
Parker, RJ and Dale, JE

 On the spatial distributions of stars and gas in numerical simulations of 
molecular clouds

http://researchonline.ljmu.ac.uk/id/eprint/1391/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Parker, RJ and Dale, JE (2015) On the spatial distributions of stars and gas 
in numerical simulations of molecular clouds. Monthly Notices of the Royal 
Astronomical Society, 451 (4). pp. 3664-3670. ISSN 1365-2966 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


ar
X

iv
:1

50
6.

00
64

6v
1 

 [
as

tr
o-

ph
.G

A
] 

 1
 J

un
 2

01
5

Mon. Not. R. Astron. Soc. 000, 1–8 (2015) Printed 3 June 2015 (MN LATEX style file v2.2)

On the spatial distributions of stars and gas in numerical

simulations of molecular clouds

Richard J. Parker
1⋆

and James E. Dale
2,3

1Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF, UK
2Excellence Cluster ‘Universe’, Boltzmannstraße 2, 85748 Garching, Germany
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ABSTRACT

We compare the spatial distribution of stars which form in hydrodynamical simulations
to the spatial distribution of the gas, using the Q-parameter. The Q-parameter enables
a self-consistent comparison between the stars and gas because it uses a pixelated
image of the gas as a distribution of points, in the same way that the stars (sink
particles in the simulations) are a distribution of points. We find that, whereas the
stars have a substructured, or hierarchical spatial distribution (Q ∼ 0.4 − 0.7), the
gas is dominated by a smooth, concentrated component and typically has Q ∼ 0.9.
We also find no statistical difference between the structure of the gas in simulations
that form with feedback, and those that form without, despite these two processes
producing visually different distributions. These results suggest that the link between
the spatial distributions of gas, and the stars which form from them, is non-trivial.

Key words: stars: formation – ISM: structure – star clusters: general – methods:
numerical

1 INTRODUCTION

The physics of star formation results in stars grouped to-
gether in regions which exceed the mean density of the
Galactic disc by several orders of magnitude (Blaauw 1964;
Lada & Lada 2003; Porras et al. 2003; Bressert et al. 2010).
Furthermore, there is growing evidence that star formation
is hierarchical from the interstellar medium (ISM) down
to sub-pc scales (Hoyle 1953; Scalo 1985; Efremov 1995;
Elmegreen et al. 2006; Bastian et al. 2007; Kruijssen 2012),
and that there is no preferred spatial scale for a given star
formation ‘event’.

Understanding this complex hierarchical picture of star
formation requires analysis of the spatial distribution of gas
from the ISM down to the giant molecular clouds (GMCs)
from which stars form, to the substructure of the clouds and
then of the spatial distribution of the stars themselves. In
particular, do stars exhibit the same spatial distribution as
the ISM (e.g. as argued by Gouliermis et al. 2014, for the
NGC346 star-forming region) and if so, does this provide
information on the physical processes from the ISM down
to individual star formation? Answering this question re-
quires the study of star-forming regions at the earliest pos-
sible stages, since the gas structure is likely to be disrupted
by feedback and the stellar structure by dynamical inter-
actions. Either or both of these processes can in principle

⋆ E-mail: R.J.Parker@ljmu.ac.uk

erase any spatial correlation between gas and stars on short
timescales.

In order to address these questions, analysis of
both gas in the ISM and GMCs, and stars in young
regions, must be undertaken using a self-consistent
method. In recent years, structural analysis of stars
in young regions has been performed using the pow-
erful Q-parameter (e.g. Cartwright & Whitworth 2004;
Bastian et al. 2009; Schmeja et al. 2008; Sánchez & Alfaro
2009; Gregorio-Hetem et al. 2015), which combines informa-
tion on the minimum spanning tree of a distribution with
the typical separation between the points in the distribu-
tion. This technique has also been developed to study the
gas distribution in images, by appropriately weighting the
flux from pixels in an image to create a distribution of points
(Lomax, Whitworth & Cartwright 2011).

