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Abstract 15 

In recent decades, remote sensing (RS) technology and geographical information systems 16 

(GIS) were increasingly used as tools for epidemiological studies and the control of zoonotic 17 

diseases. Fasciolosis, a zoonotic disease caused by a trematode parasite (Fasciola spp.), is a 18 

good candidate for the application of RS and GIS in epidemiology because it is strongly 19 

influenced by the environment, i.e. the habitat of the intermediate host. In this study, we 20 

examined variables which may increase the fasciolosis risk of Ankole cattle in the degraded 21 

and overgrazed Mutara rangelands of north-eastern Rwanda. The risk variables considered 22 

included three environmental variables (normalized difference vegetation index, NDVI; 23 

normalized difference moisture index, NDMI; normalized difference water index, NDWI), 24 

two landscape metric variables (rangeland proportion, building density), two geological 25 

variables (poorly-drained soil proportion, elevation) and three animal husbandry variables 26 

(herb size, adult proportion and the body condition score). Fasciola spp. prevalence was used 27 

as the dependent variable, sampling season as a fixed factor and four principal components 28 

(PCs, condensed from the ten risk variables) as covariates in a univariate General Linear 29 

Model. Fasciola spp. prevalence was positively correlated to rangeland proportion, cattle 30 
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herd size in rural areas, adult proportion and individual body condition. Moreover, high 31 

Fasciola spp. prevalence was found in densely vegetated areas with high moisture (high 32 

values of NDVI and NDMI), in combination with large proportions of poorly-drained soil at 33 

low elevations. Future investigations should focus on increased sampling across the Mutara 34 

rangelands to prepare a predictive, spatial fasciolosis risk map that would help to further 35 

improve sustainable land-use management. 36 

 37 

Key words: Fasciola, Geographic Information System, Remote sensing, risk model, cattle 38 

husbandry, environmental factors, Rwanda  39 
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1. Introduction 40 

During the past few decades, multi-disciplinary approaches to carry out epidemiology studies 41 

using remote sensing (RS) and geographical information systems (GIS) have been 42 

extensively applied (Hay, 2000; Thomson and Conner, 2000; Hendrickx et al., 2004; Kitron 43 

et al., 2006). Advances in RS have provided the ability to obtain a variety of environmental 44 

parameters (e.g. normalized difference vegetation index, NDVI; normalized difference 45 

moisture index, NDMI; normalized difference water index, NDWI) with numerous spatial 46 

and temporal resolutions that can be related to disease outbreaks and vector distribution (Hay 47 

et al., 1997; Robinson, 2000). GIS allows computer-based analysis of multiple layers of 48 

digital mapped data, such as satellite sensor data, maps of host populations, vector and 49 

disease distributions (Malone et al., 1997; Malone and Yilma, 1999). For example, 50 

environmental RS indices and GIS technologies have been applied to identify habitats of 51 

parasites and their vectors, such as mosquito-borne diseases (e.g. malaria, Rift Valley fever 52 

and dengue); snail-borne diseases (e.g. schistosomiasis and fasciolosis); or tick-borne 53 

diseases (e.g. boreliosis; Hay, 2000; Omumbo et al., 2002; Hendrickx et al., 2004; Tatem et 54 

al., 2004; Charlier et al., 2014).  55 

 56 

Bovine fasciolosis is a zoonotic disease affecting the liver of wild and domestic ruminants, 57 

caused by parasitic trematodes of the genus Fasciola (F. hepatica or F. gigantica). The adult 58 

parasite lives in the bile ducts of the hosts’ liver and causes substantial financial losses to 59 

pastoralist communities worldwide by negatively affecting growth rates and productive 60 

parameters (McCann et al., 2010; Byrne et al., 2016). In the early 2000s, global economic 61 

losses due to fasciolosis exceeded US$200 million, with about 300 million cattle infected 62 

(Mas-Coma et al., 2005; Dutra et al., 2010). Moreover, owing to the fact that Fasciola spp. 63 

also infect humans (currently 2.4 to 17 million people are infected with F. hepatica; Eslami et 64 

https://www.sciencedirect.com/science/article/pii/S0303243404000388#bib26
https://www.sciencedirect.com/science/article/pii/S0303243404000388#bib44
https://www.sciencedirect.com/science/article/pii/S0303243404000388#bib59
https://www.sciencedirect.com/science/article/pii/S0303243404000388#bib59
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al., 2009), fasciolosis represents a serious public health threat, especially in developing 65 

countries (Rokni et al., 2002; Mas-Coma et al., 2009). The parasite occurs primarily in 66 

swampy areas or on flooded pastures, i.e. the preferred habitat of the intermediate host 67 

