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Abstract 

Emotional distortions to time are consistently reported in laboratory studies, however their 

underlying causes remain unclear. One suggestion is that emotion induced changes in 

attentional processes may contribute to emotional distortions to time. The current study tested 

this possibility by examining the relationship between eye-movement and perceptions of the 

duration of emotional events. Participants completed a verbal estimation task in which they 

estimated the duration of positively, negatively and neutrally valenced images from the 

International Affective Picture System images. Time to first fixation and dwell time were 

recorded throughout. The results showed no significant relationships between measures of eye-

movement and measures of emotional distortion to time, despite the emotion manipulation 

successfully influencing the time before the participants first fixated on the to-be-timed 

stimulus. This suggests that for suprasecond intervals emotion induced changes in overt 

attention processing do not contribute towards emotional distortions to time.  
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1. Introduction 

A wealth of experimental evidence demonstrates that emotion distorts the perceived 

duration of events (see Lake, LeBar & Meck, 2016 and Lake, 2016 for recent reviews). The 

most commonly reported finding is that high arousal negatively valenced stimuli are perceived 

as lasting for subjectively longer than neutrally valenced stimuli of the same physical duration. 

This has been demonstrated in studies using a wide range of stimuli, including static images 

such as the IAPS (e.g. Gil & Droit-Volet, 2012), emotional facial expressions (e.g. Droit‐Volet, 

Brunot, & Niedenthal, 2004), emotional sounds (e.g. Noulhiane, Mella, Samson, Ragot, & 

Pouthas, 2007) and negatively valenced somatosensory stimulation such as pain (e.g. Fayolle, 

Gil, & Droit-Volet, 2015). Emotional distortions to time are also evident in clinical conditions, 

for example people with phobia over-estimate the presence of phobia triggers relative to non-

phobics (Watts & Sharrock, 1984).  The extent to which negatively valenced stimuli distort 

time appears to be determined by their arousal level, with high arousal negative stimuli 

producing greater lengthening’s of duration than low arousal negatively valenced stimuli (see 

Gil & Droit-Volet, 2012 and Ogden et al., 2019). Indeed, there is some evidence to suggest that 

some low arousal negative stimuli e.g. sadness, may have little or no effect on perceived 

duration (e.g. Gil & Droit-Volet, 2012) whereas other negatively valenced stimuli e.g. rotten 

food, are perceived as lasting for less time than neutrally valenced food items (Gil, Rousset & 

Droit-Volet, 2009).  

Whilst the duration of high arousal negatively valenced stimuli are consistently 

lengthened relative to neutral stimuli, the duration of positively valenced stimuli are often 

subjectively shortened. For example, positively valenced images are perceived as shorter than 

neutrally valenced ones (e.g. Smith, McIver, Di Nella & Crease, 2011) and happy music is 

perceived as shorter than neutral music (Droit-Volet, Bigand, Ramos & Bueno, 2010). 

Experiencing positive somatosensory stimulation, for example, pleasant touch, has also been 

shown to shorten the perceived duration of ongoing events (Ogden, Moore, Redfern & 

McGlone, 2015). However, the distorting effects of positive stimuli are inconsistent; the 

perceived duration of positively valenced facial expressions are often overestimated relative to 

neutral ones (e.g. Droit-Volet, 2005). Furthermore, there is also evidence positively valenced 

IAPS images have no effect on perceived duration (van Hedger, Necka, Barakzai & Norman, 

2017) even when high and low arousal images are judged separately (Ogden, Henderson, 

McGlone & Richter, 2019).  



To date, emotional distortions to time have typically been explained by the arousal 

theory which suggests that changes in physiological arousal cause distortions to the perceived 

duration of events (see Droit-Volet & Meck, 2007 and Lake, 2016 for review). Here, increases 

in physiological arousal are associated with the subjective lengthening of duration (van Hedger 

et al., 2017; Piovesan et al., 2019; Ogden et al., 2019) whereas interventions which reduced  

physiological arousal (from baseline levels) are associated with subjective shortenings of 

perceived duration (see Ogden et al., 2019 for example). However, it has also been suggested 

that emotional modulation of attentional processes may contribute towards emotional 

distortions to time (e.g. Angrilli, Cherubini, Pavese & Manfredini, 1997; Burle & Cassini, 

2001; Lake, 2016; Ogden, 2013; Wittmann, 2009).  

The framework of Scalar Expectancy Theory (SET: Gibbon, Church & Meck, 1984) 

proposes that time is processed by a pacemaker-accumulator clock. The pacemaker is 

constantly emitting output. To enable timing, at the start of a to-be-timed-event the switch 

between the pacemaker and the accumulator closes enabling the transfer of output from the 

pacemaker to the accumulator. At the end of the to-be-timed-event the switch opens and 

accumulation ceases. The amount of accumulated output forms the representation of duration, 

with more output equating to more time.  

In its original form, SET did not describe attentional processing during timing. 

However, its application to human timing led to the suggestion that the switch may represent 

attention to the to-be-timed stimulus. Here, delays in attending to a to-be-timed event would 

increase switch closure latency, resulting in less accumulation and a shortening of perceived 

duration. Later models based on SET, for example, the Attention Gate Model (AGM (Figure 

1) (Block & Zakay, 1996; Zakay & Block, 1995 1996), have explicitly incorporated attention 

into the timing process. The AGM identifies two core ways in which attention can affect time 

perception; orientation latency effects which affect switch operation (selective attention) and 

sustained attention effects which affect gate operation (see Fernandes & Garcia-Marques, 2020 

and Matthews & Meck, 2016 for recent reviews).  

The AGM proposes that in addition to the switch, there is an attentional gate which can 

open and close throughout the to-be-timed-event. The extent to which the gate opens and closes 

during a to-be-timed event is determined by the amount of attention paid to time. When 

attention to time is high, the gate remains closed and output from the pacemaker is transferred 

to the accumulator without loss. As attention to time decreases the gate opens, resulting in a 



reduced rate of transfer from the pacemaker to the accumulator and a shorter perception of 

duration. This gate could therefore be considered a form of sustained attention to time. 

