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Abstract 23 

Atrial fibrillation (AF) is the most common cardiac arrhythmia characterised by irregular atrial 24 

activity. AF is related to increased risk of thromboembolic events, heart failure, and 25 

premature mortality. Recent advances in our understanding of its pathophysiology include a 26 

potentially central role for inflammation and presence of cardiovascular risk factors. The role 27 

of physical activity and exercise in the development and progression of AF, however, are not 28 

yet fully understood. Physical activity is protective for modifiable cardiovascular risk factors, 29 

including those associated with AF. Indeed, emerging research has demonstrated beneficial 30 

effects of exercise on AF-specific outcomes, including AF recurrence post-ablation.  31 

Counterintuitively, the prevalence of AF in veteran endurance athletes seems higher 32 

compared to the general population. In this review, we discuss the novel evidence and 33 

underlying mechanisms underpinning the role of exercise as medicine in the development 34 

and management of AF, but also the counterintuitive detrimental role of excessive endurance 35 

exercise. Finally, we advocate regular (but not long-term high-intensity endurance) exercise 36 

training as a safe and effective strategy to reduce the risk of incident AF, and to minimise the 37 

associated risk of secondary cardiovascular events.  38 

 39 
 40 
Key words: Atrial Fibrillation, Exercise, Physical Activity, Pathophysiology 41 
 42 
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Background   43 
 44 
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting more than 33 million 45 

people worldwide and the prevalence is expected to rise exponentially with an ageing 46 

population (1, 2). AF is associated with an increased incidence of stroke, coronary events, and 47 

development of dementia (3, 4). The risk of incident AF is associated with various 48 

cardiovascular risk factors, which in turn contribute to the risk of AF-related complications 49 

(5). AF is characterised by irregular, usually fast, atrial activity with consequent deterioration 50 

of atrial function. AF can be paroxysmal, persistent, or permanent in nature, with the latter 51 

associated with worse prognosis (6). The pathophysiological processes involved in the 52 

development of AF include cardiac structural abnormalities such as left ventricular 53 

hypertrophy and left atrial enlargement, upregulated inflammatory pathways, exacerbated 54 

by cardiovascular disease and/or risk factors, and genetic predisposition (7-10). These 55 

mechanisms are discussed in detail, in relation to excessive exercise training and the 56 

development of AF in section 2.  57 

The primary aims of treatment for AF are stroke prevention (i.e. oral anticoagulation), 58 

symptom management with heart rate or rhythm control, and management of cardiovascular 59 

and comorbidities (11). Whilst drug therapies aim to control arrhythmia, they are associated 60 

with adverse side effects and high healthcare costs (12, 13). Furthermore, ablation 61 

successfully reduces AF episodes and burden in some with paroxysmal AF, though ~40% 62 

demonstrate AF recurrence within 3 months post-procedure (14). This highlights the need for 63 

additional strategies to reduce risks for AF development and progression, lower the risk of 64 

AF-related cerebrovascular events (e.g. stroke), and improve quality of life (15, 16). Regular 65 

physical activity (PA) is a well-established, non-pharmacological therapy that enhances 66 

cardiometabolic health (17). Counterintuitively, excessive endurance training seems to 67 

increase the risk of incident AF. Key characteristics of this ‘athletic AF’ often include patients 68 

age <60 years, prolonged practice of endurance training, preserved ejection fraction, minor 69 

substrate criteria, and absence of common AF risk factors (18). Although our understanding 70 

of PA, exercise and AF has improved in recent years, many questions remain unanswered.  71 

In this review, we first discuss novel evidence and potential underlying mechanisms 72 

supporting the role of regular exercise as medicine in the development and management of 73 

AF. Second, we review the literature regarding the potential detrimental role of excessive 74 
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endurance exercise on AF and its pathophysiological mechanisms. Finally, we summarise the 75 

evidence and provide future perspectives for the role of regular PA and exercise in the 76 

management of AF.  77 

 78 
 79 

1. Physical activity and exercise in the prevention and management of AF 80 
 81 
Primary prevention of AF 82 

Regular PA reduces the risk of numerous chronic diseases, preserves physical and mental 83 

health as we age, and extends longevity (17). Indeed, regular aerobic exercise training is a 84 

well-known preventative tool for cardiovascular disease able to reduce common risk factors 85 