It is not clear to what extent and for how long the spa-
tial distribution of stars should follow the same distribution
as the gas from which they form, and this has yet to be
addressed observationally. However, detailed hydrodynami-
cal simulations of star formation provide both information
on the spatial distribution of gas, and on the distribution
of stars (sink particles). In this paper, we examine the hy-
drodynamical simulations of star formation by Dale et al.
(2014) and measure the spatial distribution of both the gas
(from pixelated images) and the distribution of the sink par-
ticles, using the Q-parameter. The suite of simulations by
Dale et al. include control runs without feedback from pho-
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2 R. J. Parker & J. E. Dale

toionisation and stellar winds, and so we also search for dif-
ferences in the gas distributions for clouds that are influ-
enced by feedback mechanisms, and those that are not.

The paper is organised as follows. In Section 2 we de-
cribe the implementation of the Q-parameter on gas distri-
butions, in Section 3 we present our results, in Section 4 we
provide a discussion and we conclude in Section 5.

2 METHOD

The simulations of Dale et al. use a Smoothed–Particle Hy-
drodynamics (SPH) code to model the evolution of GMCs
of a range of sizes and masses and are seeded with Burgers
turbulence such that their initial virial ratios are either 0.7
or 2.3. The formation of stars is followed using sink par-
ticles (Bate et al. 1995) which, in the simulations analysed
here, have accretion radii of 0.005 pc and can be regarded
approximately as individual stars.

Dale et al. allow their simulations to evolve until three
objects exceed 20M⊙ at which point each calculation is
forked into a control run and a feedback run. The control
runs evolve purely hydrodynamically as before, while the
feedback runs are impacted by the ionising radiation and/or
stellar winds of the massive stars, modelled respectively by
the algorithms presented in Dale et al. (2007, 2012) and
Dale & Bonnell (2008). All runs are continued for as near
as possible to 3Myr to evaluate the effects of pre-supernova
feedback on the clouds and clusters.

For the analysis presented here, pixelated column-
density maps are constructed by drawing a pixel grid over
the simulation, placing each SPH particle on the grid and
column-integrating through its smoothing kernel onto all
grid cells whose centres it overlaps. Since the maps presented
here have a lower resolution than the local resolution of the
hydrodynamic simulations, particles which are too small to
overlap the centre of any grid cells have their mass smeared
out over the area of the cell in which they lie.

We use the Q-parameter (Cartwright & Whitworth
2004; Cartwright 2009) to quantify the spatial distribution
of both stars and gas in the hydrodynamical simulations
of Dale et al. (2014). The Q-parameter is determined by
constructing a minimum spanning tree (MST) of all of the
points in a distribution and then dividing the mean MST
branch length, m̄ by the mean separation between points, s̄:

Q =
m̄

s̄
. (1)

Determining Q for the stars (i.e. sink particles) in the
simulations is trivial, but determining Q for the gas
is more involved (Cartwright, Whitworth & Nutter 2006).
Lomax, Whitworth & Cartwright (2011) provide a method
for converting the flux distribution in a pixelated image
into a distribution of points, from which the Q-parameter
can then be calculated. We refer the interested reader to
Lomax et al. (2011) for full details of the method, including
examples of its use on synthetic images, but briefly sum-
marise the method here. In the simulations of Dale et al.
(2014), we use gas column density as the flux.

For an Npix = I × J array of pixels, the total flux

Figure 1. Dependance of the Q-parameter on the number of par-
ticles in a distribution. From top to middle, the lines indicate a
smooth, concentrated distribution with power law density profile
n ∝ r−2.9 (solid purple), r−2.5 (dashed raspberry), r−2.0 (dot-
dashed pale blue), r−1.0 (dotted orange), r0 (solid magenta); and
from bottom to middle the lines indicate a substructured fractal
distribution with fractal dimension D = 1.6 (solid black), 2.0
(dashed red), 2.6 (dot-dashed green), 3.0 (dotted dark blue). The
error bars indicate the interquartile range from 100 identical re-
alisations of the same cluster for a given number of points.

received from the pixels, Ftot is:

Ftot =
i=I
∑

i=1

j=J
∑

j=1

Fij . (2)

In order to convert the flux distribution into a distribution
of points, Lomax et al. (2011) then define the flux quantum
as

∆F =
Ftot

Npix

. (3)

We start by choosing a pixel, Rij at random. If Fij > ∆F ,
then the flux in that pixel is reduced

Fij → Fij −∆F (4)

and we place a point at rij+∆rrnd, where rij is the centre of
pixelRij and ∆rrnd is a small random displacement an order
of magnitude smaller than the pixel size, to prevent the final
point distribution from having a gridded appearance.

