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Abstract Background Real-time 3D rendering and interaction is important for virtual reality (VR)

experimental education. Unfortunately, standard end-computing methods prohibitively escalate

computational costs. Thus, reducing or distributing these requirements needs urgent attention, especially in

light of the COVID-19 pandemic. Methods In this study, we design a cloud-to-end rendering and

storage system for VR experimental education comprising two models: background and interactive. The

cloud server renders items in the background and sends the results to an end terminal in a video stream.

Interactive models are then lightweight-rendered and blended at the end terminal. An improved 3D

warping and hole-filling algorithm is also proposed to improve image quality when the user's viewpoint

changes. Results We build three scenes to test image quality and network latency. The results show that

our system can render 3D experimental education scenes with higher image quality and lower latency than

any other cloud rendering systems. Conclusions Our study is the first to use cloud and lightweight

rendering for VR experimental education. The results demonstrate that our system provides good rendering

experience without exceeding computation costs.

Keywords Clout-to-end render; Cloud storage; Virtual reality; Experimental education

1 Introduction

China is a vast country with unbalanced education opportunities[1]. Teaching equipment and facilities are

generally inadequate, especially in the western regions and rural areas of China. For this and other reasons,

online education is an effective method of implementing education equality. Moreover, since the outbreak

of the COVID-19 pandemic, many schools have been forced to provide online education.

Traditional online education methods (e.g., multimedia and live instruction) are insufficient for modern
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experimental education needs. Compared with other classroom techniques, experimental education aims to

improve observation and operation through practice. Students can remotely perform experiments at the

educational facilities.

Virtual reality (VR) is a simulated environment in which computer graphics are used to create a realistic-

looking virtual world that can respond to a user's input[2]. VR in experimental education provides

immersive, realistic, and intuitive experiences. Existing technologies include Lila[3], the Virtual Chemical

Vapor Deposition (CVD) Learning Platform[4], the Virtual Computer-integrated Manufacturing (CIM)

Laboratory (VCIMLAB)[5], and RoboUALab[6,7].

Previous work has focused on specific knowledge-transfer areas. None, however, have built a universal

system to support all kinds of experimental education. Current solutions use preset models to render scenes

at end terminals. However, there may be many complicated experimental scenes in a fully capable

education system. It then becomes implausible to place all of the computational burden on the end

terminals. A truly dynamic universal system must be able to support mobile devices and terminals with

small storage capacities and low computing power.

The aim of this study is to provide a cloud-to-end rendering and storage system to provide high-quality

educational experiences with low latency. We divide scenes of experimental education into two parts:

background and interactive models. Cloud rendering[8] is used to render the background computations. The

rendering results are then transferred to the end terminal using the real-time message protocol (RTMP)[9].

Lightweight rendering is used for the interactive models. Finally, the rendering results are combined at the

end terminal. Lightweight rendering leverages a terminal-oriented adaptive algorithm to transfer rendered

models based on computing power and network latency. We also propose an improved 3D-warping and

hole-filling algorithm that significantly improves image quality when the user's viewpoint changes.

2 Related work

2.1 VR experimental education system

There are many useful VR experimental education systems. Past research has focused on improving

knowledge transfer. For example, scholars have applied traditional real-time 3D rendering technology at

the end terminal. However, this can tax the end computers' computing ability. In the introduction, several

extant systems were listed. The virtual CVD learning platform[4] simulates the CVD process to teach

science and statistics fundamentals. The 3D scenes of this platform are very simple, and a 2D interface is

used for key interactions. The VCIMLAB[5] is an educational software application consisting of models of

common CIM hardware, robots, machines, and computer systems. Students can operate the VR models

using real-time operating principles. RoboUALab[6,7] is a virtual remote laboratory (Java applet) used to

execute a simulated manipulator that allows students to practice industrial robotics commands.

Notwithstanding the advances made by these studies, traditional 3D rendering capabilities that only handle

specific educational areas is considerably limiting. A universal VR experimental education system is needed.

2.2 Cloud rendering

Cloud rendering uses cloud-computing clusters to render 3D model data and to pass results to the end user.

The idea was first proposed as WireGL[8], which rendered client submissions via multiple commands.

Humphreys et al. proposed the Chromium stream-processing framework based on the WireGL system.

Cloud rendering is widely used for cloud-based games[10]. OnLive[11] was the first cloud game platform.

