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Abstract 

Technological advances in mobile sensing technologies has produced new opportunities 

for the monitoring of the elderly in uncontrolled environments by researchers. Sensors 

have become smaller, cheaper and can be worn on the body, potentially creating a network 

of sensors. Smart phones are also more common in the average household and can also 

provide some behavioural analysis due to the built-in sensors. As a result of this, researchers 

are able to monitor behaviours in a more naturalistic setting, which can lead to more 

contextually meaningful data. For those suffering with a mental illness, non-invasive and 

continuous monitoring can be achieved. Applying sensors to real world environments can 

aid in improving the quality of life of an elderly person with a mental illness and monitor 

their condition through behavioural analysis. In order to achieve this, selected classifiers 

must be able to accurately detect when an activity has taken place. 

In this thesis we aim to provide a framework for the investigation of activity recognition in 

the elderly using low-cost wearable sensors, which has resulted in the following 

contributions:   

1. Classification of eighteen activities which were broken down into three disparate 

categories typical in a home setting: dynamic, sedentary and transitional.  These were 

detected using two Shimmer3 IMU devices that we have located on the participantsõ 

wrist and waist to create a low-cost, contextually deployable solution for elderly care 

monitoring.  

2. Through the categorisation of  performed  Extracted time-domain and frequency-

domain features from the Shimmer devices accelerometer and gyroscope were used as 

inputs, we achieved a high accuracy classification from a Convolutional Neural 

Network (CNN) model applied to the data set gained from participants recruited to the 

study through Join Dementia Research.  

The model was evaluated by variable adjustments to the model, tracking changes in its 

performance. Performance statistics were generated by the model for comparison and 

evaluation. Our results indicate that a low epoch of 200 using the ReLu activation function 

can display a high accuracy of 86% on the wrist data set and 85% on the waist data set, 

using only two low-cost wearable devices. 
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1. Chapter I: Introduction  

1.1. Background 

It is currently estimated that 1 in 5 people over the age of 65 will develop dementia, with 

an estimated 850,000 currently living with some form of the disease [1]. In order to measure 

and conceptualize Dementia related behavioural symptoms, it is essential that the disease 

is understood. Dementia has two major symptom groups: cognitive dysfunction symptoms 

as well as symptoms of behavioural and psychological signs [2]. The behavioural symptoms 

of the disease include combinations of changes in physical movement and speech. One 

such example of a change to a dementia personõs behaviour is agitated behaviour [3]. 

Speech ability in a person suffering from dementia can cause communication challenges, 

however maintaining effective communication increases the quality of life for the person 

as persons suffering from dementia can frequently struggle to find the appropriate words 

to describe objects. Various behavioural symptoms of dementia such as depression and 

anxiety can be caused by the difficulties that persons suffering with dementia have with 

communication [4].    

Alternative occurrences of behavioural dementia symptoms include sleep disturbances, 

withdrawal, and apathy. Behavioural dementia symptoms can vary between individuals in 

repeated occurrences as well as the symptoms that become present in a person. Clusters of 

behavioural symptoms can also occur in a person which can make characterizing the 

symptoms significantly more complicated [3]. In some circumstances, clinical applications 

monitor behaviour through direct observation of the person. However these applications 

only consider whether the behaviour is present or absent, only few applications consider 

the intensity of the behavioural symptoms that are present [3].     

Behaviour-change approaches typically involve the direct observation of real-life settings 

and behaviour change principles to enhance the quality of life of people who suffer with 

dementia. Presently, there are several theoretical and computational frameworks for 

modelling dementia-related behavioural excesses (wandering, disruptive vocalisations), 

behavioural deficits (incontinence, self-feeding) and mood changes (depression) for critical 

care and hospital care environments [5]. However, in order to use these frameworks, large-

scale ambient sensing systems have to be deployed which are expensive to implement and 

only viable in a hospital care environment.    

Pervasive healthcare applications have become fairly common over the past decade [6], 

with many applications taking advantage of recent technological developments in the 
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mobile and wearable device market. Developers of these devices are continually improving 

upon the technology used to add more processing power, storage space and even adding 

new sensors into these hand-held and wearable devices. Pervasive healthcare applications 

developed for these platforms can be used to deliver assistance to those with disabilities 

such as communication issues, or to monitor and evaluate the behaviour of a person. In 

comparison to other diseases, Dementia is one such disease where the carers can also 

benefit from healthcare applications on smart devices. These applications can function as 

an assistive application, providing prompts to alert the user to take their medication, or 

provide instructions on how to perform various tasks. These applications can also take on 

a Human-Computer Interaction (HCI) role and make use of the sensors in the device to 

monitor cognitive decline or behaviour. Monitoring how a person performs a task, such as 

taking a drink of water, can be crucial in evaluating how fast the disease progresses in 

different people.      

The advances in Internet of Things (IoT) related technologies over the last few years have 

provided new opportunities to build Quality of Life (QoL) profiles of an individual with 

increasing validity and reliability [7]. This has become possible by monitoring the lifelogging 

data captured by a variety of IoT technologies (sensors, mobile apps, web-objects, etc.) 

with continuous connectivity and interaction in a pervasive network. Presently, those with 

long-term conditions and chronic diseases require intense interactions with clinicians in a 

hospital environment. This can be time consuming, and the resulting assessment can be 

subjective. It can also be costly to the hospital and therefore not sustainable [8]. Utilising 

IoT technology for home-based Dementia care will provide more accurate monitoring and 

deep analysis of dementia related behaviour in a home-based environment such as: gradual 

loss of memory, difficulty in performing familiar or complex tasks, changes in mood and 

disorientation. IoT technologies also allow us to consider sensitivity, social and emotional 

factors such as working with persons that are at various stages of the disease.  

Currently there is little evidence-based literature for guiding the implementation of 

strategies in order to ensure an early diagnosis or to design an optimal service provision for 

people that suffer with the disease. The aim of this thesis is to collate various papers of 

research and systems in order to provide insight into what technologies are currently 

available in the field. We will address our survey findings and provide a discussion on the 

advantages and disadvantages of existing technologies. This will allow us to provide our 

thoughts on future directions research could take in this field. 
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1.2. Research Aim and Objectives 

The following section highlights the main aims and objectives of this research project. 

Research novelties are also outlined in this section. 

a) Aims 

This research aims at investigating Internet of Things enabled technologies for delivering 

a new wearable healthcare assistive solution for effectively and efficiently monitoring, 

analysing and understanding complex home-based dementia patientsõ behaviours. The 

project involves the design of a generic Internet of Things enabled mobile health 

framework to leverage the potential of mobile devices like smartphones or tablets, wearable 

sensors, for monitoring and analysing dementia related behaviour. This framework will also 

provide algorithms for simultaneous and long-term quantification of behaviour change in 

dementia persons with IoT enabled wearable devices. This new wearable healthcare 

assistive technique will also potentially identify and mitigate any issues related to poor 

information transference as well as interpretation (human-to-human and system-to-human), 

process management, cognitive capacity, and patient related needs.  

b) Objectives 

The main objectives for this project are: 

1. To explore IoT methods to study and classify activity for people who suffer with 

dementia.  

2. To design a low-cost wearable device framework suitable for the needs of the 

elderly and sufferers of dementia to perform physical activity recognition (PAR) in 

uncontrolled environments. 

3. To evaluate algorithms that will be capable of classifying activities that are 

performed in a home-based environment. 

4. To carry out a thorough evaluation of the delivered system to validate its technical 

capacity and to examine the potential impact it will have on future healthcare by 

working closely with the end users including carers and patients.  
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1.3. Thesis Outline 

In order to achieve the research aims and objectives of the project, we have conducted an 

extensive survey of literature and provided four chapters which contain the contributions 

of this project. This includes a framework for the PAR of elderly people, PA recognition 

in the participants with no known medical conditions and PA recognition in elderly 

participants that have memory loss or an official diagnosis of mild cognitive impairment.  

The outline of the thesis is as follows: 

Chapter 2 provides an extensive literature review and introduces the approaches taken in 

human physical activity recognition using IoT technologies. The main components of IoT, 

sensor layer, processing layer and application layer are studied and have the main techniques 

in wearable and ambient sensing analysed. 

Chapter 3 discusses our framework for physical activity recognition in the elderly using 

low-cost devices. Activity types that are performed by participants are discussed and 

categorised. Wearable sensors are identified and discussed, with potential positioning being 

an important factor in order to ensure data collection from specific PA. 

Chapter 4 presents a PAR study using healthy participants to perform 15 activities in a 

controlled environment. Data collection, pre-processing techniques and feature extraction 

techniques used are introduced with a discussion on the raw signal information we 

collected. 

Chapter 5 introduces three classifiers used on the data collected. ANN, SVM and DT 

classifiers were detailed, and were run using the data collected as the input. The results from 

the classifiers is detailed, along with an evaluation of performance. Furthermore, we present 

a CNN model using 1-dimensional convolutional layers that we will implement in our main 

study. 

Chapter 6 introduces our main study of the project where we collected data from 3 

participants for 18 activities. Participant recruitment is discussed along with the data 

collection processes. The CNN model developed is used to classify the activities from the 

collected data. The model is then evaluated based on its performance achieved from a series 

of tests using various activation functions and parameter changes. 

Finally, we present a summary of the project in chapter 7. Limitations of the project are 

highlighted along with future endeavour. Conclusions of the project are also drawn in this 

chapter. 
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1.4. Research Contributions 

This thesis provides the following contributions: 

¶ An extensive and systematic review and analysis of PAR studies from an IoT 

perspective. Traditional and state-of-the-art PAR methods used in the healthcare 

domain, including sensors and recognition techniques are discussed and 

summarised. 

¶ A novel framework for investigating physical activity recognition in the elderly. 

Activity types are identified based on their suitability in a home environment. 

Potential classifiers are highlighted for investigation. 

¶ A PAR study collecting data from elderly participants that are suffering with 

memory loss or have received a diagnosis of Mild Cognitive Impairment. 

Participants performed activities in a controlled environment using low-cost 

wearable devices on the wrist and waist during data collection.  

¶ A CNN model is developed and deployed for classifying the collected data. An 

evaluation into the performance of this model is provided. The results of the study 

indicate a low epoch using a ReLu activation function provides a high accuracy and 

a low loss.  

1.5. List of Publications 

During the course of this research, the following research has been published, including 

four conference papers and two journal publications, alongside various paper presentations 

of this research:  

Conference Papers:  

L. Newcombe, P. Yang, C. Carter, M. Hanneghan and J. Qi, òExperimental analysis of 

cost-effective mobile sensing technologies for activity analytics in elderly careó, 2018 IEEE 

20th International Conference on High Performance Computing and Communications; 

IEEE 16th International Conference on Smart City; IEEE 4th International Conference 

on Data Science and Systems (HPCC/SmartCity/DSS), Pages: 1442 ð 1448, 28-30 June 

2018, Exeter, UK. 

DOI:  10.1109/HPCC/SmartCity/DSS.2018.00238 

L. Newcombe, P. Yang, C. Carter and M. Hanneghan, òInternet of Things Enabled 

Technologies for Behaviour Analytics in Elderly Person Care: A Surveyó, 2017 IEEE 

International Conference on Internet of Things (iThings) and IEEE Green Computing and 

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8605812
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8605812
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8605812
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8605812
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00238
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8275085
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8275085
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Communications (GreenCom) and IEEE Cyber, Physical and Social Computing 

(CPSCom) and IEEE Smart Data (SmartData), Pages: 863 ð 870, 21-23 June 2017, Exeter, 

UK. 

DOI:  10.1109/iThings-GreenCom-CPSCom-SmartData.2017.133 

L. Newcombe, P. Yang, C. Carter, M. Hanneghan, A. Simpson and J. Qi, òA Comparison 

Study of Wearable Sensing based Classifier Algorithms for Aging Behaviour related 

Physical Activity Recognitionó, 41st Engineering in Medicine and Biology Conference 

2019, Accepted, 2019. 

J. Qi, X. Peng, L. Newcombe, A. Simpson, Y. Yang and P. Yang, òExperimental Analysis 

of Artificial Neural Networks Performance for Home-based Physical Activity Recognition 

Using Belt and Wristband Devicesó, 41st Engineering in Medicine and Biology 

Conference 2019, Accepted, 2019. 