If Fij < ∆F , then we consider a patch of n pixels (see
fig. 1 in Lomax et al. 2011). n is increased until the flux from
the patch is equal to, or exceeds ∆F :

Fn−patch =
∑

n−patch

Fij > ∆F. (5)

The flux from each pixel is then uniformly reduced

Fij → Fij

(

1−
∆F

Fn−patch

)

, (6)

and a point is placed at position rpnt which is equal to the
weighted centre of the removed flux, plus a small random
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The spatial distributions of stars and gas 3

displacement:

rpnt =
∑

n−patch

{

Fijrij

Fn−patch

}

+∆rrnd. (7)

This process is repeated Npix times, whereafter the total flux
is now zero.

We now have a distribution of Npix points with
which we calculate the Q-parameter for the gas distri-
bution. The Q-parameter provides a measure of the de-
gree to which a distribution is substructured, or concen-
trated. Cartwright & Whitworth (2004), Cartwright (2009)
and Lomax et al. (2011) provide calibration data for syn-
thetic models, so for a given Q-parameter one can assign a
fractal dimension (in the substructured case), or the radial
density profile exponent (in the smooth, concentrated case).

However, as mentioned by Lomax et al. (2011), the Q-
parameter varies slightly depending on the number of points
in the distribution. This is usually not a problem when com-
paring e.g. the outcome of simulations to real star-forming
regions, as the numbers of stars are similar (between 100
– 1000). However, when constructing a point distribution
from pixels, in order to properly sample the gas distribu-
tion we find at least 64× 64 = 4096 pixels are required, but
128× 128 = 16384 pixels are desirable.

In Fig. 1 we show the dependence of Q on the number
of points, N . The coloured lines from top to middle indi-
cate a smooth, concentrated distribution with power law
density profile n ∝ r−2.9 (solid purple), r−2.5 (dashed rasp-
berry), r−2.0 (dot-dashed pale blue), r−1.0 (dotted orange),
r0 (solid magenta). From bottom to middle, the lines indi-
cate a substructured fractal distribution with fractal dimen-
sion D = 1.6 (solid black), 2.0 (dashed red), 2.6 (dot-dashed
green), 3.0 (dotted dark blue). The error bars indicate the
interquartile range from 100 statistically identical realisa-
tions of the same cluster for a given number of points. Q
tends to more extreme values with increasing N if a distri-
bution is highly substructured, or highly concentrated, but
remains roughly constant for more moderate distributions.
In order to check that these results are not simply due to
sampling too few points, we created each dataset with 104

points and then randomly chose N from this distribution
and found very similar results.

3 RESULTS

We analyse five sets of SPH simulations from Dale et al.
(2014). These simulations follow the evolution of giant
molecular clouds as they form stars without feedback
from photoionisation and stellar winds (‘control runs’)
and simulations in which feedback is switched on (‘dual
feedback runs’). In earlier work (Parker & Dale 2013;
Parker, Dale & Ercolano 2015), we showed that the pres-
ence (or not) of feedback can effect the long term spatial
evolution of a star-forming region and here we investigate
whether the spatial distribution of the gas is influenced by
feedback, and if the spatial distribution of the gas follows
that of the stars.

The results from the control Run I simulation 2.2 Myr
after the epoch when the calculation is split into parallel
control and dual-feedback incarnations are shown in Fig. 2.
In Fig. 2(a) we show the surface density distribution of the

gas. We also show the positions of the sink particles (the
white points), which have Q = 0.72, suggesting a slightly
substructured distribution. In Fig. 2(b) we show the distri-
bution of points from the pixel distribution of column den-
sity, determined using the method from Lomax et al. (2011).
This gas distribution has Q = 1.01, suggesting a smooth,
concentrated distribution.

We show the results at the same timestep of the dual-
feedback Run I calculation from Dale et al. (2014) which
includes the effects of photoionisation feedback and stel-
lar winds in Fig. 3. The sink particles (shown by the white
points in Fig. 3(a)) have Q = 0.49, suggesting a substruc-
tured distribution. From inspection of Fig. 3(b), the dis-
tribution of gas also appears substructured; however, the
Q-parameter is 0.88, indicating a smooth, concentrated dis-
tribution.

