in Figure 11. For 320 

sections with large hollow ratio values – hence, small grout core thickness, the lateral restraint was less 321 

pronounced, leading to local instabilities at locations where higher compressive steel stresses occurred, 322 

as shown in Figure 11a. As it can be observed in Figure 11b and Figure 11c, for Dt60 and Dt70 the 323 

compressive stresses led to a local instability in the external steel tube, resulting in a failure mode similar 324 

to “elephant foot” buckling. For larger grout thicknesses (Figure 11d), material yielding was the 325 

prominent failure mode. Finally, it is noted that the deformed shape of the model shown in Figure 11a 326 

corresponds to high applied deformations, well beyond the ultimate load. It is believed that despite the 327 

symmetry in terms of geometry, loading and boundary conditions, a non-symmetric deformed shape 328 

can occur either as the result numerical instabilities/roundoff errors that start off as infinitesimal but 329 

propagate and accumulate throughout the analysis thus becoming significant or due to the bifurcation 330 

of the symmetric solution to non-symmetric ones. This secondary bifurcation has been observed 331 

experimentally [48] and discussed analytically [49] for circular tubes in compression and it is believed 332 

that it can occur for the type of structures studied herein, albeit, the presence of concrete infill makes 333 

the switching from an axisymmetric model to a non-axisymmetric one more difficult. 334 

 335 
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 336 

Figure 11: Typical failure modes from FE models for varying cross-sectional slenderness 337 

5 Design Predictions 338 

The data generated from the parametric study alongside experimental data collected from the 339 

literature, were employed to assess previously proposed design equations and code specifications and 340 

their applicability to GFDST stub-columns. For this purpose, the design equations provided in EC4 [36] 341 

and in the ACI code [37] for concrete filled members are modified to be applicable for double-skin 342 

tubular steel members and assessed herein. In addition, the analytical models proposed in [8] and [38] 343 

are also evaluated. The accuracy of the aforementioned four different design approaches to accurately 344 

predict the resistance of double skin cross-sections in compression at ultimate limit state has been 345 

assessed. 346 

In sections 5.1-5.4, the design equations that were used, along with the modifications made are 347 

presented in detail. The presently generated numerical data along with literature collated data are 348 

summarised and compared to the design guidelines in section 5.5. 349 



20 

 

5.1 Eurocode 4 (EN 1994-1-1) 350 

EN 1994-1-1 (EC4) [36] provides general rules for the design of composite steel-concrete 351 

columns and composite structures in compression. Even though the plastic resistance of concrete-filled 352 

tubes in compression is detailed in Section 6.7.3.2 [36], the design of filled double-skin steel members 353 

is not currently covered by Eurocodes, thus a modification to existing methods was made. EC4  provides 354 

a design equation for concrete-filled steel tubes with reinforcement by means of a resistance function. 355 

The plastic resistance in compression Npl,Rd is the summation of the resistance of the components 356 

forming the cross-section under investigation. The latter has been modified for GFDSTs to include the 357 

grout infill and the internal steel tube replaces the steel reinforcement as per equation (14). Similar 358 

modifications to EC4 have been employed by Wang et al. [27], for double-skinned sections formed by 359 

stainless and high strength steel tubes. 360 

PEC4=η
a
Asofsyo

+Agfc
(1+η

c

to

Do

f
syo

f
c

) +Asifsyi
 (14) 

where fc is the compressive cylinder strength of the grout and, ηa ηc and are given by equations (15) and 361 

(16), 362 

η
a
=0.25(3+2λ̅)≤1.0 (15) 

η
c
=4.9-18.5λ̅+17λ̅

2
≥0 (16) 

where λ̅ is the relative slenderness as described in equation (17): 363 

λ̅=√
Npl,Rk

Ncr

 (17) 

where Npl,Rk is the characteristic value of the plastic resistance to compression given by equation (18) 364 

and evaluated as a sum of forces of the constituent elements. For the grout core a unity coefficient has 365 

been employed to take into consideration the confinement effects. 366 

Npl,Rk=Asof
syo

+Agf
c
+Asifsyi

 (18) 

