
Lockyer, SJ, Nawaz, S, Brookfield, A, Fielding, AJ, Vitorica-Yrezabal, IJ, Timco, 
GA, Burton, NA, Bowen, AM, Winpenny, REP and McInnes, EJL

 Conformational Flexibility of Hybrid [3]- and [4]-Rotaxanes

http://researchonline.ljmu.ac.uk/id/eprint/13645/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Lockyer, SJ, Nawaz, S, Brookfield, A, Fielding, AJ, Vitorica-Yrezabal, IJ, 
Timco, GA, Burton, NA, Bowen, AM, Winpenny, REP and McInnes, EJL 
(2020) Conformational Flexibility of Hybrid [3]- and [4]-Rotaxanes. Journal 
of the American Chemical Society, 142 (37). pp. 15941-15949. ISSN 0002-

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Conformational flexibility of hybrid [3]- and [4]-rotaxanes  

Selena J. Lockyer,a  Selina Nawaz,a Adam Brookfield,a  Alistair J. Fielding,b Inigo J. Vitorica-

Yrezabal,a Grigore A. Timco,a Neil A. Burton,a Alice M. Bowen,a Richard E. P. Winpennya* and Eric J. 

L. McInnesa*  

 

a Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, 

U.K. 
b School of Pharmacy and Biomolecular sciences, Liverpool John Moores University, Liverpool L3 3AF, U.K. 

 

ABSTRACT: The synthesis, structures and properties of [4]- and [3]-rotaxane complexes are reported where [2]rotaxanes, formed 

from heterometallic {Cr7Ni} rings, are bound to a fluoride-centered {CrNi2} triangle. The compounds have been characterized by 

single crystal X-ray diffraction and have the formulae [CrNi2(F)(O2C
tBu)6]{(BH)[Cr7NiF8(O2C

tBu)16]}3 (3) and 

[CrNi2(F)(O2C
tBu)6(THF)]{(BH)[Cr7NiF8(O2C

tBu)16]}2 (4); where B = py-CH2CH2NHCH2C6H4SCH3. The [4]rotaxane 3 is an isos-

celes triangle of three [2]rotaxanes bound to the central triangle while the [3]rotaxane 4 contains only two [2]rotaxanes bound to the 

central triangle. Studies of the behavior of 3 and 4 in solution by small angle X-ray scattering (SAXS) and atomistic molecular 

dynamic simulations (AMDS) show that the structure of 3 is similar to that found in the crystal but that 4 has a different conformation 

to the crystal. C.w. and pulsed EPR spectroscopy were used to study the structures present and demonstrate that in frozen solutions 

(at 5 K) 4 forms more extended molecules than 3 and with a wider range of conformations. 

Introduction 

The flexibility of supramolecular assemblies has long been of 

interest. For example, the rigidity of molecular capsules has 

been used to allow them to act as reactors to catalyse specific 

reactions1 or to stabilise reactive species.2,3 Interlocked struc-

tures such as the various knots reported4-6 also introduce rigidity 

and have been proposed as means of making less flexible poly-

mers.7 Studying rigidity is possible using NMR spectroscopy 

where the species is diamagnetic; for example, the demetallated 

knots made by Zhang et al show broad NMR spectra that be-

come sharper when diamagnetic Zn2+ ions are added which in-

creases the rigidity. Studying the flexibility of interlocked struc-

tures where building blocks are paramagnetic is far harder as 

the NMR is paramagnetically broadened before the conforma-

tional flexibility is considered. Small angle X-ray scattering 

(SAXS) has been previously used to show supramolecular as-

semblies are present in solution;8, 9 we have used SAXS sup-

ported by atomistic molecular dynamics simulations (AMDS) 

to demonstrate that a [13]rotaxane maintained its structure in 

solution.10 Here we use SAXS on two related rotaxanes to show 

that the larger [4]rotaxane has a more similar structure between 

solution and crystalline phases, while a [3]rotaxane has a much 

more open structure in solution. The studies require the com-

parison of SAXS and double electron-electron resonance 

(DEER) spectroscopy while remembering they operate at 300 

and 5 K, respectively.   

We have previously reported hybrid [2]rotaxanes where the 

ring is a [Cr7NiF8(O2C
tBu)16]

− unit and the thread is a secondary 

ammonium with suitable sterically-demanding stoppers.11, 12 If 

there is a pyridyl (py) head group on the thread, for example py-

CH2NHCH2CH2Ph (A), the [2]rotaxane 

(AH)[Cr7NiF8(O2C
tBu)16] can be used to bind to Lewis acid 

complexes.13, 14 Here we extend this approach, binding [2]rotax-

anes to a fluoride-centred triangle [CrNi2(μ3-

F)(O2C
tBu)6(HO2C

tBu)3] 1 (Figure S2) which has a labile ter-

minal ligand (HO2C
tBu) at each vertex. By small changes in the 

synthesis [3]- and [4]-rotaxanes can be made and which show 

very different solution flexibility.  

