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Abstract— Convergence of critical infrastructure and data, 

including government and enterprise, to the dynamic Internet 

of Things (IoT) environment and future digital ecosystems 

exhibit significant challenges for privacy and identity in these 

interconnected domains. There are an increasing variety of 

devices and technologies being introduced, rendering existing 

security tools inadequate to deal with the dynamic scale and 

varying actors. The IoT is increasingly data driven with user 

sovereignty being essential – and actors in varying scenarios 

including user/customer, device, manufacturer, third party 

processor, etc. Therefore, flexible frameworks and diverse 

security requirements for such sensitive environments are 

needed to secure identities and authenticate IoT devices and 

their data, protecting privacy and integrity. In this paper we 

present a review of the principles, techniques and algorithms 

that can be adapted from other distributed computing 

paradigms. Said review will be used in application to the 

development of a collaborative decision-making framework for 

heterogeneous entities in a distributed domain, whilst 

simultaneously highlighting privacy preserving issues in the 

IoT. In addition, we present our trust-based privacy preserving 

schema using Dempster-Shafer theory of evidence. While still in 

its infancy, this application could help maintain a level of 

privacy and nonrepudiation in collaborative environments such 

as the IoT. 

Keywords—internet of things, iot, privacy, security, trust, 

blockchain, decision making, dempster-shafer. 

I. INTRODUCTION  

The Internet of Things (IoT) landscape is fragmented with 
a large variety of devices and technology. The term IoT is used 
to describe collections of Internet-enabled ‘things’ or smart 
devices, increasingly interconnected with other ‘things’ in a 
mass ecosystem [1]. Similarly, the Industrial Internet of 
Things (IIoT) describes industrial ‘things’ where the end 
devices typically comprise sensors, actuators and industrial 
processes, used for automation and data collection. In 
combining machine-to-machine communication with 
industrial big data analytics, IIoT is driving unprecedented 
levels of efficiency, productivity, and performance. With the 
increasing utilisation of ‘things’ for business and automation, 
industries have access to greater insight and real-time 
operational awareness with methodical data generation. The 
IoT has made an enormous quantity of data available, 
belonging not only to consumers, but to citizens in general, 
groups, and organisations [2]. IoT data is becoming one of the 
most valuable assets in today’s data-driven digital economy as 
it leads to developing many business models providing 
ubiquitous and intelligent services. However, this data 
contains sensitive personal information and can reveal the 
identity of the associated stakeholders if appropriate privacy 
preserving mechanisms are not in place [3].  

Technology is increasingly being utilised in conjunction 
with the IoT for improved performance, security, and 
improved trust. One such application for privacy preservation 
is Blockchain. Blockchain technology has been around for just 
under a decade, initially introduced as a way to store and/or 
send the first cryptocurrency, Bitcoin. As the technology has 
gradually spread worldwide, it has been used in a variety of 
ways in numerous industries, including the increase of 
cybersecurity measures and resilience. Capabilities of the 
blockchain technology, including trustworthiness, 
decentralization, scalability, and autonomy, make it a 
potentially essential component of the overall IoT ecosystem. 
The main benefit lies in the decentralized immutable and 
verifiable ledgers that can record transaction of digital assets. 
Once recorded, data in any given block cannot be altered 
retroactively as this would invalidate all hashes in the previous 
blocks in a blockchain and break the consensus agreed among 
nodes voiding said blockchain [3]. Open research challenges 
relating to privacy-preservation include transaction 
cryptographic key management, interoperability among 
dynamic devices and entities and compliance with privacy 
regulations such as General Data Protection Regulation 
(GDPR) [4].  

Interoperability issues among devices and friction for data 
flow is a challenge that can lead to poor data quality or 
misinformation. GDPR conveys the importance of a “privacy 
by design” concept which essentially calls for privacy to be 
considered throughout the whole engineering process. While 
the principles of data accountability and transparency were 
previously subject to implicit requirements of data protection 
law, GDPR further extends the requirements of authorities by 
introducing explicit provisions that promote data 
accountability and governance to protect the privacy of data. 
GDPR defines three participant roles: the Data Subject (DS), 
the Data Controller (DC), and the Data Processor (DP), while 
specifying their associated obligations under EU data 
protection law [3].  