Journal Papers: 

J. Qi, P. Yang, L. Newcombe, X. Peng, Y. Yang and Z. Zhao, òAn Overview of Data 

Fusion Techniques for Internet of Things enabled Physical Activity Recognition and 

Measureó, Journal: Information Fusion (IF 6.6), Accepted 2019, 

https://doi.org/10.1016/j.inffus.2019.09.002. 

J. QI, X. Peng, Y. Yun, L. Newcombe, G, Yang, Y. Liu and P. Yang, òA Hybrid 

Hierarchical Model for Accessing Physical Activity Recognition towards IoT enabled Free-

living Environmentsó, Journal: IEEE Internet of Things Journal (IF 9.5), Under Review. 

Conference Presentations: 

Paper Presentation, 2017 IEEE International Conference on Internet of Things (iThings) 

and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, 

Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 21-23 June 
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1.6. Summary 

Physical activity recognition and monitoring provides important benefits to the quality of 

life to the elderly population and can also have lasting effects on mental and physical health. 

The use of IoT technologies in this area has become widespread in many research studies 

and rehabilitation programs. However, a majority of these studies are performed in a 

hospital setting and as a result can only provide subjective results. Sensors used can also be 

extremely expensive, however advances in sensor technology have allowed cheaper 

wearable alternatives to become a focus for further research while maintaining good results. 

These studies are typically controlled and in a lab environment which can provide only a 

limited set of data. A focus on providing PAR from a home environment could provide 

more reliable data and could also be scaled to allow for more participants. Another 

limitation of current studies is the diversity and complexity of activities. This also cannot 

be fully expressed by participants in a controlled environment and can lead to a limited data 

set. By allowing studies to take place at home, researchers can expand the range of activities 

performed, while also capturing more reliable and natural activity data. Maintaining a high 

activity recognition accuracy while also keeping costs to a minimum and alleviating privacy 

concerns in home environments is a challenge that researchers must tackle. 

In this thesis we provide an extensive review into previous PARM studies from an IoT 

perspective. Focusing on the state-of-the-art methods used in the healthcare domain. We 

provide a design for a framework for the investigation of AR in the elderly population. The 

framework is designed to use low-cost wearable devices and smart phones that could allow 

for a small lab-based experiment be scaled into a home-based study allow for the 

integration of a diverse range of activity types for data collection. We produced a CNN 

model using 1-dimensional Convolutional layers and dense layers to classify chosen 

activities that were performed in an activity recognition study on elderly people, that display 

signs of memory loss or have a diagnosis of Mild Cognitive Impairment.  

The model was tested using the activity data collected from participants with various 

activation functions and epochs in order to provide an evaluation of the modelõs 

performance. We found that our model can produce relatively high accuracy on activity 

classifications and did so in a suitable time period despite not running on a GPU. This 

could make our model suitable to a clinical environment were the model might need daily 

executions by clinicians. 
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2. Chapter II: Literature Review 

2.1. Introduction  

In order to understand how the advancements made into IoT technologies have improved 

our ability to recognise PA, we must conduct a review into the various approaches used in 

PAR. We will begin this survey by observing the various layer-based approaches to PA 

using IoT technologies as shown in Figure 2-1. We will also observe how these approaches 

are used in recognising PA of elderly people and people with Dementia and if the 

technology available can be used for behaviour analysis. For this survey, papers were 

gathered from the following online libraries; IEEE Explore, ACM Digital Library, Science 

Direct and Google Scholar.  

The following keywords and phrases were used to perform the survey; Behaviour analysis 

using smart devices in the elderly, wandering detection in the elderly, agitation and anxiety 

detection using wearable sensors in the elderly, monitoring depression with smartphones, 

fall detection in the elderly using smartphones and detection of agitation using smart 

devices. Our search generated a large number of results relating to PAR in elderly people 

and in healthcare as shown in Figure 2-2. The main goal of this literature review is to classify 

the IoT technologies observed in terms of a system architecture, to review current IoT 

technologies that are involved in PAR and to review PAM in healthcare. 

 

Figure 2-1: IoT layer-based approaches to PAR 
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Figure 2-2: Number of Journals and Conference Articles relating to IoT technologies in PAR 
between 2010-2019 
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2.2. Sensing Layer 

The sensing layer involves employing singular or multiple sensors, either on the body or in 

the environment in order to gather data relating to PA through lifelogging. The process of 

lifelogging refers to the recording of an individualõs life using digital devices to monitor 

physical activity or to provide medical interventions[9]. Initially, lifelogging was performed 

using a camera to capture video or images. This, however, could be construed as an 

invasion of privacy and has become less popular as new IoT technologies have developed 

[10], [11]. Wearable technology has become a popular solution for lifelogging as it is not 

invasive and can contain multiple sensors in one device, providing a greater range of results. 

However, many of these devices can be expensive and as a result are typically used by 

researchers and healthcare professionals in a controlled environment. Devices that are 

cheaper to use, such as a smartphones, typically produce less accurate results. The data 

produced by the devices can be large, so storage requirements are another aspect of PAM 

that has to be considered. 

The advancements in low cost IoT wearable devices has led to improvements in accuracy 

when monitoring PA in home environments. This also allowed researchers to  build quality-

of-life profiles of individuals with increasing reliability and validity [7]. As IoT technologies 

can be used in monitoring PA in home-based environments, we can monitor the PA of 

elderly people and people with Dementia. In terms of Dementia, we must understand the 

related symptoms and the behaviours associated with the disease. These are typically 

classified under 6 neuropsychiatric symptoms [12]: 1) Anomalous Motor Behaviour, 2) 

Depression, 3) Anxiety, 4) Weight Loss, 5) Irritability, 6) Agitation. Monitoring these 

symptoms is possible through wearable technology. Utilising IoT technologies can allow 

us to consider sensitivity, social and emotional factors of working with elderly people and 

people with Dementia [7]. 

  

2.2.1. Physical Activity 

According to the World Health Organisation, 60% of the global population fails to reach 

the recommended 30 minutes of daily intense physical activity [13]. This can lead to health 

risks in both the developed and developing world. Reasons for this lack of activity can be 

found in the advances in technology that have reduced the amount of PA needed to 

perform activities in work and at home.  Attempting to achieve the recommended amount 

of PA can help in managing weight and reducing blood pressure. This can also affect 
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muscle strength and posture stability, two factors that can influence the frequency of falls 

in elderly people [14].  

Table 2-1: Different Activities types that can be used in PAM 

 Types of Activity Activities 

Simple Activities Sedentary Activities Sitting, Standing, Lying 

Transitional Activities Sit-to-Stand, Stand-to-Sit, 
Sit-to-Lie, Lie-To Sit 

Aerobic Exercise Walking, Jogging, Running, 
Swimming 

Complex Activities Activity of Daily Living Drinking Water, Brushing 
Teeth, Eating, Getting 

Dressed 

Weight Lifting Bench Press, Deadlifts, 
Squats 

Activity recognition is a method that can be employed in order to monitor simple and 

complex PA that a person can perform. Table 2-1 displays examples of activity types that 

can be recorded. ADL is an example of the types of activities that are typically monitored 

in elderly person care. However PAM can be used in preventative healthcare in order to 

change a personõs behaviour in order to reduce the risk of the individual contracting an 

illness [14]. 

An example of elderly activity monitoring using wearable devices is provided by [15]. The 

device used in their service is a Bluetooth smart beacon that has accelerometer, gyroscope 

and Bluetooth functionality. Acceleration and angular velocity is collected and transmitted 

via Bluetooth to a smartphone with a health monitoring app. The data is then sent to the 

cloud for further processing where the activity life log can then be accessed by a care giver. 

Six subjects between the ages of 22 and 30 were used to perform a series of activities such 

as drinking, washing hands and using the bathroom fifty times. The data produced was split 

into 60% training and 40% testing and was classified using an REP tree [15]. 

An activity recognition system using a series of tri-axial accelerometers to monitor the daily 

activities in a home environment was proposed by [16]. Accelerometers were placed on the 

wrist, thigh and arm. The sampling frequency of the accelerometer was set to 20Hz and 

the output range was ±6g. A group of participants performed a series of running, walking, 

sitting and climbing activities. The wireless unit attached to the sensor communicated with 

an IoT cloud server to transmit and store the data collected for analytics. A Naïve Bayes 

machine learning package was installed on the cloud server for processing the data in order 

to classify the activities. The result of processing produced an accuracy of 72% for the 

system. 
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The IDAct system, proposed by [17] utilises passive long-range RFID sensors on physical 

objects. The system can be used for food and health monitoring by detecting what food a 

user is preparing or when they are taking medication. IDAct can also be combined with 

assistive technologies to improve the QoL of elderly people through PAR. A single RFID 

reader was used to collect data from 110 tagged objects that were located in a home 

environment that consisted of four living spaces; the kitchen, the bathroom, a dining room 

and a living room. 10 participants were asked to perform 24 daily activities including 

cooking and watching TV. Video recordings were also captured to evaluate the system. An 

HMM classifier is used to train and test the data collected from sensors to achieve an 

accuracy range of 46% to 100% across the 24 activities. 

2.2.2. Anomalous Motor Behaviour  

Anomalous Motor Behaviour (AMB) refers to the behaviours exhibited by physical 

movement. This can include location-based behaviours such as wandering which can be 

monitored through GPS and verbal behaviours can be viewed as motor behaviours. In 

order to monitor AMBs a range of sensor technologies can be implemented ranging from 

non-medical grade sensors to blind video monitoring [12].    

Lifelogging the physical activity (PA) of an elderly person is vital for monitoring the health 

of a person. Initially attempts to capture data were performed by an external camera; 

however, this was considered an invasion of privacy [9]. Over recent years, various wearable 

trackers have been developed to monitor physical activity. Sensors such as, FitBit, Nike+ 

Fuelband, are gaining more attention publicly as they can record information such as heart 

rate and calories burnt [9]. Due to the heterogeneous nature of data sets, lifelogging PA 

data is generally more challenging to handle. Traditional methods require machine learning 

algorithms and sensors to analyse the PA, activity patterns and level of intensity. However, 

these methods analyse human behaviours from raw sensor data [18], [19]. With the purpose 

of maintaining a high accuracy when logging PA data, sensors may have to be worn on the 

body. These are not often cost-effective solutions in real environments [20].  

Aguiar [21] presents an accelerometer-based approach for fall detection using smart 

phones. The paper mentions the necessity for monitoring fall detection as 40% of all 

mortality in older persons is caused by falls. It has also been discovered that a previous 

faller has a two-thirds probability of falling again within the next year. As a result, reliable 

fall detection and emergency assistance notification are required in order to provide suitable 

care and to increase the quality life of the elderly. The application itself is designed for 

android smartphones and aims to distinguish falls and typical activities of daily life (ADLs). 
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Aguiar [21] has designed the application to run as a background task on the smartphone, 

in order to monitor all of the userõs movements to detect a fall. The system will sound an 

alarm if a fall is detected as well as providing an SMS message to a set list of contacts. The 

proposed solution for the application considers an algorithm based on a state machine. The 

algorithm recognizes the stages of a fall and will trigger an alarm if the stages are recognized 

in the correct order. Transitioning between stages is performed by monitoring changes in 

the computing signals, using offline classification algorithms to obtain thresholds 

Table 2-2: Internet of Things Enabled Technology for Monitoring AMB in Elderly People 

Type of 
Symptoms 

Sensors Algorithms Applications Advantages Disadvantages 

 

 

 

Wandering 

Wrist Worn Activity 
Monitor [18], [19], 

[22] 

Algase Wandering 
Scale [22] 

Wandering 
Behaviour Framework 

[22] 

Wrist worn devices can 
provide constant activity 

monitoring. 

Wrist worn sensors could be 
considered an irritant. 

Step Counter [22] Cycles Algorithm  
[23] 

Endomondo [18], 
[19] 

Step sensors could 
determine wandering 
based on a constant 
increase of steps. 

Sensor is required to be 
worn and could be 

forgotten or be considered 
irritating. 

Heart Rate Monitor 
[22] 

Activity Pattern 
Recognition [24] 

Moves [9], [18] Heart monitors can 
monitor increases in heart 
rate to determine activity. 