(pulmonate freshwater gastropods of the family Lymnaeidae; Brown, 2005; Torgerson and 68 

Claxton, 1999). Bovine livestock usually become infected by eating water plants and grass 69 

from inundated lawns, or simply by drinking contaminated water (Witenberg, 1964). Since 70 

the parasite is strongly influenced by the environment, i.e. the habitat of the intermediate host 71 

and by the relative longevity of the parasite inside the mammalian host, fasciolosis is an ideal 72 

candidate for the application of RS and GIS (Malone and Yilma, 1999). 73 

 74 

Thus, the purpose of this study was to generate a risk model to better understand the 75 

epidemiology of Fasciola spp. in the degraded and overgrazed Mutara rangelands of north-76 

eastern Rwanda. Hereby, we considered it imperative to follow a holistic approach and to 77 

relate parasite data to three environmental variables (NDVI, NDMI and NDWI), two 78 

landscape metric variables (rangeland proportion and building density), two geological 79 

variables (proportion of poorly-drained soil and elevation) and three animal husbandry 80 

variables (herd size, adult proportion and body condition score, BCS) to identify the major 81 

risk factors of Fasciola spp. infection in Ankole cattle.  82 

 83 

2. Material and Methods 84 

2.1 Study area 85 

The Mutara rangelands are located in the Nyagatare District in north-eastern Rwanda (Fig. 1). 86 

They are characterised by a tropical rainfall pattern (wet season: March to May and October 87 

to November) with an average annual precipitation of 827 mm and a mean annual ambient 88 

temperature of 26.5°C. The Mutara rangelands comprise vast open grasslands, interspersed 89 
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by evergreen bushland and thicket (Kindt et al., 2014) and are traditionally used to graze 90 

cattle. Today, the Mutara rangelands harbour an estimated 160,000 cattle, resulting in a cattle 91 

density of 81 individuals/km2 (Wronski et al., 2017). Moreover, in a significant part of the 92 

Mutara, increasing subsistence agriculture and urbanization, leaving only 13% of the total 93 

land area in a natural state (CIRAD, 2002; Wronski et al., 2017). 94 

 95 

2.2 Study animals and faecal sampling 96 

Faecal samples were taken from Ankole cattle, a breed derived from the Sanga type cattle 97 

predominantly found in East-Central Africa (Epstein, 1957). Faecal samples were collected at 98 

the end of the short and long wet season, i.e. from 19 February to 17 March and from 12 June 99 

to 17 July 2016, respectively. In total, 570 faecal samples were obtained from 142 cattle 100 

herds. Sampled individuals were randomly encountered along three 2.5 km wide transect 101 

belts (22.5, 32.5 and 37.5 km long) stretching between the Tanzanian border (or the border of 102 

the modern Akagera NP) in the East and the Ugandan border (or the Byumba Escarpment) in 103 

the West (Fig. 1). Three to five faecal samples were collected from each herd directly after a 104 

focal animal had defecated. Additionally, coordinates were recorded using an Etrex 20x GPS 105 

(Garmin, USA). Faecal samples (30 g/individual) were retained in labelled plastic containers 106 

and preserved in 5-10% formalin prior to processing in the laboratory. Since most herds 107 

comprised of only females and their offspring (bulls are usually kept in the kraal), only 108 

females and their calves were sampled. Exotic Friesians (or hybrids with Ankole cattle), 109 

individuals treated with flukicides during the last six months prior to sampling, or individuals 110 

that did not experience similar husbandry conditions (e.g. overnight kraaling) were also 111 

excluded from our sampling. Moreover, date, time, age composition (number of adults and 112 

juveniles), herd size and the BCS of each sampled individual were recorded.  113 

 114 
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2.3 Coprological examination 115 

Faecal samples were processed in the Veterinary Laboratory of Nyagatare Campus, 116 

University of Rwanda. A modified sedimentation technique was employed to detect the eggs 117 

of Fasciola species. In brief, faecal samples (app. 10 g) were crushed, diluted with 140 ml of 118 

saturated NaCl solution and filtered. The faecal suspension was transferred into a 15 ml test 119 

tube and sedimented for 20 minutes. Subsequently, the supernatant was discarded and the 120 

sediment was conveyed to a microscope slide using a pipette. To ease Fasciola spp. egg 121 

identification, a drop of Methylene blue was added and eggs were counted using a compound 122 

microscope with a 10× and 40× magnification (Hansen and Perry, 1994; Mwabonimana et al., 123 