The contributions of our work are as follows; we present a 
review of privacy preserving issues in the IoT, as well as the 
related technologies and prevailing approaches at present. We 
also convey our trust-based privacy preserving schema using 
Dempster-Shafer (D-S) theory of evidence. D-S theory 
introduces the concept of assigning beliefs and plausibility to 
possible hypotheses of each decision maker (for example, in 
this scenario it represents the view of the aforementioned 
participant roles, DC/DP), and provides a combination rule to 
fuse multi-modal information to aggregate and summarise a 
relevant body of evidence. The remainder of this paper is as 
follows: In Section II we provide background to the IoT and 
associated privacy issues. Section III explores related works 
in the area of privacy preservation in the IoT. In Section IV 
we detail our proposed Trust-based preserving schema using 
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Dempster-Shafer  theory of evidence, offering insight and 
discussion of the research problem in Section V. Conclusions 
are presented in Section VI.  

II. BACKGROUND 

The Internet of Things (IoT) is not a new paradigm; the 
technological capabilities of society have enabled its immense 
progression and increased utilisation. The mass of devices and 
complex ecosystems has given rise to the terms “The Internet 
of Anything/Everything” [5, 6], leading to the need for a “Web 
of Things”: an Internet created to be more compatible with IoT 
devices. At present, IoT devices are not strongly standardized 
in how they are connected to the Internet, apart from their 
networking protocols [6]. Rather, they create a wider attack 
surface with billions of new devices. This mass exchange of 
information between nodes opens up privacy concerns – 
especially in public applications. We aim to empower data 
provenance and transparency by leveraging advanced features 
of the emerging technologies (e.g., Blockchain) for privacy 
preservation in the IoT environment and corresponding 
applications. 

A high level overview of the IoT and associated attributes 
is given in Figure 1 [4]. IoT systems consist of four main 
features: 1) The things (devices), 2) Local network 
(wired/wireless with an array of topologies), 3) The Internet, 
and 4) Data storage applications/Back-end services (e.g. user 
access and control, data analytics, remote server management 
etc.). The communication and transmission of devices can 
differ depending upon the environment. For example, a 
commercial IoT device will communicate with other local 
devices via Bluetooth or Ethernet (wired or wireless), whereas 
an IIoT device may comprise a local network with many 
different technologies, so the device would typically transmit 
data over the Internet. The IoT presents several unique 
challenges that make the application of existing security and 
privacy techniques difficult. This is because IoT solutions 
encompass a variety of security and privacy solutions for 
protecting such IoT data on the move and in store at the device 
layer, the IoT infrastructure/platform layer, and the IoT 
application layer [5]. This is not sufficient if the endpoints 
themselves are vulnerable to modification by either local 
access or remote connections [6]. Additionally, encryption 

algorithms require higher processing power than many of the 
IoT devices possess.  

Data security and privacy issues are an increasing concern 
due to the wealth of data collected, stored, and processed on 
IoT-based devices. Depending on the nature of the device, this 
data can take the form of personalised, location specific, or 
user-centric information. As conveyed in the introduction, the 
IoT is increasingly data driven – actors in each varying 
scenario including the user/customer, the device, 
manufacturer, third party processor, etc. The issue of 
anonymity in the IoT is important to note also. While a 
challenge to provide, there may be an increasing desire for 
anonymity, which directly clashes and contrasts with desire 
for an increased level of service, as personalised data often 
requires understanding to ‘whom’ the service is being 
provided [2]. User sovereignty, with regards to security, 
privacy and trust is a key concern when discussing the IoT. 
The IoT will become an “Internet fabric”, where everything is 
digitally connected as a normal integrated part of society like 
electrical grid or water supply. 

Privacy issues within the IoT can be summarised as 
follows: 

 User Identification: The IoT includes a huge number 
of interactive nodes that generate, accumulate and 
exchange sensitive data. Usage of pseudonyms avoids 
linking transactions to the real identities, though users 
and consumers are not completely anonymous in their 
movements. Pseudonyms may be traceable and 
linkable as various accounts or ‘things’ may belong to 
the same user [7]. 