(hypertension, hypercholesterolaemia, hyperglycaemia), and alleviate (or even reverse) 86 

vascular dysfunction (19, 20). In line with these observations, there is now promising evidence 87 

for the prevention of AF via regular PA. Light-to-moderate-intensity PA has been associated 88 

with significantly lower AF incidence in older adults (21). Specifically, one fourth of new cases 89 

of AF in older adults may be attributable to absence of moderate leisure-time PA. In a 90 

database study of nearly 5,800 participants, although vigorous-intensity PA nor overall 91 

‘intentional exercise’ load were independently associated with incident AF, modelling both 92 

together resulted in a significantly reduced incidence of AF in the top tertile of total exercise 93 

compared with those who reported no exercise (22).  94 

In a recent UK Biobank cohort analysis (n=402,406), Elliott et al. (23) found that achieving 95 

>500 MET-mins/week (metabolic equivalents) was associated with reduced risk of incident 96 

AF. Given the PA guidelines (150 minutes moderate-intensity or 75 minutes vigorous-intensity 97 

PA) equate to >450 MET-mins/week, the findings from Elliott et al. provide evidence that 98 

these general PA guidelines not only promote cardiovascular risk factor control, but also 99 

independently reduce AF development. In fact, exceeding current PA guidelines, i.e. 500-1500 100 

MET-mins/week, was associated with 5-10% and 6-20% reduced incidence of AF in males and 101 

females, respectively. This is supported by a large population-based cohort study 102 

(n=>500,000), which found a U-shaped dose-response relationship between PA level and AF 103 

risk (24). Achieving 500-1000 MET-mins/week was associated with a 12% reduction in 104 

incident AF. Those achieving <500 or >1000 MET-mins/week however, demonstrated an 105 

attenuated risk reduction. The attenuated risk reduction observed at higher levels of PA is not 106 

a consistent finding in the literature. The association of accelerometry-derived MVPA and 107 
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incident AF was explored in >5000 participants split into quartiles of ascending MVPA levels 108 

(25). At 3.5 years follow-up, the risk of AF reduced in a dose-response manner, with the 109 

biggest reduction in risk at the highest PA level (38% reduced risk of AF in quartile 4).  110 

These recent studies support the notion that regular PA is protective from incident AF. The 111 

varying effects of PA intensity, however, are not yet fully understood. Morseth et al. (26)  112 

found a significantly reduced risk of incident AF when participants walked or cycled >4 113 

hours/week. Yet, this positive effect was diminished when individuals participated in 114 

vigorous-intensity PA. Whether this effect is related to intensity, or to the interwoven relation 115 

between PA volume and intensity, remains unclear. Nonetheless, an attenuation of the effect 116 

size of larger volumes and/or intensity of PA is also supported by others, with some 117 

suggestion for the presence of strong between-individual differences. The potential negative 118 

effects of excessive endurance training and the impact of sex differences are discussed in 119 

section 2. Despite the complex nature of the dose-response relationship between PA, exercise 120 

and AF, the majority of studies suggest beneficial effects in the primary prevention of AF when 121 

adopting or modestly exceeding (2-3 times) current PA guideline levels. 122 

Secondary prevention of AF 123 

Pathak et al. (27, 28)  found that greater cardiorespiratory fitness (CRF) was associated with 124 

increased freedom of AF and for every 1 MET increase in CRF (via exercise training) AF 125 

recurrence was reduced by 9%. Similarly, in >64,500 adults Qureshi et al. (29) observed that 126 

every 1 MET increase in CRF was associated with a 7% lower risk of incident AF. More recently, 127 

Garnvik et al. (30) collected self-reported PA and estimated CRF from 1,117 patients with 128 

prevalent AF over ~8 years. Primary findings showed that meeting the PA guidelines resulted 129 

in a 45% and 50% lower risk of all-cause and cardiovascular disease mortality, respectively, 130 

compared with inactive patients. In addition, each 1 MET increase in CRF was associated with 131 