2009; Rojo-Vázquez et al., 2012). The identification of trematode eggs was facilitated by 124 

identification keys provided in Hansen and Perry (1994). Fasciola spp. prevalence was 125 

established as the number of infected individuals divided by the total number of samples 126 

taken in each herd (Margolis et al., 1982).   127 

 128 

2.4 Image acquisition and processing 129 

Four multispectral Sentinel-2 satellite images (European Space Agency, ESA) covering the 130 

entire Mutara rangelands (WGS 84, UTM zone 35S, EPSG code: 32735) during the infection 131 

season (i.e. the last wet season prior to faecal sampling) were downloaded from USGS Earth 132 

Explorer (https://earthexplorer.usgs.gov, last accessed on February 2019). Two images were 133 

taken during the short wet season (25 November 2015 and 24 January 2016), another two 134 

during the long wet season (14 March and 23 April 2016). All images had good quality, i.e. 135 

with little or no cloud cover, and were processed using QGIS (version 2.8.6). Prior to index 136 

calculation all sampling points were buffered using a radius of 1km as a proxy for the 137 

potential activity range of sampled herds (based on the average distance to the next water 138 

source; Apio, pers. comm.). Within these buffers, the NDVI, NDMI and NDWI (based on 10 139 

https://earthexplorer.usgs.gov/
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× 10 m pixel size spatial resolution at earth surface) were established and averaged to obtain 140 

one value for each cattle herd.  141 

 142 

2.5 Landscape metric variables  143 

The rangeland proportion within each buffer area was determined using a high resolution 144 

Google satellite image. Along four radii (i.e. in direction to North, East, South, and West) in 145 

each buffer area, the distances intercepted by rangeland or agricultural fields were 146 

established. Subsequently, the rangeland proportion for each buffer was calculated. Building 147 

density was based on building registration data downloaded from ‘Geofabrik’ open street 148 

map (http://download.geofabrik.de, last accessed on February 2019). The number of 149 

buildings was established for each buffered area and divided by the total buffer size to obtain 150 

building density. Large scale rangeland grazing was reported to increase the Fasciola spp. 151 

infection risk by cattle being more exposed to vegetation contaminated by metacercaria 152 

(Kanyari et al., 2010; Murray and Daszak, 2013). By contrast, in more urbanized areas, 153 

livestock is mainly fed on freshly cut grass or agricultural waste and therefore exposed to a 154 

lower risk of Fasciola spp. infection (Kanyari et al., 2010). 155 

 156 

2.6 Geological variables 157 

Soil data were extracted from the pedological map of Rwanda (Van Ranst and Delvaux, 158 

2000). The map was georeferenced and reclassified into two classes, i.e. poorly-drained soils 159 

versus well-drained soils. Buffered sampling areas were subtracted from the reclassified soil 160 

map and the proportion of poorly-drained soil was calculated. Elevation data were collected 161 

at each faecal sampling point using a hand-hold GPS. Alluvial soils and low elevations are 162 

usually associated to poor drainage and extended periods of flooding, prevalent in areas that 163 

http://download.geofabrik.de/
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correspond to increased Fasciola spp. prevalence in cattle (Zukowski et al., 1991; Malone 164 

and Yilma, 1999; McCann et al., 2010; Dutra et al., 2010; Bennema et al., 2011).  165 

 166 

2.7 Animal husbandry variables 167 

For each sampled cattle herd, the herd size and the adult proportion (i.e. the number of adults 168 

older than 24 months, divided by total herd size) were established. A visual BCS assessment 169 

based on estimating the presence or absence of musculature and fat deposition on the spinal 170 

and caudal vertebrae (El Alqamy, 2013) was applied to each sampled individual and 171 

subsequently a herd BCS was calculated by averaging scores. Livestock with deprived health 172 

condition or a poor nutritional status show usually a poor BCS, thus expecting a high 173 

Fasciola spp. prevalence. 174 

 175 

2.8 Data analysis  176 

Absolute data, were log-transformed, whereas relative data were arcsine square root 177 

transformed. To standardize data dimensionality, z-score normalisation was applied to the 178 

overall data set. The ten independent variables were reduced using Principal Component 179 