 User tracking/User profiling/Utility monitoring: Big 
data analytics is imperative for dealing with the 
volume of generated data. Data is collected from users 
behaviours and routines through interaction with 
‘things’, which is then analysed and processed to 
create useful information for predictive analytics. 
Real-time monitoring based on the information 
gathered from the connected ‘things’ provides large 
scale connectivity and a greater insight into individual 
habits and routines [1]. This collected data can increase 

 
Fig. 1. The Internet of Things from an embedded systems point of view 

 



privacy concerns with data subjects, data controllers, 
and data processors.  

 Multi-platform/services: as devices are interconnected 
with various hardware and software the risk of 
sensitive information leaking through unauthorized 
access/manipulation increases. Malicious data and 
entities could affect and ruin the whole chain.  

The highly diverse IoT application domains, resource-
constrained IoT devices, and heterogeneity of both devices 
and platforms hinder the development of a standard IoT 
framework. The security data of domestic IoT platforms is not 
much considered as compared with the international IoT 
platforms. An IoT standard platform that can interoperate with 
all IoT platforms is needed, with interoperability issues being 
key for future developments. However, privacy stands out as 
a critical concern that inhibits the widespread adoption of IoT. 
The underlying vulnerabilities of IoT devices can lead to huge 
security breaches and significantly hurt user privacy by 
exposing personal data [8]. Privacy needs to be “by design” 
whereby the management of such heterogeneous entities in a 
distributed domain can be addressed at the design stage. 
Legislation should be adjusted and addressed accordingly, 
with a multi-faceted approach between industry and policy 
makers utilising realistic use cases and scenarios for 
application. 

III. RELATED WORK 

A. Blockchain 

Blockchain deployments are increasingly being utilised in 
e-government, e-health, smart cities, critical infrastructure 
services, and cryptocurrencies. As conveyed in [9], the ability 
to maintain a decentralized trusted ledger of all transactions 
occurring in a network is an encouraging attribute of 
blockchain technology. This capability is essential to enable 
the regulatory requirements of IoT/IIoT applications without 
the need to rely on a centralised model. Blockchains also 
provide participants with enhanced transparency, making it 
much more difficult to corrupt blockchains through malware 
or manipulative actions, and may contain multiple layers of 
security – both at the network level and installed at the level 
of each individual participant [10]. Blockchain-based 
techniques offer strong countermeasures to protect data from 
tampering while supporting the distributed nature of the IoT. 
However, the enormous amount of energy consumption 
required to verify each block of data makes it difficult to use 
with resource-constrained IoT devices, and with real-time IoT 
applications [3]. The delay associated with the mining process 
is not suitable for real-time IoT applications, in addition to 
scalability issues associated with blockchain, and further 
overhead created by blockchain consensus algorithms. 
Scalability is a further issue with this integration. With the 
amount of transactions increasing day by day, the blockchain 
becomes unwieldly. Each node has to store all transactions to 
validate them on the blockchain, as they have to check if the 
source of the current transaction is unspent or not [11].  

By nature, blockchain technology is inherently resistant to 
data modification due to its public ledger and the consensus 
mechanism called Power of Work (PoW). Once recorded, data 
in any given block cannot be altered as this would invalidate 
all hashes in the previous blocks in a blockchain and break the 
consensus agreed among nodes voiding said blockchain. 
Blockchain technology is considered the key solution to solve 
privacy and reliability issues in the IoT [9]. It can be used in 

tracking billions of connected devices, enabling the 
processing of transactions and coordination between devices. 
All blocks within a Blockchain will contain its own digital 
signature, the previous blocks digital signature, and its content 
data. Each digital signature is calculated from the previous 
digital signature, and if a previous blocks data is changed then 
its signature will also change, in turn impacting the signatures 
of all following blocks. The calculation and comparison of 
signatures allows us to identify if any blocks within a chain 
are invalid. Additionally, consensus mechanisms improve the 
overall robustness and integrity of shared ledgers, because 
consensus among network participants is a prerequisite to 
validating new blocks of data, and mitigates the possibility 
that a hacker or one or more compromised network 
participants can corrupt or manipulate the ledger [10]. 