Heart rate can increase and 
decrease due to a number of 

factors, leading to 
inconsistent results 

GPS [23], [25], [26] Eulerian Cycles [25] iWander 
Application [26] 

GPS allows the 
movements of a person to 

be easily monitored 

Requires the devices to be 
on the person at all times. 
Could provide inconsistent 

data if forgotten. 

Tri-Axial 
Accelerometer [24], 

[27] 

 SIMPATIC [25] Increased speed in data 
collection. Produces 

results along all three axes. 

Device has to be varied on 
the personõs body. Can be 

forgotten or could lose 
connection if device is 

wired. 

 

 

Falling 

Tri-Axial 
Accelerometer 
Algorithm [27] 

 

Floor Sensor [28] Event Detection and 
Segmentation [28] 

Fall Detection 
Application [29] 

Can accurately detect a 
person falling on the 

floor. 

Could detect other objects 
falling onto the floor, 

providing inaccurate results. 

Accelerometer [21], 
[29]ð[31] 

Discrete Wavelet 
Transform [29] 

Android 
Smartphone 

Application [21] 

Can detect sudden 
movements involved in a 

fall. 

Device could be dropped, 
producing a fall result. 

Pulse Sensors [30], 
[32] 

State Machine Based 
Algorithm [16] 

Pulse Wave 
Smartphone 

Application [32] 

Pulse sensors can notice 
changes in heart rate, 

which could signal a fall. 

Device can be forgotten by 
person, leading to a gap in 

data collection. Other 
factors can also cause 
changes in heart rate. 

 

The method proposed by Kim [24] uses tri-axis acceleration sensors to digitalize the 

behaviour of the elder by monitoring daily activities. Activities are categorised as Low and 

High level. Low level refers to physical movements such as walking, running and lying. This 

data can be detected with sensors as they can recognize when the subject moves and how 

long the subject has moved. High-level activities are predicted by time and place, for 
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example sleeping. This information is unreliable, as it requires some guesswork on the part 

of the researcher as it is difficult to recognise the activity through the raw sensor data.    

    Yavuz [29] proposes a fall detection system for android smartphones that incorporates 

different algorithms and accelerometers on the phone in order to create a robust fall 

detection system. Yavuz suggests that using a 1-D Fourier frequency is not sufficient for 

detecting falls using accelerometer signals. The alternative proposed is the wavelet 

transformation method as this allows for temporal localization of frequency components.   

    Discrete wavelet transform (DWT) is able to yield a multi-scale representation of discrete 

signals, which are formed by applying analysis filters to the original signal. For their 

application, Yavuz [29] uses DWT as a feature extraction method. The DWT method is 

applied to a discrete acceleration signal provided by the accelerometer integrated into the 

phone. If the values of the coefficients that are extracted from the accelerometer are above 

the threshold, then a fall is detected. The application is designed for users who may be 

susceptible to sudden falls like the elderly, those with epilepsy or mild cognitive impairment 

such as dementia sufferers. It allows alerts to be sent to carers as well as to contacts over 

social media should a sudden fall occur.  

    Fall detection solutions can have their disadvantages. One example being the òSocial 

Alarmó [28] as this requires the user to press a button. After a fall, a person could be 

unconscious or panicked and as a result unable to press the button to alert a carer. The 

most popular solution, the wearable fall detectors that are based on accelerometers and tilt 

sensors, require the person to wear the device constantly, such as in the shower where the 

risk of a fall is greatest [28]. 

    Video based analysis techniques rely on image processing of a personõs movements in 

real time. The video system must be able to detect objects, extract features such as speed 

and be able to determine if a human fall has occurred. However, this presents challenges, 

as it can be difficult to monitor an entire house and this technique has a number of privacy 

concerns [28]. However, in situations where it can be deemed appropriate, video can 

provide more information than simple motion related data. The example given in [12] is 

the problem of ensuring elderly people have sufficient nutrition as they can sometimes 

forget to eat. In this situation, video capture could be used to monitor body mass changes. 
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2.2.3. Anxiety 

Miranda et al. [33] proposes an application that detects anxiety through wearable sensors. 

Three devices are employed to monitor heart rate and spontaneous blink rate. The custom 

application was developed to transfer data produced by Google Glass and a Bluetooth 

zephyr HxM band to a server. The set-up involved a dedicated router to reduce transfer 

delays and other common issues found in scholar networks in order to prevent data loss 

during data transfer between application and server. Miranda et al. coded their algorithm 

in Java based on the approach by Ishimaru [34] with some minor modifications. Sensor 

readings were tracked to detect when data hits a peak value to identify the blink event. 

When a peak was detected, it would be recognised as a blink. 

The Google Glass application proposed by [33] allowed data to be gathered by the IR 

sensor in order to detect agitation through blink rate. The IR sensor measures the distance 

between the device and the userõs eye and can determine a blink event as a result. However, 

the disadvantage of this could be due to the requirement to wear the Google Glass device 

constantly in order to establish when the person is agitated, and this requirement itself 

could agitate the user. This method could also be seen as unreliable as the user could 

experience sudden relaxation which could affect results, as pointed out in [33]. 

Bankole et al.[35] uses body sensor networks for continuous longitudinal agitation 

assessment. A multi-trait-multi-method approach is used to test the validity of the body 

sensor network. Three clinical instruments (Aggressive behaviour scale, Cohen-Mansfield 

Agitation Inventory, Mini Mental State Examination) with strong validity and reliability 

were used as benchmarks to test convergent and discriminant validity of the BSN. 

The TEMPO3 network proposed by Bankole [35] consists of up to eight wireless 

inertial body sensors that gather data from persons while they perform normal daily 

activities. The motion capture capabilities provided by TEMPO allow for six degrees of 

freedom, sensing at arbitrary frequencies with 12-bit resolution. This enables higher 

resolution analyses of personsõ movements and potentially higher precision assessments of 

agitation, as it is essential to differentiate normal movement from agitated movement. 

Battery life on the devices is limited to ~5 hours when all six sensors are streaming the raw 

data via a Bluetooth transceiver. When the gyroscopes are turned off, the battery life 

increases to ~9 hours. This is done as only the accelerometers are used in the study by 

Bankole [35]. Local storage of the data instead of transmitting it wirelessly increases the 

battery life further, which would be permitted in a clinical deployment of the system.  
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Lu et al. [36] studied stress associated with the cognitive load experienced by a 

participant during a job interview as an interviewee and conducting a marketing task as an 

employee. Neutral tasks were also considered, where participants are not under stress. 

These three tasks are designed with the help of behavioural psychologists. As with SUSAS 

(Speech under Simulated and Actual Stress) and other previous studies [37]ð[39], it is 

assumed that the subjectõs voice is stressed once the stressor is present and reading without 

the stressor is neutral. Audio was continuously collected using a Google Nexus One 

Android smartphone and a microcone1 microphone array. In addition to audio data, video 

cameras record the interviewer and interviewee. In addition to capturing stressed audio, we 

also collect audio data from neutral scenarios where participants are not stressed. In neutral 

scenarios, participants had to read both indoors and outdoors. The reading materials are 

simple stories that are often used to study different accents in languages. 

Table 2-3: Internet of Things Enabled Technology for Monitoring Anxiety and Agitation in 
Elderly People 

Sensors Algorithms Applications Advantages Disadvantages 

Heart 
Monitor [33] 

Blink Event 
Algorithm [33] 

Google Glass 
Application [33] 

Heart monitors can 
monitor increases in heart 
rate to determine activity. 

Heart rate can increase and 
decrease due to a number of 

factors, leading to inconsistent 
results 

Body 
Sensor Network 

[35] 

Peak 
Detection [40] 

StressSense 
[36] 

A sensor network can 
perform constant 

monitoring of activities. 

Relies on the person to 
remember to wear the sensors. 
Persons could be irritated by 
wearing devices constantly. 

Video 
Monitoring [12] 

Joint Time-
Frequency 

Algorithms [35] 

TEMPO3 [35] Video monitoring is 
accurate in detecting signs 

of agitation. 

Privacy concerns can 
outweigh the benefits from using 

video monitoring. 
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2.2.4. Depression 

Gruenerbl et al. [41] gave each participant an Android smart phone that ran a logging 

application developed by their group. The application contained two major components; a 

data logger (using the standard Android API) with the person having the option of turning 

off the logging at any time and a self-assessment questionnaire (set to pop up at the end of 

the day). After finishing the questionnaire, the person would be asked whether they were 

comfortable with logging the dayõs data. The data would be stored on an SD card and was 

copied during the periodic examination and stored in a form that would not reveal the 

personõs identity to the researchers working on the data later on. Clearly, in a òproductiveó 

system the data would need to be transmitted wirelessly at the end of each day. However, 

for the purpose for the research by Gruenerbl et al. [41] the SD card option was more 

reliable and allowed us to simplify data security issues.  

Canzian [42] uses the Android application MoodTraces that automatically samples 

phone sensors to retrieve the current location, which is represented by a time reference, a 

longitude value, and a latitude value. Additional information about the phone usages and 

user activities extracted using the Android API are also collected, but they are not analysed 

directly in this work, given its specific focus on mobility pattern analysis. Activity 

information is also used to optimize the sampling process. In addition to sensor-based data, 

MoodTraces collects the answers that the users provide to daily questionnaires.   

Burns [43] used a single-arm field trial of Mobilyze, an 8 week multimodal intervention 

for depression that included 1) mobile phone sensing and ecological momentary 

intervention 2) an interactive website for behavioural skills training and 3) email and 

telephone support from a coach assigned to each participant. The context aware system 

used an architecture consisting of 3 phases. Phase 1 uses sensors that are housed on the 

mobile phone to perform observations of the participants and their environment. Phase 2 

used an algorithm to inductively learn the relationship between the sensor data and the 

participants recorded social context, activity, location and internal states. Phase 3 consisted 

of action components that provided mechanisms for relaying predictions to other external 

outreach applications. 

There are several sleep monitoring systems on the market to date that can aid in the 

detection of depression [44]. Polysomnography devices are the most accurate however, the 

drawbacks to these devices include the expensive price tag as they require monitoring from 

professionals, and they must be worn. A solution to this is to use three independent tri-

axial accelerometers to send data wirelessly to be processed by a laptop.  This allows for 
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the amount of deflection to be determined when a personõs weight is applied to the 

mattress. If deflection exceeds a predetermined threshold then movement has occurred. 

An advantage of this approach is that the true orientation of the accelerometer does not 

have to be determined in order to measure movement. Monitoring can also continue even 

if the sensors have been knocked out of place. Other advantages to this method are that 

noise is eliminated, and there is increased scalability and lower storage requirements due to 

the fact only discrete events are stored [44]. 

Table 2-4: Internet of Things Enabled Technology for Monitoring Depression in Elderly People 

Sensors Algorithms Applications Advantages Disadvantages 

Sleep 
Monitoring [44] 

Formant 
Tracking 

Algorithm [45] 

Touchscreen 
driven UI [44] 

Amount of sleep can 
signal whether someone is 

depressed 

Wearing the sensor 
overnight could be irritating for 

the person. 

Video 
Monitoring [45] 

Dictionary 
Learning 

Algorithm [45] 

Daybuilder 
[46] 

 

Video monitoring is 
accurate in detecting signs 

of depression. 

Privacy concerns can 
outweigh the benefits from 

using video monitoring. 

Audio 
Monitoring [45], 

[47] 

Minimal-
redundancy-

maximal-relevance 
[47] 

BBD Android 
Application [48] 

Voices of depressed 
persons have specific 

characteristics that allow 
for detection of symptoms. 

Also non-invasive and 
portable. 

If sensor is forgotten then 
data collection cannot be 

performed. 

Body 
Sensors [43] 

Machine 
Learning 

Algorithms [43] 

Mobilyze [43] A sensor network 
can perform constant 

monitoring of activities. 

Relies on the person to 
remember to wear the sensors. 
Persons could be irritated by 
wearing devices constantly. 

 

2.2.5. Sensor Fusion 

A significant number of studies have been carried out into multiple sensor based activity 

recognition [49]. Results, typically, have a high accuracy and there is a low computational 

load on each sensor. However, the battery consumption of the devices is high when 

communicating wirelessly. The drawbacks of using a single accelerometer are due to the 

inability to distinguish an activity as mentioned by [50]. This is addressed by placing 

multiple accelerometer devices across the participantõs body, or by combining 

accelerometers with other sensor types such as GPS in an attempt to improve accuracy. 