Analysis (PCA) resulting into four principle components with an Eigenvalue > 1.0, 180 

demonstrating 82.21% of the total variance. A univariate General Linear Model (GLM) was 181 

used to examine the impact of these risk factors on the Fasciola spp. prevalence in Ankole 182 

cattle by using the four PCs as covariates. Initially, all two-way interaction effects of all PCs, 183 

as well as a fixed factor (sampling season) and a random factor (herd ID) were included into 184 

the GLM, followed by a step wise backwards elimination procedure (p > 0.1) to omit non-185 

significant interaction effects (all excluded interactions: F < 1.50, p > 0.22). Effect strengths 186 

were established as Wilk’s partial eta-squared (ηp2). All statistical analyses were carried out 187 

using RStudio (version 3.5.1) 188 
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 189 

3. Results 190 

In total, 569 individuals from 142 cattle herds were sampled. Out of these, 113 individuals 191 

from 70 herds were detected positive for fasciolosis, corresponding to a total animal 192 

prevalence of 19.9% and a herd prevalence of 49.3%. Factor reduction using PCA of ten 193 

independent variables yielded four Principal Components (PCs, Table 1). PC1 obtained high 194 

factor loadings from NDVI, NDMI and NDWI, suggesting that areas covered by dense, 195 

woody vegetation corresponded to a high content of moisture in vegetation and soil and to 196 

only a few open water bodies. PC2 received high factor loadings from rangeland proportion, 197 

cattle herd size and building density, suggesting decreasing cattle herd size in areas where the 198 

original savannah vegetation was transformed into fields and human settlements. PC3 199 

received high factor loadings from elevation and the proportion of poorly drained soil, 200 

indicating that poorly drained soils predominantly occur in areas of low elevation. PC4 201 

obtained high factor loadings from the BCS and the proportion of adult individuals in the 202 

herd, suggesting that adult animals have generally a better body condition than juveniles.  203 

 204 

A univariate GLM revealed that Fasciola spp. prevalence was significantly affected by 205 

several independent variables with a main positive effect of PC2, a main negative effect of 206 

PC4 (Table 2, Fig. 2a, b), and the interaction effect of ‘PC1×PC3’ and ‘PC2×PC4’ (Table 2, 207 

Fig. 3a, b). The Fasciola spp. prevalence showed no difference between the two sampling 208 

seasons (Table 2). Plotting the interaction effect ‘PC1×PC3’ generated two different slopes 209 

when dividing the data by the median of PC1. In the cohort of data with values loading on 210 

PC1 larger than the median (i.e., comparatively high NDVI, high NDMI, but low NDWI), we 211 

found Fasciola spp. prevalence to decrease with increasing values of PC3 (high elevation and 212 

well-drained soil, R2 = 0.023; Fig. 3a). However, in the cohort of data with values of PC1 213 
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smaller than the median (i.e., comparatively low NDVI, low NDMI, but high NDWI) no such 214 

effect was found between Fasciola spp. prevalence and increasing PC3 (R2 < 0.001; Fig. 3a).  215 

 216 

Plotting the interaction effect ‘PC2×PC4’ also generated two different regressions when the 217 

data were separated by the median of PC2. In the cohort of data with values loading on PC2 218 

larger than the median (i.e., comparatively high proportion of rangeland, large cattle herd size 219 

and low building density), Fasciola spp. prevalence slightly increased with increasing values 220 

of PC4 (adult proportion and averaged BCS, R2 = 0.006; Fig. 3b), while in the cohort of data 221 

with values loading on PC2 smaller than the median (comparatively low proportion of 222 

rangeland, small cattle herd size and high building density), a strong effect was revealed 223 

between Fasciola spp. prevalence and the increasing PC4 (R2 = 0.249; Fig. 3b).  224 

 225 

4. Discussion  226 

The overall Fasciola spp. prevalence observed in our study (49.3%) was relatively high 227 

compared to other studies on cattle in Rwanda (40.2%; Habarugira et al., 2016) or Ethiopia 228 

(32.3%; Bekele et al., 2010). However, depending on regional and seasonal factors the 229 

prevalence can vary considerably (Habarugira et al., 2016). Moreover, the Fasciola spp. 230 

prevalence was positively affected by PC2 (landscape metric variables and herd size, Table 2, 231 

Fig. 2a), indicating that large areas of original savannah vegetation, overgrazed by large cattle 232 

herds facilitated the spread of Fasciola spp.. Large stocking rates were previously reported to 233 

be the main reason for increased Fasciola spp. prevalence in cattle (Howell et al., 2015) and 234 