B. Trust 

Benefits of a collaborative monitoring scheme include 
greater efficiency and increased monitoring accuracy, which 
are a result from the collective pooling of resources for a 
single purpose [12]. Trust management is an effective method 
to identify malicious, selfish or compromised nodes [13]. The 
current trust evaluation schemes aim to improve detection 
performance, resource efficiency, robustness etc., by using 
fuzzy theory, probability theory and statistics, weighting 
method, and so on. In Atakli et al. [14], a weighted-trust 
evaluation based scheme was proposed to detect compromised 
or misbehaved nodes in WSNs by monitoring their reported 
data.  The hierarchical network can reduce the communication 
overhead between sensor nodes by utilizing clustered 
topology. By comparing the trust value with predefined 
thresholds, they can decide whether the sensor node is 
compromised or not. 

Arachchilage et al. [15] convey the importance of 
collaborative parties having an established guarantee about the 
type of information they will be sharing in order to protect 
sensitive information. They identify data, policy, controls, 
roles, actions and evidence as being fundamental concepts for 
building a trust domain. Their research aims at managing trust 
related issues in information sharing schemes via 
development of measurable trust characteristics. Future 
avenues aim at supporting collaboration and data exchange 
within and across multiple organisations by developing a 
mechanism to represent Trust Domains, supporting tool 
integration and decision-making based on the integration of 
evidence from different sources. 

The work of Wang et al. [16] proposes the use of D-S 
theory of evidence to fuse local information and make a 
system wide decision. Each monitoring agent collects 
information in its local domain, then generates a decision 
based on an observation, serving as evidence. As a basic 
probability assignment function (BPAF) and its corresponding 
frame of discernment are called a body of evidence, each 
sensor therefore corresponds to said body of evidence. The 
essence of multi-sensor data fusion is that within the same 
frame of discernment, different bodies of evidence (depending 
on fusion rules and feature thresholds), are fused into a 
resultant BPAF, on which the system makes the final decision 
based on decision rules. While this shows successful 
application of the D-S combination, this can be environment 
specific. The metrics are application dependent; where the 
output space of a system is large and the probability of 
producing identical incorrect redundant results is low, the 
number of agreed results, during a specific running time, is a 



suitable metric. If the cardinality of voter output space is small 
and identical, and incorrect redundant results are probable, 
then the number of agreed and correct results is a suitable 
metric [12]. The ratio of correct results to agreed results may 
be the most suitable measure. Unavoidably, voter reputation 
and ranking may change when using different metrics. 
Examples of typical metrics used include the probability of 
producing a correct voter output, error detection ratio, and the 
number of normalised benign outputs, to name a few [17]. 

C. Interoperability and Semantics 

The IoT landscape is fragmented: the diversity, volatility, 
and ubiquity make the task of processing, integrating, and 
interpreting real world IoT data a challenging task. In order to 
develop interoperable IoT applications that can detect events 
in the real world and respond accordingly, deducing 
knowledge from gathered raw data is a prerequisite. Al-Osta 
et. al [18] proposed a lightweight semantic web-based 
approach for data annotation focusing on IoT gateway data. In 
[12], they detail how semantic web technologies have been 
extensively utilised to interpret and integrate data coming 
from numerous resources; recently being extended to the IoT 
domain to enhance the quality of data and to promote 
interoperability. This is achieved by modelling IoT data based 
on shared vocabularies that can be interpreted by different 
software agents. While this application and interpretation of 
raw data has its merits, concerns remain regarding the lack of 
data preparation and filtering mechanisms, which dictates that 
the edge/gateway devices have to process and annotate all the 
data regardless of its importance to the context of an 
application, therefore increasing resource consumption and 
network traffic between the cloud and the gateway.  