Sustained attention effects, such as those described in the AGM, are multiplicative in that the 

degree of underestimation increases with increasing stimulus duration. In time estimation tasks, 

sustained attention effects can be inferred from differences in the slope of the estimation 

functions. Greater attention to time is therefore associated with a steeper slope function 

whereas reduced attention to time is associated with a flatter slope function (see Buhusi & 

Meck, 2009, Coull, Vidal, Nazarian, & Macar, 2004 for discussion).  

In addition to the gate, the AGM also proposed an attentional role for the switch in 

determining stimulus meaning, with the detection of a relevant stimulus prompting the closure 

of the switch and the commencement of accumulation. The switch in the AGM model operates 

in a similar manner to that proposed in SET. Delays in attending to the start of a to-be-timed-

event, perhaps due to distraction or other cognitive demands, will increase the latency with 

which the switch closes (Lejeune, 1998). This results in a delay to the process of accumulation, 

resulting in less accumulation and a shorter perception of duration. Conversely, cues which 

increase the speed at which a stimulus is detected reduce switch closure latency resulting in an 

increase in perceived duration. Critically, unlike the gate, the opening and closing of the switch 

is proposed to be an all or nothing event; i.e. it is either fully open or fully closed. However the 

degree of latency of switch opening and closure can vary. These types of effects can be termed 

attention orientation latency effects and reflect the effect of selective attention on time 

estimation. Latency effects are generally considered to be additive in that, within a given task, 

regardless of stimulus duration the effect of switch latency remains the same. In duration 

estimation tasks they are therefore inferred from differences in the intercept of the estimation 

functions with increases in orientation latency decreasing intercept values and decreases in 

orientation latency increasing intercept values (see Wearden, O’Rourke, Matchwick, Min, & 

Maeers, 2010 and Williams and Meck, 2016 for discussion). 

Evidence for orientation latency effects in timing can be found in endogenous and 

exogenous cueing tasks. For example, Mattes and Ulrich (1998) observed that duration 

estimates for stimuli preceded by valid endogenous spatial and modality cues increased 

proportionally with the validity of the cue. An expansion of subjective duration is also observed 

when to-be-timed stimuli are exogenously cued (e.g. Seifried & Ulrich, 2011). Together, these 

and other similar studies demonstrate that selective attention to non-temporal stimulus 

properties i.e. location and modality can influence duration processing, supporting the role of 



the switch in timing. However, although lengthening’s of the perceived duration of valid 

endogenously cued stimuli were also observed by Enns, Brehaut & Shore (1999), they 

suggested that this effect could not simply be explained by faster detection of stimulus onset 

suggesting that multiple attentional processes can influence perceived duration. Although the 

AGM makes specific predictions for the switch and the gate, the precise formulation of the 

switch and gate remain debated (see Lejeune 1998, 2000 and Zakay 2000 for discussion). 

Indeed, some papers simply describe the attentional gate as a form of switch, rather than an 

addition to the switch. 

Figure 1: A modified schematic of the AGM 

 

 

Attention is known to be captured by emotional stimuli, which often distract from 

ongoing tasks more readily than neutral stimuli (see Pourtois, Schettino & Vuilleumier, 2013 

and Vuilleumier, 2005 for review). This capture is greatest and most consistently demonstrated 

for negatively valenced stimuli. For example, in the emotional Stroop task colour naming is 

slowed to a greater extent for emotional than neutral words (e.g. Williams, Matthews & 

MacLeod, 1996). Similarly, in visual search tasks  emotional targets are identified more quickly 

than neutral ones (Nummenmaa, Hyona, & Calvo, 2006) and angry or threatening faces are 

identified more quickly that neutral of happy ones in a crowd scene (Bradley et al., 1997; 

Hansen & Hansen, 1988). Finally, in cueing tasks emotional invalid cues impose a high cost 

on attentional orientation than neutral invalid cues (Koster, Crombez, Van Damme, Verschuere 

& De Houwer, 2004). Collectively, these findings (and others) suggest that emotional stimuli 

are preferentially attended to in the environment, possibly via a neural system specialised for 

such a purpose (see Pourtois et al., 2013 and Vuilleumier, 2005 for review). Given these effects 

of emotion on attentional processes, it is plausible that emotional modulation of attention may 



also act as a mechanism for emotional distortions to time perception. More rapid orientation to 

emotional stimuli may reduce orientation latency resulting in faster switch closure and longer 

perceptions of duration. Predictions for the effect of the preferentially processing of emotional 

stimuli over neutral (sustained attention) are however more complex. One obvious possibility 

is that enhanced processing of emotional components of a to-be-timed stimulus may distract 

from the timing of the stimulus, leading to greater opening of the attentional gate and shorter 

perceptions of duration. Alternatively, however, it is possible that preferential sustained 

attention for emotional stimuli over neutral stimuli may contribute towards the lengthening 

effects observed for some emotional stimuli. This later possibility assumes that during any 

timing task the process of timing is competing with ongoing, task irrelevant, mental activities. 

Following this logic, in a verbal estimation task, emotional stimuli may be better than neutral 

stimuli at capturing and maintaining attention on the timing task itself. This may facilitate the 

processing of the temporal structure of the stimulus, leading to longer perceptions of duration.   

Previous research has theorized that emotional modulation of attention may explain the 

relative underestimation of the duration of some emotional stimuli. For example, Ogden et al., 

(2015) suggested that pleasant touch shortened the perceived duration of ongoing events 

because it’s appetitive nature (Pawling, Trotter, McGlone & Walker, 2017) distracted 

participants’ attention away from the concurrent timing task (a sustained attention effect). 

Similarly, it has been suggested that the perceived duration of rotten food (Gil et al., 2009), 

shameful expressions (Gil & Droit-Volet, 2011), unattractive faces (Ogden, 2013) and highly 

sexual taboo words (Tipples, 2010) are underestimated because attention is dedicated to the 

processing of stimulus features and not time. For example, when attention is dedicated to 

avoiding rotten food (Gil et al., 2009) and shameful expressions (Gil & Droit-Volet, 2011), 

locating atypical features in face-space and reading sexually explicit content, there is reduced 

sustained attention to time resulting in shorter perceived durations.  