Morgan et al. (2006) suggested that low stocking rates are the prime measure to control the 235 

parasite in open grassland. Moreover, these grasslands are located in remote, rural areas with 236 

low building density, while in more urbanised areas with higher building densities and more 237 

agriculture, cattle herds are smaller and Fasciola spp. prevalence tends to be lower. The 238 
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second main effect on Fasciola spp. prevalence was PC4 (adult proportion and BCS, Table 2, 239 

Fig. 2b), suggesting Fasciola spp. prevalence to decrease with increasing adult proportion 240 

and a high BCS. Moreover, the interaction effect of ‘PC2×PC4’ on the Fasciola spp. 241 

prevalence further highlighted how the landscape metric variables interacted with animal 242 

husbandry variables (Table 2, Fig. 3b). In urbanised, agricultural areas with a smaller 243 

proportion of rangeland and smaller cattle herds, but higher number of buildings (PC2 < 244 

median), the Fasciola spp. prevalence decreased with increasing adult proportion and higher 245 

BCS (Fig. 3b). However, there was no relationship between Fasciola spp. prevalence and 246 

PC4 (adult proportion and BCS) in rural areas with comparatively larger proportion of 247 

rangeland, larger cattle herds and lower building densities (PC2 > median; Fig. 3b). Here, 248 

cattle were heavily infected with Fasciola spp., regardless of age and body conditions. This 249 

result suggested that the animal husbandry variables (adult proportion and BCS) negatively 250 

correlated to Fasciola spp. prevalence only in urban areas, where cattle was fed on freshly cut 251 

grass or agricultural waste and thus interrupting the parasites’ life cycle. Land use changes in 252 

recent years led to increased urbanisation and the transformation of natural savannah 253 

vegetation into agricultural land (CIRAD, 2002; Wronski et al., 2017), reducing the 254 

availability of grassland for pastoralists and their cattle and thus reinforcing the negative 255 

effects of overstocking and overgrazing (Pandey et al., 1993; Taj et al., 2014). 256 

 257 

Our GLM further revealed an interaction effect of ‘PC1×PC3’ on the Fasciola spp. 258 

prevalence (Table 2, Fig. 3a). Here, Fasciola spp. prevalence was not influenced by the 259 

geological variables if recorded in areas with comparatively less vegetation, less moisture but 260 

more open water bodies (PC1 < median, Fig. 3a). However, in dense woody vegetated areas 261 

with high moisture and few open water bodies (PC1 > median, Fig. 3a), high Fasciola spp. 262 

prevalence was correlated to poorly-drained soil and low elevation. This finding corresponds 263 
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to our prediction that Fasciola spp. was prevalent in well-vegetated areas with high soil 264 

moisture and large proportions of poorly-drained soils at low elevations (Tum et al., 2004). 265 

Such specific environmental factors of the micro climate affect the presence and abundance 266 

of the intermediate host of Fasciola spp. (snails of the family Lymnaeidae) and thus 267 

determine the life-cycle of the parasite (Mzembe and Chaudhry, 1979; McCann et al., 2010; 268 

Charlier et al., 2014).  269 

Given results from previous studies (Yilma and Malone, 1998; Malone et al., 1998; McCann 270 

et al., 2010; Kantzoura et al., 2011; Portugaliza et al., 2019), areas with sufficient vegetation 271 

(high NDVI), high moisture (high NDMI) or numerous open water bodies (high NDWI), i.e. 272 

areas facilitating the development of eggs, the mobility of miracidiae and the spread of 273 

cercariae, would be expected to show increased Fasciola spp. prevalence. Such areas include, 274 

flood plains and riverine forest, but also human-modified landscape elements like dams, 275 

swamps, ponds and irrigation canals. Dense vegetation with high soil moisture is known to be 276 

the ideal snail habitat (Tum et al., 2004; Malone, 2005), and remote sensing indices, such as 277 

NDVI and NDMI, were frequently used to assess the environmental variables typical for snail 278 

habitats, to identify high risk Fasciola spp. areas and to develop regional fasciolosis risk 279 

maps (Malone et al., 1998; Durr et al., 2005). However, the hypothesis that high Fasciola 280 

spp. prevalence occurs in areas with a high density of open water bodies, i.e. a high NDWI, 281 

was not proven by our study.  282 

 283 

 284 

 285 

5. Conclusions 286 

The prevalence of Fasciola spp. in Ankole cattle was, at least to a certain degree, defined by 287 

all independent variables included in our study. In contrast to other gastro-intestinal parasites 288 

(e.g. Eimeria spp. or strongyle-type nematodes), the intermediate host and the free-living 289 