There are many more, including Gaikai[12], Ubitus[13], and Ciinow[14]. In China, Aliyun and Zhejiang
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University developed the Ali cloud-rendering service, and Tencent launched Tencent Instant Play. To date,

few studies have investigated this type of cloud rendering for experimental education.

2.2.1 Cloud-to-end video streaming

With cloud rendering, large amounts of high-definition (HD) image data must be transferred. To achieve a

smooth display experience, the frame rate should be greater than 30fps. If the frame-buffer resolution is

1920×1080, the transfer speed will be greater than 10Mbps. This puts great pressure on the network.

Video streaming can transfer HD image data quickly and more efficiently. The major encoding standards

are H.261, H.263, and H.264. In- and inter-frame compression are widely used with these. OnLive[11] uses

video streaming to transfer rendering results. GamingAnyWhere[15] uses a highly optimized H.264 advanced

video encoder to provide better video quality with less latency. This technology provides a mature cloud-

rendering solution between the server and the end terminal. The end terminal only decodes the video

stream and displays a 2D image frame by frame. With this method, extensive graphics computing power is

no longer required.

2.2.2 Lightweight 3D modeling

Lightweight rendering includes lightweight 3D modeling and image-based rendering (IBR). 3D

lightweight modeling simplifies 3D models having large numbers of faces and complex details. It filters

unnecessary redundant information while retaining necessary structural information. Hoppe[16] proposed an

algorithm that obtained 3D model level-of-detail via edge folding and point splitting. Ma et al. proposed a

geometric simplification algorithm based on the improved loop subdivision method, and a generated

progressive mesh was rapidly reconstructed on mobile devices[17]. Liang et al. proposed a display resolution

algorithm based on the moving least-squares method for mobile devices and real-time rendering and

interaction[18]. These algorithms reduced the required bandwidth and improved the efficiency of rendering

complex 3D models on mobile devices.

IBR[19] uses depth and color maps. Shi proposed a real-time remote rendering system based on IBR[20].

With this, the end terminal only received 2D images and 3D-depth images. When the rendering viewpoint

changes within a limited range, the end terminal executes 3D warping to get a new rendering result.

2.3 Storage management

Cloud and point-to-point (P2P) distributed storage technologies are not the same. Cloud storage is divided

into public, private, and hybrid cloud storage. Almost all cloud-storage companies use a master-slave

replication model and write-time replication technology to ensure high availability. To ensure data consistency

and high concurrency, most use data-consistency protocols (e. g., Paxos[21], Raft[22], Zookeeper[23]). Although

cloud storage is quite mature now, there is no guarantee that the data will remain 100% safe and reliable.

P2P distributed storage is famous for high bandwidth utilization and low failure rates. There are many

such distributed storage products (e.g., the interplanetary file system (IPFS) and the transparent cryptographic

file system). Compared with cloud storage, each node in a P2P distributed storage system can contribute

space. However, it is difficult let users contribute space. A combination of cloud and P2P distributed

storage will, therefore, provide a more reliable storage system for cloud-to-end rendering.

3 Implementation

3.1 Overall architecture

This research provides a cloud-to-end rendering and storage system for VR experimental education. The
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overall architecture is shown in Figure 1. Scenes of experimental education can be divided into background

and interactive models. Generally, the background part is complicated, and the model files are large.

Interactive models are the experimental instruments. They are relatively small and must be operated and

rendered frequently. Thus, we use cloud rendering for the background and lightweight rendering for the

interactive models.

In the cloud, a graphic application renders the background and captures the rendered results as video.

The collected video is then transferred via RTMP[9] to the end terminal after being compressed and

encoded. Interactive 3D models are prerendered and adaptively collected as images or grids and

compressed based on network status and the rendering capability of the end terminal.

At the end terminal, the client receives the background video stream and model data via the

transmission-control protocol/internet protocol (TCP/IP). A video-decoding module decodes video into

image frames. For the model data stream, a model decompression module decompresses the data first.

Then, the end terminal renders content based on data format. Finally, the video and model images are

combined to display complete 3D scenes.

When users translate, rotate, or zoom the interactive models, our system uses an improved 3D-warping

methodology to provide new rendering results without network retransmissions. A hole-filling algorithm

based on multiple viewpoints and double-warping is also used to improve quality. When the background

changes, the end terminal sends the changes to the cloud. The cloud application renders it again and returns

the results to the end terminal.

The scenes are decomposed and standardized using the Collaborative Design Activity interchange file

format. We, therefore, build a distributed storage system that integrates cloud storage and IPFS to improve

reliability and flexibility. Users obtain scenes via the Restful application programming interface (API).