12% lower all-cause mortality and 15% lower cardiovascular disease mortality. Furthermore, 132 

achieving less than the recommended PA levels was associated with a reduced risk of 133 

mortality compared with inactive patients, advocating that, even below the recommended 134 

levels of PA, some PA is better than nothing for secondary prevention of AF. Whilst these 135 

observation studies provide promising evidence for the benefits of regular PA in the 136 

secondary prevention of AF, future study designs that can infer causation are needed.  137 
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One randomised controlled trial (RCT) demonstrated that weight reduction with intensive risk 138 

factor management (e.g. goals for regular exercise, lipid management, glycaemic control, and 139 

blood pressure reduction) resulted in beneficial cardiac remodelling and reduced AF burden 140 

and severity in overweight/obese patients (27, 31). The authors proposed that such beneficial 141 

effects may be attributable to a decrease in left atrial size and ventricular wall thickness (i.e. 142 

anti-AF cardiac remodelling). It is important to emphasize that the ARREST AF trial targeted 143 

multiple risk factors and it is therefore not possible to attribute these beneficial effects to PA 144 

alone.  145 

Another RCT compared cardiac rehabilitation to usual care for patients treated with catheter 146 

ablation for 210 patients with AF (32). Findings revealed a significantly higher (~1 MET) CRF 147 

at 4-months in the cardiac rehabilitation group compared to usual care. In addition to physical 148 

symptoms, over one third of AF patients have elevated levels of depression and anxiety (12) 149 

and impaired quality of life (33) compared to the general population. Symptoms of depression 150 

have also been documented as the strongest independent predictor of future quality of life 151 

in AF patients and thus NHS burden (12). Osbak et al. (34) conducted a small-scale RCT 152 

reporting that 12-weeks of exercise training significantly increased exercise capacity and 153 

improved quality of life in patients with AF. Given exercise elicits an effect size over three 154 

times that of anti-depressant medication in reducing depression (35), it is an extremely 155 

promising addition to routine AF care. Whilst this work highlights the ability of AF patients to 156 

improve fitness, cardiac structure and their quality of life, further work is needed to 157 

investigate the impact of exercise-based rehabilitation in patients with AF on clinically 158 

relevant outcome measures such as mortality, morbidity, and adverse events.  159 

A recent systematic review of four interventional studies (n=498 participants) found lifestyle 160 

and risk factor management significantly decreased AF episode severity, frequency, and 161 

duration (36). Supporting the notion of exercise as an AF-specific medical intervention, one 162 

previous study demonstrated improved sinus rhythm maintenance in patients with persistent 163 

AF, following external electrical cardioversion and rhythm control therapy (usual care) plus 164 

exercise, counselling, and dietary restriction compared to usual care alone (37). Exercise 165 

interventions may not only be beneficial for AF-specific outcomes but may also reduce the 166 

risk of AF associated secondary cardiovascular events. Indeed, Proietti et al. (38) observed 167 

that regular exercise in patients with AF was associated with lower risk of all-cause mortality 168 
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and thromboembolic events irrespective of sex, age, or risk of stroke. Finally, one RCT 169 

demonstrated that 12-weeks of aerobic interval training significantly reduced AF burden 170 

(measured via implantable loop recorders) from 8.1 to 4.8%, with no significant change in the 171 

no exercise control (39). Collectively, PA provides a promising first line treatment for 172 

individuals diagnosed with AF, associated with enhanced quality of life (34), AF-specific 173 

outcomes (37), and secondary cardiovascular events (30). 174 

 175 

What potential mechanisms explain the benefits of regular physical activity in AF? 176 

Several pathways have been suggested to contribute to the benefits of regular PA in the 177 

primary and secondary prevention of AF. The most important pathways have been discussed 178 

below and presented in Figure 1. 179 

Traditional cardiovascular risk factors. Cardiovascular risk factors including hypertension (40), 180 

diabetes mellitus and metabolic syndrome (41), obesity (42, 43), and obstructive sleep 181 

apnoea (44) have been shown to independently increase incident AF. Indeed, hypertension 182 

and obesity are associated with structural (atrial hypertrophy, fibrosis, and dysfunction) and 183 

electrical (decreased conduction velocity) remodelling of the atria, in addition to the presence 184 

of enhanced inflammatory markers (45). The structural, conduction, and sinus node 185 

abnormalities leading to AF, also contribute to an abnormal atrial substrate (46). 186 

Correspondingly, aggressive cardiovascular risk factor management has been shown to 187 

markedly improve sinus rhythm and AF burden (likely via improvement in the AF substrate) 188 

(27). In addition, improved CRF is associated with improved AF-free survival, AF burden and 189 

symptom severity (28). Pathak et al. (28) proposed that long-term improvements in fitness 190 

resulted in significantly reduced blood pressure, inflammation, and left atrial size, and 191 

improved blood lipid status and glycaemic control, all of which contributed to a reduced AF 192 

burden. Although the benefits of regular PA partly relate to improvement in traditional 193 

cardiovascular risk factors, the overall effect of PA on risk factors is small to modest. 194 