 
 

13 
 

stages of Fasciola spp. require habitats covered by dense and lush vegetation with large 290 

proportions of poorly-drained soils at low elevations. Therefore, such habitats should be 291 

considered as high fasciolosis risk areas for grazing cattle. Our results further confirmed that 292 

the land use changes of the Mutara rangelands in recent decades, i.e. increased urbanization 293 

and subsistence agriculture, correspond to a reduced availability of space for the pastoralist 294 

community, leading to increased overstocking and overgrazing and thus making the Mutara 295 

rangelands an unbalanced and unhealthy ecosystem (e.g. increased fasciolosis). In the future, 296 

more random sampling across the Mutara rangelands (or the entire country) is needed to 297 

prepare a predictive, spatial fasciolosis risk map, which would help to monitor Fasciola spp. 298 

dispersal routes, and to develop sustainable land-use management strategies that improve the 299 

health of humans, their livestock and the ecosystem in which they live.  300 

 301 
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Figure legends 454 

 455 

Fig. 1 Location of the study area (three 2.5 km wide transect belts) in Nyagatare District in northern 456 

Rwanda. Each sampling location (dots) was aligned to a buffer area of 1km radius (upper right inset) 457 

for which independent variables were determined. 458 

 459 

Fig. 2 The relationships of PC2 (a) and PC4 (b) with the Fasciola spp. prevalence in Ankole cattle on 460 

the Mutara rangelands. 461 

 462 

Fig. 3 a. Scatter plot showing the interaction effect of “PC1×PC3” on Fasciola spp. prevalence: No 463 

relation was unrevealed between Fasciola spp. prevalence and increasing PC3 as seen in case of the 464 

data with values loading on PC1 smaller than the median (shaded dots, grey dashed line; linear 465 

regression: R2 < 0.001), while decreasing Fasciola spp. prevalence with increasing values of PC3 466 

become evident for the data with values loading on PC1 larger than the median (bold dots, black line; 467 

linear regression: R2 = 0.023).  468 

b. Scatter plot showing the interaction effect of “PC2×PC4” on Fasciola spp. prevalence: Distinctly 469 

decreasing Fasciola spp. prevalence with increasing PC4 is seen in case of the data with values 470 

loading on PC2 smaller than the median (shaded dots, grey dashed line; linear regression: R2 = 0.249), 471 

while slightly increasing Fasciola spp. prevalence with increasing values of PC4 become evident for 472 

the data with values loading on PC2 larger than the median (bold dots, black line; linear regression: 473 

R2 = 0.006). 474 

 475 

 476 
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Tables 478 

 479 

Table 1 Axis loadings of four principal components (demonstrating 82.21 % of the total variance), 480 

obtained from principal component analysis of ten independent variables (see section 3.2). PC 481 

loadings > |0.5| are shown in bold font type. 482 

 483 

Principal component PC1 PC2 PC3 PC4 

Eigenvalue 3.21 2.20 1.46 1.36 

Percent variance 26.290 25.62 16.15 14.15 

NDVI 0.953 0.219 -0.066 -0.032 

NDMI 0.894 -0.163 -0.240 0.054 

NDWI -0.892 -0.275 -0.092 0.039 

Rangeland proportion 0.170 0.934 0.060 -0.031 

Herd size -0.042 0.872 0.124 -0.100 

Building density -0.187 -0.863 0.229 0.012 

Elevation 0.064 -0.117 0.873 -0.041 

Poorly drained soil proportion 0.230 -0.117 -0.840 -0.022 

BCS -0.047 -0.019 0.039 0.839 

Adult proportion 0.036 -0.083 -0.060 0.832 

 484 

Table 2 Results of the univariate GLM using the Fasciola spp. prevalence as the dependent variable, 485 

sampling season as a fixed factor and the four principal components (PCs) as covariates. Insignificant 486 

interaction effects were excluded if p > 0.1. 487 

 488 

variables Estimate SE t p Partial eta^2 

Sampling season -0.286 0.170 -1.680 0.095 0.021 

PC1 -0.058 0.085 -0.687 0.493 0.008 

PC2 0.248 0.083 2.967 0.004 0.080 

PC3 -0.065 0.076 -0.850 0.397 0.005 

PC4 -0.215 0.081 -2.654 0.009 0.095 

PC1×PC3 -0.184 0.083 -2.232 0.027 0.036 

PC2×PC4 0.245 0.072 3.383 <0.001 0.079 

 489 

 490 