The elastic critical buckling load (Ncr), is calculated with the elastic effective stiffness (EIeff), according 367 

to equation (19), 368 

EIeff=EsoIso+EsiIsi+KeE
g
Ig (19) 

where Ke is a correction factor for the grout core equal to 0.6, E the Young’s modulus and the second 369 

moment of area (I) for each of the components of the cross-section. According to EC 4, for circular 370 

hollow steel sections if the local slenderness limit as defined in (20) is exceeded, local buckling ought 371 

to be accounted for,  372 
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D
t⁄ ≤90 (235

f
sy

⁄ ) (20) 

For this reason for the subsequent EC4 calculation, the cross section of the steel tubes was modified to 373 

account for local buckling according to equation (21) proposed in [50] and has been recently employed 374 

by Wang et al. [27], for CFDST stub-columns with external stainless steel tube. 375 

Aseo,i=Aso,i (
90

Do,i to,i⁄

235

f
syo,i

Eo,i

210000
)

0.5

 (21) 

where, the subscripts (o, i) refer to the external and internal steel tube. 376 

5.2 American Concrete Institute (ACI) 377 

ACI [37] which is the American code for the design of concrete structures provides design 378 

formula for the evaluation of the ultimate strength of concrete-filled circular short columns. 379 

Incorporating the contribution of the inner tube, the compressive cross-sectional strength (PACI) of 380 

concrete-filled tubes is modified to equation (22) as follows:  381 

PACI=Asofsyo
+0.85Agfc

+Asifsyi
 (22) 

5.3 Han et al. [8] 382 

Han et al. carried out a series of experiments on CFDST stub columns and proposed a new design 383 

equation (23) for the ultimate strength of CFDST cross-sections, also considering the confinement 384 

offered to the core from the external steel tube and the influence of the hollow ratio: 385 

PHan=Ascofscyo
+Asifsyi

 (23) 

The first term corresponds to the compressive capacity of the external steel tube alongside the 386 

sandwiched grout and the second term to the compressive capacity of the internal steel tube. The cross-387 

sectional area Asco, is given from equation (24) 388 

Asco=Aso+Ag (24) 

and f
scyo

 is given by equation (25), 389 

f
scyo

=k1C1χ2f
syo

+C2(1.14+1.02ξ)f
c
 (25) 

where the coefficients C1, C2 and the confinement factor (ξ) are calculated according to equations (26) 390 

and (27): 391 

C1=
a

1+a
, C2=

1+an

1+a
 (26) 
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ξ=an

f
scyo

f
c

 (27) 

where a and an are the steel ratio and the nominal steel ratio as follows: 392 

a=
Aso

Ag
, an=

Aso

Ag,nom
 (28) 

where the nominal cross-section of the sandwiched grout (Ag,nom) is: 393 

Ag,nom=
π(Do-2to)

2

4
 

(29) 

5.4 Yu et al. [38] 394 

Yu et al. proposed a unified equation for the estimate of ultimate compressive strength of 395 

concrete-filled tubes in compression. To include the internal steel tube, the modification suggested in 396 

Hassanein and Kharoob [10] is used herein following Equation (30), 397 

PYu,mod= (Asofsyo
+Agfc

) (1+0.5
ξ

1+ξ
Ω) +Asifsyi

 (30) 

where the solid ratio, Ω is defined as per equation (31), Ak the hollow area as depicted in Figure 1 and 398 

the rest as previously defined: 399 

Ω=
Ag

Ag+Ak

 
(31) 

5.5 Assessment of design predictions 400 

In order to evaluate the suitability of design prediction methods, the bearing capacity of the FE 401 

models is normalised against the analytically-obtained strength predictions (PEC4, PACI, PHan and PYu,mod) 402 

and is shown in a tabulated format for the small (GCS) and large diameter (GCL) groups, in Table 3 403 

and Table 4 respectively. Collated test data from the literature [6, 8, 12, 20, 21], are also employed for 404 

assessment purposes and are shown in Table 5 in a similar format, by normalising test results against 405 

design predictions. For both groups of the FE models and collated data it is found that the strength 406 

predictions are on the safe side with varying levels of conservatism and scatter as shown in Figure 12, 407 

where the ultimate sustained load is normalised with the predicted capacity from each design method 408 

and presented against the examined hollow ratios. EC4 yielded safe predictions with similar trends for 409 

both groups, with an average of 1.136 and 1.113 for GCS and GCL groups respectively. An increasing 410 

conservatism with increasing hollow ratio values is observed to be consistent for small and large-411 

diameter models (Figure 12a). The conservatism for high slenderness is possibly attributed to the local 412 

buckling limit suggested in [36], which is currently not explicitly defined for double skin filled tubular 413 
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members, but hollow steel members. In this case local buckling limit was taken equal to class 3 hollow 414 

sections, which does not account for the lateral restraint from the infill material. 415 