Cardiac remodelling. At a cardiac level, aerobic exercise training induces positive cardiac 195 

remodelling (enlargement in cardiac dimension, improved contractility, and increased blood 196 

volume) leading to an improvement in cardiac function and maximal cardiac output. Such 197 

adaptations are associated with signalling pathways underlying cellular, molecular and 198 

metabolic adaptations (47). Aerobic exercise training also promotes mitochondrial biogenesis 199 
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and oxidative capacity in cardiac myocytes, which contributes to a reduced risk of 200 

cardiovascular disease and enhanced cardiac function (48). Regular exercise (4-5 201 

sessions/week) is associated with attenuation of age-related cardiac remodelling including 202 

decreased compliance and distensibility (i.e. cardiac stiffness) (49). 203 

Impact on thrombogenesis.  AF is associated with a prothrombotic or hypercoagulable state 204 

by fulfilment of Virchow’s triad for thrombogenesis (50). In AF, there are data supporting the 205 

presence for 1. ‘abnormal blood flow’ (which we recognise as intra-atrial stasis, often within 206 

dilated cardiac chambers); 2. ‘abnormal vessel wall’ (seen as structural heart disease and 207 

intrinsic endocardial/endothelial damage/dysfunction), and 3. ‘blood constituent 208 

abnormalities’ (referring to coagulation, fibrolysis and platelet abnormalities, in association 209 

with inflammation and other growth factors that promote thrombogenesis).  PA and exercise 210 

impact these components of Virchow’s triad; for example, regular exercise suppresses pro-211 

inflammatory cytokine production, enhances anti-inflammatory mediators and antioxidant 212 

development, and promotes fibrinolytic activity (51). Moreover, 12-weeks of high intensity 213 

interval training has been shown to improve platelet mitochondrial function in heart failure 214 

patients (52).  215 

Endothelial function. Endothelial damage/dysfunction may provide the final common 216 

pathway of the combined effect of traditional cardiovascular risk factors (53). AF patients 217 

demonstrate an impaired endothelial function (as measured by flow-mediated dilation) (54)  218 

and some research suggests vascular dysfunction precedes incident AF (55). Exercise training 219 

has well known beneficial effects on vascular function and structure. A specific and potent 220 

impact of exercise training relates to improved artery endothelial function, primarily through 221 

increased production and bioavailability of endothelium-derived nitric oxide (19). Thus, 222 

exercise induced improvement in endothelial function may contribute to a lower risk for AF 223 

development, recurrence, and risk for secondary cardiovascular events.  224 

 225 
2. Excessive endurance exercise and AF 226 

 227 
Despite compelling evidence for exercise as medicine in AF, research has demonstrated that, 228 

counterintuitively, long-term endurance training increases the risk of incident AF (56, 57). The 229 

heightened prevalence of AF is not uniform across elite athletes but seems to favour a high-230 

volume of endurance training such as cycling, running, and cross-country skiing (58). In a 231 
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Swedish cohort study (n= >52,000), repeated participation and faster finishing time in long-232 

distance cross-country ski races (surrogate marker of exercise training history) were 233 

associated with increased risk for AF (59). In agreement, Myrstad et al. (60) found that in older 234 

Norwegian men, a history of endurance sport practice was a risk factor for AF, with an effect 235 

comparable to traditional risk factors for AF (e.g. coronary heart disease and hypertension). 236 

A later study by Myrstad et al. (61), combined two independent cohorts and demonstrated a 237 

graded-dose-response relationship with an adjusted odds ratio for lone AF 1.26 (95% CI 1.10 238 

to 1.44) per 10 years of exercise training.   239 

There seems to be sex-related differences in terms of high levels of PA and risk of AF. For 240 

example, Elliott et al. (23) found that vigorous-intensity PA was protective in females, 241 

whereas in males, increasing levels of vigorous-intensity PA was associated with progressive 242 

AF incidence, leading to a significant 12% increased AF risk at 5000 MET-min/week. Such sex-243 

dependent responses to vigorous-intensity exercise in AF have been previously alluded to 244 

