
978-1-7281-7315-3/20/$31.00 ©2020 IEEE

Digital Forensic Acquisition and Analysis of

Discord Applications

Abstract—Digital forensic analyses are being applied to a

variety of domains as the scope and potential of digital

evidence available is vast. The importance of forensic analyses

of web-based devices and tools is increasing, coinciding with

the rise in online criminal activity. Discord - an application

that allows text, image, video, and audio communication using

VoIP - has become increasingly popular and is consequently

subject to increased use by cybercriminals. While researching

Discord servers and forensic artefacts, it is apparent that there

is limited literature and experimentation in this domain. This

paper presents our research into digital forensic analyses of

Discord client-side artefacts and presents DiscFor, a novel tool

designed for the extraction, analysis, and presentation of

Discord data in a forensically sound manner. DiscFor creates a

safe copy of said data, presenting the current cache state and

converting data files into a readable format.

Keywords—Digital Forensics, Cache Analysis, Forensic

Analysis, VoIP, Discord, Instant Messaging, Data Recovery.

I. INTRODUCTION

The advent of the Internet has significantly transformed
the daily activities of millions of people, with one such
consequence being the way people communicate where
Instant Messaging (IM) and Voice over IP (VoIP)
communications have become prevalent [1]. There is a
plethora of IM applications available across all digital
platforms and the data transmission increases each day. The
advanced capabilities of digital forensic tools for analysis
and presentation of potential ‘evidences’ available from these
devices has been enhanced by the facilities of tools including
AccessData Forensics Toolkit (FTK), Cellebrite UFED touch
and XRY, with some comparable literature exploring these
applications. Discord is an application that allows text,
image, video, and audio communication using VoIP. Unlike
other social media platforms Discord does not have a home
news feed like Facebook or Twitter. It is built around a
network of private and semi-private groups, known as
"servers," which are created by mostly anonymous users [2].
In May 2019, Discord announced that it has more than 250
million registered users and over 50 million active users
every month [1].

Discord has started to attract more criminals with its
growing community – in no small part encouraged by the
limited and unfamiliar information on recoverability of data
and logs. According to Forbes [3], the FBI is investigating
certain groups whose members may be involved in criminal
activities, such as the ‘HellsGate’ server that offered
thousands of different online accounts, or ‘SentryMBA’
server, which offered credential stuffing software that could
automate processes of inputting usernames and passwords on
various websites [3]. While the aforementioned servers were
banned shortly after their detection, other groups remain

active and their members continue to be involved in other
illegal activities like spreading malware, child grooming,
harassment or selling stolen goods and/or personal
information. In 2019, Discord released a Transparency
Report Q1 2019 [4], which addressed violations within the
Discord application community in the first quarter of the
year. The total number of occurrences where Community
Guidelines were breached and reported by other users
exceeded 50000. Considering that Discord is now one of the
more popular communication platforms it is surprising that
little to no academic research investigating this application is
available or has been carried out. Thus, the projects focus is
aimed at answering the following question: “What digital
artefacts of forensic value can be recovered from the Discord
application?”. In our attempt to answer this question, the
project simultaneously proposes a solution for the
aforementioned lack of forensically sound tools for Discord
data extraction. The software developed for this project -
DiscFor - can retrieve information from the Discord
application’s local files and cache storage. Written in Python,
said tool consists of a series of scripts that can be run
independently or as a script using Python interpreter. The
paper is organised as follows: Section II provides
background on the VoIP instant messaging applications and
cache in digital forensics. In Section III, we present our
analysis of Discord data sources. In Section IV the design
and implementation of DiscFor is presented, with our testing
and analysis of results in Section V. The conclusion of our
research and further work areas are discussed in Section VI.

II. BACKGROUND

A growing number of messaging applications provides
criminals with additional means to perform malicious acts
whilst remaining hidden, by being part of closed
communities or via the use of less popular applications.
Digital forensics is a branch of forensic science that tries to
tackle this problem. With everyday social activities
becoming more device and application centric it has become
apparent that attackers can take advantage of this popularity
and use digital devices and software with criminal intent. As
a result, increasing cybercriminal activity has led to the
emergence of new subbranches of digital forensics focused
solely on research and development of tools needed for the
recovery of evidence from new sources of data.
“Application-specific forensics” is one of them, and as the
name suggests, it is concentrated on recovery, analysis and
presentation of data from various applications. Although
there are many means of research and ways of recovering
information, the ultimate objective of obtaining admissible
evidence in court remains unchanged. While there is no
standardised methodology to follow during digital
investigation processes, all methods comprise of the same
main stages - Secure, Analyse and Present.