Such assemblies have been proposed as routes to implement 

qubit gates. Both the {Cr7Ni} ring and the {CrNi2} triangle have 

S = ½ ground states, but with very different g-values of ca. 1.8 

and 2.5.15 This gives supramolecular assemblies where we can 

potentially address different components by EPR spectroscopy. 

This has also been investigated. 

 

Results: Synthesis and Structural Analysis 

The parent {CrNi2} triangle [CrNi2(μ3-

F)(O2C
tBu)6(HO2C

tBu)3] (1; Figure S2) was prepared as re-

ported previously.15 Attempts to coordinate 

(AH)[Cr7NiF8(O2C
tBu)16]

13 to 1, were unsuccessful probably 

due to the thread being too short, leading to repulsive steric in-

teractions between the components. Hence, we made py-

CH2CH2NHCH2C6H4SCH3 (B) which has a greater distance be-

tween the secondary amine site and the pyridyl head group.16 A 

[2]rotaxane can then be prepared, of formula 

(BH)[Cr7NiF8(O2C
tBu)16] (2); the thread is protonated at the 

amine site during this reaction (Figure S3). 

Reaction of three equivalents of 2 with 1 in THF at 40 °C 

produces the 3:1 {Cr7Ni}:{CrNi2} adduct 

[CrNi2(F)(O2C
tBu)6]{(BH)[Cr7NiF8(O2C

tBu)16]}3 3 (Figure 1a) 

as shown by X-ray diffraction. The structure contains three mol-

ecules of 2 each bound to a metal site of the central triangle 1 

via the py head groups of the (BH)+ threads. Compound 3 is 



 

therefore a [4]rotaxane. It crystallises with a 2-fold axis of rota-

tion passing through the molecule and therefore the asymmetric 

unit comprises half of the complete molecule. 

In the central {CrNi2} triangle each metal ion is in a pseudo-

octahedral geometry, with the pyridyl bound trans to the central 

μ3-fluoride, which is planar (Ni-F-Cr and Ni-F-Cr angles all 

around 120°). In the solid state, the pyridyl groups are almost 

perpendicular to the {CrNi2} plane; angles between the py and 

{CrNi2} planes vary from 75.14(1) – 80.88(1)°. Each {Cr7Ni} 

ring sits about the secondary ammonium group (Nam) of (BH)+, 

with hydrogen bonds to two of the bridging fluorides on the in-

terior of the ring. 

The CrIII site in the triangle is disordered over the three sites. 

Similarly, in the {Cr7Ni} rings the NiII site is disordered over 

all eight metal positions. Although elemental analysis gives a 

slight excess of Ni with a Ni:Cr ratio of 6:22 (5:22 expected for 

a 2:{CrNi2} ratio of 3:1), EPR spectroscopy unequivocally 

demonstrates that there is no scrambling of the metal ions, i.e. 

all the rings are {Cr7Ni} and all the triangles are {CrNi2} (see 

below). 

If the reaction is carried out using two equivalents of 2 to 1 

and in THF at 20 °C, we isolate the 2:1 {Cr7Ni}:{CrNi2} adduct 

where only two sites of 1 have been substituted by 2 and the 

third site is occupied by a THF molecule. The product is a [3]ro-

taxane [CrNi2(F)(O2C
tBu)6(THF)]{(BH)[Cr7NiF8(O2C

tBu)16]}2 

(4; Figure 1b). X-ray diffraction shows that the THF substituted 

metal site of the {CrNi2} triangle has a shorter M-F bond dis-

tance of 1.89(3) Å cf. 2.06(1) and 2.06(1) Å and hence the CrIII 

site is localised. The μ3-F
– of the triangle is again planar with 

Ni-F-Cr and Ni-F-Cr angles near 120°. The planes of the py 

groups are almost perpendicular to the {CrNi2} plane, with di-

hedral angles of 77.48(1) and 84.04(1)°, which are similar to 

those of 3.  

To define the shape of the two supramolecules we report 

some simple metric parameters (Figure 1, Table 1). Firstly, we 

consider the distance from the central fluoride in each case to 

the protonated secondary ammonium in each thread about 

which the {Cr7Ni} rings are grown: this is the Nam…F distance 

for each thread. We then consider the Nam…Nam distances; these 

define the edges of the triangle of {Cr7Ni} rings in 3. The angles 

between the mean planes of the {Cr7Ni} rings on each [2]rotax-

ane are given as the ring…ring angles. In each case the mean 

plane of the ring is essentially perpendicular to the thread pass-

ing through it.  

 

Table 1. Metric parameters defining the shape of the [n]ro-

taxanes 

 3 4 

 X-ray AMDS X-ray AMDS 

Nam..F 

distance/ Å 

10.56(1) 

10.57(1) 

10.57(1) 

10.31(1) 

10.31(1) 

10.31(1) 

10.82(1) 

10.84(1) 

10.31(1) 

10.31(1) 

Nam..Nam 

distance/ Å 

17.83(1) 

18.43(1) 

18.83(1) 

21.21(1) 

21.21(1) 

22.19(1) 

19.07(1) 23.01(1) 

Ring..ring 

angle/ ° 

56.61(1) 

56.61(1) 

66.99(1) 

62.71(1) 

62.95(1) 

63.11(1) 

65.83(1) 66.32(1) 

Figure 1. The structures of 3 and 4 in the crystal, with select metric parameters indicated (black, XRD; red, AMDS). (a) 3 showing 

angles between the mean planes of the {Cr7Ni} rings, and the distances between N atoms of secondary ammonium groups; (b) 4 showing 

angles between the mean planes of the {Cr7Ni} rings and the distances between N atoms of secondary ammonium groups. Colors: Cr, 

green; Ni, purple; O, red; F, yellow; N, blue; C, silver; S, dull yellow. H-atoms and methyl groups of pivalates excluded for clarity. 



