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Abstract—Young professionals and millennials who live 

alone or are living in small groups and seek practicality, trigger 

the trend of smaller, modular and micro houses and apartments 

which are faster and cheaper to build. Multifunctional or 

flexible room is one of the important parts of the home. This 

particular room needs well-designed lighting for comfort. It 

should give an adequate illuminance for every activity and even 

pattern of light. This paper presents the factors for developing 

the smart adaptive lighting system which can provide lighting 

comfort for the occupants. The simulation is being done in 5 

scenarios in the LJMU BRE 2010 house model using DIALux 

Software with the dimmable type of LED independent 

luminaire. The proposed system structure uses a wireless sensor 

network (WSN) and big data processing as the main 

components. The design employs an Artificial Intelligence (AI) 

sub-system which has the capability to predict and adaptively 

regulate the illumination level based on the occupant needs or 

routine. The simulation shows that this system is able to give 

even lighting pattern for luminance values 200, 250, 300, 500, 

and 750 lux which are needed by the occupants. With the 

possibility of user-defined lighting values, this system can be 

developed to accommodate the needs of special groups of 

occupants such as the elder or disabled groups.  

Keywords—multifunctional room, flexible room, lighting 

comfort, adaptive methods, sensor network 

I. INTRODUCTION  

Multifunctional room or flexible room in the house or 
apartment is gaining popularity nowadays. For the house, the 
attractiveness of the multifunctional room is due to the fact 
that new houses in the UK are 32% smaller on average 
compared to what it was in the 1970s [1]. The housing 
shortage is the main reason for this. Some developers build a 
higher volume of houses in urban areas where the space cost 
are high. The same reason is also applied to an apartment. For 
the apartments, this flexible room is very common. Studios 
and micro-apartments have a single-area open floor plan and 
usually less than 600 square feet. Micro-apartments are 
designed to be space-efficient and the energy efficient factors 
are taken into consideration [2]. These conditions are about 
the same in every big city. In Europe, an average of 48%of the 
population live in apartments. The housing area in the UK is 
having an average of 76 square meters, smaller than Denmark 
which is 137 square meters [3]. It is common for young 
professionals and millennials to live alone or live in small 
groups. They are more practical and trigger the trend of 
modular homes which are faster and cheaper to build [1]. 

Smart multifunctional room, especially in the micro 
houses, are designed carefully. This is because of the 
combination of activities that can be done on single premises. 
The example of these is the kitchen and dining room 
combination, bedroom with tube area, indoor play area, 
multifunctional rooms, convertible bedrooms, and integrated 
home offices [4], [5]. In order to cope with this 
multifunctional rooms the lighting should be adequate and 
adaptive to all activities in the room. Lighting which is well 
designed can give lighting comfort for the occupants.  

Human comfort is a condition of mind which expresses 
satisfaction or adaptation with the immediate environment. 
Human comfort can be divided into smaller aspect such as 
lighting comfort, acoustics comfort, air quality, thermal 
comfort, etc. [6], [7] and standardized in ISO 7730-2005 [8], 
ASHRAE 55-2013[9] and EN 15251-2007 [10]. Human 
comfort is analysed outdoors [11], [12] but mostly being 
studied indoors [6]. That is because a large proportion of the 
population spends 80-90% of their time in an artificial climate 
according to the research of NHAPS [13].  Human comfort is 
always of prime concern in the design process of buildings.  

This paper presents the work in progress for developing 
the smart adaptive lighting system which can provide lighting 
comfort for the occupants in residential houses typically found 
in the UK. The comfort is achieved by giving even lighting 
pattern and variable illuminance level according to the 
occupant’s activities. As the additional adaptive factor, the 
system will have the capability to address the individual needs 
for lighting illuminance level. This factor is important due to 
the unique individual perception for lighting especially for the 
elder or disabled user groups. The proposed system structure 
is using the wireless sensor network (WSN) and big data 
processing as the main components. With this approach, the 
system will have an Artificial Intelligent (AI) sub-system 
which capable to predict and adaptively regulate the 
illumination level based on the occupant needs. As a pilot 
stage of the proposed system, the light simulation model is 
implemented using DIALux simulation software. The results 
obtained for human lighting comfort are discussed in this 
paper. 