Classifying physical activity using features extracted multiple sensors or a network of 

accelerometers have typically made use of the K-nearest neighbour (KNN) and naïve Bayes 

(NB) techniques. 

Using an SVM algorithm to fuse data collected from various sensors is investigated by [50] 

in order to more accurately determine the physical activity. This is done using SVM as it 

can calculate a decision boundary to separate activities from one another. For multiple 
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activities, they take a òone against oneó approach to separate them and produce a model 

for each. Each model produced will be tested against a data point, which will then receive 

a vote to decide which activity should be associated to it. The activity with the majority of 

votes will be identified as the new data point that the activity is associated with. 

A system based on a network of multiple wireless-interconnected-medical sensors is 

proposed by [51]. This set-up allows for the collection of medical data from typical daily 

activities. They note that the typical solution of a single versatile system is less flexible and 

takes longer to design and implement. Instead, the multi-sensor solution provides the 

benefit of the components being ready to use.  

Bluetooth was the wireless system used as is the standard [51] for ACOR+ kinematic 

system. This system combines a tri-axis accelerometer, a microcontroller for processing 

signals and Bluetooth for wireless communication. The device can be worn on the hip 

during the day using a belt clip, or on an adjustable chest belt for night-time monitoring. 

Participants wore the ACOR+ on their hips for 8 hours during the daytime to record their 

activities. 

Participants were fitted with an ActiGraph uniaxial accelerometer and a custom designed 

activity monitor based on the IDEEA monitor for a study by [52]. The custom activity 

monitor consisted of an array of five accelerometers attached to the skin in multiple 

locations on the body and connected to a hip pack for data for recording. An ANN 

approach was used to create the model from raw acceleration features. Around 112,000 

minutes of data were used to train the model, collected from 102 subjects. Only 81 subjects 

produced data from both the IDEEA and ActiGraph devices.  

Four ShimmerTM wireless sensors were used in [53] study. Each sensor was attached to 

the chest, left under-arm, thigh and waist on each of the eight participants. The eight 

participants were asked to perform a series of eight activities in the home which are 

identified by [53] and were repeated three times. The tri-axial accelerometer data had a 

sample rate of 200 Hz and a 12-bit resolution. Data was transmitted via Bluetooth through 

a wireless body area network allowing the four sensors to transmit simultaneously. Five 

classifiers, ANN, KNN, Naïve Bayes, Decision trees and SVM were compared using the 

data set produced from the accelerometers. The accuracy of the classifiers was evaluated 

using a 10-fold cross-validation.  

Data from twenty participants was used in an experiment by [54]. Data was collected from 

accelerometers located on the hip and wrist of the participants while they performed a 
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series of typical daily activities. The sampling rate of the devices was set to 76.25Hz and 

data was collected for 54-131 minutes under experimental conditions and 82-160 minutes 

under semi-naturalized conditions. A leave-one-subject-out cross-validation approach was 

used during the classification of features extracted from the raw accelerometer data [54]. 

Nineteen data sets were used in the training of the data set, with the process repeated for 

all twenty subjects. Activity recognition is achieved using just the sensor on the hip and 

wrist, fusion of the features from the two sensors and finally from using a Naïve Bayes 

classifier to fuse the classification results. 
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2.3. Processing Layer 

Signal information received from the sensors is stored and analysed in the processing layer. 

Here the data is pre-processed before feature extraction can be used. The resulting features 

are then classified in order to determine PA. 

2.3.1. Data Pre-Processing 

Typically, in PAR, time-series segmentation methods are used in order to match PA 

patterns obtained from multiple sensors on the body or in the environment, which are 

consecutively activated. Data sets produced by the sensors are broken down with temporal 

series using time windows. There are two common algorithms used for breaking down PA, 

they are the sliding window algorithm and the Sliding Window and Bottom-up algorithm 

[55].  With Sliding Window, the left point of a potential segment is anchored at the first 

data point in the time-series. Using increasingly longer time segments, it then attempts to 

approximate the data to the right of the anchor. The algorithm is simple and intuitive and 

is also an online algorithm, which is the main reason why it appeals to the medical 

community for patient monitoring. 

The sliding window algorithm, is mostly employed using fixed temporal segments that can 

be over-lapping and non-overlapping [56]ð[60] and can be seen in Figure 2-3 below. Non-

overlapping instances of time windows are comprised of varied lengths of input [61], [62]. 

This splits the activity up with continuous signals from sensors and can produce the wrong 

output as a result. Overlapping instances of sliding window with 50% [59], 75% and 90% 

overlapping [63] tend to produce a higher accuracy for PAR as the amount of overlap 

increases, however this can be more resource intensive. 

Dynamic segmentation of activities does not use a fixed length for the time window. 

Instead activities are extracted from the data when they are detected during evaluation [64]ð

[67]. This approach allows for the continuous segmentation and aggregation of data on a 

timeline allowing for continuous on-going PAR. User specified thresholds [65] and 

heuristic probability approaches [66] are typically used for dynamic segmentation of time 

windows. Sliding window and bottom up algorithm is an approach that combines the two 

algorithms to produce higher accuracies in results; however, it is a more complicated 

approach [55]. It is an online approach due to the inclusion of the sliding window algorithm 

and allows for the global view on the data collected. The method has successfully been 

applied to gesture identification and activity recognition studies using accelerometers and 

gyroscopes [68]ð[70]. 
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Figure 2-3: Time window segmentation 

Many of the existing studies in literature display a high accuracy for recognition using online 

methods of time segmentation. The issue many studies attempt to deal with is the window 

sizes, which can be based on the signals or the environment. Misclassification of activities 

can occur on short (2s ð 6.7s) and long-time (10s ð 12.8s)  static windows, especially on 

transitional activities [64]. This may be due to transitional activities taking longer to 

complete than dynamic or static activities. Long-time windows can also lead to 

misclassification due to multiple activity signals and redundant information. Shorter 

windows can lead to key information being lost resulting in an inaccurate classification [59]. 

However, many studies that incorporate a static sliding window do achieve a high degree 

of accuracy, while Dynamic sliding window techniques do improve accuracy but come at 

an increase in computational complexity [59]. 

2.3.2. Feature Extraction 

Feature extraction is the process of extracting useful features from a data set in order for 

them to be classified. Signals from sensors are analysed in order to remove redundancy and 

produce distinguishable features that can be used to classify activities. Four types of 

features have been categorised and used throughout the literature, these can be found in 

Table 2-5. 

Table 2-5: Feature types that can be applied to PAR. 
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Feature Type Extracted Features 

Time Domain  Mid-value, Minimum, Maximum, Standard Deviation, 
Average, Range, Variance and Root-mean square, Correlation, 
Covariance 

Frequency Domain Spectral Energy, Entropy, Coefficients, DC Component, 
Magnitude, Peak Amplitude, Skewness, Kurtosis 

Biometric Domain Cepstral features, R-Peaks 

Other Linear Discriminant Analysis, Principle Component Analysis, 
Dynamic Time Warping 

 

Time domain features are statistical metrics that occur randomly in constant signal changes 

over time. Typical features of time domain are mid-value, minimum, maximum, standard 

deviation, average, range, variance and root-mean square [71]. Calculating the average can 

be used to smooth any outlying data from a signal. Variance describes the distance from 

the expected mean value [72]. Standard Deviation is used to determine the spread of the 

data points from the average value [73]. Root mean square is a quadratic classification that 

is typically the most significant parameter of a wavelet function that can be used for 

extracting features of dynamic activities [74]. Rybina et al. [75] used correlation coefficient 

to identify the activities; hopping, running, jumping, balancing and skipping which were 

collected using four accelerometers attach to the arms and thighs. Wang et al. [71] uses 

time-domain features on accelerometer data to identify: staying still, walking, running, going 

upstairs and going downstairs. A tri-axial accelerometer embedded in a smart phone was 

used to collect the data. Gan [76] places a smart phone on the participants arm, containing 

a tri-axial accelerometer. They perform a hammering activity with three different degrees 

of force. Mean and standard deviation are applied to the signals generated. Time-domain 

features are easy to process and can be time saving however, they cannot describe states of 

motion accurately [77]. 

 

Frequency domain features are typically extracted using Fast Fourier Transform (FFT) by 

transforming the time domain signals into the frequency domain [78]. An FFT output 

creates a set of base coefficients in order to represent the amplitudes of the frequency 

component of the signal and its distributed energy. Spectral Energy, Entropy [79], 

Coefficients [78], DC Component [80], Magnitude [81], Peak Ampltiude [76], Skewness 

and Kurtosis [72], [82] are examples of frequency domain features. Spectral energy is the 

sum of the FFT coefficients. Entropy is calculated using normalized entropy of FFT 

magnitudes of the signal in order to distinguish different activities with similar energy values 
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[79]. DC Component is the average acceleration value of the input signal over the window 

[81]. These features have been linked to activities such as walking and running. Only the 

frequency content of a signal can be extracted using FFT analysis. However, wavelet 

analysis can be used to extract time and frequency-based features from a signal. It can be 

formulated using a continuous or discrete wavelet transform [77], [78]. Discrete wavelet 

transform uses a set of base functions which decompose a signal into detailed and 

approximate signals based on the original [83]. A continuous wavelet transform provides a 

signal decomposition at different scales [84]. Walking, jogging, running, standing are 

examples of activities that have had wavelet transformation applied to them [77], [83]. 

When it comes to biometric signals, methods of feature extraction applied to the time and 

frequency domains are limited in their capabilities. One solution is the use of Cepstral 

domain features which can be used to analyses ECG signals for PA detection [85] or for 

recognising speech information [86]. Calculating Cepstral domain features involves using 

short fixed length windows for processing, and as a result it does not require a pre-

processing step for segmenting and normalizing heartbeat signals [85]. R-Peak detection is 

another feature that can be used on ECG signals [87], [88]. R-Peaks involve detecting the 

peak of the R-wave, which represents the ventricular depolarisation of a heartbeat, the most 

distinguishable feature of the ECG signal. The Pan-Tompkins method can be used in R-

Peak detection as demonstrated by [87]. 

Linear discriminant analysis (LDA) which is a process that involves reducing feature 

dimensions in order to reduce computational complexity [88] and for classification 

purposes [89]. The optimal discrimination matrix is chosen from the ratio maximization of 

the determinant of the between and within-class scatter matrices [90]. LDA can be applied 

to transitional activities, walking, running and static activities. Principal component analysis 

(PCA) can be used to identify a smaller number of uncorrelated variables within a large 

data set [91]. This results in the reduction of the data set size without any significant loss 

of information. The average, variance and covariance of the data set are required in order 

for PCA to work. Lahiri et al. [92] applies PCA to the data set obtained from using a 

Microsoft Kinect sensor. This recorded chest pain, fainting and headache related activities. 

Dynamic time warping (DTW) is an approach that recursively projects a warp path from a 

lower resolution to a higher resolution and refines it at each step until the optimal match is 

found [93]. The three main steps defined, involved shrinking the time series in smaller steps 

in order to represent the same curve with optimal accuracy and fewer data points, 

projecting a warp path from a lower resolution to a higher one and finally refining the warp 
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path projected. DTW has been applied to several human activities such as waving, clapping, 

walking [93], rowing, boxing, sitting [94].  

Many studies extract time-domain features from their signals, as the data is easy to process, 

can be time saving and can be extracted in real time. However, time domain features alone 

canõt describe states of motion accurately [77]. Frequency domain features can produce a 

higher accuracy compared to time domain features, however, this leads to an increase in 

computation in order to differentiate between different activities [83]. As a result, studies 

have taken to using wavelet models as the incorporate both time and frequency domain 

features in order to improve accuracy [83], [84].  

2.3.3. Classification 

Classification and clustering are essential aspects of machine learning and vital for the 

classification of activities. Supervised learning techniques, as outlined in Table 2-6 appear 

frequently in previous studies on PAR. Unsupervised and semi-supervised techniques have 

also been adopted for some studies. Supervised learning techniques train their models on 

data sets that have been labelled with the desired outcome information, i.e. the activities 

we are trying to recognise. Unsupervised techniques do not contain labels in the data set 

while semi-supervised contains mostly unlabelled data but can include some labelled. 