 

The X-ray diffraction results show that 3 contains an approx-

imately isosceles triangle of {Cr7Ni} rings, with one ring…ring 

angle noticeably more obtuse than the other two. The Nam…F 

distances are constant. For 4 the angle between the two rings is 

similar to the most obtuse angle for 3 and the Nam…Nam and 

Nam…F distances are both longer than in 3.    

  

Atomistic Molecular Dynamic Simulations (AMDS) and 

Small Angle X-ray Scattering (SAXS) 

 

To study the stability and structures of 3 and 4 in solution 

atomistic molecular dynamic simulations (AMDS) were per-

formed with an all-atom simulation of the two crystal structures 

(in a concentrated THF solution) using GROMACS 5.1.4 mo-

lecular dynamics package.17, 18 The crystal structures of 3 and 4 

were parameterised using the AMBER95 forcefield, augmented 

by parameters consistent with the General Amber forcefield.19 

8 nm cubic simulation boxes were set up containing a single 

molecule of 3 or 4 in a solution of 2774 THF molecules and run 

in an NPT ensemble for the solvent density to reach ~890 kg 

m−3. 

The calculated AMDS structures were then compared with 

experimental solution structure information from SAXS data. 

SAXS profiles calculated from the AMDS structures used Har-

tree-Fock scattering factors, with 100 nm boxes and X-ray 

wavelength of 0.154209 nm. Experimental and AMDS-model 

calculated SAXS intensity profiles (plotted as ln[I(q)] (a.u.), 

where q (Å) is the scattering vector) are in Table S2 and Figure 

S12. The corresponding pair distribution functions P(r) for 3 

and 4 are in Figure 2. 

There is remarkable agreement between AMDS and SAXS 

for both 3 and 4, demonstrating that both structures are stable 

in THF solution (Figure 2). The very slight discrepancies be-

tween the experimental SAXS and corresponding pair distribu-

tion function is less than 1 Å, for both 3 and 4, which can be 

accountable by forcefield errors. This discrepancy is also seen 

in the radius of gyration (Rg) values shown in Table S2. The 

radius of gyration for the simulated structures of both 3 and 4 

are slightly higher indicating the calculated structures are more 

extended in comparison to the experimental data. 

The P(r) distributions are dominated by a short distance (ca. 

6 Å) and a longer distance at ca. 18 and 20 Å for 3 and 4, re-

spectively. The longer distance can be attributed to the distances 

between {Cr7Ni} rings. Note that this inter-ring distribution has 

greater amplitude for 3 than for 4, consistent with the 3:1 vs. 2:1 

{Cr7Ni}:{CrNi2} stoichiometries. The shorter distances within 

the peak centered at ca. 7 Å are due to distances within individ-

ual {Cr7Ni} rings, agreeing with the crystallographic values that 

range from 3.3(1) Å (neighboring sites) to 8.7(1) Å (antipodal 

sites). The combination of AMDS/SAXS confirm that 3 and 4 

are distinct compounds in solution and, for example, 3 does not 

exist in equilibrium with 4 and a dissociated [2]rotaxane 2. 

The AMDS structures calculated by molecular dynamics are 

also in good agreement with the single crystal structures (see 

Table 1 for selected metric parameters) but with some subtle 

and intriguing variations. Compound 3 is noticeably more equi-

lateral in solution, with the ring…ring angles all very similar. 

While the three angles in the crystal structure sum to close to 

180°, in the AMDS structure they sum to an average of 189° 

over the last 5 ns of the simulations, which corresponds to the 

rings tilting away from the normal to the {CrNi2} plane in solu-

tion. The Nam…F distances are shorter but Nam…Nam distances 

are 17% longer. These observations indicate that the rings are 

packed together more closely than they would like in the crystal 

and the structure relaxes in solution. Compound 4 has a very 

similar ring…ring angle in solution and crystal structure (Table 

1) but the Nam…Nam distance is 20% longer in solution than in 

the crystal. This again suggests that the structure in the solution 

has relaxed compared with the crystal structure.  

 

Electron Paramagnetic Resonance Spectroscopy 

 

Continuous Wave (c.w.) Q-band (ca. 34 GHz) EPR spectros-

copy measurements were performed on 3 and 4 at 5 K for pow-

der samples and for frozen 3 mM toluene solutions. The spectra 

are dominated by the S = ½ ground states of the {Cr7Ni} and 

{CrNi2} components, that arise from internal antiferromagnetic 

coupling. 