Lui, Penney and Schirmer (2011) tested this proposal using a discrimination task in 

which participants compared the duration of two neutral stimuli (S1 and S2) separated by the 

brief presentation of an emotional or neutral image. When an emotional image (positive or 

negative) was interposed between S1 and S2, participants were more likely to judge S2 as 

shorter than S1. Lui et al., (2011) suggested that the shortening of S2 could not be explained 

by a pacemaker effect and therefore instead demonstrated an attentional effect on timing in 

which attention capture by the emotional stimulus and subsequent emotion regulation attempts, 

distracted from timing during S2 presentation.  



Interestingly, changes in attentional processing have not been exclusively associated 

with shortenings of perceived duration. Instead, enhanced attentional orientation towards 

emotional stimuli has been used as an explanation for some additive lengthening’s of perceived 

duration. For example, Ogden, Moore, Redfern & McGlone (2014) suggested that painful 

stimuli were estimated as lasting for longer than non-painful stimuli because of an increase in 

arousal and because the pain stimuli captured attention more effectively than the neutral 

stimulus, leading to reduced switch latency effects and a longer perception of duration. 

Grommet, Droit-Volet, Gil Hemmes, Baker & Brown, (2011) also suggested that the attention 

capture by threatening stimuli uniquely lengthened perceived duration independently of 

arousal. These suggestions are supported by Mella, Conty & Pouthas’ (2011) examination of 

the effects of modulations of top-down attention to emotion. During a temporal discrimination 

task, participants were instructed to focus attention on either time, emotion or time and emotion 

during a temporal discrimination task in which physiological arousal was also recorded. 

Attending to emotion increased physiological arousal and perceived duration for emotional 

stimuli whereas attending to only time removed emotion effects for physiological arousal and 

time judgements. When attention was divided, emotion affected timing but not physiological 

arousal. Top down modulation of attention to emotion therefore determined the lengthening 

effect of emotion on perceived duration. 

 The role of attention in emotional distortion to time has also be inferred from 

comparisons of neural activity during the timing of emotional and neutral events. Gan, Wang, 

Zhang, Li & Luo (2009) examined ERPs resulting from the temporal discrimination of neutral 

and emotionally valenced facial stimuli. Enhanced P160 and P240 amplitudes were observed 

for emotional in comparison with neutral stimuli suggesting more rapid orientation to the 

emotional than neutral stimuli. Similarly, in a temporal production task, Tamm, Uusberg, Allik 

& Kreegipuu (2014) observed emotional modulation of early posterior negativity which 

indicated more rapid activation of early attentional mechanisms for positively valenced stimuli. 

Early P1 and the late positive potentials were however similar for positive and negatively 

valenced stimuli. Although this may be suggestive of an attentional contribution to emotional 

distortions to time, the authors acknowledge that their behavioural results were complex and 

did not provide a clear indication of how attention contributed to emotional distortions to time.  

 



Whilst the attentional explanations in the above studies are theoretically plausible, they 

are often made post-hoc and in the absence of objective evidence that attentional processing 

was indeed different for one class of stimuli than another. This is problematic because, as 

Wearden (2016, pg 144) highlights“… since increased attention to content diverts attention 

away from timing, shortening perceived duration, and increased arousal causes the internal 

clock to tick faster, thus lengthening perceived duration, any possible result can be 

accommodated simply by changing the balance of these two opposing processes.”. To 

substantiate the specific effects of attentional processing during emotional distortions to time, 

it is therefore necessary to obtain objective measures of attention allocation during timing and 

to then establish whether these measures relate to distortions to time. This suggestion echoes 

recent articles which have recommended that attentional onset and offset latencies should be 

objectively measured and related to perceive duration (Matthews & Meck, 2016).  

One appropriate way to obtain objective measures of attentional allocation during 

timing is through the measurement of eye-movements (Wearden, 2016). Shifts in spatial 

attention can occur covertly, with attention shifted to new locations or objects within the 

existing visual field, without eye or head movements. Alternatively, overt shifts of attention 

involve movements of the eyes, in order that the viewer gazes directly at the object of interest 

and brings the object into foveal vision (Posner, 1980). Overt attention shifts can therefore be 

captured using eye-movement tracking technology (Parkhurst, Law & Niebur, 2002, Soto, 

Heinke, Humphreys, & Blanco, 2005, Theeuwes, Kramer, Hahn, Irwin, & Zelinsky, 1999 and 

see Eckstein, Guerra-Carrillo, Singley, & Bunge, 2017 and Rayner, 2009 for reviews). Eye-

tracking has been used for several decades to measure overt attentional shifts; both those that 

are exogenous, meaning they are automatic and stimulus driven (e.g. Bannerman, Milders, & 

Sahraie, 2010; Hood & Atkinson, 1993), and those that are endogenous, meaning that they are 

guided by top-down processes (e.g. Gowen, Abadi, Poliakoff, Hansen & Miall, 2007; Sears, 

Thomas, LeHuquet & Johnson,2010). 

Critically, eye-tracking methods have been used successfully to demonstrate the effects 

of emotion on the allocation of attention.  For example, Nummenmaa et al., (2006; see Carretie, 

2014 for review) demonstrated that emotionally valenced images captured exogenous overt 

visual attention more readily than neutrally valenced images. Fearful or threatening faces 

preferentially also capture attention, as measured by gaze direction in a dot-probe task, in a 

manner assumed to represent endogenous guidance (Bradley, Mogg & Millar, 2000; Mogg, 

Garner & Bradley, 2007; see Brosch, Pourtois, Sander & Vuilleumier, 2011 for discussion of 



endogenous and exogenous contributions to dot-probe).  Similarly, endogenous overt attention 

is more readily captured by human gaze when gazing faces have salient emotional expressions 

(eg. Bayliss, Schuch & Tipper, 2010; Matthews, Fox, Yiend & Calder, 2003) and whilst these 

effects have typically been explored with reaction time measures, the same effects have been 

demonstrated in children by measuring eye-movements (Matsunaka & Hiraki, 2014). Eye 

tracking has also been used to demonstrate preferential attentional allocation toward emotional 

rather than neutral scenes (Calvo & Lang, 2005), as well as toward emotional content in 

dynamic scenes (Subramanian, Shankar, Sebe & Melcher, 2014). 