The results for all five sets of simulations are sum-
marised in Table 1 (all five sets have very similar morpholo-
gies). We present the Q-parameter for a pixelated map of
the gas distribution for each simulation using 64×64 pixels,
and 128 × 128 pixels (differences between the two are min-
imal). In the 128 × 128 pixel case, we also present the Q-
parameter for cold gas only (i.e. ionised particles have been
removed), and for cold gas above a column density threshold
of > 1 × 10−4 g cm−2 (this process sets the column density
of around 25 per cent of the pixels to zero). Finally, we give
the Q-parameter for the sink particles, and the number of
sink particles in each simulation.

For one simulation set (Run I) we also present the Q-
parameters for the simulations at the point before feedback
is switched on. The gas distribution in this simulation is
(as we might expect) similar to the end of the control run
(Qgas = 1.02), but the Q-parameter for the sink particles
is similar to the value at the end of the dual-feedback run
Qsinks = 0.42. This is likely due to the simulated cluster
being substructured early on, and the control run erasing
some of that substructure due to dynamical evolution (as
discussed in Parker & Dale 2013).

Two main results are apparent in our analysis. Firstly,
theQ-parameter for the sink particles is systematically lower
than the Q-parameter of the gas distribution. [Note that
this is not due to the differences in the numbers of parti-
cles used to determine the Q-parameter, as highlighted in
Fig. 1; this effect is only important if both Q-values are
in the same regime (i.e. substructured, or concentrated)].
Typically, Qgas ∼ 0.9 (indicating a smooth, concentrated
distribution), whereas the sink particles tend to have Q-
parameters between 0.4 – 0.7 (indicating a substructured,
or hierarchical distribution).

Secondly, and perhaps most strikingly, differences be-
tween the gas distributions in the simulations with and with-
out feedback are minimal in most cases (despite the appar-
ently substructured gas distribution for the runs in which
feedback is switched on). If we compare the value of Qgas

for the control run simulations, the range of values is 0.86 –
1.01 for the 128 x 128 pixel maps. The dual feedback simu-
lations range from Qcold gas,128 x 128 = 0.78−0.92. However,
individual simulations often exhibit almost identical values
for Qgas (e.g. the feedback runs from simulations J, UF and
UP have Q values higher than, but very similar to, the con-
trol runs). Furthermore, differences in Q of as little as 0.1
should not be taken as being significant (e.g. Parker et al.

c© 2015 RAS, MNRAS 000, 1–8
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(a) Raw column density image of the gas and sinks (white dots) in the
control Run I simulation. For the sink particles, Q = 0.72.

(b) Particle point representation of the gas only in the control
Run I simulation at a resolution of 128 x 128 pixels; Q = 1.01.

Figure 2. The spatial distribution of stars and gas in the control Run I simulation from Dale et al. (2014) 2.2 Myr after the point where
the calculation is forked into separate dual-feedback and control runs. In panel (a) we show the surface density distribution the gas, and
the sink particles are shown by the white points. In panel (b) we show the pixel point distribution for the gas. The sink particles have
Q = 0.72 and the gas distribution has Q = 1.01.
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(a) Raw column density image of the gas and sinks (white dots) in the
dual–feedback Run I simulation. For the sink particles, Q = 0.49.

(b) Particle point representation of the gas only in the dual–
feedback Run I simulation at a resolution of 128 x 128 pixels;
Q = 0.88.

Figure 3. The spatial distribution of stars and gas in the dual-feedback Run I from Dale et al. (2014), 2.2Myr after the enabling of
photoionisation and winds from the O-type stars. In panel (a) we show the surface density distribution of the gas, and the sink particles
are shown by the white points. In panel (b) we show the pixel point distribution for the gas. The sink particles have Q = 0.49 and the
gas distribution has Q = 0.88.
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The spatial distributions of stars and gas 5

Table 1. Measured Q-parameters for the gas distributions in the simulations from Dale et al. (2014). The columns display the run ID,
whether feedback was switched on, the Q-parameter for the gas distribution using 64 x 64 pixels, the Q-parameter for the gas distribution
using 128 x 128 pixels, the Q-parameter using 128 x 128 pixels for cold gas only, the Q-parameter using 128 x 128 pixels for cold gas
with a column density above 1× 10−4 g cm−2, the Q-parameter for the sink particles, and the number of sinks.