verMichał Motyliński1, Áine MacDermott1, Farkhund Iqbal2, Mohammed Hussain2, Saiqa Aleem2
1School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK

2College of Technological Innovation, Zayed University, United Arab Emirates

motylm66@gmail.com; a.m.macdermott@ljmu.ac.uk; {farkhund.iqbal, mohammed.hussain, saiqa.aleem}@zu.ac.ue

 Moores University

Liverpool, UK

motylm66@gmail.com

Áine MacDermott

Department of Computer Science

Liverpool John Moores University

Liverpool, UK

a.m.macdermott@ljmu.ac.uk

Farkhund Iqbal

College of Technological Innovation

Zayed University

United Arab Emirates

farkhund.iqbal@zu.ac.ue

Mohammed Hussain
College of Technological Innovation

Zayed University

United Arab Emirates

mohammed.hussain@zu.ac.ue

Saiqa Aleem

College of Technological Innovation

Zayed University

United Arab Emirates

saiqa,aleem@zu.ac.ue

A discovery of possible forensic artefacts from multiple
instant messaging applications including Facebook,
WhatsApp and Skype was performed in [1] and [5]. In their
study the authors provided a good overview on the various
types of data that can be found within such programs, as well
as the techniques used for artefacts recovery. In his work
from 2011, Gao Hongtao [6] recognised the growing
popularity of IM applications and their impact on number of
crimes committed using VoIP. As such, researchers
performed an analysis of Skype and provided a guideline for
examinations of an electronic device involved in crime.

In [7], authors focused on an analysis of Google Chrome
cache structure adopted by Discord. The paper provides a
detailed description of cache format and offers insight into
the potential data available via its explanation of storing
features like data blocks and cache addresses. A cache is a
temporary storage where frequently viewed content is kept,
so that if the same resource is requested again it does not
have to be downloaded from the server. This method
provides better user experience and reduces amount of in-
formation that needs to be transmitted. While cache storage
can be a source of valuable information about recent
activities of a suspect, the analysis of its content can be
challenging due to its specific structure. Similarly, analyses
of cache storage have been performed to extract YouTube
and Facebook stream content. Said analyses’ methodologies
involved X-Ways hex editor and ChromeCacheView, the use
of which allowed identification, carving and reconstruction
of the video files found within the cache storage [8].

As noted previously, while there is limited literature on
Discord, there are some tools that can be used for the partial
recovery of application’s contents. Nir Sofer’s solution
“ChromeCacheView” is a commonly used freeware cache
viewing tool for Google Chrome web browser [9]. With its
GUI it allows viewing the content of the cache storage which
includes metadata and allows extraction of files found
within. ChromeCacheView is available only on Microsoft
Windows systems. While Nir Sofer’s tool is currently the
best solution for forensic analysis of the Chromium cache
structure, there are certain limitations discovered during
analysis of Discord data sources. Audio and video files are
often stored in two separate parts which are not reconstructed
by the tool.

Fire Kitty is a command line tool designed specifically
for digital artefact extraction from Discord [10]. FireKitty
requires a Python interpreter and an additional Python
package (apsw) to be installed on the machine. The “apsw”
module is a non-standard Python library providing support
for SQLite databases. The program is focused on the
recovery of digital evidence from a database file containing
user activity logs. However, this tool does not work anymore
as cache structure has been implemented in place of the
mentioned SQLite file.

Discrecorder is a tool developed specifically for the
extraction of Discord cache content [11]. While the tool
recovers some of the files most of them are extracted without
appropriate extensions, and server HTTP response
corresponding with a file is also irretrievable. The method
employed in the tool makes use of a “binwalk”, a Python
module which carves files based on their signature.
Unfortunately, this method does not recover all of the files
and does not recover any corresponding data that could be
useful in the investigation.

Py_chromium_cache_simple was designed for the
recovery of data residing in Simple Cache structure, however
it does not extract all of the files [12]. Moreover, no server
responses are retrieved. This tool extraction method relies on
matching magic numbers of the files which can make the
tool incompatible with a new format if changed. Not all
stream files are being checked for presence of data; thus the
tool does not provide accurate recovery means for Discord
application.