II. LUMENS METHODS AND LIGHTING STANDARD 

Lighting comfort aims for providing uniform lighting in a 
room with an adequate amount of needed levels. This amount 
of illuminance is normally measured in lumens [14]. The 
design approach for the lighting system is by calculating the 



illumination using Lumen or Cosine method. This calculation 
is based on uniform geometry with the fixed intensity of all of 
the lamps [15]. The formula for calculating the number of 
lamps required according to the Lumen Method is shown in 
equation 1.  

                              𝑁 =
𝐸∗𝐴

𝑛∗𝐹∗𝑈𝐹∗𝐿𝐿𝐹
                                (1) 

where,    N = The number of lamps required 

E = Required illuminance (Lux level on a working 

plane)  

A = Area of the room (m2) 

n = the number of lamps in every luminaire  

F =Total lumens output per lamp 

UF=Utilization factor (the function of the luminaire 

properties and room geometry) 

LLF/MF = Light Loss Factor/ Maintenance Factor 

(the function of the depreciation over time of 

luminaire output) 
UF can be referred from the table if the room index value is 
known. The room index computation can be calculated using 
equation 2 

                  𝑅𝑜𝑜𝑚 𝐼𝑛𝑑𝑒𝑥 =
(𝐿∗𝑊)

𝐻𝑚(𝐿+𝑊)
                            (2) 

Where,   L  = room length  
W = room width  
Hm = the height of luminaire above the working plane  

 According to BS EN 12464-1:2011 which is the standard 
for Light and lighting for indoor workplaces, there is some 
light illuminance level which is becoming standard for indoor 
workplaces. This British standard is acquired from the 
European Standard. Although it is not directly targeted to the 
home, this work uses the illumination value to gain comfort, 
safety, and health for the occupants according to similar 
activities in the industry which are related to the activities at 
home. Some of the values are 200 lux for canteen, pantries, 
feed preparation, dairy, utensil washing, bakery preparation 
and baking, laundry ironing, lounges, entrance halls, and 
library bookshelves area. The illumination of 300 lux is used 
for bakery finishing, glazing, decorating, playroom, nursery, 
handicraft room, classroom, music practice, and computer 
practice. Higher illuminance, 500 lux is for sickbay, 
hairdressing, cutting, gilding, embossing, block engraving, 
work on stones and platens, printing machines, matrix 
making, writing, typing, reading, data processing, restaurant’s 
kitchen, library reading area, classroom for evening classes, 
lecture hall, demonstration table, practical rooms, and 
handicraft room. The highest values for home activities is 
750 lux which are for laundry inspection and repairs, art and 
technical drawing [16].   

III. HUMAN COMFORT, LIGHTING COMFORT AND ADAPTIVE 

METHODS 

The field of built environment science initially gained 

attention in the early 1920s when it became possible to 

control directly the microclimate of the indoor environment. 

In the old approach, the use of fireplaces to control the 

temperature was mandatory. In the second half of the 

nineteenth century, it was necessary to model the building as 

an open system and apply the laws of thermodynamics [17]. 

Various electronic controllers were developed which lead to 

the evolution of comfort monitoring. Fanger’s comfort model 

introduced in the 1970s is the most thorough, critical review 

of thermal comfort for man and become a standard reference 

for thermal comfort. The quality of air movement and 

sophisticated models which map both physics and physiology 

of the human body were also developed to build the coherent, 

global thermal perception. These developments are also 

driven by energy efficiency [18]. In the twentieth century, the 

focus goes to human as the center point of the design in order 

to improve the health and comfort of occupants and their 

homes [17], [18].  

The Fanger model which is referred to as the Predicted 

Mean Vote (PMV) / Predicted Percentage of Dissatisfied 

(PPD) is still facing challenges due to the parameters which 

cannot be captured in the model. The other methods which 

are the adaptive methods were introduced by Nicol and 

Humphreys [6], [7 ]. The adaptive model is formulated on the 

nature of humans who have the ability to adapt. The model 

then also acknowledged in ASHRAE-55 Standard [9].  This 

model can become the solution of the PMV which is not 

individual, not adaptable and has no input modification.  

Naturally, people already have the adaptive act upon by 

the environment and have the behavioral actions clustered as 

self-adaptation category and adaptation to the environment 

category. Drinking cold beverages, less-sweating lifestyle, 

restraining physical activity level, changing clothes from 

warm to cool are some examples for self-adaptation. The 

activities for adaptation to the environment category are 

moving to a cooler location, opening or closing doors or 

windows. The personal parameters approach in human 

comfort is also applied to lighting comfort specifically. 