Run ID Feedback Qgas,64 x 64 Qgas,128 x 128 Qcold gas,128 x 128 Qcold gas, flux limited,128 x 128 Qsinks Nsinks

I Off 1.03 1.01 1.01 0.96 0.72 186
I Dual 0.87 0.88 0.83 0.81 0.49 132
I Before 1.02 0.99 0.99 0.95 0.42 44

J Off 0.91 0.89 0.89 0.89 0.49 578
J Dual 0.87 0.90 0.91 0.92 0.70 564

UF Off 0.88 0.86 0.86 0.84 0.77 66

UF Dual 0.83 0.85 0.88 0.89 0.49 93

UP Off 0.92 0.88 0.88 0.86 0.49 340

UP Dual 0.87 0.88 0.92 0.88 0.64 343

UQ Off 0.91 0.86 0.86 0.88 0.70 48

UQ Dual 1.07 0.83 0.78 0.77 0.45 77

Figure 4. The m̄ − s̄ plot (Cartwright 2009) for different mor-
phologies containing N = 10000 points. We create 100 realisations
of each morphology. Anti-clockwise from the bottom: fractals with
fractal dimensionD = 1.6 (the black crossed circles),D = 2.0 (the
red hashtags), D = 2.6 (the green dotted circles), D = 3.0 (the
dark blue crosses); then radially smooth clusters with power law
density profiles n ∝ r

0 (the magenta plus symbols), n ∝ r
−1.0 (or-

ange asterisks), n ∝ r
−2.0 (blue plus symbols), n ∝ r

−2.5 (rasp-
berry hexagrams) and n ∝ r−2.9 (purple compressed squares).
We overplot the m̄ and s̄ values for the pixel-point distributions
for the gas in the simulations. Control runs are shown by the open
symbols, dual feedback runs are shown by the filled symbols. Fi-
nally, values for m̄ and s̄ corresponding to a Q-parameter of 0.8
are shown by the solid black line.

2014) and based on the apparent visual structure in the feed-
back runs, we would expect Q values of less than 0.8. Given
the apparent differences between the column-density images
in Figures 2 and 3, this result seems counterintuitive.

Cartwright (2009) and Lomax et al. (2011) provide a
further diagnostic of the underlying spatial distribution in

relation to the Q-parameter by plotting m̄ against s̄. In
Fig. 4 we show the expected values of m̄ and s̄ for distribu-
tions of N = 10 000 points with various morphologies, sam-
pling 100 versions of each morphology. Anti-clockwise from
the bottom: fractals with fractal dimension D = 1.6 (the
black crossed circles), D = 2.0 (the red hashtags), D = 2.6
(the green dotted circles), D = 3.0 (the dark blue crosses);
then radially smooth clusters with power law density pro-
files n ∝ r0 (the magenta plus symbols), n ∝ r−1.0 (or-
ange asterisks), n ∝ r−2.0 (blue plus symbols), n ∝ r−2.5

(raspberry hexagrams) and n ∝ r−2.9 (purple compressed
squares). Q = 0.8 is shown by the solid line.

We plot the values of m̄ and s̄ for the pixel-point dis-
tributions of the gas in each of our simulations; the control
runs are shown by the open symbols, and the dual feedback
runs are shown by the filled symbols. Run I is shown by the
triangles, Run J by the circles, Run UF by the stars, UP by
the squares and Run UQ by the diamonds. The values of m̄
and s̄ for the control runs sit mainly around (but not on)
the parameter space of the smooth, concentrated profiles
with n ∝ r−2.0 (the blue plus symbols). These fake pro-
files typically have Q-parameters between 0.9 – 1.0, which
is roughly consistent with the values in the simulations (0.86
– 1.01). The runs with feedback have more scatter, and most
sit roughly between the smooth, concentrated profiles with
n ∝ r−2.0 and n ∝ r−1.0 (orange asterisks). The n ∝ r−1.0

profiles have Q-parameters between 0.8 – 0.9, again similar
to the simulation values of 0.78 – 0.91.

Despite Q, m̄ and s̄ indicating a smooth, concentrated
distribution, the pixel-point distributions for the gas in the
simulations with feedback appear (at least to the eye) sub-
structured. In order to test whether this is due to a failing
of the Q-parameter in determining the structure of complex
distributions, we perform two simple Monte Carlo tests in
an attempt to mimic the spatial distribution in Fig. 3(b).