(62), yet the mechanisms underpinning these interactions are not yet fully understood. It is 245 

however thought that men may be at an elevated risk of AF due to larger atria and a more 246 

extensive remodelling compared with females (63). In summary, the relationship between PA 247 

and AF is complex, and sex seems an important, yet not yet fully understood factor. Future 248 

work is needed to tease out the mechanisms involved in the sex-related differences observed 249 

in the associations of PA and AF.  250 

Collectively, studies pertaining to the most active (lifelong) athletes provide evidence that 251 

‘more is not always better’. Whilst lower doses of regular exercise are associated with lower 252 

incidence of AF, these benefits disappear when examining AF prevalence in cohorts who 253 

perform very high volumes of high-intensity endurance exercise. This supports the presence 254 

of a J-shaped curve between PA/exercise and incident AF (Figure 1) (26, 64). Defining the dose 255 

of exercise associated with potentially detrimental effects on the primary and secondary 256 

prevention of AF is challenging, and importantly limited by a lack of prospective studies that 257 

objectively report exercise volume and AF occurrence. At least, the potentially ‘harmful’ dose 258 

of exercise seems substantially higher than the recommended PA guidelines (with the latter 259 

being AF protective).  260 

Indeed, we have incorporated a large area of potential variance within figure 1 (shaded area 261 

of interest) to denote uncertainty surrounding a number of important mediators regarding 262 
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excessive exercise levels and risk of AF. These include sex (whereby males seem to be at a 263 

higher risk as exercise levels increase), intensity/type of PA (it is believed vigorous-intensity 264 

endurance exercise may increase risk, though the impact of high-intensity interval training on 265 

AF risk is unknown), age (as age increases, so does the risk of AF), and genetic predisposition 266 

(there is a genetic risk of AF, independent of training response). It is also important to note 267 

research caveats relating to trial design and sample size, for example the relatively small 268 

participant numbers at the highest of activity levels (i.e. far right of the curve; Figure 1). 269 

Below, we discuss the potential mechanisms which may explain the counterintuitive higher 270 

risk for AF in those who engage in excessively high levels of vigorous-intensity PA and exercise.  271 

 272 
What pathophysiological mechanisms may contribute to the higher AF burden in athletes? 273 
 274 
The pathophysiology of exercise-induced AF is not yet fully understood, though atrial 275 

remodelling, inflammation, and autonomic imbalance may represent central underlying 276 

mechanisms (Figure 1). Counterintuitively, these factors seem involved in both the beneficial 277 

and deleterious mechanisms between PA, exercise, and incident AF. Whereby, with excessive 278 

exercise levels (well exceeding the recommended guidelines) physiological atrial remodelling 279 

becomes pathological remodelling (i.e. facilitates an AF substrate), inflammation is enhanced 280 

(compared to a reduction with guideline PA levels), and vagal tone increases beyond an upper 281 

(arrhythmia-specific) healthy threshold (Figure 1). Animal models have demonstrated that 282 

long-term, vigorous-intensity endurance exercise promotes adverse cardiac remodelling and 283 

an arrhythmia substrate (65). Following 16-weeks of endurance exercise (1h treadmill 284 

running/day) murine models demonstrated increased AF susceptibility via autonomic 285 

changes, atrial dilation, and fibrosis (66). Below, these potential pathways have been 286 

discussed in further detail. 287 

Atrial remodelling. Increased left atrial size is an independent risk factor for lone AF in normal 288 

and clinical populations (9). In contrast, despite up to 20% of athletes presenting with 289 

enlarged left atrial cavities, evidence linking this adaptation to incident AF is unclear (67). 290 

Exercise-induced atrial enlargement may therefore be physiological rather than 291 

pathophysiological, at least in athletes. Thus, left atrial dilation may not be a central 292 

component of ‘athletic AF’.  293 
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Atrial fibrosis is another component of the atrial arrhythmogenic phenotype (68). One study 294 

reported 50% (6/12) male endurance athletes demonstrated evidence of myocardial fibrosis 295 

by late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMR). This 296 

was in contrast to no LGE demonstrated in 17 young athletes or 20 age-matched sedentary 297 

controls (69). The study found that years of training (p<0.001) and number of competitive 298 

marathons (p<0.001) predicted prevalence of LGE via CMR. Supported by mural models, 16-299 

weeks of endurance training resulted in left and right atrial fibrosis (66). Specifically, Guasch 300 

et al. observed that fibrosis concomitant with vagal enhancement (see below) resulted in 301 

heightened AF susceptibility. Following a detraining period, AF susceptibility was fully 302 

reversed without a reversal in atrial fibrosis. Thus, although an important component, atrial 303 

fibrosis is not the sole mechanisms involved in exercise-induced AF susceptibility.  304 