Recording eye-movements during a time perception task and establishing the 

relationship between measures of eye-movement and distortion to time is therefore a logical 

first step in objectively measuring and establishing the contribution of overt attentional 

allocation to emotional distortions to time.  

1.1 The current study 

 The current study sought to quantify overt attentional allocation during temporal 

processing by recording eye-movements during a verbal estimation task. Furthermore, it aimed 

to test the relationship between emotional distortions to time and overt attention allocation 

during timing. Participants completed a verbal estimation task in which they were asked to 

estimate, in milliseconds, the presentation duration of high arousal positive, high arousal 

negative and neutrally valenced IAPS images which appeared on the left or right of the centre 

of the screen. During this task two measures of eye-movements were recorded on each trial; 

time-to-first fixation (TOFF) and dwell time. TOFF was defined as the duration in milliseconds 

from target onset to the first fixation on the target and is therefore a measure of latency in overt 

attentional orientation toward the to-be-timed stimulus. Dwell time was defined as the total 

duration in milliseconds of fixations that participants made to the to-be-timed-stimulus during 

its presentation and is therefore a measure of sustained overt attention to the to-be-timed-event 

throughout its time on screen. Distortion to time was defined as the difference between 

estimates given for the neutral stimuli and the positive and negative stimuli. In addition, 

because differences in the slope and intercept of verbal estimation gradients have previously 

used differentiate the effects of changes in attentional latency (intercept) and changes in 

sustained attention to time (slope) (see Wearden et al., 2010), the differences in slopes and 

intercepts of the estimation functions from the neutral to the positive and negative conditions 

were calculated. The relationship between changes in estimates, slopes and intercepts, TOFF 



and dwell time was then calculated to test the relationship between attentional processing and 

emotional distortions to time. This analysis strategy replicates that used in by Ogden et al., 

(2019) to establish the relationship between objective measures of arousal and emotional 

distortions to time. High arousal stimuli were used because for negatively valenced stimuli, 

they have been shown to elicit the greater distortions to subjective time than low arousal images 

(e.g. Gil & Droit-Volet, 2012; Ogden et al., 2019). Low arousal images were not studied 

because of their inconsistent effects on perceived time. 

It was expected that negatively valenced stimuli would be estimated as longer than 

neutrally valenced and positively valenced stimuli, replicating previous findings (e.g. Gil & 

Droit-Volet, 2012). Positively valenced stimuli were expected to be estimated as shorter than 

negatively and neutrally valenced stimuli, replicating Ogden et al., (2015). Furthermore, it was 

expected that dwell time and TOFF would be predictive of emotional distortions to the 

perceived duration of positive and negatively valanced stimuli. Specifically, because emotional 

stimuli capture and hold attention more efficiently than neutral stimuli, it was expected that 

dwell times would be longer for the emotional than the neutral stimuli, reflecting better 

sustained attention for emotional stimuli. The AGM suggests that increased sustained attention 

throughout a to-be-timed event will result in greater accumulation and longer perceptions of 

duration. Therefore, it was expected that there would be a positive relationship between 

changes in dwell times from positive and negative stimuli to neutral stimuli and changes in 

estimate and slope measures for these conditions.  Furthermore, because emotional stimuli are 

orientated to more quickly than neutral stimuli (see Pourtois et al., 2013 and Vuilleumier, 2005 

for review), it was expected that switch closure times would be faster for the emotional stimuli 

than the neutral, resulting in shorter TOFF measures for the emotional than neutral stimuli. 

SET suggests that more rapid attentional orientation results in more rapid switch closure, 

greater accumulation and a longer perception of duration. We therefore expect that there would 

be a negative relationship between changes in TOFF times from positive and negative stimuli 

to neutral stimuli and changes intercept for these conditions.  

  



2. Method 

2.1 Participants 

Fifty participants, with normal vision, were recruited through volunteer sampling from 

Liverpool John Moores University and the general population via email advertisement. 

Participants were given a £5 shopping voucher in exchange for participation. Participants were 

aged 18 to 35 (M=20.68, SD=3.37) with 37 females and 13 males. The study was approved by 

Liverpool John Moores University Research Ethics Committee and all participants gave 

informed written consent. The study was conducted in accordance with the principles expressed 

in the Declaration of Helsinki.  

2.2 Apparatus  

Recording of Eye-movements: Eye-tracking was carried out using a Tobii Pro X3-120 monitor 

mounted eye-tracker, sampling at 120Hz.  Participants sat approximately 500mm away from 

the monitor.  Prior to beginning the task each participant underwent a five-point calibration 

procedure and the experimenter repeated the calibration if they judged it to be 

unacceptable.  Calibration was repeated at the half-way point during the task.  Participants 

completed three practise trials to orient them to the demands and timing of the task. All stimuli 

were presented against a white background on a monitor with an actual screen size of 475mm 

(width) by 295mm (height).   

Stimulus selection: Stimuli were colour digital images selected from the IAPS (Lang, Bradley 

& Cuthbert, 1997). Three categories of images were selected which constituted the three 

experimental conditions: high arousal negative, high arousal positive and neutral. Four images 

selected for each condition (see Table 1 for image numbers). The images were selected 

according to IAPS standard ratings for arousal and for valence. The high arousal negative 

images (valence 1.50 – 2.00, arousal 6.00 – 7.50) included images of injured hands and dead 

or mutilated people, the high arousal positive images (valence 6.50 – 7.50, arousal 6.00 – 7.50) 

included images depicting soft pornography, and the neutral images (valence 4.00 - 5.00, 

arousal 1.50 – 3.00) included pictures of household items.  

To confirm the emotional qualities of the images, a separate group of 40 new participants (16 

male, mean age 28.45 years, SD = 5.53) rated them for arousal and valence (see Table 2). 