The powder spectra for 3 and 4 (Figure S4; left and right, re-

spectively) both contain two slightly asymmetric features, cen-

tred on 995 and 1382 mT. The frozen solution spectra (Figure 

3) have narrower linewidths, which for both 3 and 4 reveal ap-

proximately axial splitting of the lower field feature, while the 

higher field feature remains largely unchanged. The spectra 

were simulated20 using a spin-Hamiltonian incorporating only 

the individual g-matrices for the S = ½ {CrNi2} and {Cr7Ni} 

components and an isotropic exchange interaction: 

Ĥ = μBŜ
CrNi2∙gCrNi2∙B + ΣμBŜ

Cr7Ni.gCr7Ni∙B - 2JΣŜCrNi2∙ŜCr7Ni  

where the summation is over three (compound 3) or two (com-

pound 4) {Cr7Ni} centres.  

For the frozen solutions, the lower field feature due to 

{CrNi2} can be fitted with: for 3, gx,y,z = 2.425, 2.425, 2.520; for 

4, gx,y,z = 2.420, 2.425, 2.515.  These agree well with the spectra 

found for 1.15 The high field feature due to {Cr7Ni} can be fitted 

with: 3, gx,y,z = 1.785, 1.778, 1.730 ; and 4, gx,y,z, = 1.782, 1.782, 

1.740. These agree with the spectra of {Cr7Ni} rings.21 Reason-

able fits can be achieved with these g-values for J = 0.  

A slight improvement in the agreement between the simu-

lated and observed spectra is found with the inclusion of a small 

exchange interaction of |J| = 0.003 cm-1. However, this only 

serves to broaden the transitions. This broadening can also be 

achieved by inclusion of a small (1%) g-strain for each {Cr7Ni} 

component. Frozen solution spectra of 3 at lower frequencies 

Figure 2. Observed and calculated SAXS data for 3 and 4, 

in THF solution at 20 °C. The experimental data is shown in 

blue and red, respectively, for 3 and 4. The calculated traces are 

shown in grey and yellow, respectively, for 3 and 4.  



 

(X- and S-band) fit better with the g-strain model than with the 

small, but unresolved J model (Figure S5). We conclude that 

there are no measurable features due to exchange coupling in 

the c.w. EPR spectra.   

Pulsed EPR spectroscopy (Q-band, 3 K) was used to measure 

the phase memory times (Tm) for 3 and 4 using standard Hahn 

echo decay measurements: [π/2-τ-π-τ-echo]. Spin lattice relax-

ation (T1) measurements were carried out by inversion recovery 

[π-T-π/2-τ-π-τ-echo]. We have also done comparable measure-

ments on the isolated triangle [CrNi2(F)(O2C
tBu)6(py)3] 5.15 

Measurements were made at magnetic fields (B0) corresponding 

to resonances of the {Cr7Ni} ring and the gxy and gz features for 

the {CrNi2} triangle (Table 2 and Figure S6). The phase 

memory (Tm) times are similar for all components in both struc-

tures at around 700 ns, with the exception of the gz values for 

the {CrNi2} fragment in 3 and 4 which is shorter (ca. 570 ns), 

and shorter than in the isolated {CrNi2} triangle 5. The T1 times 

vary more and the times for the isolated triangle are signifi-

cantly longer than for the {CrNi2} g-values in 3 and 4 (Table 2 

and Figures S7, S9). 

 

ESEEM modulations are observed in the Hahn echo decay 

measurements at B0 values corresponding to the {CrNi2} but not 

for the {Cr7Ni} components. Fourier transforms of the time-do-

main data for the {CrNi2} measurements are similar for 3 and 

4, with series of low-frequency (< 10 MHz) peaks (Figure S8).  

 

Double Electron-Electron Resonance Spectroscopy 

(DEER) 

 

DEER is an established method for measuring inter-spin dis-

tances in biological systems.22-24 Previously we have reported 

DEER measured on supramolecular compounds containing two 

{Cr7Ni} rings and demonstrated that we could measure the 

weak {Cr7Ni}…{Cr7Ni} interactions.25 In those studies the two 

rings were co-planar, linked along the normal to the planes of 

the rings, either by forming a [3]rotaxane, or linked covalently 

via a diamagnetic bridge. In 3 and 4 the planes of the rings make 

angles of ~60° to one another (see Table 1), which introduces a 

further structural complexity to interpreting the results. 

Four-pulse DEER experiments were performed on solutions 

of 3 and 4 to probe the {Cr7Ni}…{Cr7Ni}interactions. The 

pump pulse was set on the {Cr7Ni} maximum (B0 = 1373 mT) 

with the observer pulse set 100 MHz higher in frequency than 

the pump pulse. For both compounds, we observe oscillations 

in the DEER traces (Figures 4 and 5). For 3, Fourier transfor-

mation of the background corrected data gives a frequency do-

main spectrum with peaks at ±5 MHz, with a slight shoulder at 

±3 MHz, and broad wings between ±10-30 MHz. For 4, we ob-

tain similar oscillations but with weaker modulation depth, giv-

ing a frequency domain spectrum with two distinct peaks at 

±2.5 and ±5 MHz. There appears to be less intensity in the 

wings.  