Semantic interoperability means that different 
stakeholders can access and interpret the data unambiguously. 
The “Things” in the IoT need to exchange data among each 
other and with other users on the Internet. Providing 
unambiguous data descriptions in a way that can be processed 
and interpreted by machines and software agents is a key 
enabler of automated information communications and 
interactions in IoT [19]. A context-based security and privacy 
approach is proposed in [20]. Through modelling service and 
data flow, their security architecture applies separation of 
concerns between end point ‘things’, and external ‘things’ 
who manage or use the services. Intelligent Trusted Authority 
(ITA) facilitate and apply policies modelled by the 
supervisory system and big data elements, with external flows 
screened by an authorisation unit. Access and flow conditions 
via authentication and least privilege per entity of the 
architecture are proposed and conveyed in a conceptual 
framework. The web and the semantic web are the most 
significant cases of environments where the information is 
distributed. In parallel, we observed the rise of blockchain as 
a way to distribute assets and trust in recent years. 

D. Regulations 

The European Union Agency for Cybersecurity (ENISA) 
report “Baseline Security Recommendations for IoT in the 
context of Critical Information Infrastructures” [21] ranked 
attack scenarios in terms of criticality on an IoT environment. 
Two that stand out and convey a high loss in terms of trust, 
security and privacy are “IoT administration system 
compromise” and “Value manipulation in IoT devices”. ‘IoT 
administration system compromise’ conveys how infections 
can be designed to take control over one or multiple IoT 
devices, in order to manipulate or crash them and to be able to 

modify values, change their functioning/behaviour or deny 
access to them. Since a compromised administration system 
leads to several assets being compromised over a long period 
of time and without being detected, the impact of this attack 
can be critical.  

Assets affected include ‘things’, data, gateways, devices to 
interface with ‘things’ and devices to manage ‘things’. The 
attack scenario ‘Value manipulation in IoT devices’ uses an 
IIoT device to detail how manipulation of calibration 
parameters for the sensors allows undesired values to be 
accepted when they should not, which poses a severe threat to 
critical systems and integrity of system data. This attack 
targets the sensor processing and knowledge model levels of 
the control system - by allowing the sensors to report and 
accept incorrect values, the IoT environment is put at high 
risk. The assets affected include sensors, actuators, decision 
making, and sensitive data. The work in “Privacy-Preserving 
Solutions for Blockchain: Review and Challenges” [7] is a 
good resource for distinguishing participant roles: Data 
Subject (DS), Data Controller (DC), and Data Processor (DP). 
Although the use cases are specific to attacks in industry, 
different industries often use tailored security enablers and a 
wide variety of tools and technologies. This point is addressed 
though, as while the report has evident merits, it goes on to 
state: “fragmentation of the regulations also poses a barrier 
when Critical Information Infrastructures are seen hand in 
hand with the IoT world, since there is no regulation that 
forces security measures and protocols in the different levels 
of an IoT ecosystem, including the devices, the network, etc.” 
Regulations, standards and best practices are key for devices 
to be one less vulnerable entity in the whole ecosystem. 
Security and management of devices worldwide would help 
ensure a consistent approach to IoT security and privacy.  

IV. PRIVACY PRESERVING DECISION MAKING 

Our application focuses on privacy preserving 
mechanisms and autonomous decision making in distributed 
schemas. In the IoT, decision making often occurs on the edge 
of the network, via monitoring agents or by monitoring IoT 
device trustworthiness. While numerous applications and 
approaches exist that can be applied to the environment, one 
of the key challenges is interoperability. How do we ensure 
that the data we collect is correct? If said data is incorrect then 
we are basing decisions on misinformation. As identified in 
the related work section, there are numerous models exploring 
privacy preservation in IoT via trust verification models, user 
authentication schemes via identity methods and risk scoring 
to determine likelihood etc., but what is apparent is that 
blockchain encompasses these attributes in one solution: 
discovery, trust, data identity/management. While our 
approach remains in the preliminary stages, we are focusing 
on the decision-making approaches taken by these algorithms 
and frameworks at present. 