The design predictions from ACI were found to be the most conservative amongst the design 416 

methods. Particularly for smaller hollow ratios (0.4-0.6) a high level of conservatism is shown, whereas 417 

this reduces for models with large hollow ratios (Figure 12b). In addition, for all the investigated models 418 

a high scatter was observed when this method was employed, which can be associated with the fact that 419 

ACI does not account for confinement effects. Similar findings were also reported for CFDST stub-420 

columns with external stainless steel tubes in Wang et al. [27]. Predictions obtained from Han et al. [8] 421 

were also found on the safe side with a small scatter and an average of 1.076 for GCS and 1.088 for 422 

GCL models (Figure 12c). Strength predictions for models with hollow ratios of 0.8 and 0.9 are closer 423 

to unity and overall with less conservatism compared to EC4 and ACI. Yu et al. [38] model results in 424 

good predictions close to unity with reduced conservatism (Figure 12d) and a coefficient of variation 425 

of 0.029 (GCS group) and 0.025 (GCL group). Overall, it is shown that the modified Yu et al. strength 426 

predictions are of lower conservatism. Nevertheless, Han et al. and EC4 methods can also be used for 427 

design purposes of GFDST members as the vast majority of the models are on the safe side. 428 
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 429 

Figure 12: Comparison of FE obtained compressive strength to design strength predictions for small diameter 430 
(group GCS) and large diameter (group GCL) models with a) EC4, b) ACI, c) Han et al. [8], d) Yu et al. [38]  431 
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Table 3: Comparisons of small diameter FE model with design strength predictions 432 

Group FE model 

ID 

D/t 

 

Do 

(mm) 

to 

(mm) 

Di 

(mm) 

ti 

(mm) 

L 

(mm) 