Two analysis methods were used to extract inter-spin dis-

tance distribution from the time traces. Firstly, a Tikhonov reg-

ularization26 using the orientation independent kernel in Deer-

Analysis,27 with a correction for the g-values corresponding to 

the pump and detection frequencies, yields three main compo-

nents for 3 (Figure 4c) and gives four clear groups of distances 

for 4 (Figure 5c).   

Secondly, a simulation library approach was used (see SI). A 

series of geometric models were developed based on the crystal 

structures of 3 and 4. For each model the expected orientation 

dependent DEER trace for pairwise ring-ring dipolar interac-

tions was calculated using an algorithm described elsewhere.28 

The unpaired spin density in each {Cr7Ni} was equally distrib-

uted on each metal ion, reflecting the fact that the Ni position in 

the ring is not localized. The calculations used the anisotropic 

g-values from c.w. spectra, and the mw pulse and magnetic field 

parameters used in the experimental acquisition. This library of 

simulated DEER traces was fitted to the experimental data 

traces using an iterative procedure over 50 iterations, similar to 

that described elsewhere.29 The time and frequency domain fits 

and the corresponding distance distributions, presented as both 

the inter-ring M…M distances and ring centroid-to-centroid 

distances, are presented in Figures 4 and 5. 

Power scaling of the DEER data for 3 was used to test for the 

presence of significant multi-spin effects and ghost peaks in the 

extracted distance distribution.30 The contribution of the multi-

spin effects to the data set is vanishingly small (see SI): this is 

because the inversion efficiency of the DEER experiment is 

very low (λ = 0.0135). This validates the application of the pair-

wise analysis approaches described above for 3. The greater 

modulation depth for 3 than for 4 is consistent with the presence 

of three {Cr7Ni} rings in the former and two in the latter.31 

Table 2. Q-band relaxation times for 3, 4 and 5 measured at 

3 K in 0.2 mM solution in toluene. 

Com-

pound 

g-

value 

Assignment Tm/ns T1/ µs 

3 2.41 gxy {CrNi2} 713 (0.42) 172 

(0.38) 

3 2.47 gz {CrNi2} 562 (2.96) 108 

(1.78) 

4 2.41 gxy {CrNi2} 689 (2.46) 258 (3.34) 

4 2.47 gz {CrNi2} 578 (3.61) 165 

(1.43) 

5 2.41 gxy {CrNi2} 863 (0.4) 840 (17) 

5 2.47 gz {CrNi2} 848 (0.5) 813 (24) 

3 1.78 {Cr7Ni} 713 (0.42) 62 (0.38) 

4 1.78 {Cr7Ni} 826 (0.56) 108 

(0.75) 

Figure 3. c.w. Q-Band EPR (ca. 34 GHz) spectra for a 3 

mM solution sample in dry toluene for 3 (left) and 4 (right) at 

5 K. Black: experimental, and green: simulation.  

 



 

It is not possible to probe the {Cr7Ni}…{CrNi2} interactions 

by DEER due to the very different g-values leading to spectra 

that do not overlap and the limited bandwidth of the resonator 

used (ca. 200 MHz when over-coupled). 

 

Discussion 

The c.w. EPR spectra prove unambiguously that there is no 

scrambling of metal ions in either the {Cr7Ni} or {CrNi2} com-

ponents in 3 or 4. We only observe the S = ½ ground states of 

either component which arises from internal antiferromagnetic 

coupling. Any scrambling of the metal ions would lead to the 

observation of other spin states. There is no evidence of 

spin…spin interaction between the {Cr7Ni} and {CrNi2} com-

ponents in the c.w. EPR data, hence any interaction must be 

very weak with respect to the intrinsic linewidths. The c.w. EPR 

spectra of 3 and 4 are very similar in powder and frozen solu-

tion. However, given the lack of resolution of any interaction, 

this does not prove that the structure is stable in solution (only 

that the separate components are stable). This evidence comes 

from the SAXS and AMDS data, and also from DEER meas-

urements that reveal {Cr7Ni}…{Cr7Ni} interactions. 

The weak coupling regime between {Cr7Ni} or {CrNi2} is 

further proven from electron spin relaxation measurements on 

the separate components. 

 

Figure 5. a) Q-Band experimental DEER trace of 4, after background subtraction, (black crosses, 0.2 mM solution in dry and de-

gassed toluene at 3 K) and fitted data; using DeerAnalysis (solid green line) and using an iterative orientation procedure (solid red 

line), with vertical enlargement (insert). A four-pulse DEER sequence was used, with the ELDOR pulse at the {Cr7Ni} maximum 

(B0 = 1373 mT) and observation pulse positioned at +100 MHz. Pulse lengths were 20 and 40 ns for π/2 and π, respectively, with τ1 

= 200 ns and τ2 = 1000 ns. b) Pake pattern from Fourier transformation of dipolar evolution (solid black line); fitted data using 

DeerAnalysis (solid green line) and the iterative orientation procedure (solid red line). c) Distance distribution using Tikhonov reg-

ularizations in DeerAnalysis and corrected g-values (solid green line), and from the model from the iterative orientation procedure 

showing inter-ring metal-metal distances (dashed purple line) and ring centroid-centroid distances (dotted red line).  