Within this section, our Trust-based preserving schema 
using D-S theory of evidence is proposed, whereby we apply 
said theory to a collaborative infrastructure as a whole, with 
an underlying IoT environment. We also assume that this 
decision-making and processing will occur on the Edge/Fog 
layer on the environment, providing an inferencing engine for 
prediction and quick action. D-S theory of evidence is a 
probabilistic approach, which implements belief functions 
which are based on degrees of belief or trust [12]. For 
example, other decision-making schemes utilise a simple 
majority vote for group consensus and the final decision is 



binary. By adopting a vector-based voting solution the failure 
rate in these schemes can be significantly reduced compared 
to non-vector voting by about 50% [17]. If a voter is a Boolean 
(YES/NO) decision maker, its output space is binary; and if 
the output of a vote can be of any value, its output space is 
infinite. The majority vote decision making process produces 
an output among variant results, where at least (n+1)/2 variant 
results agree. However, the disadvantage of the widely used 
majority vote is that they may agree on incorrect variant 
results, where there is a consensus on identical incorrect inputs 
- these voters cannot distinguish between agreed correct and 
agreed incorrect variant outputs. The majority vote is often 
inaccurate, especially in automated approaches. The task of 
aggregating the different votes/decisions into a single result 
and deciding about the observed events remains a challenge. 
By contrast, D-S produces a judgement value between 0 and 
1 that reflects the degree of belief in that judgement [23].  

 The monitoring system we propose is faced with the task 
of aggregating different outputs into a single result, making a 
decision about the observed events. For example, each feature 

(f ∈ F) describes the type of information, and V defines the 

range of possible values of the feature. Given an event and 
monitoring agent identity, a local report RLocal is defined as a 
tuple consisting of <eid, ts, g, (f, v), p> where: eid is a unique 
event identifier, ts is the events timestamp, g ∈ G is the agent’s 
identity, (f, v) is a feature-value pair corresponding to the 
output of the data collection action performed by agent g. The 
agent’s analysis of the activity is p ∈ [0, 1]; i.e. the probability 
of the activity being suspicious or malicious [22]. This output 
of activity is represented as a belief function represented as a 
hypothesis of events. Agent based monitoring and clustering 
can improve overall accuracy, with trust in connected nodes 
being a major challenge.  

D-S utilises orthogonal sum to combine the evidences, 
where ⨁ is the combination operator. The belief functions are 
defined, describing the belief in a hypothesis A , as 
Bel1(A), Bel2(A) ; then the belief function after the 
combination is defined as: 

               Bel(A) = Bel1(A)⨁Bel2(A)  (1) 

 
The mass function after the combination can be framed as: 

     m(A) = K−1. ∑ m1(Ai)Ai∩Bi=A m2(Bj)     (2) 

 
Here, 𝐾 is called the Orthogonal Coefficient, and it is defined 
as: 

                K = ∑ m1(Ai)Ai∩Bi≠∅ m2(Bj)  (3) 

 

D-S combines the beliefs expressed by monitors to 
produce a single combined belief that is finally compared with 
a set accumulative sum 𝑞 of beliefs. Assuming that two Basic 

Probability Assignments (BPAs) 𝑚𝑎 and 𝑚𝑏  represent the 
beliefs about values of a state within a specific frame 𝜃 the use 
of the orthogonal coefficient in Equation 2 and normalization 
in Equation 3 conveys that D-S is mathematically possible 

only if 𝑚𝑎  and 𝑚𝑏 are not conflicting, i.e. if there is a focal 

element 𝑦 of 𝑚𝑎  and a focal element 𝑧 of 𝑚𝑏  satisfying the 
intersection (∩) of the two sets, (𝑦 ∩ 𝑧) ≠  ∅, so that they 
have no elements in common. Merging two belief masses with 
the conjunctive rule produces a sub-additive BPA, meaning 
that the sum of belief masses on focal elements can be less 
than one. Thus, it is assumed that the missing or complement 

belief mass gets assigned to the empty set. If required, the 
normality assumption m(∅) = 0 can be recovered by dividing 
each belief mass by a normalization coefficient [24]. 
Furthermore, this rule is associative.  