Participants completed their ratings online through the recruitment platform Prolific. The 

concepts of valence and arousal were explained to the participants during instructional screens 

https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/


at the start of the study. Ratings were made using  the 9 point rating scale of the Self-

Assessment Manikin (SAM; Lang, 1980). For valence, the scale went from a frowning, 

unhappy figure to a smiling happy figure and for arousal level the scale went from a relaxed, 

sleepy figure to an excited figure. Each participant viewed and rated the images in a random 

order. A mixed ANOVA with a within-subjects factor of emotion valence (positive negative 

and neutral) and a between subjects factors of gender (male and female) was conducted on the 

valence and arousal ratings. For valence, there was a significant main effect of emotional 

valence F(2, 76) = 144.59, p < .001, ηp
2 = .79. Bonferroni post-hoc tests confirmed significantly 

lower valence scores for the negative images than the neutral (p < .001) and positive images (p 

< .001). The positive images were rated as significantly more positive than the neutral images 

(p < .001). There was also a significant effect of gender F(1, 38) = 6.02, p = .02, ηp
2 = .14 with 

males (M = 4.38, SE = .15) rating the images as significantly more positive than females (M = 

3.90, SE = .12). There was no significant interaction between emotion valence and gender F(2, 

76) = .32, p = .73, ηp
2 = .008.  

For arousal, there was a significant main effect of emotional valence F(2, 76) = 39.24, 

p < .001, ηp
2 = .51. Bonferroni post-hoc tests confirmed significantly higher arousal scores for 

the negative images (p < .001) and positive images (p < .001) when compared to neutral images. 

The positive images were also rated as significantly more arousing than the negative (p < .01). 

There was no significant effect of gender F(1, 38) = 1.77, p = .19, ηp
2 = .04. There was also no 

significant interaction between emotion valence and gender F(2, 76) = 2.40, p = .10, ηp
2 = .06. 

The three conditions of stimuli were also compared in terms of mean luminance calculated 

from their RGB values and no significant differences between the conditions were found (X2(2) 

= 1.4, p = .49). 

Table 1: IAPS numbers  

 

High Arousal 

Negative 

High Arousal 

Positive 

Neutral 

3110 4660 7010 

9405 4680 7050 

9410 4690 7150 

9187 4668 7175 

 



Table 2. Valence and arousal means and standard deviations for image levels 

Image type Valence M Valence SD Arousal M Arousal SD 

High Arousal Negative 1.39 0.46 4.12 3.14 

High Arousal Positive 6.22 1.52 5.79 1.94 

Neutral 4.64 1.38 1.79 1.19 

 

2.3 Procedure  

The basic experimental procedure was as follows. Participants viewed the monitor from a 

distance of 60cm and completed the initial five-point calibration exercise. They then completed 

three practice trials of the verbal estimation task followed by a further 72 trials of the verbal 

estimation task in which they had to judge how long a target was presented on the screen. 

Participants then re-completed the calibration exercise followed by a further 72 trials of the 

verbal estimation task. Overall, experiment lasted for approximately 30 minutes and eye 

movements were recorded throughout.  

Eye-movements calibration: Participants completed a five-point calibration procedure that 

required them to make saccades to five locations (the centre and four corners of the screen) 

dictated by a moving white dot (diameter 1.4°).  When the dot stopped moving on reaching 

each of the five locations the participants were instructed to fixate on it until it moved again.  

Calibration accuracy, represented by error bars in each location, was visually inspected and the 

procedure repeated if considered necessary. 

Verbal estimation task: A modified version of verbal estimation was developed for this task. 

Participants were informed that, on each trial, they would see a fixation cross which they were 

to orient their eyes toward. They were instructed that this fixation cross would be followed by 

a target stimulus, and that their task was to estimate, in milliseconds, how long the target 

stimulus was presented on the screen for. Participants were informed that the target was always 

presented for between 500ms and 2500ms. Participants were instructed not to count during 

image presentation. 

At the start of each trial a black fixation cross (23mm by 23mm, 2.2°) was presented in the 

centre of the screen on a white background for 500ms. This was followed by the target stimulus 

in the form of an IAPS image. The target stimuli had dimensions of 70mm (6.7°) by 46mm 

(4.4°) and were presented so that their centres were 109mm 10.4° from the vertical edge of the 



screen and 144mm 13.7° from the top of the screen. Following target offset participants were 

instructed to verbalise their estimate and it was recorded by the experimenter. On each trial the 

target was presented for one of six durations; 1000ms, 1200ms, 1400ms, 1600ms, 1800ms or 

2000ms. There were three conditions of target stimulus; negatively valenced, positively 

valenced and neutrally valenced. In each condition, four different images were used (see Tables 

1 and 2 for details). There were a total of 147 trials, 3 practice trials, 48 negative, 48 positive 

and 48 neutral. On 50% of trials the target stimulus was presented in the left-hand side of the 

computer screen. On the remaining 50% of trials the target was presented in the right-hand side 

of the computer screen. All trials were presented in a random order and no performance 

feedback was given.  

2.4 Data analysis:  

Time estimation was assessed using three measures: 1) mean verbal estimate, 2) slope and 3) 

intercept. Mean verbal estimate was calculated as the average estimate given for each 

emotional condition. To calculate the slope and in the intercept of the verbal estimate functions 

(see Figure 2), linear regressions were conducted separately on each condition of each 

participants’ data. The slope and intercept of each regression function for the three emotional 

conditions was then extracted.  

Measures of dwell time and TOFF were generated within Tobii Pro Studio (version 3.4.8.1348) 

through the creation of areas of interest.  These were centred on the target stimuli and made 10 

pixels larger on either side of the stimulus rectangle to account for small errors in eye position 

tracking. Mean, minimum and maximum dwell times and TOFF, and their standard deviations 

were calculated at the participant level within Tobii Studio and these statistics were first 

visually inspected for outliers / artefacts. Data from two participants was excluded due to TOFF 

measures which were greater than three SD above the mean.  

3. Results 

Table 3: Descriptive statistics for the measures of temporal perception and eye-movements.  

Trial Type Mean 

estimate 

ms (SD) 

Mean 

TOFF ms 

(SD) 

Mean dwell 

time ms 

(SD) 

Mean 

Slope 

(SD) 

Mean 

Intercept 

(SD) 

Negative  1404.23 

(267.42) 

23.73 

(5.99) 

1235.00 

(97.81) 

0.98 

(0.29) 

-56.89 

(459.10) 



Neutral 1374.82 

(272.39) 

25.11 

(6.57) 

1218.10 

(110.31) 

0.89 

(0.34) 

43.92 

(522.86) 

Positive  1363.55 

(265.95) 

23.80 

(4.91) 

1228.80 

(94.33) 

0.83 

(0.26) 

121.15 

(439.11) 

Table 3 shows means and SDs for the average estimate, TOFF, dwell time, slope and 

intercept for the positive, negative and neutral conditions.  