The last tool, “JSON to HTML and XLS” was designed
to parse chat log messages found in Discord local folders
[13]. The tool is incapable of recovery and other tools must
be used to extract the required files. The tool converts text
data found in chat log files and does not attempt to join this
information with attachments that also can be recovered from
Discord directories.

The analyses of Discord data recovery tools indicates that
none of the currently available solutions provides a robust
and complete method of data extraction for Discord local
files. In our paper we provide insight to Discord local storage
internal structure but also describe our attempt to create a
reliable solution for complete and accurate data recovery
from the Discord application.

III. DISCORD APP

In the literature there are no comparable approaches for
analyses of Discord client-side data sources; however, there
is commonality among the underlying structures. We have
recognized two main sources of data, i.e., the cache storage
and activity log. It was also discovered that Discord uses two
different caching structures. On Windows and macOS
platforms a Chromium Disk Cache was adopted, while for
Linux distributions Simple Cache was implemented [14].
After installation, when a user first logs into the app with
Discord credentials, the application creates a cache structure
and log file which stores information about the user’s recent
activity. Further use of Discord leads to the generation of
new cache files and log entries.

The location of the discord directory depends on the
operating system, and default paths may look as follows:

- Windows - C:\Users\[username]\AppData\Roaming\
- MacOS - ~/Library/Application Support/
- Linux - /home/[username]/.config/

Within the installation directory multiple files and folders
can be found that contain various data. The aforementioned
cache structures are located in the folders “GPUCache”,
“Code Cache” and “Cache”. The “GPUCache” folder
contains data used to increase the performance of the
application but does not retain any information about the
user. The second folder stores code used by the application
which also does not hold any forensically valuable
information. The last directory contains data about recently
viewed messages, channels, servers etc. and is considered to
be one of the applications digital artefact sources. The
activity log can be found in “discord/Local Storage/leveldb”
where it resides among other types of files. The overview of
the Discord directory on Windows 10 is shown in Fig. 1.

Fig. 1. Discord local directory structure with activity log location

A. Analysis of Discord Data Sources – Disk Cache

Disk Cache is a caching solution developed by Google as
part of a Chromium Project. Through the years it has become
a base for many applications and other web browsers such as
Google Chrome, Brave and Opera. Disk Cache is well de-
scribed in [7], where authors performed an in-depth analysis
of data sources. During our study of the Disk Cache
structure, we found important information on one of the files
that was not covered in this work, and in our opinion is a
potential source of evidence, as well as simplifies the process
of evidence recovery.

The file data_0 consists of two parts; a header and a
rankings table. The header contains control information
about the file and the table below. The rankings table is
comprised of blocks that store the address of cache entries
alongside its eviction information. Each block is 36 bytes in
size (Fig. 2). The rankings file contains more forensically
valuable data in comparison to the index file (which only
stores a list of entry addresses). The use of data_0 can
significantly simplify the process of data recovery, while the
eviction information provides vital information on when the
file was created and accessed for the last time.

Last accessed time Last modified time

Next ranking
address

Previous ranking
address

Ranking hash
Cache entry

address
Entry is being
modified flag

Ranking block

Fig. 2. Ranking block (data_0) structure

B. Analysis of Discord Data Sources – Simple Cache

Simple Cache is part of “The Chromium” project
intended for low-resource systems and is currently used by
Discord as a main cache storage for Linux and Android
distributions. The Simple Cache folder contains a fake index
file, cache entry files and an index-dir folder in which the
real index is kept. The directory structure is shown in Fig. 3.

Cache
entry files

Fake
index

Index
file

Fig. 3. Simple Cache directory structure

The real-index file (Fig. 4) consists of three parts: a

header, entry hash table and an end of the file, called a

footer. The header size is 40 bytes and contains information

about the number of entries in the hash table, cache size and

control

data.

Payload size

Version

MagicPayload CRC32

Number
of entries Cache size

Reason

Entry last used time Entry hashEntry size

Index entry

Index header

Index
modified time

Fig. 4. Structure of the-real-index file

The hash table contains a list of entries and each entry is
24 bytes in size. The cache entry has three parts, as shown in
Table 1. The very last 8 bytes of the file are reserved for
saving the last modified time of the index file. While Disk
Cache structure makes use of block files to store data, Simple
Cache resource content and HTTP responses are stored in a
single cache entry file. This format significantly simplifies a
reading and writing process of cached data which also
reduces the complexity of analysis and recovery algorithms.
A cache entry name is created by combining a reverse entry
hash address from the index file with an underscore and a
stream number which can be either 0, 1 or s. The structure of
the most commonly used format (stream 0) starts from file
header followed by URL, resource content, EOF (End of
File), server HTTP response, SHA256 of the URL (optional
part) and EOF.