The normalisation stage in D-S’s rule redistributes 
conflicting belief masses to non-conflicting ones, and tends to 
eliminate any conflicting characteristics in the resulting belief 
mass distribution. This rule of combination can be applied to 
avoid this particular problem by allowing all conflicting belief 
masses to be allocated to the empty set. The order of the 
information in the aggregated evidences does not impact the 
result, however a non-associative combination is necessary for 
many cases. Application of this rule combination implies that 
all evidence is trusted equally, with the same confidence in 
their results, and that all sources have the same level of trust. 
In reality, the confidence and trust depending upon source or 
observer or upon different evidence may differ. As such, 
various factors for all evidences should be considered, and 
adjusted as needed with the ability to score or rate decisions 
[12]. 

There should be a way to overrule the decision based on 
the strength of the associated trust or confidence value 
associated with the decision. Post Belief generation 
processing may be applied to this area to facilitate information 
exchange for defence. Via the inclusion of confidence values 
when Belief generation occurs, the accuracy of decisions can 
be improved, with the inclusion of confidence values and trust 
scores helping to resolve the issue with equality on opinion in 

the fusion stage. Let 𝑃(𝑎) = [𝑃1
(𝑎)

… 𝑃𝐾𝑎
(𝑎)

]  denote the 𝐾𝑎 

possible confidence values G associated with choosing 𝑎 ∈ 𝐴 

at time 𝑡𝑑. The assigned confidence level 𝑝 ∈ 𝑃(𝑎) associated 
with deciding 𝑎 after waiting for a period of 𝑡𝑐 =  𝑡𝑑 +  𝜏 is 
given as [25]: 

         𝑝 = 𝑃1
(𝑎)

 when 𝐿(𝑡𝑐) ∈ [𝐺𝑖−1,
(𝑎)

𝐺𝑖
(𝑎)

],        (4) 

where 𝐺0
(𝑎)

=  − ∞ and 𝐺𝐾𝑎
(𝑎)

 = ∞ for each 𝑎 ∈ 𝐴, and the 

value 𝜏 is known as the inter-judgement time.  

The remaining confidence parameters:  

                         𝐺(𝑎) = [𝐺1
(𝑎)

… 𝐺𝐾𝑎−1
(𝑎)

]                                (5) 

are chosen such that  𝐺𝑖−1<𝐺𝑖 for each 𝑖 ∈ {1 … … , 𝐾𝑎 − 1}.                          

 Adding a degree of confidence to each generated belief 
can improve the overall efficiency, and deal with the issue of 
conflicting beliefs during fusion. While significant research 
into reputation-based approaches and levels of trust attributes 
is ongoing, the underlying semantics are only as smart as the 
data it holds and processes.  

V. CONCLUSIONS 

The IoT is rapidly becoming an Internet “Web of Things”, 

and there is an increasing need for technologies to expand at 

the same rate. Data is the most valuable asset in this 

interconnected paradigm, and protecting privacy becomes 

increasingly difficult as the IoT becomes more prevalent in 

future. Such an increase in connectivity and data collection 

results in less control, both of the data and of the devices that 

are connected. There is a need for a well-defined trust model 

for IoT applications, where the trust score is a performance 

metric based on functional properties relevant to the 

collaboration context. We have presented our trust-based 



preserving schema using D-S theory of evidence, offering 

significant improvements over current decision-making 

algorithms whereby the inclusion of confidence values and 

reputation scores can reduce the risk of 51% attacks in the 

blockchain. While research into the reputation-based scoring 

and levels of trust attributes is ongoing, the underlying 

semantics require adaptation to the relevant environment. A 

performance evaluation of the framework will be carried out 

as part of future work, comparing said framework with the 

trust-based schemes mentioned in the related works section. 

Blockchain technology offers a promising route for 

maintaining integrity of data and providing an irreversible 

chain of evidence, as well as distributing assets and trust. 

However, the ever-increasing fragmentation and diversity of 

the IoT landscape may pose problems for the future 

integration of blockchain in the IoT; therefore, while it may 

seem promising, it cannot work on all scenarios at present. 

Future research is needed in order to properly assess, mitigate 

and counter these problems with relevant use cases. 
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