3.1 Eye-movements  

A mixed ANOVA with within subjects factors of emotional valence (positive, negative 

and neutral) and stimulus duration (1000ms, 1200ms, 1400ms, 1600ms, 1800ms or 2000ms), 

presentation location (left or right) and a between subjects factor of participant gender (male 

or female) was used to assess the effect of stimulus valence on TOFF. This analysis showed a 

significant main effect of emotional valence F(2, 92) = 7.81, p = .006, ηp
2 = .15. Bonferroni 

corrected post-hoc tests confirmed that TOFFs were significantly shorter in the negative (p = 

.001) and positive condition (p = .002) than the neutral condition. There was no significant 

difference between the positive and negative conditions (p = .99). There were no significant 

main effects of duration F(5, 230) = 2.16, p = .06,  ηp
2 = . 04, gender F(1, 46) = .03, p = .87, 

ηp
2 = .001 or location F(1, 46) = 3.05, p = .09, ηp

2 = .03. There were no significant two way 

interactions between emotional valence and stimulus duration F(10, 470) = 1.71, p =.08, ηp
2 = 

.04, gender and duration F(5, 230) = 1.11, p = .34, ηp
2 = .02, gender and emotion F(2, 92) = 

2.26, p = .11, ηp
2 = .05, gender and location F(1, 46) = 3.05, p = .09, ηp

2 = .06, emotion and 

location F(2, 92) = 2.17, p = .06, ηp
2 = .03 and location and duration F(5, 230) = .378, p = .87, 

ηp
2 = .008. Furthermore, there were no significant three way interactions between emotion, 

location and gender F(2, 92) = 2.87, p = .06, ηp
2 = .06, emotion, duration and gender F(10, 

460) = 1.51, p = .20, ηp
2 = .04, emotion, location and duration F(10, 460) = 1.40, p = .21, ηp

2 

= .03, duration, location and gender F(5, 230) = .37, p = .87, ηp
2 = .008  and no significant four-

way interaction between emotion, location, duration and gender F(10, 460) = 1.40, p = .2, ηp
2 

= .03. These findings suggest that the emotion manipulation affected eye-movements resulting 

in short TOFF for emotional than neutral stimuli.  

A mixed ANOVA with within subjects factors of emotional valence (positive, negative 

and neutral) and stimulus duration (1000ms, 1200ms, 1400ms, 1600ms, 1800ms or 2000ms), 

presentation location (left or right) and a between subjects factor of participant gender (male 

or female) was used to assess the effect of stimulus valence on dwell time. This analysis showed 



a significant main effect of duration  F(5, 230) = 1806.26, p < .0011, ηp
2 = .98.There were no 

significant main effects of emotion F(2, 92) = 2.56, p = .08,  ηp
2 = . 05, gender F(1, 46) = .04, 

p = .56, ηp
2 = .008 or location F(1, 46) = .005, p = .95, ηp

2 < .001. There were no significant 

two way interactions between emotional valence and stimulus duration F(10, 460) = 1.45, p 

=.16, ηp
2 = .03, gender and duration F(5, 230) = 1.67, p = .14, ηp

2 = .04, gender and emotion 

F(2, 92) = .16, p = .85, ηp
2 = .004, gender and location F(1, 46) = .95, p = .33, ηp

2 = .02,emotion 

and location F(2, 92) = 1.14, p = .33, ηp
2 = .02 and location and duration F(5, 230) = .08, p = 

.99, ηp
2 = .002. Furthermore, there were no significant three way interactions between emotion, 

location and gender F(2, 92) = .19, p = .83, ηp
2 = .004, emotion, duration and gender F(10, 

460) = 122, p = .27, ηp
2 = .03, emotion, location and duration F(10, 460) = .85, p = .58, ηp

2 = 

.02, duration, location and gender F(5, 230) = 1.05, p = .39, ηp
2 = .02  and no significant four-

way interaction between emotion, location, duration and gender F(10, 460) = 1.10, p = .36, ηp
2 

= .02. These findings suggest that emotional valence, gender and stimulus location did not 

influence dwell times  

3.2 Time estimates 

Figure 2 shows mean verbal estimates plotted against stimulus presentation duration for the 

positive, negative and neutral conditions. Examination of Figure 2 suggests that estimates were 

longer for the negative than neutral and positive conditions.  

 

 

Figure 2: Mean verbal estimates for the negative, neutral and positive stimuli plotted against 

the stimulus presentation duration. Error bars show standard error of the mean.  



A mixed ANOVA with within subjects factors of emotional valence (positive, negative 

and neutral) and stimulus duration (1000ms, 1200ms, 1400ms, 1600ms, 1800ms or 2000ms), 

presentation location (left or right) and a between subjects factor of participant gender (male 

or female) was used to assess the effect of stimulus valence on perceived duration. This analysis 

showed a significant main effect of emotional valence F(2, 94) = 5.49, p = .006, ηp
2 = .11. 

Bonferroni corrected post-hoc tests confirmed that estimates were significantly longer in the 

negative than neutral condition (p < .01) and positive conditions (p < .02). There was no 

significant difference between the positive and neutral conditions (p =.99). There was also a 

significant main effect of duration F(5, 230) = 121.07, p < .001 ηp
2 = .73 and a significant 

interaction between emotional valence and stimulus duration F(10, 470) = 4.91, p < .001 ηp
2 = 

.10. There were no significant main effects of gender F(1, 46) = 1.79, p = .19, ηp
2 = .04 or 

location F(1, 46) = 1.59, p = .21, ηp
2 = .03. There were also no significant two way interactions 

between gender and emotion F(2, 92) = .65, p = .52, ηp
2 = .01, gender and location F(1, 46) = 

.34, p = .86, ηp
2 = .001, emotion and location F(2, 92) = 2.14, p = .23, ηp

2 = .04 and location 

and duration F(5, 230) = 1.58, p = .17, ηp
2 = .03. Furthermore, there were no significant three 

way interactions between emotion, location and gender F(2, 92) = 2.14, p = .13, ηp
2 = .04, 

emotion, duration and gender F(10, 460) = .47, p = .91, ηp
2 = .01, emotion, location and 

duration F(10, 460) = 1.21, p = .28, ηp
2 = .03, duration, location and gender F(5, 230) = 1.21, 

p = .28, ηp
2 = .03  and no significant four-way interaction between emotion, location, duration 

and gender F(10, 460) = 1.00, p = .44, ηp
2 = .02. These finding suggest that emotional valence 

influenced duration estimates, with longer estimates for negative than neutral and positive 

stimuli. There were however no effects of gender or stimulus location.   