3.2 Cloud-to-end rendering

Cloud-to-end rendering reduces graphic computing requirements for 3D rendering. Via this method, the

cloud server converts background imagery into a video stream and prerenders the interactive models. The

end terminal then lightweight-renders the interactive models and combines all the results.

3.2.1 Video streaming and decoding

(1) Connection. One handshake occurs between the server and the client. The server creates a socket on a

Figure 1 Overall architecture of our proposed cloud-to-end rendering framework.
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predefined port, receives the client's connection

application, establishes the network connection,

and sends the success message.

(2) Video acquisition. After the handshake, the

server collects the video stream. The first step is to

determine the frame rate. If the application

captures 30 frames per second, the video-stream

frame rate is 30fps. We use a graphics device

interface as the screen-capture device. The images

for each frame and timestamp are saved into a red-

green-blue (RGB) cache array.

(3) Video compress encoding. FFmpeg is used to compress and encode the captured images into a

formatted video. All raw video data are stored in a cache array during acquisition. YUV4:2:0 is used to

sample the original RGB image to reduce the transmission bit rate. We use an H.264 video encoder, which

is a mixed coding framework based on 16×16 macroblocks. Each block in the current frame, Fn, is encoded

with intra- or inter-frame prediction to obtain the prediction block, P. In the intra-frame prediction mode,

current frame Fn is encoded, decoded, and reconstructed as uF'n. The prediction block, P, is then obtained

from the intra-frame prediction of uF'n. In the inter-frame prediction mode, the prediction block, P, is

calculated from one or more coded reference frames, uF'n - 1 by motion estimation and compensation. The

residual block, Dn, is obtained by subtracting the predicted block, P, from the current macro block. After

transformation and quantization of Dn, the quantization coefficient, X, is obtained. After reordering and

entropy-coding X, the encoding result and requisite additional information (e.g., prediction mode, motion

vector information, and quantization step size) is formed into the final code stream, which is transmitted

and stored in a network abstraction layer (NAL) format.

At the end terminal, we use the H.264 video decoder shown in Figure 3. It receives an encoded code

stream via the NAL. Then, it decodes and reorders the data to obtain the quantization coefficient, X, and

performs anti-quantization and-transformation on X to obtain the same residual block, D'n, as in the

encoder. Finally, the decoder uses intra- or inter-frame prediction to obtain the same prediction block, P, as

the encoder based on the additional information in the code stream. After adding the predicted block, P,

and the residual block, D'n, to obtain the reconstructed block, uF'n, output-video frame F'n can be acquired

by using the filter to remove the image block effect.

3.2.2 Model collection and transmission

Interactive models are split out from 3D scenes and pre-rendered based on depth image-based rendering

Figure 3 Video encoding and decoding in our cloud-to-end rendering framework.

Figure 2 Video streaming for the cloud-to-end rendering

framework.
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(DIBR) at the cloud server. After the connection is established, the cloud application loads the related

interactive models. The initial position of the camera is (0, 0, 0), and it is then shifted to the left and right

by L units, 2L units, 3L units, … , nL units, as shown in Figure 4. The camera position is V =
{vi | i ∈ [ 0, 2n + 1 ]}. Models are rendered for each viewpoint, and the rendering results are as follows:

T = {ti = Ii,Di | i ∈ [ 0, 2n + 1 ] , Ii = render (S, vi )},
where Di is the depth image for Ii.

When L is sufficiently small and n is sufficiently large, the reference image sets contain more model

details. Because lightweight rendering is used at the end terminal, the reference image sets must be

transmitted from the cloud to the end terminal over the internet. Thus, the number of image sets cannot be

too large. From experiments, only a few scattered reference-image sets are needed to achieve high quality

when using our hole-filling algorithm, which is described in Section 3.2.4. L is set to 4 and n is set to 1 in

our study.

Because raw image sets are large, the cloud application uses H.264 to encode the color map sequence,

and zlib is used to compress the depth-map sequences. The end terminal then receives model data and uses

H.264 and zlib to decompress the data.

3.2.3 Mixed-reality scenario

The 3D background video and interactive model data streams are mixed using scene description language

(SDL) at the end terminal. The whole process is shown in Figure 5.

For the background video stream, each YUV420 video frame is decoded into one AVFrame. One

SDL_texture is then created from the AVFrame. The end-terminal application then copies each

SDL_texture into a shader to complete the background rendering.