TABLE 1. STRUCTURE OF THE-REAL-INDEX CACHE ENTRY BLOCK

Offset Size (bytes) Description

0 8 Cache entry hash (cache entry file name)

8 8 Cache entry last accessed time

16 8 Cache entry size

File reading is performed from the end of the file with the
use of EOF sections containing information about the data
stream above it. Our analysis of stream 1 format files does
not indicate an existence of potential information of forensic
value here. Files #####_s keep a payload of large media or
downloadable items. This file contains a list of multiple
partial resource copies of the same source within which the
full version is stored at the beginning of the file. The HTTP
response of the resource payload is stored within #####_0 of
the same name.

C. Resource Content

Resource content describes any file stored in cache in the
form of a stream of bytes, and this includes files generated
by Discord, as well as files directly uploaded by Discord
users.. Generated files include JavaScript files, chat logs
(generated from content posted by users) and other files that
contain other application content such as emoticons, app
images etc. All content uploaded by users includes text
messages, images, audio, and video files as well as linked
attachments. The application generates separate json files
storing 50 messages of each conversation viewed by the user.
If a user views more than 50 messages posted on one
channel, new files are created to store additional messages
(50 per file). As Discord is a messaging app the most
interesting data can be found in chat logs stored in a JSON
format, an example of which is shown in Fig. 5. As
attachments are parts of many messages they are also stored
in cache and can be recovered. While attachments are stored
separately from the chat logs, they can be traced back using
attachment URL which can be also found in cache entry.

Fig. 5. Discord chat log structure

D. Activity Log

The log file is comprised of sections that store recorded
information about the user’s recent activity on Discord.
Some sections of the file cannot be decrypted with ASCII or
UTF-8 but most of the information is stored in clear text. Our
analysis of activity log entries shows that the log file stores
lists of servers and channels that the user joined (Fig. 6).

User email address ID s of servers that user joined

Fig. 6. Activity log - example of recoverable data

IV. DISCFOR DESIGN AND IMPLEMENTATION

The main characteristic of application-specific forensics
is that it deals with large numbers of various file types and
their structures. In order to read often dispersed data from
proprietary formats new tools are required. Therefore, the
goal of DiscFor is to automate the process of evidence
collection and presentation from local Discord directories.
While there are solutions available for Discord data recovery,
most of them do not acquire complete data. The reason for
DiscFor creation was to tackle this issue and develop a
robust software solution capable of extracting all information
stored on Discord local files that might be of forensic value
and presenting them to the application user. In this section
we present an overview of the architecture used (Fig. 7). The
preservation of data is the first phase of the digital forensic
investigation. One of DiscFor’s options allows for the
creation of a logical copy of the source material. This ensures
that data is not being altered by Discord during further
examination, and provides a backup of the original data for
further use. Prior to backup creation the user has the option
to either search a file system for the Discord directory or
provide an exact path to the target folder.

Display main menu

Get discord path

2

1

3

Determine OS and
find discord directory

Get output path Get output path

Create backup copy

Extract relevant data

Produce report

Carve files from
cache

Custom path

System search Quit

Fig. 7. DiscFor main functionalities overview

The next stage is an extraction of data that has been
identified as potential evidence. We have designed three
different modules in order to address all three possible
sources: Disk Cache, Simple Cache and activity log. Fig. 8
shows the functionality of the module (maincache.py)
responsible for the recovery of the data from Disk Cache
used on Windows and macOS operating systems. The
dispersion of data across multiple locations requires a
lengthy process of recovery. As its name suggests, Simple
Cache is less complex than Disk Cache, thus the process of
evidence acquisition is easier as most of the data is stored in
a single location. Recovery of data from the activity log is
performed by employing a simple pattern recognition
algorithm which pulls all necessary information. The last
component of our tool is responsible for presentation of
findings. Information on all recovered files is saved to a CSV
file, the contents of which includes the file name, server
HTTP response and eviction information as well as the
addresses of all parts in cache files. Because Discord
compresses each file uploaded by its users, an MD5 hash
value is calculated for each recovered item and stored in the
report. We have developed a separate module which
reconstructs chat messages from chat logs and corresponding
multimedia files extracted from the cache. Recreated
messages are saved in HTML format and can be displayed in
a web browser.