Further analysis was conducted on the slope and intercept of the estimate functions. For 

slope values there was a significant effect of emotion F(2, 94) = 12.71, p < .001, ηp
2 = .21 with 

a significantly steeper slope in the negative than neutral (p < .03) and positive conditions (p < 

.001) but no significant difference between the neutral and positive conditions (p = .18). For 

intercept values there was a significant effect of emotion on intercepts F(2, 94) = 7.01, p = .001 

ηp
2 = .13 with significantly smaller intercepts in the negative than positive condition (p < .001) 

but no significant difference between the positive neutral (p = .36) or negative and neutral 

conditions (p = .17).  

3.3 The relationship between eye-movements and distortions to time 

To test the relationship between distortions to time and eye-movements, the difference 

in slope, intercept, TOFF and dwell time for the negative and neutral and negative and positive 



conditions was calculated. The relationship between estimates, slopes, intercepts, TOFF and 

dwell time was assessed using Pearson’s correlation and p-values were adjusted for multiple 

comparisons. Examination of Table 4 shows that there were no significant relationships 

between these measures.  

 

Table 4: Correlation coefficients for the relationship between TOFF, dwell time, slope and 

intercept.  

 

  TOFF Dwell Time 

Negative –neutral Estimate .01 .01 

 Slope .16 .05 

 Intercept -.07 -.14 

Negative – positive Estimate .20 -.24 

 Slope -.01 .12 

 Intercept -.21 -.15 

Neutral – positive Estimate -.05 -.01 

 Slope .10 .19 

 Intercept -.15 .18 

 

4. Discussion 

This study tested the relationship between emotional distortions to time and overt 

attentional processing as indexed by eye-movements. Two measures of eye-movements were 

recorded; TOFF which measured the latency of overt attentional orientation to the to-be-timed 

stimulus, and dwell time, which measured sustained overt attention to the to-be-timed stimulus 

throughout its presentation. Distortion to time was defined as the difference between the 

estimates, slopes and intercepts given for neutral stimuli and positive and negative stimuli.  

The results show that high arousal negatively valenced stimuli were perceived as lasting 

for longer than neutrally and high arousal positively valenced stimuli. These findings replicate 

previous findings using similar stimuli (e.g. Gil & Droit-Volet, 2012), confirming that the data 

are typical of that seen in other studies. There was no difference in the perceived duration of 

positive and neutrally valenced stimuli suggesting that positively valenced stimuli did not 

distort time in this instance. This replicates previous findings obtained with IAPS stimuli (e.g. 

Ogden et al., 2019).  



The eye-movement recordings showed that TOFF was significantly shorter for 

positively and negatively valenced stimuli than neutral stimuli, suggesting faster orientations 

of overt attention to emotional stimuli than neutral stimuli. This replicates findings by authors 

reporting faster attentional orienting toward emotional over neutral stimuli (Koster et al., 2004; 

Milstein & Dorris, 2007) and similar effects for reward (Nummenmaa et al., 2006).  Dwell 

times were unaffected by emotional valence suggesting that sustained overt attention was 

similar for all conditions. Examination of the correlational analysis revealed no significant 

relationships between any measures of distortion to time and measures of overt attention 

indexed by eye-movements.  

These results provide a number of key findings. For overt orientation latency, indexed 

by TOFF, there was no consistent association between more rapid overt attentional orientation 

and a lengthening of perceived duration. For positively valenced stimuli, despite more rapid 

overt attentional orientation to the positive than neutral stimuli, there was no significant 

difference in duration estimates for these two conditions. This suggests that for positively 

valenced stimuli, more rapid attentional orientation to the to-be-timed-stimulus does not always 

result in longer perceptions of duration. For negatively valenced stimuli, although overt 

attentional orientation was more rapid, and estimates were longer than for neutrally valenced 

stimuli, there was no direct relationship between TOFF and perceived duration for these 

conditions. Indeed, the intercept values for negatively valenced stimuli were significantly lower 

than those for neutrally valenced stimuli, rather than greater as would be expected if smaller 

switch latencies were affected duration estimates. Therefore, for negative stimuli although the 

effects of emotion on TOFF and estimates were in the predicted direction, the changes were 

unrelated to one another.  

The absence of consistent duration lengthening effects for stimuli with more rapid overt 

attentional orientation is inconsistent with the effects of changes in switch latency proposed in 

SET. According to SET, more rapid switch closure should result in more accumulation and a 

longer perception of duration. Therefore, in the current study, both positive and negatively 

valenced stimuli should have been perceived as significantly longer than neutral stimuli 

because both were orientated to more quickly than the neutral stimuli. However, lengthening 

was not observed for the positive stimuli. This therefore suggests that for supra-second duration 

estimation, the relatively small gains in overt attentional orientation afforded by emotional 

valence are insufficient to consistently influence duration experience. It remains possible 

however that during sub-second timing even relatively small changes in attention orientation 



latency may be sufficient to systematically affect subjective timing. This is because these 

changes would constitute a greater proportion of the overall stimulus duration for short (sub-

second) than longer (supra second) epochs. Future research should explore this possibility.  