χ Pu,EC4

Pu,FE
 

Pu,ACI

Pu,FE
 

Pu,Han

Pu,FE
 

Pu,Yu,mod

Pu,FE
 

GCS1 I0.9-Dt50 50 140.0 2.80 120.9 2.41 420.0 0.9 1.125 1.080 1.031 1.015 

 I0.8-Dt50   107.5 2.15  0.8 1.126 1.156 1.060 1.031 

 I0.7-Dt50   94.0 1.88  0.7 1.110 1.206 1.067 1.027 

 I0.6-Dt50   80.6 1.61  0.6 1.118 1.273 1.092 1.043 

 I0.5-Dt50   67.2 1.34  0.5 1.103 1.306 1.093 1.037 

 I0.4-Dt50   53.7 1.07  0.4 1.094 1.337 1.096 1.034 

 O0.9-Dt50 131.9 2.63 114.0 2.28 395.8 0.9 1.089 1.046 0.998 0.983 

 O0.8-Dt50 148.4 2.96   445.3 0.8 1.085 1.114 1.021 0.994 

 O0.7-Dt50 169.6 3.39   508.9 0.7 1.079 1.176 1.042 1.002 

 O0.6-Dt50 197.9 3.95   593.7 0.6 1.073 1.233 1.061 1.010 

 O0.5-Dt50 237.5 4.75   712.5 0.5 1.071 1.290 1.084 1.022 

 O0.4-Dt50 296.8 5.93   890.6 0.4 1.063 1.333 1.099 1.028 

GCS2 I0.9-Dt60 60 140.0 2.33 121.8 2.03 420.0 0.9 1.118 1.074 1.022 1.008 

 I0.8-Dt60   108.2 1.80  0.8 1.096 1.132 1.034 1.008 

 I0.7-Dt60   94.7 1.57  0.7 1.098 1.204 1.061 1.026 

 I0.6-Dt60   81.2 1.35  0.6 1.106 1.273 1.089 1.045 

 I0.5-Dt60   67.6 1.12  0.5 1.106 1.323 1.105 1.055 

 I0.4-Dt60   54.1 0.90  0.4 1.110 1.370 1.122 1.066 

 O0.9-Dt60 131.0 2.18 114 1.90 393.1 0.9 1.106 1.062 1.010 0.997 

 O0.8-Dt60 147.4 2.45   442.2 0.8 1.113 1.150 1.050 1.024 

 O0.7-Dt60 168.4 2.80   505.4 0.7 1.111 1.221 1.077 1.040 

 O0.6-Dt60 196.5 3.27   589.6 0.6 1.078 1.248 1.071 1.025 

 O0.5-Dt60 235.8 3.93   707.5 0.5 1.108 1.342 1.126 1.068 

 O0.4-Dt60 294.8 4.91   884.4 0.4 1.096 1.379 1.137 1.070 

GCS3 I0.9-Dt70 70 140.0 2.00 122.4 1.74 420.0 0.9 1.183 1.094 1.031 1.019 

 I0.8-Dt70   108.8 1.55  0.8 1.156 1.157 1.046 1.024 

 I0.7-Dt70   95.2 1.36  0.7 1.145 1.220 1.067 1.036 

 I0.6-Dt70   81.6 1.16  0.6 1.146 1.283 1.090 1.053 

 I0.5-Dt70   68.0 0.97  0.5 1.151 1.341 1.114 1.071 

 I0.4-Dt70   54.4 0.77  0.4 1.157 1.390 1.134 1.086 

 O0.9-Dt70 130.3 1.86 114 1.62 391.1 0.9 1.153 1.066 1.005 0.993 

 O0.8-Dt70 146.6 2.09   440.0 0.8 1.151 1.152 1.042 1.020 

 O0.7-Dt70 167.6 2.39   502.9 0.7 1.153 1.232 1.079 1.046 

 O0.6-Dt70 195.5 2.79   586.7 0.6 1.152 1.297 1.109 1.067 

 O0.5-Dt70 234.7 3.35   704.1 0.5 1.148 1.358 1.133 1.083 

 O0.4-Dt70 293.3 4.19   880.1 0.4 1.133 1.393 1.143 1.085 

GCS4 I0.9-Dt80 80 140.0 1.75 122.8 1.53 420.0 0.9 1.263 1.149 1.047 1.037 

 I0.8-Dt80   109.2 1.36  0.8 1.261 1.250 1.096 1.077 

 I0.7-Dt80   95.5 1.19  0.7 1.224 1.297 1.102 1.076 

 I0.6-Dt80   81.9 1.02  0.6 1.181 1.317 1.092 1.061 

 I0.5-Dt80   68.2 0.85  0.5 1.183 1.373 1.116 1.080 

 I0.4-Dt80   54.6 0.68  0.4 1.190 1.422 1.139 1.099 

 O0.9-Dt80 129.9 1.62 114.0 1.42 389.7 0.9 1.198 1.090 0.993 0.983 

 O0.8-Dt80 146.1 1.82   438.4 0.8 1.184 1.174 1.030 1.011 

 O0.7-Dt80 167.0 2.08   501.0 0.7 1.161 1.236 1.050 1.025 

 O0.6-Dt80 194.8 2.43   584.6 0.6 1.164 1.309 1.088 1.053 

 O0.5-Dt80 233.8 2.92   701.5 0.5 1.159 1.364 1.114 1.071 

 O0.4-Dt80 292.3 3.65   876.9 0.4 1.161 1.420 1.143 1.093 

 Average        1.136 1.244 1.076 1.040 

 COV        0.040 0.085 0.038 0.029 

  433 
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Table 4: Comparisons of large diameter FE model with design strength predictions 434 

Group FE model 

ID 

D/t Do 

(mm) 

to 

(mm) 

Di 

(mm) 

ti 

(mm) 

L 

(mm) 