Behavioral actions related to lighting comfort are opening or 

closing operable curtains or windows, adjusting desktop or 

task surface and changing position or direction of furniture. 

Time is crucial for behavioral interactions. There are four 

typical time periods for the interactions; immediate, within-

day, day-to-day and longer term [19].  

Lighting comfort studies have been conducted on a wide 

range of applications. For office applications which considers 

the glare and the activity related to the computer, the value 

for vertical illuminance is 351.6 lux [20]. The framework 

review for personalized control [21] is also presented to make 

the system perform the automatic task whilst still consider the 

comfort. The study also focused on the implementation on the 

on-off system to lower the energy usage [22] [23, 24] so that 

the lights and the other related parameter such as blinds can 

be controlled to support the energy saving. Some approaches 

are deployed to gain better control for lighting, for example, 

the use of artificial neural network (ANN) to simplify the 

model of parameter tuning [25] and the use of reinforcement 

learning to gain the knowledge on the schedule-based and 

occupancy-based control scenarios and use it to control 

lighting and blind [26, 27]. 
In the previous work, the lamps are not individually 

controlled in association with the normal daylight coming 
from windows. Most of the work use the on-off lamp scheme. 
The result is non-uniform intensity and still can trigger the 
discomfort situation especially when there is another source 
of light which cannot be controlled. Therefore, this system 
will use the dimmable LED as the controlled artificial light 
source in the absence of the natural light. The dimmable LED 
can also be used to balance the uneven pattern of natural light. 
Due to the presence of natural light which is too bright, the 



blind is used to block excessive light. The use of the dimmable 
LED also will be beneficial to set the different lighting 
scenarios to adapt to the need for elder or disabled occupants. 
The individual control of the lights and blinds are getting the 
benefit of the use of the WSN.  

IV. WIRELESS SENSOR NETWORK (WSN) 

In recent years, due to the growing low-cost sensing 

solutions, the provision of lighting and thermal comfort has 

been widely increased to existing and future smart buildings 

to aid productivity, health, and wellbeing. Many sensors are 

potentially used widely in the home comfort system with 

easier installation and control. The WSN will change the 

approach of the system solution. WSN is a network of sensors 

with unique characteristics. The nodes have limited power, 

limited processing power, and transmission. There might be 

a connection to more powerful servers (cloud). The circuit 

also relatively simple but having enough power to do their 

tasks. The use of these sensors beginning to be very common 

and sometimes being called the internet of things devices. 

Their roles and tasks are unique and specific to overcome 

their challenges which are low power, low price, limited 

range and scattered node position [28]. 
Zigbee is one of the WSN which is suitable to form a real-

time control system [29], [30]. Zigbee can form a mesh 
network which capable of giving fault tolerant capability and 
sufficient distance of data transmission for distributed indoor 
controller [31]. 

V. SYSTEM DESIGN 

A. Infrastructure Design 

The approach of the infrastructure design is the use of the 
WSN to simplify the installation and give the ability for 
system expansion and scaling. The infrastructure design can 
be seen in Figure 1. The upper tier is a services tier (cloud-
based services). This entity consists of the database server and 
application server. The database server is used to store the 
sensor reading data and the preference data of the occupants. 
The sensor data will be used to do the calculation for 
recommendation setting and the preference data will be used 
to push the scheduled activity and setting to the controller. The 
application server is being used to give access to the 
administrator for setting up the rule and maintain the system. 
The user can also log in to the system from remote areas to 
control the system from the distance if needed.  
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Fig. 1.  The Proposed System Diagram. 

The middle tier is the controller located in the house or 
apartments. This controller has the ability to do the local 
calculation for immediate response to the user requests or 
providing the best comfort setting to the user. This tier is also 
able to submit or route the data if the controller cannot do the 
fast calculation for the massive data that require to be sent to 
the cloud for cloud processing. On the contrary, the controller 
is also able to conduct action or command sent by the cloud to 
the actuator. The connection of the middle tier to the cloud can 
be done using Internet Protocol. This connection can be in the 
form of a cellular data connection or optical fibre. User can 
also have direct access to the controller via their smartphones 
through their Wi-Fi or Bluetooth.  