Read cache address
and control data

Read HTTP response
address and file address

Read URL

Recover server HTTP
response

Recover file

data_0

data_1, data_2, data_3

data_1, data_2, data_3

data_1, data_2, data_3, f_******

f_0000a7
f_00006b
f_000189

Fig. 8. Functionality graph of Disk Cache recovery script

V. TESTING AND ANALYSIS OF RESULTS

For experimentation and performance testing, we created
test scenarios with DiscFor, populated with a generic user
account and random content exchange. Cache data recovery
is the most time-consuming process of the experiments as the

activity log tends to be relatively small (under 100 KB).
Nevertheless, a 60 KB activity log was also used in the tests.
Datasets were populated manually by joining random
publicly available servers. When a user viewed Discord
channels the contents of the conversations were saved to
local cache. Joining multiple servers allowed the creation of
datasets, with varying content such as server data,
timestamps, user accounts, message digests, etc. All datasets
were tested on a workstation with Windows 10 Education N
installed. The results presented in Table 2 show that DiscFor
recovers all possible data from both types of cache storage,
i.e., Disk Cache (Windows) and Simple Cache (Linux).

Detailed information about each recovery performed with
DiscFor gives the user a good look at how many files were
recovered and how many were ignored. The total number of
entries represents the amount of all entries in the cache
structure. The valid entries column holds a number of entries
that contain both server HTTP response and resource
payload. Ignored entries values represent entries that were
either empty or duplicate data. In addition to data recovery,
DiscFor also reconstructs partial entries which mostly
include audio and video files. In comparison,
ChromeCacheView does not recognise valid entries as it
attempts to recover empty files. FireKitty does not recover
any data, while Discrecorder is able to extract some files,
albeit with significant changes made to the source code.
Py_chromium_cache_simple only extracts data from Simple
Cache structure, and “JSON to HTML and XLS” parses data
from chat logs but does not include all information that can
be found in the log file. Whilst all of the tools provide
different capabilities in terms of Discord data recovery, none
of them can perform full, accurate extractions combined with
chat log reconstruction and presentation. As
ChromeCacheView is the most accurate of all the solutions
offered, its performance was specifically selected and
compared to DiscFor.

TABLE 2. DISCFOR RECOVERY RESULTS

Cache Structure Files Entries Valid Ignored

Disk Cache 1001 3108 3061 47

Disk Cache 2000 5706 5627 79

Disk Cache 3011 8328 8216 112

Simple Cache 1004 998 986 12

Simple Cache 2000 1991 1970 21

Simple Cache 3003 2994 2952 42

Simple Cache 4013 4004 3956 48

Simple Cache 5002 4990 4932 58

Simple Cache 6000 5986 5920 66

Simple Cache 7000 6979 6910 69

Simple Cache 8034 8006 7929 77

Simple Cache 9071 9036 8927 109

Simple Cache 10038 10001 9880 121

Simple Cache 11023 10997 10872 125

Simple Cache 12071 12052 11927 125

Simple Cache 13002 12993 12563 430

Simple Cache 14014 14004 13539 465

Simple Cache 15029 15014 14547 467

The extraction capabilities of our tool were tested
manually to ensure that the correct data and files were
recovered. DiscFor recovers 29 different types of
information for every file extracted and saves them in a CSV
report. Chat logs and attachments are the most valuable types
of evidence that can be found in the Discord local directory.
The former stores entire conversations including text,
graphical content URLs, and timestamps which are vital in

determining the chronology of events. Message attachments
may also provide more details about the discussion and also
provide further evidence, as reported by Forbes [3]. Email
addresses from the activity log are also one of the most
interesting findings, while the rest of the data from the log
can be used as additional/supplementary findings in cache.
The summary of all Discord contents is presented in Table 3.

TABLE 3. DISCORD APP CONTENTS

Content type Cache Activity log

User email No Yes

User password No No

Channel ID Yes Yes

Server ID Yes Yes

Timestamps Yes Yes

Attachments Yes No

Chat logs Yes No

Users avatars Yes No

JavaScript files Yes No

The server HTTP response is recovered in the form of a
byte string, and the most important parts are cleaned; an
example of this is shown in Table 4, while a fully
reconstructed message is presented in Fig. 9.