Table 2-6: Supervised learning techniques used in AR 

Classifier Reference Sensors Used Activities Accuracy 

ANN  [95] Video Recording Walk, run, stumble, limp, forward, 
backward and sideways falls, bend, sit and 
lie 

83.33 ð 96.66% 

[96] 3D Accelerometer and 
Gyroscopes 

Five data sets containing, walking, 
walking up and down stairs, sitting, 
standing etc. 

96 ð 100%, 94 ð 100%, 
65 ð 97%, 83 ð 96 %, 60 
ð 97% 

[97] Video Recording Shop enter, exit, re-enter, window 
shopping, browsing, immobile and 
walking 

60 ð 98% 

[98] Single-channel electrodes Pinch, finger spread, fist, wave in, wave 
out, relax 

89.4 ð 96.4% 

[99] Video Recording Walking, Running, Jumping, Tripping 92 ð 100% 

[100] 77 Simple and Ubiquitous 
Sensors in an apartment 

Bathing, cleaning, laundry, dressing, going 
to work, grooming, preparing a: beverage, 
snack, breakfast, lunch, dinner, going to 
the toilet, washing dishes 

1.02 ð 19.98% 

2.02 ð 20.2% 

1.01 ð 19.96% 

DT [101] iGwatch Standing, walking, running, walking 
upstairs and down-stairs 

83.6 ð 98.4% 

[102] Nokia Motion Wristbands 
and PDA 

Walking, lying, sitting, standing, bicycling 
and running 

79 ð 100% 
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[103] Tri-axial accelerometer Standing, lying, walking, sitting and 
dining, sitting and non-dining 

81.1% 

[104] Tri-axial accelerometer 15 activities split into 5 categories 
including walking, running, sitting and 
lying 

84 ð 100% 

SVM [105] Actimeters, Microphones, 
PIR, Door contacts and 
environmental sensors 

Sleeping, resting, dressing, eating, toilet 
use, hygiene and communication 

80 ð 97% 

[106] Video Capture Walk, Run, Stumble, Limp, Forward Fall, 
Backward Fall, Sideways Fall, Sit, Lie 

83.33 ð 95% 

[107] Inertial Sensors & 
Barometer 

Walking, Upstairs, Downstairs, fall, run, 
lie, sit, stand 

96 ð 100% 

[108] Smartphone sensors Sitting, standing, walking, upstairs, 
downstairs, lying 

56.97 ð 100% 

Naïve Bayes [109] Infrared Camera Walking, running forwards/backwards, 
carry gun, carry backpack, dropping, 
searching, digging. 

76% 

[110] EEG electrode position 
system 

Emotions happy and unhappy 36 ð 75% 

[111] Tri-axial accelerometer Sitting, Standing, Lying, Walking, Walking 
upstairs 

36.1 ð 100%, 60 ð 
100%, 53.13 ð 100%, 
57.14 ð 100%, 61.7 ð 
100% 

[112] Tri-axial accelerometer Walking, jumping, running, sit-to-
stand/stand-to-sit, stand-to-kneel-to-
stand, standing 

95-6 ð 99.1% 

HMM  [113] State Sensors Bathing, toileting, going to work, 
preparing lunch, preparing dinner, 
breakfast, dressing, grooming, preparing a 
snack, beverage, washing dishes, doing 
laundry, cleaning, washing hands, putting 
away dishes/groceries/laundry, watching 
tv, going out, lawn work. 

0 ð 100% 

[114] Video Monitoring Rush, Carry, Bend, Walk 85 ð 95% 

[115] Stereo Camera Left-hand up-down, right-hand up-down, 
both hands up-down, boxing, left-leg up-
down, right-leg up-down 

87.5 ð 95% 

[116] Kinect Sensor Stand, sit, drink, talk, read, stretch, 
akimbo, come, follow, stop, walk 

88 ð 100% 

 

a) Artificial Neural Network  

Artificial Neural Networks (ANN)  are a method of classification that can be found in many 

studies for activity classification [117]. They are data driven methods, that are also self-

adaptive, meaning they can adjust to the data without any specified functional or 

distribution form in the underlying model [118]. ANNs are designed to simulate the 

biological neural networks in the brain and how they process information. ANNs learn 

from the patterns and relationships they detects in a data set and can produce high accuracy 

from large data sets. The network, as shown in Figure 2-4 is made up of neurons, which 
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transmit a signal to a connecting neuron for processing. The connections and the neurons 

typically have a weight associated to them that increases or decreases the signal strength at 

the connection as the network continues to learn. An ANN is comprised of multiple layers, 

the first being the input layer and the final layer being the output. Signals may traverse the 

hidden layer in between those two points where data transformation may occur on the 

inputs. Appendix A displays a simple prototype neural network that contains the back-

propagation, feedforward calculations and weight adjustments in order to aid in 

understanding how a neural network functions.  

Within the hidden layer, the summation of the inputs and the weight are added to the bias. 

The bias is an additional weight, but it is also a constant, which exists to help the model to 

provide the best fit of the provided data. The summation of inputs and the bias can be 

defined below where ὼ are the inputs to the neuron, ύ are the weights, ὲ are the number 

of inputs and Ὥ is a counter from 0 to ὲ.     

ύὼ ὦὭὥί 

Equation 2-1: Neuron calculation for ANN. 

ReLu activation functions can be used to calculate a neurons decision, and is the most 

common activation function to be used in classification models. The function will return 

the value ὼ for any positive value it calculates, and will return 0 if it receives any negative 

input. 

Ὢὼ ÍÁØ πȟὼ 

Equation 2-2: ReLu Activation Function 

Backpropagation is a method used for updating the weights using gradient decent. The 

partial derivative of the error with respect to ύ is subtracted, with ὥ representing the 

learning rate. The calculation proceeds backwards throughout the network, and the 

derivation of error is evaluated by applying the chain rule.  

ύ  ύ ὥ
Ὁ

ύ
 

Equation 2-3: Calcuation for Backpropogation of Weights 
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Figure 2-4: Example of an ANN feedforward network 

 

Figure 2-5: ANN Neuron  

 

A fall detection system that attempts to extract features from video sequences was 

proposed by [95]. 24 participants were used to perform 10 activities such as walking, 

running and a variety of falls. Video recordings of each activity were collected in order for 

their neural network to be applied for classification. Accuracy of the classification ranged 

from 83.33 ð 96.66%. Neural networks were applied to 5 different data sets that were 

acquired by [96] that collected data of various activities in different environments. Sensors 

included 3D accelerometers and gyroscopes. Activities included walking upstairs and 

downstairs, running, jumping and standing. Their neural network achieved various degrees 
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of accuracy on each data set, with one set achieving 94 ð 100% and another achieving 65 ð 

97%.  

b) Decision Trees 

Decision Trees (DT) are trees where the inputs from data sets can be used for tests on the 

internal nodes and where the leaf nodes will be considered categories for the data sets. 

Each test is filtered down through the tree in order to achieve the desired output of the 

input set [119]. DTs aim to break up complex decisions into multiple smaller, simpler 

problems through a multi-stage approach. They consist of nodes that are formed from the 

òrootó of a tree. The root being a node that has no input edges [120]. Nodes that have 

outgoing edges are known as test nodes, with the decision nodes being known as leaf nodes. 

All nodes have exactly one incoming edge, represented by an arrow in Figure 2-6 below. 

The leaf node is assigned to one class, and represents the target value; however, it may also 

hold a probability vector in order to indicate the probability of a target value.  The test 

nodes split the DT instance into two or more subspaces according to the values from the 

input. Each subspace has a condition associated with it that must be met in order to classify 

the incoming data, for numerical values, the condition represents the range of input values. 

The DT instance is classified by navigating the tree from the root down to the appropriate 

leaf depending on the results from each of the test nodes and conditions.  

DTs are attractive compared to single-stage classifiers as a tree classifier can reduce 

unnecessary computations by only testing a sample against certain class subsets [121]. They 

are also fairly flexible and have the ability to choose different feature subsets at different 

internal nodes of the tree in order for the discrimination of feature subsets to be performed 

optimally, potentially providing a performance increase. However, designing an optimal 

tree may prove difficult and this can affect the overall performance of the classifier. There 

is a risk of overlap, particularly when there is a high number of classes in the tree. Errors 

also have the potential to accumulate as progression down the tree is made.  

We calculate entropy, which is how a decision tree decides how to split its data, thus 

drawing the boundaries of the tree. Ὓ represents the boundaries of the tree and ὴ is the 

probability of an element of the i-th value in the data set. 

ὉὛ   ὴ ὰέὫ ὴ 

Equation 2-4: Entropy calcuation for DT 
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From the entropy, we can calculate the information gain represented by ὍὋὛȟὃ. This is 

a measure of difference in entropy from before the data set Ὓ is split on the attribute ὃ. 

ὍὋὛȟὃ ὉὛ ὖὭὉὃ ὉὛ ὉὛȿὃ

ᶰ

 

Equation 2-5: Information Gain calculation for DT 

 

Figure 2-6: A Simple Decision Tree Example 

An activity recognition method using data collected from a smart watch is presented by 

[101]. A CART decision tree is used for behaviour classification, with the output decisions 

being either true or false. An iGwatch is used to collect data from ten participants. 

Participants performed standing, walking, running, walking upstairs and down stairs 

activities achieving an accuracy of 83.6 ð 98.4%. An automatic activity recognition system 

using a PDA and wireless motion bands is evaluated by [102]. The Nokia wireless motion 

bands contained 3D accelerometers and transmitted the activity data via Bluetooth to the 

PDA for classification. Seven participants performed walking, lying, sitting, standing, 

bicycling and running activities. Collected data is fed into one of four nodes of the decision 

tree classifier. The DT classifier achieved accuracies of 79 ð 100%. Tri-axial accelerometers 

were worn on the right and left wrist and on the waist in order to collect motion data in 

the study by [103]. Participants performed standing, lying, walking, sitting and dining, sitting 

and non-dining for various degrees of time. A 5-second window is applied for feature 

extraction, with five features being extracted from data. DT was implemented to classify 

the activity data from all three sensors achieving an accuracy of 81.1%. Fifteen participants 
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using three tri-axial accelerometers performed eighteen activities for [104]. Activities 

included walking, sitting, lying and running and were performed for 45 seconds each and 

repeated twice. Mean, energy, entropy and correlation features were extracted from the 

acceleration data. Activities were split into five categories before classification using DT, 

which involved a leave-one-subject-out approach. Accuracy rates achieve range from 84 ð 

100%. 

c) Support Vector Machine 

A Support Vector Machine (SVM) is a supervised learning model which, takes advantage of 

the plane concept to describe decision boundaries [122]. The decision plane separates a 

series of objects that belong to different classes. Classification is achieved through the 

creation of hyper-planes in multi-dimensional spaces. SVM can support categorical and 

continuous variables for classification and regression. Categorical variables are determined 

using a dummy variable, which is set to either 0 or 1. The SVM algorithm then develops 

the optimal hyper-plane to reduce the error function.  

SVMs are a type of pattern classifier that minimizes the empirical training error and are 

based upon the structural risk management principle [123] . They have demonstrated an 

ability to generalize effectively when dealing with small samples of training data compared 

to ANN. A hyperplane, as shown in Figure 2-7, is constructed by SVM which is used to 

classify linearly separable patterns [124]. They aim to minimize the upper bound of the 

generalization error by maximizing the margin between the data at the hyperplane that 

separates it in order to correctly classify a given pattern. The larger the margin size, the 

more accurate the classification of the pattern. The classifier complexity and error can be 

explicitly controlled allowing the classifier to scale well to high dimensional data. However, 

SVM requires a good kernel function in order to operate optimally.  

The hyperplane of a linear SVM can be defined as follows, where  ύ is the normal vector 

to the hyperplane, with ὼ representing the set of points. 

ύϽὼ ὦ π 

Equation 2-6: SVM Hyperplane calculation. 

The decision function takes the data set as an input and gives the decision as on output, it 

can be defined as: 

Ὢὼ ίὭὫὲύϽὼ ὦ 

Equation 2-7: SVM decision function. 
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The functional margin gives the position of the data point in respect to the plane. ώ 

represents the i-th label of the training example. 

 ώύὼ ὦ 

Equation 2-8: SVM functonal margin calcualtion. 