The lower tier is the sensors and actuators. These sensors 
and actuators are connected to the middle tier by the 
distributed controller (WSN). The sensors can be a passive 
infra-red sensor to detect the presence of occupants and a light 
sensor to measure the illumination values. Another type of 
sensor is the camera or thermal camera to get identical data. 
The actuators for this system are the independent LED for 
lighting and the blind actuator for controlling the blind 
automatically. Another actuator such as window tinting can 
also be used for this system.  

B. System Flow 

The system works by the user trigger. The trigger can be 
in the form of user request from the application in their 
smartphone or their presence. The system flow can be seen in 
Figure 2. When the user enters the premises, the system will 
give the command to set the luminance for even pattern for 
200 lux. If the user has set the routine, then the system will lit 
the lamp according to the pre-set value. This values will form 
rule-based and case-based reasoning to build the core artificial 
intelligent (AI)[32]. The system will react based on the set of 
rules and knowledge gathered prior to the event. If no data 
found then the system will give the prediction of the activity 
based on the location of the work pane of the user. User can 
also give correction directly from their smartphone at any 
time. This feature will make the system adaptive to user need. 
This value can be stored in the system database to create the 
user profile. The system can also adapt to the user activities 
which need a different set of lighting illumination value. If the 
user leaves the premises, the system can automatically switch 
off the LED illumination to conserve energy. This can also be 
overridden by the user. 

C. User Interface Design 

The user interface of this system is designed as simple as 
possible and having the capability to be operated elder or 
disabled occupants. After the user logs into the system, the 
user can set the preferred illumination level if needed and 
stored in the preference data. The detail of the illumination 
values is given just to inform the user on the standard values 
mentioned in BS EN 12464-1:2011. 

VI. SIMULATION RESULT AND DISCUSSION 

A. Premises  

The simulation of the system uses the LJMU Exemplar 
houses for the simulation model. These houses are the 
research houses built in the area of LJMU campus to conduct 
the trial for the new technology to be implemented in the 
different house's era. There are three houses to represent the 
1920s era, 1970s era, and 2010s era. The lighting simulation 
model is built based on the 2010s era house. The picture of the 



LJMU Exemplar houses, the CAD drawing of the 2010s era 
house and the lighting model for the multifunction room in the 
2010s era house can be seen in Figure 4. The multifunction 
activities in this house cover the function of the kitchen, dining 
area, reading area, handicraft room, art room, and other similar 
functions.    
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Fig. 2.  The Proposed System Flow Chart. 

B.      Simulation Parameters 

The simulation parameters are very crucial for this lighting 
simulation. For the natural light, the latitude and longitude of 
the location, reference sky, the date and time will decide the 
pattern and the illumination parameter of the natural light. The 
result of the pattern used in this simulation can be seen in 
Figure 7. For the artificial light, the parameters shown in Table 
1 will decide the behaviour of the artificial light. These 
parameters are based on the real physical property of LJMU 
Exemplar houses. In order to make the model more realistic,  
dimmable commercially available LEDs will be used. The 
number of the luminaire is calculated using equation 1 and 2, 
with 8 as the result. The maximum value of the illumination is 

750 lux according to the standard from BS EN 12464-
1:2011[16]. The system is designed to provide up to 1000 lux 
so that the occupant who requires higher illumination value 
can be accommodated for adaptive purposes.   

 

Fig. 3.  The Proposed User Interface for Lighting Control 

 

 

Fig. 4.  LJMU Exemplar Houses (Top), The CAD Drawing and Lighting 

DIALux Model (Bottom) 

C. Simulation result 

The simulation is being done in 5 scenarios. The first 
scenarios are a natural light simulation. Using only the natural 
light, the light pattern will create discomfort since the light 
produces an uneven pattern. This will result in visual fatigue 
or sometimes dizziness if occupants keep staring at the 
different scene with different lighting level. The result of this 
pattern can be seen in figure 5. If the natural light is too bright 
the controller should activate the blind control or glass tinting 
to lower the illumination level and avoid glare.  