χ Pu,EC4

Pu,FE
 

Pu,ACI

Pu,FE
 

Pu,Han

Pu,FE
 

Pu,Yu,mod

Pu,FE
 

GCL1 I0.9-Dt50 50 450.0 9.00 388.8 7.77 1350.0 0.9 1.101 1.052 1.010 0.990 

 I0.8-Dt50   345.6 6.91  0.8 1.121 1.145 1.061 1.021 

 I0.7-Dt50   302.4 6.04  0.7 1.111 1.201 1.077 1.021 

 I0.6-Dt50   259.2 5.18  0.6 1.113 1.265 1.102 1.032 

 I0.5-Dt50   216.0 4.32  0.5 1.116 1.322 1.124 1.042 

 I0.4-Dt50   172.8 3.45  0.4 1.128 1.383 1.153 1.060 

 O0.9-Dt50 462.9 9.25 400.0 8.00 1388.9 0.9 1.103 1.054 1.012 0.992 

 O0.8-Dt50 520.8 10.41   1562.5 0.8 1.118 1.141 1.057 1.017 

 O0.7-Dt50 595.2 11.90   1785.7 0.7 1.107 1.197 1.075 1.018 

 O0.6-Dt50 694.4 13.88   2083.3 0.6 1.100 1.250 1.093 1.020 

 O0.5-Dt50 833.3 16.66   2500.0 0.5 1.093 1.295 1.107 1.020 

 O0.4-Dt50 1041.7 20.83   3125.0 0.4 1.079 1.325 1.111 1.012 

GCL2 I0.9-Dt60 60 450.0 7.50 391.5 6.52 1350.0 0.9 1.136 1.059 1.015 0.996 

 I0.8-Dt60   348.0 5.80  0.8 1.145 1.147 1.060 1.022 

 I0.7-Dt60   304.5 5.07  0.7 1.135 1.209 1.081 1.028 

 I0.6-Dt60   261.0 4.35  0.6 1.130 1.267 1.101 1.036 

 I0.5-Dt60   217.5 3.62  0.5 1.129 1.321 1.122 1.046 

 I0.4-Dt60   174.0 2.90  0.4 1.132 1.369 1.141 1.056 

 O0.9-Dt60 459.77 7.66 400.0 6.66 1379.3 0.9 1.146 1.068 1.024 1.004 

 O0.8-Dt60 517.24 8.62   1551.7 0.8 1.150 1.152 1.065 1.026 

 O0.7-Dt60 591.13 9.85   1773.4 0.7 1.140 1.214 1.087 1.032 

 O0.6-Dt60 689.65 11.49   2068.9 0.6 1.135 1.273 1.110 1.040 

 O0.5-Dt60 827.58 13.79   2482.8 0.5 1.134 1.326 1.132 1.048 

 O0.4-Dt60 1034.48 17.24   3103.4 0.4 1.129 1.368 1.147 1.051 

GCL3 I0.9-Dt70 70 450.0 6.42 393.4 5.62 1350.0 0.9 1.200 1.085 1.008 0.990 

 I0.8-Dt70   349.7 4.99  0.8 1.198 1.175 1.054 1.019 

 I0.7-Dt70   306.0 4.37  0.7 1.182 1.240 1.079 1.030 

 I0.6-Dt70   262.2 3.74  0.6 1.170 1.297 1.100 1.040 

 I0.5-Dt70   218.5 3.12  0.5 1.166 1.350 1.121 1.051 

 I0.4-Dt70   174.8 2.49  0.4 1.195 1.464 1.217 1.135 

 O0.9-Dt70 457.5 6.53 400.0 5.71 1372.5 0.9 1.220 1.103 1.025 1.006 

 O0.8-Dt70 514.7 7.35   1544.1 0.8 1.163 1.140 1.024 0.989 

 O0.7-Dt70 588.2 8.40   1764.7 0.7 1.186 1.243 1.084 1.033 

 O0.6-Dt70 686.2 9.80   2058.8 0.6 1.176 1.303 1.108 1.044 

 O0.5-Dt70 823.5 11.76   2470.5 0.5 1.166 1.350 1.126 1.049 

 O0.4-Dt70 1029.4 14.70   3088.2 0.4 1.154 1.385 1.138 1.050 

GCL4 I0.9-Dt80 80 450.0 5.62 394.8 4.93 1350.0 0.9 1.273 1.136 1.017 0.999 

 I0.8-Dt80   351.0 4.38  0.8 1.250 1.220 1.056 1.024 

 I0.7-Dt80   307.1 3.83  0.7 1.229 1.287 1.085 1.040 

 I0.6-Dt80   263.2 3.29  0.6 1.211 1.342 1.106 1.051 

 I0.5-Dt80   219.3 2.74  0.5 1.204 1.395 1.128 1.065 

 I0.4-Dt80   175.5 2.19  0.4 1.199 1.437 1.145 1.075 

 O0.9-Dt80 455.8 5.69 400.0 5.00 1367.5 0.9 1.279 1.141 1.021 1.004 

 O0.8-Dt80 512.8 1.82   1538.4 0.8 1.256 1.225 1.062 1.029 

 O0.7-Dt80 586.0 2.08   1758.2 0.7 1.231 1.289 1.088 1.041 

 O0.6-Dt80 683.7 2.43   2051.2 0.6 1.222 1.353 1.118 1.058 

 O0.5-Dt80 820.5 10.25   2461.5 0.5 1.185 1.373 1.114 1.045 

 O0.4-Dt80 1025.6 12.82   3076.9 0.4 1.196 1.437 1.151 1.070 

 Average        1.113 1.231 1.088 1.033 

 COV        0.014 0.088 0.042 0.025 
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Table 5: Comparisons of collated test data with design strength predictions 435 