Angiotensin II and transforming growth factor beta 1 (TGFβ1) are major pro-fibrotic signalling 305 

molecules, both also involved in platelet-derived and connective tissue growth factors (70). 306 

Elevated angiotensin II has been shown to precede atrial fibrosis in clinical populations such 307 

as heart failure and angiotensin-converting enzyme inhibition (at least partly) reduces atrial 308 

fibrosis (71). This highlights the multifactorial nature and seemingly central role of atrial 309 

fibrosis in ‘athletic AF’. 310 

Inflammation. Inflammation is a well-established risk factor for incident AF and shares 311 

common pathways with fibrosis (10). Several proinflammatory markers have been linked with 312 

AF such as C-reactive protein (CRP), tumour necrosis factor (TNF-a), and interleukin (IL)-2, IL-313 

6, IL-8 (72). In fact, a causal relationship between TNF-a and exercise-induced AF has been 314 

established in murine models (73). Acute exercise studies may shed light on the 315 

pathophysiological mechanisms of repeated endurance exercise over years of training and 316 

incident AF. In humans, Wilhelm et al. (74) demonstrated enhanced proinflammatory markers 317 

(TNF-a, IL-6, and CRP) and atrial remodelling following a single mountain marathon. Findings 318 

revealed a post-race (exercise-induced) atrial myocardial oedema and increased 319 

proinflammatory markers. Further, the increase in proinflammatory markers were higher 320 

than that previously reported in a flat marathon study (75), supporting the notion of an 321 

intensity-dependent inflammatory response. Although further research is required to 322 

investigate causation, recent work has implied cardiac dysfunction following intense 323 

endurance exercise was associated with increased expression of pro-inflammatory cytokines 324 
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(76). Such findings demonstrate how repeated episodes of high-intensity endurance exercise 325 

may contribute to an overall proinflammatory state, contributing to an AF substrate.  326 

Autonomic imbalance. Bradycardia in athletes is likely explained through cardiac remodelling, 327 

but also upregulated vagal tone and HCN4-channels (77). Athletic bradycardia, although 328 

cardio-protective, has been implicated in the development of AF (78). For example, abrupt 329 

shifts in autonomic tone, as seen during the onset and recovery of exercise training has been 330 

shown to precede the onset of paroxysmal AF (79). There are also several characteristics that 331 

support the involvement of vagal tone in AF more generally.  332 

Several studies have reported an increased onset of AF at night (when vagal tone is highest) 333 

and during eating (i.e. vagal stimulation) (80). Supported by animal models, bradycardic 334 

responses to blood pressure elevation with phenylephrine (reflecting vagal upregulation), 335 

was approximately doubled following 16-weeks of endurance exercise training compared to 336 

no change in sedentary controls (66). 337 

In addition, early and delayed afterdepolarizations are thought to cause ectopic and re-entry 338 

arrhythmic activity, promoted by prolonged repolarization and Ca2+ handling abnormalities, 339 

respectively. Liu and Nattel (81) suggested that vagal stimulation promoted AF via 340 

prolongation of the atrial effective refractory period (ERP; during which a new action 341 

potential cannot be initiated, though individual cells/sites can depolarize), which was not 342 

seen during sympathetic stimulation. This effect occurs via activation of acetylcholine-343 

dependent potassium currents. Increased vagal tone as a result of endurance exercise has 344 

been shown to elicit heterogeneous shortening of the action potential duration (APD) via 345 

increased sensitivity to acetylcholine, secondary to a reduction in regulators of G-protein 346 

signalling proteins (82). Thus, an increased ERP and a correspondingly reduced APD may be a 347 

key mechanism in the development of ‘athletic AF’.  348 

Despite some existing mechanistic insights highlighted above, further research is needed to 349 

elucidate the autonomic and associated molecular characteristics, which contribute to AF in 350 

humans (especially endurance athletes), particularly with regard to individual and 351 

subpopulation heterogeneity.  352 

 353 
3. Summary and future perspectives  354 

 355 
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Regular PA and exercise training induce a dose-dependent decline in risk of incident AF and 356 