We use the improved 3D-warping algorithm described in Section 3.2.4 to lightweight-render the

interactive model. When users operate the models, the camera information is updated and rendered again

based on ReferenceImage[]. The rendered image adopts the SDL_Surface format and is transformed into

SDL_Texture by SDL_CreateTextureFromSurface(). SDL_SetColorKey() removes the background color,

and SDL_RenderCopy() copies SDL_Texture into the shader.

We use an event-driven approach to display the final image. A thread is then created to send the SDL

Figure 4 Example of camera shifting for interactive model rendering.
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notification every 33.3ms. This notification informs the main function to display the appropriate frame. For

every refresh, a new AVFrame is read from the video stream, and the rendering results of the interactive

models are updated. Finally, the SDL_RenderPresent() mixes the two parts and presents the blended image

to users.

3.2.4 Improved 3D warping algorithm

The 3D-warping algorithm uses depth information and camera parameters to project the image points to

the 3D space. It then projects the 3D-space points to the virtual imaging plane according to the camera

parameters from different viewpoints. The process can be described by the following equation:

v2 = M2V = M2M -11 v1 (1)

where M1 is the transformation matrix from the world space coordinates to the screen coordinates for v1,
and M2 is transformation matrix from the world space coordinates to the screen coordinates for v2. To get

v2, 16 floating-point multiplications and 12 floating-point additions are needed for the multiplication

operation of a 4×4 matrix and a 4×1 vector. The costs are high for 1280×720 or even 1920×1080 high-

resolution 2D images. Thus, we use three additions to improve the warping algorithm. We set A = [a b c d],

and the multiplication can be written as:

pixel (i, j) = A
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where i∙a = ( i - 1)∙a + a, j∙b = ( j - 1)∙a + b. Then, we can get pixel (i - 1, j):
pixel (i - 1, j) = (i - 1)a + j∙b + ki - 1, j∙c + d. (3)

Based on Equations (2) and (3), we can get the relationship between pixel (i, j) and pixel (i - 1, j):
pixel (i, j) = pixel (i - 1, j) + (ki, j - ki - 1, j)∙c + a, (4)

Figure 5 Program diagram for mixed-reality scenario.
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where ki, j is the depth value of (i, j), which OpenGL stores in the depth buffer, Z-buffer. Assume

gi, j ∈ [ 0, 255 ] is the grey value of (i, j). Then, gi, j = δ (ki, j ). Define varray [ i ] = i∙c, i ∈ [ 0, 255 ]. Then,

Equation (4) can be simplified as follows:

pixel ( )i, j = pixel ( )i - 1, j + varray [ ]δ ( )ki, j - ki - 1, j + a
pixel ( )i, j = pixel ( )i, j - 1 + varray [ ]δ ( )ki, j - ki, j - 1 + b. (5)

Because pixel (0, 0) = varray [ δ (k0,0) ] + d is constant, pixel(i, j) can be calculated recursively based on

Equation (5) while 3D-warping a pixel in a row or a column. Then, only three additions are needed to

calculate the warp.

After 3D warping, there are holes from missing information because of occlusion and insufficient sampling.

To improve image quality, the hole-filling algorithm leverages the multiple viewpoints and provides double-

warping. The end terminal gets scattered image sets from different viewpoints for each interactive model, as

described in Section 3.2.2. From the image sets, we find the two nearest viewpoints, vleft and vright, for the target

viewpoints, vdst and vleft≤vdst≤vright. Then, we calculate the transform image, Wleft, from vleft to vdst and transform

image Wright from vright to vdst. The final target image is calculated based on Equation (6):

W (i, j) =
ì

í

î

ï
ï
ïï

ï
ï
ïï

( )1 - α Wleft ( )i, j + αWright ( )i, j ,Wleft ( )i, j ≠ 0 ∧ Wright ( )i, j ≠ 0
Wleft ( )i, j , Wleft ( )i, j ≠ 0 ∧Wright ( )i, j = 0
Wright ( )i, j , Wleft ( )i, j = 0 ∧Wright ( )i, j ≠ 0

0, Wleft ( )i, j = 0 ∧Wright ( )i, j = 0
(6)

where W(i, j) is the pixel value of the final image at point (i, j), and Wleft (i, j) and Wright (i, j) are the pixel

values of the left target image and the right target image at point (i, j) respectively. α is the weight

coefficient, and t is the translation parameter of the camera.

α = || t - tLeft
|| t - tLeft + || t - tRight (7)

3.3 Storage management

The architecture of the storage system is shown in Figure 6. It can be divided into four parts:

(1) The microservice system consists of an API gateway, a load balancer, and other components. Its

major responsibility is unifying the external interface and load balancing.