TABLE 4. TYPES OF CARVED AND CLEANED SERVER RESPONSE DATA

Data type Example

Server response HTTP/1.1 200

Content type image/jpeg

Etag W/"6f76ae9bc6a2779c8300dce5475601db"

Response time 08/03/2020 21:51

Last modified time 04/03/2020 18:13

Max age 2592000 (given in seconds)

Server name cloudflare

Expire time 08/03/2020 21:56

Content encoding gzip

Server IP 162.159.130.233

Time zone GMT

Fig. 9. Example of reconstructed message

As is evident from the data gathered, the performance of
DiscFor is remarkable, even when analysing a large number
of files. The comparative results presented in Table 5 show
that there is little difference between DiscFor and
ChromeCacheView in terms of number of files recovered.
However, it must be noted that our test case included very
small number of audio and video files which greater number
would prove Sofer’s solution to be much less efficient. As a
result of dividing into parts (Disk Cache) or storing files in

different separate files (Simple Cache) ChromeCacheView is
not able to recover and reconstruct them.

TABLE 5. DISCFOR AND CHROMECACHEVIEW RECOVERY RESULTS

COMPARISON

Cache Structure
Valid

entries

Complete files recovered

DiscFor ChromeCacheView

Disk Cache 3061 3061 3055

Disk Cache 5627 5627 5610

Disk Cache 8216 8216 8189

Simple Cache 986 986 981

Simple Cache 1970 1970 1962

Simple Cache 2952 2952 2944

Simple Cache 3956 3956 3948

Simple Cache 4932 4932 4921

Simple Cache 5920 5920 5907

Simple Cache 6910 6910 6890

Simple Cache 7929 7929 7902

Simple Cache 8927 8927 8893

Simple Cache 9880 9880 9844

Simple Cache 10872 10872 10848

Simple Cache 11927 11927 11909

Simple Cache 12563 12563 12555

Simple Cache 13539 13539 13530

Simple Cache 14547 14547 14534

Moreover, Fig. 10 shows that the DiscFor process of data
recovery takes less time than its ChromeCacheView
counterpart even though it recovers more information and
also reconstructs the messages. The results are based on the
tests performed on all 18 datasets shown in Table 2. The
testing only considered the recovery of the data and creation
of the report files as ChromeCacheView does not provide a
backup feature. In spite of this result, it is important to
mention that the performance of DiscFor recovery may be
variable, depending on the hardware and software used.

Fig. 10. DiscFor and ChromeCacheView performance comparison

Analysis of the results from the cache storage and
activity log clearly indicates that the former contains much
more data of a greater value from a forensic point of view.
Text messages, images, audio and video files are one of the
most important data types for digital investigations having a
high likelihood of becoming a piece evidence. While it is
possible to retrieve email addresses from the activity log it is
very unlikely as this type of data will only appear in the log
if the user has recently logged in or has recently switched
accounts. While timestamps can be used to identify and
confirm when certain message was sent or voice chat took
place there is little use of server and channel ID’s as they
also exist in cache. On its own data from activity log cannot

be used to determine if crime or misuse occurred, thus it may
serve only as a compliment to what can be recovered from
the cache storage.

VI. CONCLUSION AND FUTURE WORK

Communication applications like Discord are
experiencing increasing popularity with the rise in the
number of internet users worldwide. The use of IM
applications offers potentially rich sources of data, which if
properly recovered and preserved may become an admissible
and invaluable source of evidence in forensic investigations.
We have discovered that recent messages can be extracted
without accessing a person’s account, with the use of tools
capable of decoding data stored in cache. Considering that
most of the data is kept in the cache memory for 30 days
prior to deletion the potential amount of evidence available
to forensic investigators is vast. The main advantage of
DiscFor lies in its ability to recover important data accurately
and in a timely manner from all Discord sources. Moreover,
DiscFor can be run either as a Python script without the need
for any external modules, or as an executable file on any
system which can be extremely important in a digital
forensic investigation. Reporting features allow the
investigator to find relevant data quickly without the need to
manually view cache or JSON files.