secondary cardiovascular events, which may be explained through its effect on traditional 357 

cardiovascular risk factors, inflammation, cardiac remodelling, endothelial function, and 358 

autonomic balance. As levels of PA and exercise increase beyond that recommended, the 359 

protective health impacts on AF development attenuate. In fact, as one moves further to the 360 

right of the dose-response curve, e.g. excessive endurance exercise, AF risk returns to normal 361 

or may even exceed the risk for incident AF found in inactive cohorts (Figure 1). Potential 362 

pathological mechanisms relating to this counterintuitive role of (too much) exercise on AF, 363 

include an AF substrate (atrial enlargement, atrial fibrosis, myocardial inflammation) and 364 

upregulated vagal tone.  365 

Nevertheless, further work is needed to investigate the effects of PA on AF in humans, 366 

independent of other target risk factors such as body mass, blood pressure, and lipids, for 367 

example. In addition, given the relatively small sample size of the most active study 368 

participants, further research is needed to elucidate the seemingly enhanced risk of AF in 369 

these cohorts. It is possible components of ‘athletic AF’ are reversible with detraining, as 370 

shown in animal models, though research is needed in humans to confirm the reversibility of 371 

underlying mechanisms and indeed how such recommendations are received by athletes.  372 

Although there remains uncertainty as to the upper ‘safe’ threshold of exercise and incident 373 

AF, there is no evidence to suggest that exercise training within current guidelines causes or 374 

exacerbates AF. Conversely, recent evidence suggests three times the recommended PA 375 

levels (and even beyond for females) is AF protective (23). It is only at exceptionally high levels 376 

of vigorous endurance training do we see an increased risk of AF (e.g. >5000 vigorous MET-377 

mins/week). This increased risk of AF appears to be more pronounced in males than females 378 

and research is therefore needed to confirm sex-specific, safe upper levels of PA for AF 379 

protection. In addition, further work is needed to determine the effect of different PA modes 380 

(e.g. continuous endurance training, high-intensity interval training, and habitual PA) on AF 381 

risk.  382 

Better understanding of the mechanisms underpinning PA, exercise and AF will contribute to 383 

optimal prescription of exercise for AF patients and improve understanding of AF in athletes. 384 

Such insight may relate to optimisation (e.g. type, dose, mode of exercise) and wider 385 

prescription of regular PA in the primary and secondary prevention of AF. Moreover, research 386 

should also consider the wider benefits of regular PA in these populations, especially since AF 387 
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patients are of increased risk for cerebrovascular complications and cognitive decline. Finally, 388 

better insight is required to guide and treat the most active AF patients where excessive 389 

amounts of PA have contributed to the development of AF. Nonetheless, the key message 390 

remains that exercise should be regarded as medicine for patients with AF, demonstrating a 391 

dose-dependent relationship, with excessive amounts corresponding to an “overdose” in the 392 

treatment of AF. 393 
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*Excessive exercise levels refers to that of a training load that far surpasses the recommended guidelines of 150-minutes of moderate-intensity or 75-minutes of vigorous-intensity physical activity per week. Further 

research is however required to determine an upper ‘safe’ level, though up to three-fold the recommended physical activity levels (and even beyond for females) seems to confer AF-specific cardio-protection. 
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Figure 1. Central illustration presenting a J-shaped dose-response curve with reduced incident AF as 

physical activity levels increase from inactive (below guideline amounts) up to guideline levels of 

physical activity. Beyond guideline amounts, excessive exercise levels (e.g. long-term high-intensity 

endurance training) may result in an increased risk of incident AF. The proposed physiological 

mechanisms of beneficial effects of guideline levels of physical activity on AF and pathological 

mechanisms of inactivity (left) and excessive levels of exercise (right) are also presented.  The shaded 

area of interest, which increases in size towards the right of the x-axis, denotes the proposed variance 

in high levels of endurance training and risk of AF. These variables of variance include sex (whereby 

males seem to be at a higher risk as exercise levels increase), type of physical activity (it is believed 

vigorous-intensity endurance exercise may increase risk, though the impact of high-intensity interval 

training on AF risk is unknown), age (as age increases, so does the risk of AF), genetic predisposition 

(there is a genetic risk of AF, independent of training response). It is also important to note research 

caveats relating to a variety of trial designs, sample size, and small participant numbers at the highest 

of activity levels (far right of the curve). 
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