 

Figure 2-7: SVM example displaying the hyperplane and margin 

A study by [105] uses SVM on sensor data collect from ADL. Sensors consisted of 

Actimeters, Microphones, PIR, Door contacts and environmental sensors placed around 

the home. These sensors monitored sleeping, resting, dressing, eating, toilet use, hygiene 

and communication activities performed by thirteen participants. SVM was used to classify 

the activities achieving accuracies of 80 ð 97%. A robust fall detection system that uses 

SVM for classification of activities is proposed by [106]. Video recordings in a controlled 

lab were performed on daily activities and various types of fall in order to train the 

algorithm. Forty-eight participants of different heights, weights and genders performed the 

various activities and repeated them five times. A One-Against-One method of SVM 

classification is used to identify the activities. Accuracy rates of classification ranged from 

83.33 ð 95%. Inertial sensors and barometers were used to collect activity data in a study 

by [107]. The sensors were placed on the waist of six participants in order for them to 

perform eight ADL. These included, walking, running and sitting. SVM is used for 
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classification with a 10-fold cross-validation approach being applied during the training 

phase. Classification managed to achieve 96 ð 100% accuracy. Integrated sensors in an 

android smartphone were used for AR in the study by [108]. Ten participants performed 

six activities including, walking, sitting and lying. SVM was applied in order to classify the 

activity data achieving accuracies of 56.97 ð 100%. This was due to the lying activity being 

classified as sitting. 

Naïve Bayes (NB) is a simple probabilistic classifier assuming there is a strong independence 

between the features within a data set [125]. Even as a simple classifier, it is capable of 

outperforming solutions that are more complex. There are several variations of NB that 

can be deployed; Multinomial ð which is mostly used to document classification problems, 

Bernoulli ð which is similar to multinomial but the predictors are Booleans and Gaussian 

ð where predictors are continuous values and are not discrete. NB is a suitable classifier for 

multi-sensor fusion assuming that all the features are independent from each other. Multi-

sensor fusion can be represented by the probabilities of each sensor. 

Thermal images of outdoor human activities are captured using an infrared camera in a 

study by [109]. Eight participants performed a series of activities including walking, 

running; crawling and further activities were provided in a data set. NB is used to classify 

feature vectors achieving a 90% recognition rate on recorded infrared video. In total, 

recognition was 76% when the additional data set was included. An emotion recognition 

system using EEG signals is proposed by [110]. Twelve pleasant and unpleasant images 

where shown to 26 participants. The EEG electrodes were placed on various points on the 

head for data collection. NB was one of several classification methods used and produced 

an accuracy of 36 ð 75%. A tri-axial accelerometer is employed by [111] for AR using an 

NB classifier. NB was chosen, as it was easy to implement and produced a model fairly 

quickly. One participant performed sitting, standing, lying, walking and walking upstairs 

activities. Activities were repeated and recorded at different sample rates for comparison. 

Overall accuracies ranged from 84 ð 87.8%. Two participants performed six activities while 

wearing tri-axial accelerometers in a study by [112]. All three accelerometers were placed 

on the waist at various positions. Activities included, jumping, running and walking and 

were classified using NB. Accuracies ranged from 95.6 ð 99.1%. 

A Hidden Markov Model (HMM) is a classification method that is defined by a set of states 

with interconnections between them. A set of prior probabilities for input and emission 

probabilities for the output of the states and a set of transition probabilities are typically 

defined for HMM [113]. A reconfigurable HMM is presented by [113] for AR. Data was 
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collected in a lab using 77 on/off states sensors. Sensors are activated and deactivated when 

a participant is performing an ADL. Activities included bathing, going to the toilet, washing 

hands and cleaning with accuracies ranging from 0 ð 100%. Thirty participants were 

recording performed natural activities using a stationary camera [114]. Activities included 

walking, rushing, carrying and bending. For each activity, the participant entered the 

monitoring domain, performed the activity then left the domain. Recognition was trained 

using HMM producing high accuracies of 85 ð 95%. A stereo camera is used to recognise 

activity by monitoring joint angle in a system proposed by [115]. Estimated joint angle 

features are taken from time-based activity video frames and mapped in order to create 

discrete symbols for HMM. Participants performed boxing, moving both hands up and 

down as well as individually, and moving each leg up and down. Results were compared 

against a binary silhouette-based solution. The joint angle based system outperformed the 

silhouette solution achieving accuracies of 87.5 ð 95%. A Kinect sensor is used to capture 

3-D skeleton joints in a system proposed by [116] and treats the collect activity data as a 

time series of representative 3D poses. RGB images, depth and skeletal information is 

provided by the Kinect at 30fps with a depth of 4 to 11 feet. Activities included sitting, 

standing, drinking, stretching and reading and were performed by five participants, five 

times. HMM was applied to the data for classification achieving high accuracies of 88 ð 

100%. 

K-means clustering is a partitioning based, non-hierarchical clustering method and a form of 

an unsupervised learning algorithm [59]. It begins by initializing cluster centres according 

to the distance between input feature vectors and cluster centres that already exist. Each 

centre cluster is updated by calculating the centroid of each cluster. The update occurs due 

to changes in each cluster and is repeated until the value of the centre cluster no longer 

changes. In the study by [59], K-means clustering is applied to classify fragments of 

segmented raw sensor data. However, while simple to implement [126] notes that K-means 

does not always find the global optimal solution based on the objective function and it can 

also be sensitive to the initial randomly selected cluster centres. It can also have issues 

dealing with clusters that differ in size, shape and density. As a result, for [126] study, a 

Gaussian Mixture Model (GMM) is deployed. GMMs optimize the fit between data and a 

parametric distribution. Activities in their study involved walking and running at various 

speeds and the GMM clustering applied to the data managed to obtain and 94.3%.  

Semi-supervised learning techniques involve the use of labelled and unlabelled data for 

training. Labelled data requires a human to perform the labelling, which can be expensive, 
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and time consuming and the lack of variety in the data can lead to a reduction in recognition 

performance. However, unlabelled data is fairly inexpensive to obtain and the combination 

of the two can improve the accuracy of learning [127]. Disagreement based semi-supervised 

learning techniques are discussed by [128]. This involves generating multiple classifiers and 

then exploiting the disagreement between them. The classifiers are forced to cooperate to 

utilise unlabelled data. A semi-supervised convolutional neural network (CNN) is presented  

by [129]. CNNs provide stable latent representations of each level of the network. The 

algorithm is also able to effectively identify the salient patterns of the activity signals. For 

their solution, three encoding paths are used to the labelled and unlabelled data; clean 

encoding, noisy encoding and decoding. During noisy encoding, labelled data has 

predictions applied to it using a top-level softmax classifier using cross entropy cost, while 

unlabelled data is decoded and then reconstructed to be the same as the corresponding 

clean input. Three data sets are used and have supervised and semi-supervised algorithms 

applied to them and are then compared. Supervised CNN achieved 48.68 ð 59.73%, while 

semi supervised achieved 54.90 ð 69.38%. 

2.3.4. Discussion 

Supervised learning is a well-documented approach to PAR in the literature, with many 

studies incorporating various algorithms into their approaches and achieving relatively high 

accuracies in their results. The classification methods can be simple to implement, however 

large data sets are sometimes required in order for the classification techniques to be 

successfully trained. For example neural networks may have difficulty with a weak sample 

of data however, SVM can deal with small data sets fairly well [105]. 

Data sets also require labelling in order for activities to be successfully classified. This is a 

process that can take a significant amount of time to do if the sample size is large enough. 

Humans also perform an activity in various ways, for example ð people walk at different 

speeds, and therefore it can be difficult to correctly classify activities as a fast walk could 

be misinterpreted as running. 

There are several studies documenting unsupervised and semi-supervised methods and 

their application towards activity recognition. Unsupervised techniques can be 

computationally efficient as they use clustering to generate the activity model. However, 

unsupervised techniques require a large data set in order for the underlying patterns to be 

discovered. If the data set is weak, then the patterns will be difficult to discover without 

additional supervision [128]. Semi-supervised methods take advantage of labelled and 

unlabelled data in order to produce better predictions of activities as the methods attempt 
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to address the challenges posed by supervised and unsupervised methods. If labelled data 

is limited, performance can be improved by adding unlabelled data. Many studies into semi-

supervised methods have made the assumption that feature engineering has already been 

performed [129]. As literature on unsupervised and semi-supervised methods is limited, 

more research needs to be performed on these methods, particularly on long-term activity 

monitoring in order to improve the accuracy of the techniques so they can compete with 

supervised learning methods.  

  



37 
 

2.4. Application Layer 

PAM can be applied to many areas of health care (such as elderly people monitoring) 

through the use of a variety of sensors (ambient sensors, wearable devices, smart phones). 

This section will look at some of the applications of sensing technology for lifelogging, 

assisted living and the use of abnormality alerts for medical interventions.  

2.4.1. Lifelogging 

Lifelogging is the process of applying digital devices such as wearable sensors in order to 

capture the events of an individualõs life for their health and wellbeing [9]. Initial lifelogging 

attempts focused on the process of image capturing via a camera for PAR [11]. Advances 

in technology has allowed lifelogging to be applied into more situations. Wearable devices 

such as smart phones and wrist sensors can be used for the continuous monitoring of an 

individualõs PA. The use of these devices for lifelogging the intensity of PA data can 

typically be placed into five categories; Sedentary, Light, Moderate, Vigorous and High 

Intensity [130]. These categories are based on metabolic equivalents (METs) cut offs and 

have formed a standard of PA levels to be used in maintaining a healthy lifestyle. However, 

this classification offers a general instant categorization measure that produces a deficit 

when evaluating and assessing lifelogging PA patterns that have been accumulated.  

Over recent years, commercial wearable devices and mobile applications have seen an 

increase in the market. Many of these support the long term recording and collection of 

personal health information and PA [19].  Wearable devices such as Fitbit Flex , Nike+ 

Fuelband, Endomondo [18], [19] are all devices that can monitor health factors such as 

step count, calories burnt and distance walked. These devices communicate with a mobile 

device via Bluetooth that is running the corresponding mobile application. However, in 

regards to tracking personal PA, the prior devices are unreliable due to a combination of 

diversity in activity patterns and various environmental factors.  

Mobile applications used for lifelogging such as Moves [9], [18], are capable of supporting 

the long term recording and collecting of PA data through the tracking of 3D accelerometer 

data in the smart phone and GPS information allowing an application to track an 

individualõs movements and activities. 3D Accelerometers and gyroscopes on smart phones 

can be used in conjunction with an application in order to detect when an individual has a 

fall, allowing for direct reporting to a care giver [21]. The PA data produced by these 

applications can find validation in healthcare cases challenging. However with the growth 

of wearable and mobile devices on the market, the diversity and accuracy of such devices 

in IoT based healthcare systems is improving [19]. 
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2.4.2. Assisted Living 

One healthcare challenge that has persisted over recent years, is the ability to ensure those 

who require special attention such as elderly people or those with disabilities are covered 

with professional care while the cost of maintaining such coverage increases. AAL systems 

are a measure that can be applied to healthcare in order to support those with disabilities 

or elderly people as they go about their daily lives [131]. This technology can be integrated 

within peopleõs homes, allowing for safe lifestyle and continuous monitoring of daily 

activities. Previous research into this field focused on improving the quality of life of people 

in their own homes and supporting nurses and physicians in hospitals. However, less 

research has been conducted in helping support caregivers, who assist those with disabilities 

within an assisted living environment.  

An example of a system used in a home environment for the tracking of elderly people is 

proposed by [132]. The system is capable of tracking the location of the individual within 

the home and monitoring motions that they might perform. A BLE wearable device, which 

contained a motion sensor and a set of BLE scanners, was used in the system. The wearable 

device tracked the motion type performed and broadcast the information to a server. The 

BLE scanners scan for the wearable device in order to determine its location based on the 

receiver signal strength. The data is published to an IoT platform for remote location and 

motion tracking. An SVM classifier was used with a 10-fold cross validation and linear 

kernel. This produced results of 99% accuracy for location tracking and 99.71% for motion 

tracking. 