Figure 4. a) Q-Band experimental DEER trace of 3, after background subtraction, (black crosses, 0.2 mM solution in dry and de-

gassed toluene at 3 K) and fitted data; using DeerAnalysis (solid green line) and using an iterative orientation procedure (solid red 

line), with vertical enlargement (insert). A four-pulse DEER sequence was used, with the ELDOR pulse at the {Cr7Ni} maximum 

(B0 = 1373 mT) and observation pulse positioned at  +100 MHz. Pulse lengths were 20 and 40 ns for π/2 and π, respectively, with 𝜏1 

= 200 ns and 𝜏2 = 1000 ns. b) Pake pattern from Fourier transformation of dipolar evolution (solid black line); fitted data using 

DeerAnalysis (solid green line) and the iterative orientation procedure (solid red line). c) Distance distribution using Tikhonov reg-

ularizations in DeerAnalysis and corrected g-values (solid green line), and from the model from the iterative orientation procedure 

showing inter-ring metal-metal distances (dashed purple line) and ring centroid-centroid distances (dotted red line).  

 



 

Electron Spin Relaxation: The T1 and Tm values for the 

{Cr7Ni} components of 3 and 4 (ca. 60-100 μs and 700-800 ns, 

respectively, at 3 K) are in the range observed for the free ring 

and in other supramolecular assemblies containing this frag-

ment (Table 2; some caution needs to be taken when comparing 

data measured at Q- and X-band).14 Hence, there seems to be 

relatively little variation in the {Cr7Ni} relaxation regardless of 

the complexity of the supramolecular structure (we have meas-

ured similar Tm in a complex bearing twelve {Cr7Ni} rings).10 

The T1 and Tm values for the {CrNi2} components of 3 and 4 

are ca. 110 - 260 μs and 600 - 700 ns, respectively. Measure-

ments on the isolated {CrNi2} complex [CrNi2F(O2C
tBu)6(py)3] 

(5) under the same conditions give T1 ca. 800 µs, and Tm ca. 800 

ns; we have chosen this complex to give a direct comparison 

with the pyridyl-terminated {CrNi2} units in 3 and 4. Hence, in 

contrast to {Cr7Ni}, incorporating {CrNi2} into the supramolec-

ular structures 3 and 4 results in a significant decrease in T1. 

In the free complexes, T1 for {Cr7Ni} (ca. 100 μs) is signifi-

cantly shorter than that of {CrNi2} (ca. 800 μs). Both com-

pounds are antiferromagnetically coupled CrIII…NiII clusters 

that give rise to S = ½ ground states. {Cr7Ni} is a much bigger 

spin system hence has a higher density of spin states, while the 

exchange coupling within {CrNi2} is weaker15 leading to lower 

lying excited states. It would appear that the former is the dom-

inant effect in determining the relative magnitude of T1 in these 

two species. The difference between the T1 times of the two 

components is much reduced in 3 and 4. The effect of a fast 

relaxing spin on a slower relaxing spin depends on the relative 

magnitude of the coupling and the difference in resonance fre-

quency.32 Even where the coupling is weak it can enhance the 

1/T1 relaxation rate of the slow spin. This appears to be the case 

in 3 and 4, where T1 of the {CrNi2} components (110-260 µs) 

is still longer than that of the {Cr7Ni} rings (60-100 µs), but 

reduced from the free {CrNi2}. This is also the reason for the 

stability of the {Cr7Ni} T1 values across a wide range of supra-

molecular assemblies: in all these systems the rings are the fast-

est relaxing components.  

The Tm values for the slower relaxing {CrNi2} components in 

both 3 and 4 (600-700 ns) are similar to isolated {CrNi2} (800 

ns). This implies that the 1/T1 relaxation rate of the faster relax-

ing {Cr7Ni} spin (of the order 10−1 MHz) is still slow with re-

spect to the interaction frequency.33 This is consistent with 

MHz-scale coupling between the components of 3 and 4 (see 

DEER section). 

Note that low-frequency ESEEM effects (< 10 MHz) are ob-

served in the primary echo decay experiments of 3 and 4 when 

monitoring the {CrNi2} components (20 and 40 ns π/2 and π 

pulses, respectively), but not on the {Cr7Ni} components. The 

fact that they are only observed on the {CrNi2} resonances im-

plies that they are due to the 14N of the {CrNi2}-bound pyridyl 

groups (Larmor frequency 3.03 MHz at B0 = 983 mT). 

 

 Structures in three phases and at three temperatures 

DEER spectroscopy gives us spin…spin distances at 3 K in a 

dilute frozen solution. Triangular, organic three-spin systems 

have been studied previously by DEER (with one arm missing 

in the biradical system), and the effect of three-spin correlations 

on the distance distribution data examined by comparison to 

equivalent two-spin molecules, where one arm of the triangle is 

missing.31, 34 In 3 and 4, we have analogues of such systems but 

based on delocalised multi-centre spin systems. Here we are 

measuring {Cr7Ni} ring…ring contacts. From the AMDS cal-

culations we also have a structure in a mobile solution at 300 K 

(confirmed by the SAXS measurement, Figure 2). From single 

crystal diffraction we have a structure at 200 K in a crystalline 

material. It is interesting to compare these three structures of 3 

and 4 (Figure 6, Table 3). 