First, we create a smooth, concentrated distribution of
10 000 points with radius 10 pc and a radial density profile
n ∝ r−2.5, as shown in Fig. 5(a). This has a Q-parameter
of 1.1. We then remove all points within 2 pc of the origin,
and move them to the outskirts of the distribution (thereby

c© 2015 RAS, MNRAS 000, 1–8



6 R. J. Parker & J. E. Dale

(a) Q = 1.1 (b) Q = 0.75 (c) Q = 0.60

Figure 5. The effects on the spatial distribution of a smooth, concentrated cluster with density profile n ∝ r
−2.5 when removing centrally

located points. In panel (a) we show the original distribution, which has Q = 1.1. In panel (b) we have removed everything within 2 pc
of the centre and placed it at larger radii, following the underlying radial profile, and Q = 0.75. In panel (c) we have removed everything
within 5 pc and placed them at larger radii, and Q = 0.60.

maintaining the same number of points and the same den-
sity profile) and Q = 0.75 (Fig. 5(b)). We then repeat this
process, but remove everything within 5 pc of the centre,
and Q = 0.60 (Fig. 5(c)). This is intended to mimic in an
approximate fashion the sweeping up of gas and clearing
out of bubbles, which is the main visible effect of feedback.
However, we keep the distribution of points smooth. Whilst
the result is very similar in appearance to the gas distribu-
tion from the dual-feedback run (Fig. 3(b)), it clearly has
a very different underlying spatial distribution according to
the Q-parameter.

Secondly, we create a ‘broken ring’ of 2000 points, which
has Q = 0.3. This is designed to represent more faithfully
the broken and irregular inner walls of the feedback–driven
bubbles. We then embed this in a uniform field of a further
1000 points (with Q = 0.7), representing the smooth and
largely undisturbed background gas, and then finally, place
a further 3000 points in a smooth, concentrated sphere (with
an n ∝ r−2.9 density profile – Q = 1.7). This material rep-
resents the very dense clumps of gas found in the feedback
runs. This final distribution, which incorporates all three
components, is shown in Fig. 6 and has an overall Q = 0.9.
Clearly, the concentrated clump in the centre of the distri-
bution is dominating the overall Q-parameter.

In order to test this in the SPH simulation data, we
take the pixel-point distribution for the dual-feedback run
shown in Fig. 3(b) and remove the region of highest density
centred on {3,4} pc. This distribution is shown in Fig. 7.
When we remove this region, the Q-parameter is reduced
from 0.88 (indicating a smooth concentrated distribution)
to 0.76, which is in the slightly substructured/uniform field
regime. The remaining ‘background’ of points, which are
tracing low-density gas in the simulation, are still contribut-
ing to the Q value, hence the distribution still does not ap-
pear very substructured.

Our interpretation is therefore that the gas distribu-
tion in the dual-feedback runs – whilst visually appearing
to be very different from the control runs – is actually very

Figure 6. Three different spatial distributions overlaid within the
same field. We show a broken ring of 2000 points within a uniform
distribution of a further 1000 points. In the centre is a centrally
concentrated sphere of a further 3000 points with an n ∝ r

−2.9

density profile. In isolation, the broken ring has Q = 0.3, the
uniform field has Q = 0.7 and the sphere has Q = 1.7. The
combined distributions have an overall Q-parameter of 0.9.

similar, and both are dominated by a smooth, concentrated
component.

4 DISCUSSION

We set out to examine the extent to which the structure of
the gas and stellar distributions in a set of hydrodynamic
simulations are similar using an objective quantitative cri-
terion: the Q–parameter. This is in contrast to many other
studies where the surface density of either the stellar mass

c© 2015 RAS, MNRAS 000, 1–8



The spatial distributions of stars and gas 7

Figure 7. The gas pixel-point distribution for the dual-feedback
Run I simulation 2.2Myr after feedback is enabled (Fig. 3(b)), but
with the pixel-points from the most dense region of gas removed.
Removing this region of points reduces the Q-parameter from 0.88
to 0.76.

or the star formation rate are compared with the surface
density of the gas, which can only offer qualitative conclu-
sions.