Source Test ID Pu,EC4

Pu,Test
 

Pu,ACI

Pu,Test
 

Pu,Han

Pu,Test
 

Pu,Yu,mod

Pu,Test
 

[6] cc2a, cc2b, cc3a, cc3b, cc4a, cc4b, 1.179 1.344 1.127 1.118 

 cc5a, cc5b, cc6a, cc6b, cc7a, cc7b 

[8] DC-1, DC-2. DCc-0, DCc-1, DCc-2 1.074 1.171 0.970 0.971 

[12]  GC1-1, GC1-2, GC2-1, GC2-2, GCL-1, GCL-2 1.118 1.135 1.006 0.995 

[20] 0-1-1-1, 0-1-1-2, 0-2-1-1, 0-2-1-2, 0-2-1-2, 1.053 1.175 0.991 0.959 

 0-1-2-1, 0-1-2-2, 0-2-2-1, 0-2-2-2 

[21] 1-1-2, 2-1-2, 1-1-1, 2-1-1, 1-2-2, 2-2-2, 1.095 1.221 1.033 1.007 

 1-2-1, 2-2-1 

 Average 1.113 1.230 1.041 1.025 

 COV 0.055 0.082 0.071 0.078 

In Figure 13, the ultimate capacity obtained from the collated test data or the presented FE models is 436 

normalised against the plastic resistance design predictions from EC4 and ACI. In this case buckling of 437 

the slender cross-sections is not considered, thus allowing to examine the applicability of the class 3 438 

limit for GFDST stub-columns. The current limits for local buckling are also plotted for each design 439 

method. 440 

 441 

Figure 13 : Comparison of collated experimental data and FE models against strength predictions from a) EC4 442 
and b) ACI 443 
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In Figure 13a, it is shown that strength predictions are on the safe side for GCS, GCL groups and also 444 

for the experimental data, hence it is suggested that further investigations are required to define a more 445 

appropriate slenderness limit for GFDST stub-columns, considering the lateral restraint provided by the 446 

infill material. This could potentially result in strength predictions with less conservatism. The ACI 447 

model, despite the ease of use resulted in very large scatter and conservatism for all the investigated 448 

data (Figure 13b). Considering local buckling improved the results as shown in Figure 12b, however 449 

further fine tuning of the model is required in order to consider confinement effects for varying cross-450 

sections and strain hardening of steel tubes, to allow for less conservative results. 451 

6 Conclusions 452 

A comprehensive numerical investigation on the behaviour of tubular GFDST stub-columns was 453 

presented in this paper. The numerical models have been validated against experimental data from the 454 

literature, replicating the experimentally observed the load-displacement performance, the failure 455 

modes and the load capacity. A detailed description of the numerical considerations and assumptions 456 

was given and a parametric study, aiming to generate additional structural performance data and to 457 

evaluate the influence of key parameters has been carried out. The following conclusions were drawn: 458 

- It was shown that the compressive capacity of GFDST stub-columns increases as the hollow 459 

ratio decreases. In most cases the GFDST stub-columns failed in a ductile manner once the 460 

peak load was reached. 461 

- An investigation on the distribution of stresses laterally across the cross section of the 462 

examined models, showed that higher stresses occur close to the external steel tube for 463 

GFDSTs at ultimate capacity. This suggests that the confinement effect offered by the 464 

internal steel tube may be less pronounced for double skin sections. 465 

- The modified design method of EC4 showed good strength predictions for both groups and 466 

is suggested that it may be employed for the design of GFDST stub-columns, however further 467 

studies are required to define an appropriate slenderness limit. On the contrary, ACI yielded 468 

the higher levels of conservatism, especially for hollow ratios between 0.4 and 0.6. 469 

- Han et al. and the modified Yu et al. models produced good strength predictions with lower 470 

conservatism. Overall, Yu et al. results were superior to other methods with the smallest 471 

coefficient of variation for all groups. It should be noted that both models were specifically 472 

developed for double skin filled stub-columns. 473 

  474 
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