For sustained attentional processing, indexed by dwell time, despite longer estimates 

for the negative than neutral and positive stimuli there was no significant difference in dwell 

times for the three conditions. This suggests that despite similar sustained overt attentional 

processing across the three conditions, duration estimates differed. Therefore, in the current 

paradigm sustained attention to time was unaffected by emotion and did not contribute 

significantly to the relative lengthening of the perceived duration of the negatively valenced 

stimuli. It is possible however, that because the participants’ task was to judge duration, rather 

than to make explicit judgements about emotion, that this may have weakened the effect of 

emotion on dwell times. This suggestion is reminiscent Mella and Pouthas’ (2011) observation 

that attention sharing between time and emotion removed the effect of emotion on skin 

conductance response measures. Furthermore, it remains possible however that measurement 

error may have weakened any observable effects and other measures of sustained attention may 

be better able to capture the relationship between sustained attentional processing and 

distortions to time. Future research should therefore establish how the explicit processing of 

time affects affective responses to emotional stimuli. 

Collectively, the findings for attention orientation latency and sustained attention 

suggest that emotional distortions to time are not directly related to changes in overt-attentional 

processing. This raises two possibilities. Firstly, the findings could be interpreted as supporting 

suggestions that changes in physiological arousal are the primary cause of emotional distortions 

to time. The two major models of duration perception, SET (Gibbon et al., 1984) and the 

Striatal Beat Frequency model (SBF, Matell & Meck, 2004), suggest that emotional distortions 

to time occur because arousal acts on the core timing network to distort duration. In SET 

(Figure 1), arousal is thought to influence the rate at which the pacemaker emits output. 

Increases in arousal speed up the pacemaker leading to longer perceptions of duration whereas 

decreases in arousal slow pacemaker rate leading to shorter perceptions of duration. In SBF, 

time is processed by the oscillation frequencies of cortical neurons which are in turn detected 

by the striatum. Increases in arousal increase cortical-striatal dopamine levels leading to more 

rapid oscillations and longer perceptions of duration whereas decreases in arousal reduce 

dopamine levels slowing the oscillation rate (see Cheng, Tipples, Narayanan & Meck, 2016 for 

discussion).   



There is good experimental evidence to support arousal as a causal mechanism in 

emotional temporal distortions. More arousing images distort time to a greater extent than less 

arousing images (Gil & Droit-Volet, 2012). Furthermore, recent studies examining the 

relationship between physiological arousal, indexed by changes in the autonomic nervous 

system (ANS) and distortions to time have demonstrated that the reactivity of the sympathetic 

nervous system is directly predictive of distortions to the perceived duration of emotional 

stimuli (van Hedger et al., 2017; Piovesan, Mirams, Poole, Moore & Ogden, 2018; Ogden et 

al., 2019). Indeed, in the current study, the observation of larger slope values for the high 

arousal negative stimuli than the other stimuli, supports a role for arousal in the distortions 

observed.   

It is therefore possible that the effect of physiological arousal on duration processing 

“wipes out” any observable effect of emotion induced changes in attentional processes. 

However, caution should perhaps be taken with this interpretation. Firstly, changes in 

physiological arousal only appear to be consistently predictive of distortions to the perceived 

duration of high arousal negatively valenced stimuli (Ogden et al., 2019). Other mechanisms 

must therefore be contributing to distortions to the duration of positively valenced stimuli and 

low arousal negatively valenced stimuli. Secondly, changes in physiological arousal only 

account for a relatively small proportion of the variance in distortions to time. For example, in 

Piovesan et al., (2018), ANS responses to pain only accounted for between 15 and 20% of the 

variance in distortions to the perceived duration of pain. Similarly, in Ogden et al. (2019), ANS 

responses to high arousal negatively valenced IAPS only accounted for 12.90% of the variance 

in distortions to their perceived duration. Indeed, in the current study, whilst males rated the 

images as more arousing than females, there was no difference in the estimates of males and 

females. Therefore, whilst changes in physiological arousal are predictive of perceived 

duration, their predictive value is relatively small and does not preclude the influence of factors 

such as emotion induced changes in attentional processing. 

A second possibility is that emotional distortions to time are the result of emotion 

induced changes to other forms of attentional processing, not captured by the overt measures 

of eye-movements taken in the current study. Covert attentional processing refers to a shift in 

the spatial location of attentional focus in the absence of eye-movements (Posner, 1980). 

Covert attentional shifts can occur exogenously as a reflexive response to stimuli appearing in 

the periphery (e.g. Nakayama & Mackeben, 1989). Although often used to inform subsequent 

shifts in overt attention, covert attention itself can influence early visual processing (see Phelps 



et al., 2006 for discussion). Indeed, it has been suggested that covert attention may be critical 

in selectively processing the emotional content of the visual scene (Phelps et al., 2006). SET 

and the AMG do not distinguish between overt and covert attentional effects on timing. The 

findings of this paper therefore raise the possibility that, for supra-second duration ranges, 

emotional enhancement of covert attentional allocation may have a greater influence on 

perceived duration than overt attentional allocation. This suggestion is supported by evidence 

suggesting that emotion can distort time in the absence of conscious awareness of emotional 

stimulation (Yamada & Kawabe, 2011). Further research examining the role of covert 

attentional processing in temporal distortion therefore warranted.  

The findings of the current study offer initial evidence that, in the 1 to 2 second duration 

range, emotional modulation of overt attention is not related to emotional distortion to time. 

However, because this study used single duration range, only high arousal stimuli and only one 

temporal task, it is possible that future studies may reveal circumstances in which emotional 

modulation of attention is predictive of emotional distortions. The current study also used a 

relatively small number of images as stimuli and it is possible that through habituation this 

attenuated the emotional modulation of attention observed. We therefore encourage replication 

of the current study and emphasise the need for future studies to systematically assess the effect 

of duration range, arousal level and temporal task on the relationship between overt attention 

and emotional distortions to time.  

4.1 Conclusions 

The findings of this study show that emotion induced changes in overt attentional processing 

are not predictive of emotional distortions to time. For positively valenced stimuli, although 

attentional orientation was enhanced by emotion, there was no emotional distortion to 

perceived duration. For negative stimuli, despite more rapid attentional orientation and 

subjectively lengthening of perceived duration, attention and distortions to time were unrelated 

to one another. These findings demonstrate that there is a complex relationship between overt 

attentional processing and the perceived duration of events. They also caution against the 

assumption that emotional modulations of attentional processing are causal factor in the in the 

emotional modulation of temporal processing.  
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