We make the assumption that the electron spin on the 

{Cr7Ni} rings in 3 and 4 sits on the metal sites. The DEER anal-

ysis is therefore giving us the distribution of inter-ring M…M 

distances in frozen solution at 3 K. We are not seeing any  

Figure 6. The distribution of inter-{Cr7Ni} metal...metal con-

tacts by three methods, in (a) 3 and (b) 4. AMDS calculation 

(brown); XRD (dark blue); metal-to-metal (purple) and cen-

troid-to-centroid (red) distances found by iterative fit of DEER 

data; fit from DeerAnalysis (Tikhonov regularizations; green). 

The AMDS distances were calculated using the centre of mass 

of the atoms involved and calculated for every timestep over 

10 ns; the average was then taken throughout the simulation to 

determine the distances. The XRD distances between metal 

ions for each {Cr7Ni}…{Cr7Ni} are plotted in 0.5 Å incre-

ments using a spline function. The DEER data are taken di-

rectly from the distance distributions in Figures 4 and 5. 



 

metal…metal contacts involving the central {CrNi2} triangle 

(see above). We first used DeerAnalysis software27 using 

Tikhonov regularisations,26 to calculate a distance distribution 

based on dipolar coupling. DeerAnalysis assumes an average 

nitroxide g-value, and a correction factor is required based upon 

the g-values of the experimental pump and observation pulses 

(1.76 and 1.77, respectively): this results in shifts to slightly 

shorter distances. The more significant difference here is that 

the spin on each {Cr7Ni} ring is distributed across eight sites.35 

Therefore in 3 we have contacts between three sets of eight sites 

and in 4 we have contacts between two sets of eight sites. Such 

effects can lead to deviations in distance distributions based on 

point-dipole models and the cluster centroids, as has been 

shown with biological FeS clusters.36 

Hence, we also fit the DEER data with a structural model, 

allowing for distribution of the spin over the eight sites of the 

{Cr7Ni} rings and accounting for orientation selection due to 

the g-anisotropy. In Figures 4(c) and 5(c), we compare the dis-

tance distributions extracted from the conformer library, pre-

sented both as M…M distances and as ring centroid…centroid 

distances, with those obtained from model-free DeerAnalysis. 

It is striking that, for both 3 and 4, the DEER fit centroid…cen-

troid distribution strongly resembles the DeerAnalysis results in 

terms of the dominant distances, with the exception that the 

DeerAnalysis distributions (a) are shifted to longer distances by 

1-2 Å, and (b) pick up short distances (< 15 Å) that are not  

found in the centroid…centroid distribution.  

The agreement, despite the neglect of DEER orientation se-

lectivity in {Cr7Ni} due to g-aniostropy,25 is because the rings 

are essentially axially symmetric and we are pumping at gx,y. In 

this case we will always detect the perpendicular component of 

the dipolar coupling pattern, such that a single DEER measure-

ment can yield reasonable distance distributions obtained from 

Tikhonov regularizations.28, 37 We have tested and validated this 

assumption by simulation (see SI). 

For both 3 and 4, the DEER fit M…M distance distributions 

are broader than either the centroid…centroid or DeerAnalysis 

results, notably picking up the shorter distances (< 15 Å) and 

extending to longer distances (> 25 Å). The closer agreement 

between the DeerAnalysis and DEER fit centroid…centroid 

distributions is likely a result of the fact that DeerAnalysis uses 

the point dipole approach, and given that the spin is evenly dis-

tributed around the {Cr7Ni} ring (once positional disorder of the 

Ni(II) ion is considered) this seems to average out to give dis-

tances similar to a spin localised at the centre of the ring. 

For 3 the distance distribution from DeerAnalysis has three 

maxima (Figure 6a), at 13.1 Å (towards the lower end of dis-

tances that can be measured by DEER),38, 39 a dominant peak at 

19.4 Å, and a smaller peak at around 24.4 Å. The DEER fit 

M…M distribution gives peaks between 12 and 26 Å, with the 

bulk of contacts between 18-24 Å (Figure 6a). 

To compare this with the inter-ring M…M distances in 3 as 

observed by single crystal X-ray diffraction we have arranged 

the M…M distances from diffraction in distributions of 0.5 Å 

and then broadened the distribution (dark blue line in Figure 

6a). There are two maxima at 15.0 and 16.9 Å, reflecting the 

rings being arranged in an isosceles triangle in the crystal. There 

is then a gap in the distribution before we reach a maximum at 

19.3 Å, consistent with the broad maximum in the DEER fit 

M…M data and the maximum in the DeerAnalysis distribution. 

There is then a small fall before a peak at 21.1 Å.  