A common problem in existing work is that the privacy of the individual being monitored 

cannot be guaranteed. A typical way to help keep collected data secure is to implement 

secure channels for collection, transmission and storage [133]. However, this does not solve 

privacy issues when it comes to over-collecting information and personal data. An example 

of this can be the collection of video data, as many people will not want to be continuously 

monitored through video cameras even when told the system is secure. Any system that is 

put into place must also adhere to GDPR in order to preserve the privacy of those involved. 

A methodology to try and preserve privacy while attempting to predict human behaviour 

is proposed by [133]. Several sensors are placed within the sensing area and are connected 

to the cloud via Wi-Fi for data collection and storage. Participants performed activities such 

as walking or walking slowly. The aim of the study is to determine if highly private data sets 

can produce accurate predictions of behaviours. 
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2.4.3. Abnormality Alerts 

Medical home alert systems were developed as early as the 1970s to assist elderly people 

within their own home [134]. The principle behind these systems was for a sick or elderly 

person to contact someone for help using a dedicated phone line. These systems have 

evolved over the last few decades to incorporate new sensing technology that has emerged. 

Ambient sensors in smart homes, wearable sensors and smart phones can be used to alert 

a relative or caregiver about any abnormalities that an individual may encounter such as a 

fall or wandering. 

An accelerometer attached to a Tiva C Launchpad was implemented in [134] fall detection 

system. An amazon echo is used in the system to allow the user to confirm via a voice 

command if a detected fall is correct or false, adding a layer of confirmation. If a positive 

response to the fall is received, then the system distributes a text message to the primary 

caregiver. This text message includes a link to a live video feed in order for the caregiver to 

identify the state the fallen individual is in so they can call for an ambulance. If the caregiver 

does not respond, then the user is asked if they would like to contact emergency services 

directly. 

The fall detection system presented by [21] uses an android smart phone application to 

detect falls and distinguish them from ADLs. When the application detects a fall, an alarm 

is triggered in order to draw the attention of nearby people. It will also send out a text 

message and an email to a set of contacts with details of the userõs location and the time of 

the fall. Only the phoneõs tri-axial accelerometer is used to collect data in order to save 

power on the device. Other power optimizations include setting the sampling rate to 4Hz 

when the user is motionless. 28 participants were used to record 10 types of falls, 3 times 

each. Decision trees, K-Nearest Neighbour and Naïve Bayes classifiers were implemented, 

using a ten-fold cross validation strategy for evaluation. Accuracies of 92% for DT, 80% 

for K-NN and 89% for Naïve Bayes were recorded. 

A system to alert caregivers that an individual is wandering is designed by [26]. It uses the 

GPS on android devices to track the userõs location, and also records information such as 

time of day and weather conditions. This information is evaluated using Bayesian network 

techniques in order to determine the probability of the user wandering. Safe zones are 

created on the app, typically set to the patientõs home. Here the user would not be 

considered at risk of wandering, however if they leave the safe zone, the probability of 

wandering increases. An SVM classifier is used to determine if the current wandering 

behaviour is normal or abnormal. If the user is considered to be wandering by the system, 
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then notifications are given to the user to determine if they are okay, this allows for the 

reduction in false positives. If no response is given or they respond negatively, then the app 

will attempt to direct the user to a safe zone. Alerts are also sent to caregivers in the form 

of text messages and email, providing details of the individualõs GPS location. Google voice 

is also used to connect the caregiver to the wandering individual and placing them on speed 

dial to establish communication. 

2.4.4. Remote Health Monitoring 

Remote health monitoring revolves around the concept of an operator reacting to an 

abnormal situation in real time without the need to be present at the situation [135]. This 

is appealing to researchers and clinicians as it reduces the cost of operation due to limiting 

the physical presence required at the site. It also provides an alternative to hospital 

monitoring and can facilitate the early discharge of patients who would otherwise have to 

remain in hospital care [136]. Early detection of deterioration can be used to identify 

potential hospitalisations, which can aid in reducing the number of unnecessary hospital 

admissions and allows health care professionals to monitor more individuals with long-

term chronic illnesses. As a result, elderly patients are able to spend longer in their own 

homes and maintain their independence by having the monitoring performed using 

wearable electronic sensors, smartphones, or smart homes. 

Tiny sensor nodes placed on the human body for remote monitoring are used in a remote 

monitoring application developed by [137]. The sensors were used for monitoring several 

vital signs of the patients including ECG, oxygen saturation and heart rate. Data is 

transmitted wirelessly which is collected by a central node. A PC control displays and 

records the vital signs in waveform. Sensors were tiny in order to ensure they were 

lightweight and not intrusive. This limited battery capacity therefore components and 

processors were chosen to limit energy usage.  

The legal requirements for individuals to have access and control over their data collection 

is noted by [138]. They give the elderly individual the ability to control when they are being 

monitored and who has access to the recorded data. They also note that the user experience 

is important for the elderly person using their system. This is because designing HCI for 

the elderly is more difficult due to their cognitive decline, as well as the decline of their 

vision and physical abilities. A gateway is installed into the home of the user, which retrieves 

measurements from sensors. This data can be checked by the user before they give 

permission for it to be sent to the cloud for storage and analysis.  
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Data can be accessed by family or medical professionals through a web application if the 

data has been shared with them.  

A framework for monitoring an individualõs mental health is proposed by [139]. Mental 

health monitoring is used for monitoring sleep patterns, weight loss as part of depression 

and weight gain due to inactivity. They note that monitoring behaviour is more complex 

and dynamic than monitoring physical symptoms. Sensors for monitoring activity and 

behaviour are placed on the body to form a personal area network. The data from this is 

transmitted wirelessly to a healthcare professional. Monitoring includes vital signs, activity 

levels and patient symptoms. This can inform on symptoms including sleep, appetite and 

energy levels. Information transmitted to the healthcare professional is compared against 

patient records and family records to determine the authenticity of the symptoms displayed. 

They note that the system requires family records in order to make a diagnosis and that 

more works needs to be done to reduce any incorrect diagnosis.   
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2.5. Summary 

In this section, we observed the various PA types that have been monitored in previous 

studies, as well as human behaviours. The sensing layer was studied, and the different types 

of devices that can be used for AR and for studying behaviour are observed. We looked at 

the processing layer and how the data collected is pre-processed through the use of Sliding 

Window and Bottom Up algorithms. We observed the various features that are extracted 

from data collected from sensors in the form of Time and Domain features, and we 

observed the classification techniques that are applied to the extract features. Finally, we 

observed the applications of PAR in natural environments in the form of Lifelogging, 

Assisted Living, Remote Health Monitoring and Abnormality Alerts. Many of the studies 

discussed highlight the important of PAR studies to improve the QoL of the aging 

population and those with chronic illnesses. Wearable and ambient sensors and the 

implementation of classification techniques in order to recognise activity aid in making 

long-term monitoring of individuals much more feasible.   
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3. Chapter III: Framework for Investigation 

of Activity Recognition in the Elderly 

 

The main focus for investigation can be shown below in Figure 3-1. A range of activities 

of daily living that can be categorised as dynamic, sedentary and transitional will be selected 

for data collection. Activities within these categories can have varying degrees of 

complexity in the motions and can be difficult to classify without an appropriate time 

window in which the activity is performed. Ensuring that we have the appropriate set-up 

of sensors is essential if we are to achieve a high accuracy rate from classification. Data will 

be collected from the sensors and transmitted to a smart phone via Bluetooth for storage 

as participants perform the selected activities. Due to technological advancements made, 

wearable devices contain a multitude of sensors such as accelerometer, gyroscope and 

ECG, which have all been increasingly observed in previous works for recognising various 

activity types. 

Raw data collected from sensor signals, contains redundant information that is filtered out 

in the pre-processing and processing phases. Pre-processing involves the cleaning up of 

the data and reducing the overall dimensions of the data set; these are then divided into 

appropriate time windows. Feature extraction using time domain or frequency domain 

techniques are applied in order to produce a better and useful representation. Classification 

methods will then be investigated using the extracted features in order to categorise and 

determine the activity types. These are then evaluated using various statistics in order to 

produce a measure of the classifierõs overall performance. 
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Figure 3-1: Proposed Investigation Framework 
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3.1.  Background of Activity Recognition in the Elderly 

As most elderly people have a desire to spend as much time in their homes as possible, it 

has become vital for AR to be conducted in home environments in order to maintain a 

sense of normality and to improve the QoL of elderly individuals [140]. Chapter 2.4 

discusses the different applications of AR research and how it is integrated into individualsõ 

lives with good results reported by surveyed studies [21], [132]. However, there are 

limitations, as some studies require the use of a questionnaire, presented to individuals to 

complete in order to provide additional resolution to activity data. Other studies require 

video cameras which can produce privacy concerns and are not desirable [141]. Body sensor 

networks are an alternative to video monitoring; however, this can produce irritability 

amongst the elderly, as they do not want to continuously wear sensors all over their body. 

[142]. Body senor networks can also not be cost-effective due to the number of sensors 

and the type of sensors that are utilised [20]. However, a single sensor system does not 

provide enough contextual data to provide a high accuracy [143]. Our aim is to produce a 

framework for ADL in the elderly that uses as few, low-cost sensors as possible in order to 

be unobstrusive and mitigate irritation for the elderly people utilzing them. 

3.2.  Activity Type Identification  

An elderly personõs ability to perform ADL with minimal assistance is an indicator into 

their health and wellbeing. Those that have begun to suffer with MCI, Alzheimerõs, and 

Parkinsonõs or mobility issues can continue to live independently in their own homes by 

applying healthcare monitoring and assistive informatics [144]. Monitoring the elderly in a 

natural, home-based environment can provide continuous monitoring of individuals to 

produce larger data sets, and also provides advantages over controlled environments as it 

can alleviate privacy concerns that individuals may have [145]. Frequent exercise and PA 

are some of the most important contributors to maintaining an individualõs quality of life 

[146]. Engaging in PA regularly by walking, jogging or performing sports activities can 

reduce the risk of cardiovascular diseases, obesity and diabetes [147].  

The main objective of AR is to recognize human activities that are performed frequently 

on a daily basis in real-life environments. Type, duration and intensity of a broad range of 

activities are the focus of PAR assessments. Attempting to achieve a high accuracy in 

recognition is challenging, as human activity is complex. Individuals can perform multiple 

activities at once, and also have variations on how they would perform them [148]. 

Activities can also be ambiguous as they can belong to multiple types of activity. Multiple 

residents can also dwell within one environment, which adds additional challenges for 
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smart home spaces as they need to recognize individual activities, and activities performed 

as a group. 

It is also vital to identify the types of activity that will be performed during a study, and 

categorise them appropriately. Sedentary activities are a common category found in studies 

that involve activities such as sitting, lying down, watching TV or any activity that does not 

require a great deal of movement [149]. Transitional activities can indicate the ability of an 

individualõs movement capability. As mobility becomes limited, it has been suggested that 

these movements become more distinct [150]. Transitions occur when an individual moves 

between two separate states, for example standing to sitting and sitting to lying. Transitional 

activities are usually ignored in studies due to the low appearance and short duration in 

comparison to other activities [59]. Other forms of activity can require a greater degree of 

locomotion or movement from the individual performing them. These have been described 

as dynamic activities, they involve activities such as walking, running and falling [150], [151]. 

These activities can produce difficulties in classification due to the variability of how they 

are performed between individuals.  

Activities can also be visually observed through the use of a video recording. This allows 

researchers to match the frames of a video recording to the data set taken from the wearable 

sensors [148]. We can observe the sequence of poses an individual makes when performing 

a complex activity and compare the poses against other participantõs actions. This 

comparative process would allow us to understand why a complex activity may produce a 

poor accuracy from the data collected using the wearable sensors. 

Selecting the appropriate length of an activity window can have an impact on the accuracy 

achieved by classifiers. An activity that is performed for a short duration can achieve a high 

failure rate if the window is too long, however if the window is too short the activity may 

not be completely recorded [152], [153]. The optimal window length will differ for each 

activity. Walking could be performed continuously using a longer window length, while a 

stand-to-sit activity would only take a couple of seconds to complete, requiring a shorter 

window of around five seconds. The number of data points in a window and the features 

extracted from the set can be increased by using a higher sampling rate; however, this 

requires more memory, particularly for longer window lengths [154]. 