If our results can be taken at face value, they suggest
that the spatial distribution of stars is very different to that
of the gas from which they form. In one sense, this is not sur-
prising; the initial conditions of the simulations of Dale et al.
(2014) are smooth, concentrated gas clouds, whereas stellar
distributions, particularly in the early stages of star forma-
tion, are expected to be highly substructured. However, once
the cloud has evolved and formed stars in a substructured
distribution, we might expect the gas from which they form
to also exhibit substructure. This is not the case, and the gas
distribution remains dominated by a smooth concentrated
component. This is particularly evident in Run I where the
largest subcluster is fed by a set of smooth accretion flows
which do not themselves fragment into clumps or stars.

The presence (or not) of feedback was shown in
Dale et al. (2012) and Parker & Dale (2013) to have a min-
imal effect on the spatial distribution of stars at the end of
the feedback calculations, when compared with the control
runs – all the simulations from Dale et al. (2012), Dale et al.
(2013) and Dale et al. (2014) form stars with a substruc-
tured distribution, and other authors report similar conclu-
sions (e.g. Bate 2012; Girichidis et al. 2012; Kruijssen et al.
2012). From visual inspection, it appears that feedback re-
sults in a very different spatial distribution for the gas (com-
pare Figs. 2(b) and 3(b)). However, most of the gas remains
in a dense, concentrated distribution(s) in these pixel-point
maps. The difference in fact is in the relative positions of the
stars and gas. In the control simulations, the densest con-
centrations of gas and stars are spatially coincident. In the
feedback simulations, the accretion flows feeding the clusters
are destroyed or deflected and the clusters and their envi-
rons are cleared of gas. Much of the gas is swept up into

relatively dense concentrations, but these form stars ineffi-
ciently, so that the main effect of feedback is to spatially
separate some of the stars from dense gas (this can readily
be seen by comparing the positions of the sink particles to
the gas in Fig. 3(a)). However, in most of the runs, even in
the presence of feedback many of the sink particles are still
coincident with the dense gas in 2D projection, even if they
not still genuinely embedded in three dimensions. This is
particularly true of Run J, where large quantities of dense
gas remain projected at the location of most of the stars,
even though in three dimensions the main concentration of
stars has been largely cleared of gas. This effect blurs out
the dynamical influence of feedback when seen in projection.

One caveat is that the Q-parameter may not be an ideal
method for measuring the spatial distribution of gas, as we
first need to convert a pixelated image into a distribution
of points. However, Lomax et al. (2011) show that the un-
derlying spatial distribution is always recovered in synthetic
datasets, and in the Monte Carlo experiment shown in Fig. 6
we also recover the underlying spatial distribution.

5 CONCLUSIONS

We measure the spatial distributions of gas and stars in
hydrodynamical simulations of star formation using the
Q-parameter (Cartwright & Whitworth 2004; Lomax et al.
2011). We compare Q for simulations which form under the
influence of feedback from photoionisation and stellar winds,
and corresponding control run simulations. Our conclusions
are as follows.

(i) The spatial distribution of the gas is different to
that of the stars in all simulations. The gas has a spatially
smooth, concentrated distribution (Q ∼ 0.9), whereas the
stars have a substructured distribution (Q ∼ 0.4− 0.7).

(ii) The presence of feedback clears out cavities, or bub-
bles in the simulations, which are visible to the eye. However,
statistically these distributions are similar to the control run
simulations without feedback. The reason for this is that in
all simulations, a significant dense, concentrated gas compo-
nent dominates the spatial distribution.

(iii) The combination of points (i) and (ii) suggests that
a direct link between the spatial distribution of young stars,
and the gas from which the stars form should not necessarily
be expected in observations.

These results also highlight the pitfalls in trying to mea-
sure quantitatively something previously judged by eye. The
column density images shown in Figures 2(a) and 3(a) and
the corresponding pixel-point distributions could scarcely
look more different, yet the Q-parameter analysis reports
that they are statistically indistinguishable. The root cause
of the similarity is that they are both dominated by the same
kinds of structures, the visual difference being due to how
those structures are arranged.

There is growing evidence in the literature that sug-
gests star formation is hierarchical, with no preferred spatial
scale (Efremov 1995; Elmegreen et al. 2006; Bastian et al.
2007; Kruijssen 2012). Because of this, it is tempting to link
different regimes together, such as the spatial distribution
of gas in the ISM with the spatial distribution of stars in
clusters (e.g. Gouliermis et al. 2014; Gregorio-Hetem et al.
2015). Our results suggest that – whilst star formation in

c© 2015 RAS, MNRAS 000, 1–8
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numerical simulations also produces a hierarchical spatial
distribution of the stars – the distributions of gas and stars
may be linked in a highly non-trivial way.