If we then compare with the AMDS structure (brown line in 

Figure 6a) we see a very similar shape to the DeerAnalysis dis-

tribution, but shifted to longer distances with two maxima at 

16.0 and 20.7 Å. The simpler distribution from AMDS cf. XRD 

suggests that the structure in fluid solution is relaxing to an 

equilateral triangle of rings compared to the crystal structure. 

The DEER fit M…M distribution is more complex, with shorter 

and longer distances, reflecting the fact that a number of con-

formations are trapped on freezing the solution, and there are 

also possible differences in librational effects due to the extreme 

difference in temperatures of measurement (3 and 300 K). Some 

of this detail is lost in the simpler DeerAnalysis treatment. How-

ever, the dominant DEER fit M…M distances around 21 Å 

agree with that from AMDS. 

The conclusion is that in fluid solution at room temperature 3 

has a structure where the rings in the three [2]rotaxanes form an 

equilateral triangle. Additional structure is seen in the XRD as 

packing leads to a change in the overall structure towards an 

isosceles triangle, but with similar size. While a range of con-

formations are found in the frozen solution at 3 K, the dominant 

distances are similar to the fluid solution. 

For compound 4 the result is very different (Figure 6b). The 

XRD distance distribution has a similar longest distance at 22 

Å, cf. 21 Å for 3. However, there are significantly shorter con-

tacts at 13 Å, cf. 15 Å in 3. In 4 the AMDS and XRD structures 

are radically different from one another. In AMDS the shortest 

contact has a maximum at 18.0 Å, with the shortest contacts 

found in XRD and DEER (see below) entirely missing. The ma-

jority of M…M contacts by AMDS are around 22.7 Å, around 

the longest contact from XRD and the dominant contact by 

DEER fit. Finally, the AMDS has a much longer and significant 

contact at above 26 Å which is absent in the XRD. Hence, the 

AMDS structure is much more extended than the structure as 

observed by crystallography.  

The DeerAnalysis distance distribution for 4 gives short dis-

tances at 12.7 and 15.0 Å, the majority of contacts from 17.5-

21.9 Å, and a long-distance peak at 24.7 Å. The DEER fit 

M…M distribution gives peaks between shortest and longest 

distances of 12 and 28 Å, with the dominant peak at around 22  

Å. Comparing these to equivalent data for 3, both analyses show 

that in 4 there is a broader distance distribution, extending to 

longer distances, in the frozen solution. The DEER fit M…M 

distribution for 4 appears to combine features of those from the 

XRD and AMDS, with the short distances from the former and 

the long distances from the latter. However, although the M…M 

DEER fit result contains distances that extend beyond those 

found in the AMDS distributions, the dominant distance is sig-

nificantly shorter.  

All these results say that the [3]-rotaxane (4) relaxes much 

more in solution than the [4]-rotaxane (3). The presence of only 

 Table 3. Maxima (Å) in distribution of intra-ring 

M…M distances. (a) M…M DEER fit, (b) DeerAnalysis 

3 AMDS 16.0 20.7      

XRD 15.0 16.9 19.3 21.1    

DEERa 12.1 14.5 17.9 20.9 22.9 26.0  

DEERb 13.1 19.4 24.4     

4 AMDS 18.0 22.7 26.9     

XRD 12.9 15.2 18.2 20.0 21.8   

DEERa 12.0 13.9 16.0 18.0 21.7 24.2 25.8 

DEERb 12.7 15.0 18.1 20.7 24.7   



 

two large [2]rotaxanes attached to the central triangle in 4 leads 

to steric repulsion between these groups. The result is a bigger 

structure in mobile solution (also shown by the radius of gyra-

tion data, see SI) and also a broader range of conformations on 

freezing the solutions as shown by DEER. Hence, the fluid and 

frozen solution structures differ more significantly from each 

other for 4 than for 3. 

   

Conclusion 

We have prepared two large supramolecular assemblies 3 and 

4, containing twenty-seven and twenty-one paramagnetic cen-

tres respectively. Single crystal diffraction studies allow us to 

show these are [4]- and [3]rotaxanes with three or two {Cr7Ni} 

rings attached to a central {CrNi2} triangle.  

Such huge molecules have many degrees of freedom and by 

analysing AMDS structures calculated in solution, confirmed 

by SAXS data, we can see that the symmetric [4]rotaxane be-

haves very differently from the asymmetric [3]rotaxane. The 

packing of the [4]rotaxane in the crystal leads to an isosceles 

triangle of {Cr7Ni} rings that is not seen in solution by 

SAXS/AMDS. Here the crystallography establishes connectiv-

ity but not the conformation in solution, while DEER shows a 

relatively narrow range of conformations in the frozen solution. 

For the asymmetric [3]rotaxane we find that the structural dif-

ferences in solution, fluid and frozen, are much greater in terms 

of both the extension of the molecule and the range of confor-

mations observed.  

Determining such details of the structure of very large para-

magnetic assemblies is very difficult as the line broadening due 

to paramagnetism vitiates the use of NMR spectroscopy. Here 

the combination of AMDS and DEER allows us to characterise 

the materials and their conformers from 3 to 300 K. 
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