The aim of the framework is to record activities that fall into the dynamic, sedentary and 

transitional activity types to cover the different motions that a person may perform in the 

home environment. We will also take a video recording of each activity performed, using a 
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separate Samsung Galaxy S6, in order to match the poses in the frames of the video to the 

data set collected in order to observe the individual variations of attempting an activity. 

Window lengths will be determined by the type of activity being performed. Longer 

duration activities will be recorded for longer periods such as 30 seconds or a minute, 

shorter activities will be recorded in a 5s time frame. 

3.3. Wearable Sensor and Data Collection Investigation 

Identifying the feasible devices or sensors is essential for tracking, monitoring and detecting 

the three activity types. Existing technologies have proved that both wearable devices and 

ambient sensors are widely used to monitor personal health status. Considering that our 

targeted group are the elderly populations and their routines in daily life, that ambient 

sensors or devices can involve a greater deal of work in order to deploy, we shall focus on 

evaluating and identifying wearable devices or sensors. Smart phones were included in this 

evaluation as they contain various sensors that can be used such as accelerometer and GPS 

but are also used to connect to wearable devices as they can connect via Bluetooth to a 

smart phone application.  

There are a wide range of wearable PA devices that can be used in assessing PA that has 

become possible in research due to advances in wearable technologies [155]. Patterns in 

the signals from the raw acceleration data can be revealed for different activities, allowing 

for the use of machine learning algorithms to classify activity. Several studies attempt to 

classify their activity types from data collected in a laboratory setting and have structured 

the activity with a set time and specific instructions [156], [157]. 

Accelerometers have become popular for research due to their small size, low cost and ease 

of integration into existing sensor networks. They respond well to the frequency and 

intensity of human movement and can provide useful features to be used for classification 

of ADL or fall detection [143]. However, accelerometers alone may not be sufficient to 

provide the related information needed for an accurate classification. Therefore, other 

studies employ the use of additional sensors such as gyroscopes [158], [159], 

electrocardiogram (ECG) [160] and microphones [161] to improve the accuracy of their 

models.  

Smartphones are also popular for activity recognition studies due to their low cost and the 

multiple sensors that can be on board the device. The advantage to using smart phone 

sensors to gather data, is the less obtrusive nature of it as you do not have to place multiple 

devices on the body [162]. However, a single smartphone device may not produce sufficient 
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data in order to produce high accuracy of activity classification. Pairing the device with 

other wearable sensors using Bluetooth for data collection would improve the capabilities 

of the data collection network as the phone can act as a storage device until data can be 

transferred over to a computer or server. 

Sensors can be placed on multiple positions on the body to form a body sensor network, 

which is practical for lab-based studies. However, in a home-based environment too many 

sensors would be impractical for the participants involved and ensuring the position and 

orientation of so many sensors would become difficult and could lead to signal variations 

and errors [143]. A singular wearable device, while simplifying the design of the approach, 

would also not provide sufficient information of the movements involved in an activity for 

successful activity recognition to occur [163]. Therefore using only a couple of sensors 

placed on the body could provide improved accuracy for the data, while keeping the 

number of sensors used to a minimum to avoid errors with positioning and orientation. 

The wrist and waist are common positions that have been used for sensor placement in 

several studies [81], [164], [165].  

Smart phones contain multiple sensors within them; however, they are only one device 

with limited positioning options, usually inside a pocket of the participant. The downside 

is that the smartphone is not fixed into position, and therefore its position and orientation 

varies as an activity is performed [166]. A smart-phone could also have its position changed 

from the pockets to the hands between each activity relatively easily in order to improve 

the accuracy as a single location might not be optimally suited for collecting certain activity 

movements [167]. Participants may also forget to pick up a smartphone and place it into 

the correct position and orientation resulting in no data being collected at all [152]. 

The sampling rate of the sensors used can determine the accuracy achieved in AR. A high 

sampling rate can lead to a better accuracy, however this results in a higher energy 

consumption by the device due to the increased transmission rate [168]. A lower sampling 

rate can produce lower accuracies from classified data sets while prolonging the lifespan of 

the device [169].  Activities themselves can be fairly complex, as a result the optimum 

sampling rate can vary depending on the activity being performed. It can also vary 

depending on the positioning of the device used in the activity [170]. 

We will focus on usage of accelerometers and gyroscopes for our wearable sensors and aim 

to use multiple devices placed in different regions of the body for data collection. We will 

use two Shimmer3 IMU devices displayed in Figure 3-2, which is a low cost wearable sensor 



49 
 

that contains both accelerometer and gyroscopes [171]. One device will be placed on the 

wrist and the other on the waist in order to collect sufficient data without the system being 

too cumbersome for the participant. The sampling rate of both sensors with be set to 

204.80Hz in order to acquire enough data, particularly for complex activities, in order to 

improve the accuracy of implemented classifiers. A Samsung Galaxy S6 android phone will 

also be deployed to use for data collection, as it provides a storage solution for the data 

collected and is also cheap and portable. It will connect to the wearable Shimmer sensors 

attached to the body of a participant using Bluetooth and has an android application 

installed that can be used to configure the shimmer devices and control them. 

 
Figure 3-2: Shimmer3 IMU Device 
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3.4. Data Processing Investigation  

In order to recognise specific human activities from a data set effectively, data has to be 

segmented into smaller windows to separate the various activity types occurring in a single 

data stream [59]. Sliding window is a popular technique for segmenting data; however, the 

biggest challenge with the method is due to its optimization of the window size. If the 

window is too small, then key information of the activity can be lost, however, if it is too 

large multiple activities could be added into a single window producing additional noise 

and resulting in a misclassification. Applying a window overlap can lead to improved 

accuracy during classification [63], however increasing the size of this overlap can lead to 

more resources being demanded.  

Selecting the appropriate features to extract from a data set is important for achieving a 

good accuracy when applying classifiers. Feature extraction techniques help reduce the 

dimensionality of the data set before classification begins. Time-domain features are 

typically extracted from acceleration data in most studies [76], [83], [172]. Time domain 

features can be easily extracted from acceleration data in real-time and are simple to 

process, saving time, hence the popularity. However, time domain features are not able to 

fully express the states of motion of an activity accurately [72], [77]. Frequency domain 

features can also be extracted from acceleration data sets. Frequency domain features can 

produce differentiation between activities with simple patterns and those with complex 

ones leading to improved recognition [78]. Frequency domain features, however, do require 

the transformation from time to frequency domain which, can increase computation time 

of systems [173]. Choosing appropriate features is essential for achieving high accuracies 

when classifying data from accelerometers.  

Selecting the appropriate classifier for further investigation is important as each has its own 

advantages and limitations. ANNs are a popular supervised learning classification method 

as it can be applied to various forms of challenging pattern recognition [174]. It is necessary 

to produce a reasonable data set for training and testing purposes of a neural network, as 

the algorithm requires the information in order to learn and begin to distinguish activities 

from each other [175]. While neural networks are powerful for function approximation and 

data fitting, they also suffer with the problem of overfitting where the training sample fits 

extremely well with the model reducing the generalization capability of the network when 

trying to predict [118]. 

Decision trees are often adopted in studies due to their low complexity and ability to 

interpret [176]. They are flexible in their decision-making as one can choose the different 
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subsets of features at the internal nodes in order to choose a feature subset optimally [121]. 

However, there is the potential for overlap within a DT when the number of classes is 

large. This can increase the search time and memory space requirements. Errors can also 

accumulate as the tree moves throughout each level, particularly in larger trees. Designing 

the optimal tree can be difficult as its performance relies on the design.  

SVMs are a supervised learning type of classifier, which have proven popular over recent 

years and have been successfully applied to many AR studies [108]. They are able to support  

classification as well as regression tasks and can manage multiple variables [122]. Compared 

to neural networks they perform better at not over generalizing larger data sets, scale well 

to high dimensions and can train data relatively easy. However, in order to run optimally 

they require a good kernel function, which adds additional complexity over their 

counterparts [124]. 

Choosing the right classifier is important, which is why we will focus on investigating the 

three classifiers discussed above, ANN, DT and SVM. We will choose time and frequency 

domain features to be extracted from the activity data we collect using wearable 

accelerometers as we discussed in the prior section. An appropriate overlap and segmenting 

technique such as sliding window will be applied during the pre-processing phase in order 

to match the time windows from each sensor. We will evaluate the performance of the 

classifiers used and compare the results from each sensor using various statistical 

measurements commonly used in performance evaluation of classifiers.  
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3.5. Summary 

We have presented a framework for the investigation of activity recognition for activities 

of daily living. The importance of selecting appropriate activities was considered with 

activity duration, type and complexity being a focus. We recognise the complexity that may 

come with some activities due to the movements involved and potential ambiguity due to 

how individuals perform them.  The types of sensors that can be used to capture activity 

data were considered, with multiple wearable accelerometers being a focus for future work. 

We also considered the importance of optimally positioning and orientating the sensors in 

order to collect data as well as the effect of a high or low sampling rate. We also discussed 

pre-processing steps of overlapping and sliding window, the types of features we will 

extract, and a brief discussion of ANN, SVM and DT classifiers. This knowledge forms 

our investigative framework, which will be applied to an investigation of classification 

techniques.  
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4. Chapter IV: Conceptual Data Collection 

Investigation for Activities of Daily 

Living   

The application of wearable and ambient devices for PAR is well documented in literature 

with many studies seeking to provide a new methodology for PAR.  

The layers displayed in Figure 4-1 are fundamental in approaching a PAR methodology. 

Wearable sensing devices typically contain accelerometers, gyroscopes, magnetometers, 

altimeters, GPS and ECG. This allows for health monitoring (weight, blood pressure, heart 

rate), activity tracking (walking, running, sleeping, falling), and location monitoring. Data 

collected from sensors is transmitted via Bluetooth or Wi-Fi to a corresponding device 

such as a smart phone or a laptop. The data stored on these devices is then pre-processed 

using a Sliding Window or Sliding Window and Bottom Up algorithm in order to break 

down the data into appropriate time windows.  

Feature extraction methods can be applied to extract key features from data signals to 

produce an enhanced representation of an activity. Time domain features (Min, Max, 

Average, Standard Deviation) or frequency domain features (Spectral Energy, Entropy, 

Magnitude) using FFT can be extracted from the data. Classification methods are then 

applied to the extracted features for training and testing, in order to recognise and classify 

activities. An application layer can provide more context of the classified data for the user, 

such as a caregiver. This allows them to interact with the person being monitored in order 

for them to receive PA results or to be alerted should an abnormality occur. 

This chapter presents a early concept to our approach for data collection of ADL along 

with data pre-processing and feature extraction techniques selected. 
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Figure 4-1: Layered procedures in PAR 
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4.1. Data Collection 

Healthy participants under the age of 50, with no diagnosis of Mild Cognitive Impairment, 

or other mental illnesses or any signs of memory loss were used to collect data from fifteen 

activities of daily living. Data was collected using two accelerometers, which were on board 

two Shimmer3 IMU devices. The six participants wore a shimmer device on the wrist and 

on the waist as shown in Figure 4-2 below. The sampling rate of the accelerometers was 

set to 204.80Hz on both devices. Data was then transmitted via Bluetooth to a Samsung 

Galaxy S6, which was running an android application called Multi Shimmer Sync 

Evaluation as shown in Figure 4-3 below.  

This application connects the phone to the corresponding Shimmer devices, allowing for 

the collection of data from multiple units. Data can be streamed and logged using the 

application, with data being stored on the phone. The Shimmer devices can also be 

configured using the application.  

The machine learning process for pre-processing, feature extraction and processing of the 

raw sensor data can be shown in Figure 4-4. 

 

Figure 4-2: Shimmer Sensor Placement 



56 
 

 

Figure 4-3: Multi Shimmer Sync ð From top left, Home Page, Control Page, Configuration Page 

and Binary Log 

 

Figure 4-4: Machine learning approach to PA recognition using wearable sensors 

 

Fifteen activities were performed by the six participants. These were split into three 

categories, Dynamic, Sedentary and Transitional and can be seen in Table 4-1 below. 

Sedentary activities were recording in one sitting, for a total of 1 minute. Transitional 

activities where recorded 10 times each with each activity taking 3 ð 5 seconds. Walking 

was recorded 3 times, with a participant walking up and down the room taking 20 seconds 

to complete. Walking up and down stairs were recorded 5 times each taking approximately 
















































































































































































































































































































































































