(2) The distributed storage subsystem includes the IPFS component, an external storage server, and

external cloud storage. It provides basic storage services for the entire system.

(3) The distributed retrieval subsystem includes the IPFS network, a retrieval server, and a knowledge

map. Additionally, stored content metadata is required to expand the knowledge map. It returns the model

based on the user's request.

(4) The user system includes the IPFS network and a user-permission server. It provides user-level

security for the entire system.

The IPFS file system is the cornerstone of the efficient operation of our storage module, and its

performance directly determines the overall performance of the storage module.

4 Results

4.1 Application

We used the cloud-to-end system to build the VR experimental education sample. We created two scenes to
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compare the rendering results between server and client (Figures 7 and 8). Compared with the original

cloud-rendered results, the image quality at the end terminal was excellent.

Because these two education scenes are simple, we built a more complicated scene: a forest. There is no

apparent difference between the client-rendered image and that of the cloud (Figure 9). Our system can

obviously support complicated scenes with high image quality.

4.2 Image quality

We collected data every 50 frames and obtained 40 images for each scene. The peak signal-to-noise ratio

(PSNR) and structural similarity (SSIM) index results are shown in Figures 10 and 11. Our system's image

Figure 6 Architecture of storage system.

Figure 7 Lab scene of the server (left) and the client (right).

Figure 8 Mine scene of the server (left) and the client (right).

376376



Hongxin ZHANG et al: Cloud-to-end rendering and storage management for virtual reality in experimental education

quality is comparable with that of OnLive (Table 1).

For the model part, we collected results from

different viewpoint using different hole-filling

algorithms. The initial position of the camera was

(0.0, 0.0, 2.0). We used our improved hole-filling

algorithm for positions at (0.4, 0.0, 2.0), (0.0, 0.0, 2.0), and (0.4, 0.0, 2.0). We use a single-viewpoint hole-

filling algorithm for (0.0, 0.0, 2.0). The results are shown in Figures12 and 13. Traditional hole-filling

algorithms draw a better image when the viewpoint is close to the target object. However, the quality gets

worse when the camera moves farther away. The image quality of our method is better, even in this case.

4.3 Latency

Latency is defined as the time from when an interactive event occurs at the terminal to the time a new

image is rendered. Because we use lightweight rendering for interactive models, users can directly interact

Figure 9 Forest scene of the server (left) and the client (right).

Figure 10 PSNR of 3D background.

Figure 11 SSIM of 3D background.

Table 1 Average PSNR and SSIM comparison with OnLive

Ours

OnLive

PSNR

37

35

SSIM

0.99

0.95
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with them at the terminal without waiting for a cloud response. Therefore, the latency for our interactive

models equals the time needed for lightweight rendering.

We compared the latency of our implementation

with OnLive, and the results are shown in Table 2.

For the background part, the latency was similar.

However, we used lightweight rendering for the

interactive models, which can be directly rendered

after user operates it. Thus, only the time required

for 3D warping and hole-filling needed to be considered. OnLive treats models and backgrounds the same.

Thus, the latency equals that of the background. For the same network environment, our system gives the

user a better experience with low latency.

5 Conclusion

We proposed a cloud-to-end rendering and storage system to provide a high-quality 3D experience with

low latency for experimental education. We analyzed scenes used by typical experimental educational

applications and cloud- and lightweight-rendered different aspects of the scenes separately. For the

lightweight-rendering part, we used an improved 3D-warping and hole-filling algorithm. The results of this

study indicate that our system rendered 3D experimental education scenes with high image quality and low

latency. This was the first study to use cloud rendering and lightweight rendering for VR experimental

education. We believe our method is generic enough to be adapted to many other application domains,

including those of mixed reality.

Figure 12 PSNR of 3D model.

Figure 13 SSIM of 3D model.

Table 2 Comparison with GamingAnyWhere

Ours

GamingAnyWhere

Model response

delay (ms)

38

141

Background re‐

sponse delay (ms)

134

141
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The major limitation of this study is that it was not easy to apply the tool to arbitrary 3D scenes. On one

hand, background and interactive models need to be separated manually in advance. On the other hand,

DIBR has limitations. For example, it only allows users to pan, rotate, and scale models in a fixed

direction. It is, therefore, difficult to meet all possible user interaction requirements.

Further work should focus on applying the algorithm to automatically identify and separate background

and model images and allow users to conduct more interactive operations.
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