There are a few constraints that were not overcome by
DiscFor. As it was already mentioned, cached data is kept for
a maximum of 30 days. To access all data an examiner must
log in to the account and download messages not stored in
local storage. Unfortunately, the password is not stored
locally which leaves the account inaccessible if the user
logged out. Because Discord locks its files in a read-only
state, the application must be closed to run DiscFor. This
means that if an examiner found Discord open with the user
logged in, it would be better to perform a live investigation
than running DiscFor. Another issue of DiscFor is that user
can delete cached data and prevent extraction. The files must
be removed directly from folders. Deleting messages in
Discord does not cause their immediate removal from the
cache storage and their removal from local files may take
even several minutes. If the user closes the program before
the update occurs, old information will remain in the local
storage. This may also lead to interesting findings as Discord
can be used on multiple platforms which means that different
information may be found on various devices.

There are avenues for future work in the forensic analysis
of Discord. The scope of this project was limited to the PC
version of Discord, therefore mobile application and web
variants of the Discord application remain open to further
study. Additional research is required to determine if the
activity log may hold more data of forensic value. As
Discord receives constant improvements it is possible that its
storage methods may change in future.

The program DiscFor was implemented as a command-
line tool to be as small and simple as possible, but later
development may include the implementation of GUI.
DiscFors’ code can be further improved to increase its
efficiency. The tool was tested in a controlled environment,
and further experiments are required in order to assess and
verify its capabilities in live forensic investigations.

ACKNOWLEDGMENTS

This study is supported by Research Incentive Fund
(R19044 and R18055) and Research Cluster Award
(R17082), Zayed University, United Arab Emirates.

REFERENCES
[1] Sgaras C., Kechadi M. T., and Le-Khac N. A., “Forensics acquisition

and analysis of instant messaging and VoIP applications,” Lect. Notes
Comput. Sci., vol. 8915, pp. 188–199, 2015.

[2] Patterson D., “Cybercriminals are doing big business in the gaming
chat app Discord,” CBS, 2020, last accessed 2020/04/21.

[3] Brewster T., “Discord: The $2 Billion Gamer’s Paradise Coming To
Terms With Data Thieves, Child Groomers And FBI Investigators,”
Forbes, 2020. [Online]. Available:
https://www.forbes.com/sites/thomasbrewster/2019/01/29/discord-
the-2-billion-gamers-paradise-coming-to-terms-with-data-thieves-
child-groomers-and-fbi-investigators/#26f268ca3741.

[4] Discord, “Discord Transparency Report,” Nelly, Discord Blog, 2019.
[Online]. Available: https://blog.discordapp.com/discord-
transparency-report-jan-1-april-1-4f288bf952c9

[5] Yusoff, M.N., Dehghantanha, A. and Mahmod, R., 2017. Forensic
investigation of social media and instant messaging services in
Firefox OS: Facebook, Twitter, Google+, Telegram, OpenWapp, and
Line as case studies. In Contemporary Digital Forensic Investigations
Of Cloud And Mobile Applications (pp. 41-62). Syngress.

[6] Hongtao G., "Forensic Method Analysis Involving VoIP Crime,"
2011 Fourth International Symposium on Knowledge Acquisition and
Modeling, Sanya, 2011, pp. 241-243, doi: 10.1109/KAM.2011.71.

[7] Suma G. S., Dija S. and Pillai A. T., "Forensic Analysis of Google
Chrome Cache Files," 2017 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC),
Coimbatore, 2017, pp. 1-5, doi: 10.1109/ICCIC.2017.8524272.

[8] Horsman, G., 2018. Reconstructing streamed video content: A case
study on YouTube and Facebook Live stream content in the Chrome
web browser cache. Digital Investigation, 26, pp.S30-S37.

[9] ChromeCacheView Homepage,
https://www.nirsoft.net/utils/chrome_cache_view.html, last accessed
2020/06/02.

[10] FireKitty Homepage: https://github.com/kittymagician/FireKitty, last
accessed 2020/06/02.

[11] Discrecorder Homepage, https://github.com/alfuananzo/discrecorder,
last accessed 2020/06/05.

[12] Py_chromium_cache_simple Homepage,
https://github.com/cristi8/py_chromium_cache_simple, last accessed
2020/06/05.

[13] JSON-to-HTML-and-XLS Homepage,
https://github.com/abrignoni/JSON-to-HTML-and-XLS, last accessed
2020/06/05.

[14] Chromium Homepage, https://github.com/bloomberg/chromium.bb,
last accessed 2020/06/09.