ACKNOWLEDGMENTS

We thank the referee, Olly Lomax, for helpful suggestions
which improved the original manuscript. RJP acknowledges
support from the Royal Astronomical Society in the form
of a research fellowship, and from the European Science
Foundation (ESF) within the framework of the ESF ‘Gaia
Research for European Astronomy Training’ exchange visit
programme (exchange grant 4994). This research was also
supported by the DFG cluster of excellence ‘Origin and
Structure of the Universe’ (JED).

REFERENCES

Bastian N., Ercolano B., Gieles M., Rosolowsky E., Scheep-
maker R. A., Gutermuth R., Efremov Y., 2007, MNRAS,
379, 1302

Bastian N., Gieles M., Ercolano B., Gutermuth R., 2009,
MNRAS, 392, 868

Bate M. R., 2012, MNRAS, 419, 3115
Bate M. R., Bonnell I. A., Price N. M., 1995, MNRAS, 277,
362

Blaauw A., 1964, ARA&A, 2, 213
Bressert E., Bastian N., Gutermuth R., Megeath S. T.,
Allen L., Evans, II N. J., Rebull L. M., Hatchell J., John-
stone D., Bourke T. L., Cieza L. A., Harvey P. M., Merin
B., Ray T. P., Tothill N. F. H., 2010, MNRAS, 409, L54

Cartwright A., 2009, MNRAS, 400, 1427
Cartwright A., Whitworth A. P., 2004, MNRAS, 348, 589
Cartwright A., Whitworth A. P., Nutter D., 2006, MNRAS,
369, 1411

Dale J. E., Bonnell I. A., 2008, MNRAS, 391, 2
Dale J. E., Ercolano B., Bonnell I. A., 2012, MNRAS, 424,
377

Dale J. E., Ercolano B., Bonnell I. A., 2013, MNRAS, 430,
234

Dale J. E., Ercolano B., Clarke C. J., 2007, MNRAS, 382,
1759

Dale J. E., Ngoumou J., Ercolano B., Bonnell I. A., 2014,
MNRAS, 442, 694

Efremov Y. N., 1995, AJ, 110, 2757
Elmegreen B. G., Elmegreen D. M., Chandar R., Whitmore
B., Regan M., 2006, ApJ, 644, 879

Girichidis P., Federrath C., Allison R., Banerjee R., Klessen
R. S., 2012, MNRAS, 420, 3264

Gouliermis D. A., Hony S., Klessen R. S., 2014, MNRAS,
439, 3775

Gregorio-Hetem J., Hetem A., Santos-Silva T., Fernandes
B., 2015, MNRAS, 448, 2504

Hoyle F., 1953, ApJ, 118, 513
Kruijssen J. M. D., 2012, MNRAS, 426, 3008
Kruijssen J. M. D., Maschberger T., Moeckel N., Clarke
C. J., Bastian N., Bonnell I. A., 2012, MNRAS, 419, 841

Lada C. J., Lada E. A., 2003, ARA&A, 41, 57
Lomax O., Whitworth A. P., Cartwright A., 2011, MNRAS,
412, 627

Parker R. J., Dale J. E., 2013, MNRAS, 432, 986
Parker R. J., Dale J. E., Ercolano B., 2015, MNRAS, 446,
4278

Parker R. J., Wright N. J., Goodwin S. P., Meyer M. R.,
2014, MNRAS, 438, 620

Porras A., Christopher M., Allen L., Di Francesco J.,
Megeath S. T., Myers P. C., 2003, AJ, 126, 1916

Sánchez N., Alfaro E. J., 2009, ApJ, 696, 2086
Scalo J. M., 1985, in Black D. C., Matthews M. S., eds,
Protostars and Planets II Fragmentation and hierarchical
structure in the interstellar medium. pp 201–296

Schmeja S., Kumar M. S. N., Ferreira B., 2008, MNRAS,
389, 1209

c© 2015 RAS, MNRAS 000, 1–8


	1 Introduction
	2 Method
	3 Results
	4 Discussion
	5 Conclusions