Table 1. Simulation Parameters and Values based on LJMU 
Exemplar Houses 

Simulation 

Parameters 

Values 

Room Size 13m2  (5m x 2.6m) 

Ceiling Reflectance 75% 

Wall Reflectance 50% 

Floor Reflectance 20% 

Maintenance factor  0.80 

Clearance Height 2.9 m 

Work plane Height 0.76m 

Window size  0.83 m2 (1.82m x 1.2 m) 

Number of Luminaire 8 

Luminaire type Thorn Lighting Dimmable 

Novaline LED3500-840 HFI E3 

WH 96643238 

Max Illumination < 1000 lux  

Site Location  Liverpool, Eng 

Site Latitude 53.41°  (53.41°N) 

Site Longitude -2.98°   (2.98°W)  

Time zone (UTC+00:00) Dublin, 

Edinburgh, Lisbon, London 

Reference sky type Average sky 

The second up to the fifth scenarios are all using the same 
natural light in the first scenario. This is to show that the 
natural light can still be used to lower the use of artificial light 
power so that the energy can still be conserved without having 
to make the lighting pattern become uneven. Figure 6 shows 
the lighting pattern for 200 lux illumination. It is still 
distributed evenly with 2 sources of lighting which are 
artificial and natural light. The other simulation result for 300 
lux, 500 lux, and 750 lux can be seen in Figure 7 to 9 
respectively. 

 As shown in Figure 3, the occupants are being given the 
flexibility to increase or decrease the illumination level by 
selecting the + or – menu. The user can also store the value for 
routine pre-set, which become the occupants’ feedback for the 
system. In this simulation, the feedback is represented by the 
intermediate value of 250 lux.  This value represents the 
decreased value from 300 lux and the increased value of 200 
lux. The design also allows the flexibility if the occupants 
want to increase the value of more than 750 lux. The value is 
limited to 1000 lux maximum due to the functionality and 
economical reason. 

D. Discussion 

Based on this simulation result, the percentage of the LED 
luminaire power are tabulated to form table 2. This result 
shows that the independent controlled LED is able to perform 
needed illuminance level by controlling each LED luminaire 
and produce an evenly lighting pattern. The occupants also 
still have the capability to increase or decrease the 
illumination values which make the system adaptive to the 
personal lighting needs to achieve good visual performance. 
Hence the lighting comfort can be achieved using this system. 
The special needs of the occupants can also be fulfilled using 
the adaptive approach of the system. However, this system is 
only focused on the illumination value. The other aspect of 
lighting approaches such as giving different lighting colour is 
not the focus of this paper. 

 

 

Fig. 5.  The uneven pattern of the ambient sunlight light simulation at 06:00 

AM, May 2019 in DIALux Evo 8.1. 

  

  Fig. 6.  The even pattern simulation result from combining the sunlight 

(06:00 AM) and artificial light of the smart adaptive lighting system for 
200 lux illumination in DIALux Evo 8.1. 

 

 

Fig. 7.  The even pattern simulation result from combining the sunlight 
(06:00 AM) and artificial light of the smart adaptive lighting system for 

300 lux illumination in DIALux Evo 8.1. 

 

Fig. 8.  The even pattern simulation result from combining the sunlight 

(06:00 AM) and artificial light of the smart adaptive lighting system for 

500 lux illumination in DIALux Evo 8.1. 



 

Fig. 9.  The even pattern simulation result from combining the sunlight 

(06:00 AM) and artificial light of the smart adaptive lighting system for 

750 lux illumination in DIALux Evo 8.1. 

Table 2. Simulation Result  

Illuminan-

ce (lux) 

LED Power (in %) 

L8 L7 L6 L5 L4 L3 L2 L1 

200 11 11 22 22 22 22 22 22 

250 15 15 25 25 25 25 25 25 

300 30 30 40 40 40 40 40 40 

500 57 57 65 65 65 65 65 65 

750 87 87 92 92 92 92 92 92 

<1000 100 100 100 100 100 100 100 100 

 

VII. CONCLUSION 

This paper developed a solution based on the adaptive 
approach of the system which can accommodate special 
occupants’ needs. The system is simulated using DIALux 
software with the real parameters and components. The 
system uses the WSN and Big Data to make the system smart 
enough to give lighting comfort to the user. The dimmable 
LED luminaires are used to create even lighting pattern. 
Several illumination values are simulated to show that the 
system is able to provide even pattern of lighting on each level 
of lighting illumination. The simulated system is found 
satisfactory. This system can be extended to cope with other 
occupants need. Further work is in progress to analyse the Big 
Data and Artificial Intelligence scenario which will perform 
best for the system.  
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