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Optimising the climate resilience of shipping networks 

Abstract 

Climate catastrophes (e.g. hurricane, flooding and heat waves) are generating increasing 

impact on port operations and hence configuration of shipping networks. This paper 

formulates the routing problem to optimise the resilience of shipping networks, by taking into 

account the disruptions due to climate risks to port operations. It first describes a literature 

review with the emphasis on environmental sustainability, port disruptions due to climate 

extremes and routing optimisation in shipping operations. Second, a centrality assessment of 

port cities by a novel multi-centrality-based indicator is implemented. Third, a climate 

resilience model is developed by incorporating the port disruption days by climate risks into 

shipping route optimisation. Its main contribution is constructing a novel methodology to 

connect climate risk indices, centrality assessment, and shipping routing to observe the 

changes of global shipping network by climate change impacts. 

Keywords: Climate resilience; Shipping network; Optimisation; Artificial Bee Colony 

Algorithm; Maritime transport 

1. Introduction 

Seaports are in vulnerable areas to climate change impacts: on coasts susceptible to sea-level 

rise and storms or at mouths of rivers susceptible to flooding (Becker et al., 2012). In the past 

decades, there has been much effort from researchers and practitioners to reduce the carbon 

footprint of maritime transport for mitigating climate change effect by adopting operations 

management practices. These include operational decisions such as speed reduction, berth 

scheduling and route re-engineering to rationalise fuel consumptions and to reduce 

greenhouse gases (GHG) emissions.  On the adaptation direction, there are growing interests 

but mainly focusing on climate vulnerability assessments and risk assessments (Poo et al., 

2018) and yet to implement operations management practices. Such studies are conducted in 
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different regions in isolation and yet to investigate the local port-level impact of climate 

change to global shipping network configuration.  

The stability in port operations is the key factor in facilitating international trade (Zhang and 

Lam, 2015), and the operation of a seaport is highly dependent on the ocean climate (Du et 

al., 2015). Climate extreme, which leads to port disruptions, is a significant and much serious 

issue that must be taken into consideration. Storminess, heavy wind, heavy precipitation, sea-

level rise, storm surge and heat wave are all affecting port operations (Associated British 

Ports, 2011, Felixstowe Dock and Railway Company, 2011, Field et al., 2014, 

Intergovernmental Panel on Climate Change, 2014, Mersey Docks and Harbour Company 

Ltd, 2011, PD Teesport Ltd, 2011, Peel Ports Group, 2011, Port of Dover, 2011) including 

berthing, loading and unloading areas, storages, and transportation (Gou and Lam, 2018). 

Beside physical damages and financial loss during the climate extremes, disruptions can have 

a long-term negative impact on an organisation’s future performance (Tang, 2006). 

Disruptions may affect customer relationship and the impact is irreversible (Sheffi and Rice 

Jr, 2005). From the lessons of 1995 Kobe earthquake, there are three types of loss: loss 

related to regional economy, loss related to other Japanese ports and loss related to other 

ports in the world (Chang, 2010). As global warming is still unstoppable, and it brings more 

extreme climate events, the relevant risks become serious. Moreover, economic losses due to 

fatalities become more severe and long lasting (Lurie, 2015). Port strategic alliance is 

important to reduce such losses (Chen et al., 2015) by developing climate resilient route 

options to vessels for transhipments. 

To address this research need, the paper aims to formulate the routing problem to optimise 

the resilience of shipping networks, by considering the disruptions due to climate risks to port 

operations. It is structured as follows. Section 2 is the literature review about port disruptions 

due to climate extreme, multiple-objective decision support for environmental sustainability 

in the maritime industry, and the Artificial Bee Colony (ABC) algorithm for transportation 

routing problems. Section 3 describes the two-step methodology. Finally, Section 4 presents 

the computation results and Section 5 concludes the paper with the implications of the 

findings. 

2. Literature review 

The literature review is divided into three parts, port disruptions due to climate extreme, 

multiple-objective decision support for environmental sustainability in the maritime industry, 

and the Artificial Bee Colony algorithm for a vehicle routing problem and supply chain 

management. 

2.1 Port disruptions due to climate extreme 
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Considering a full coverage of risks, Chopra and Sodhi (2004) classify supply chain risks into 

nine categories: Disruptions, delays, systems, forecast inaccuracies, intellectual property 

breaches, procurement failures, system breakdown, inventory, and capacity issues. Hurricane 

Lorenzo, the most potent eastern Atlantic storm ever recorded, hit the UK and Ireland in 

October 2019 and sunken tugboat carrying fourteen crew members (Fedschun, 2019). 

Seaports are vulnerable to climate change impacts such as sea level rise and flooding. On the 

other hand, extreme and continuous heat can also damage road surfaces and distort rail lines 

that link seaports and hinterland transport (Sieber, 2013), and affects the connectivity of 

seaports. Climate extremes present an important factor influencing port operation disruptions 

(Lam and Su, 2015). 

Hubbert and Mclnnes (1999) develop a storm surge inundation model to assess coastal 

flooding resistance. Then, Ronza et al. (2009) evaluate the economic damages originated by 

major accidents in port areas. In 2011, Hanson et al. (2011) provide a comprehensive study to 

compare the performance of large port cities when facing sea-level rise risks, and Hallegatte 

et al. (2011) assess climate impacts, sea-level, and storm surge risk in Copenhagen. In 2014, 

Genovese and Green (2014) assess the storm surge damage to coastal settlements in 

Southeast Florida. Akukwe and Ogbodo (2015) propose a spatial analysis of vulnerability to 

flooding in Port Harcourt Metropolis, Nigeria. In 2016, Vitor Baccarin et al. (2016) present a 

climate change vulnerability index and case study in a Brazilian coastal city,  and Hoshino et 

al. (2016) estimate the increase in storm surge damage due to climate change and sea-level 

rise in the Greater Tokyo area. Alsahli and Alhasem (2016) assess the sea-level rise 

vulnerability of Kuwait coast, and Zhang and Lam (2015) estimate the economic losses of 

port disruption by extreme wind events. Djouder and Boutiba (2017) set up a vulnerability 

assessment of coastal areas to sea-level rise from the physical and socioeconomic parameters 

at Gulf of Bejaia, Algeria, and Abou Samra (2017) uses cartographic modelling to assess the 

impacts of coastal flooding, with a case study of Port Said Governorate, Egypt. Then, Cortès 

et al. (2018) implement the flood risk in Mediterranean urban areas, with the case of 

Barcelona. 

It is evident that all previous studies focus on the climate impact to a local coast/port region 

or an area. The disruptions due to climate impacts on port operations will certainly affect 

shipping traffic; however, upon the best knowledge of the authors, there is little research on 

how the climate impact on port operations will be transmitted to shipping network 

configuration for resilience-based shipping operation optimisation. Therefore, a shipping 

network resilience model is developed by analysis of vessel routing selection under different 

climate risk scenarios, considering the port disruption days in the future. The mechanism is to 

add the distribution days on different transhipment ports and use the optimisation model to 

search better alternative routes. 



 

Assessing the climate resilience of the global shipping network 
by an optimisation model 

Paper ID 112 

 

IAME 2020 Conference, 10-13 June, PolyU, Hong Kong  4 

2.2 Multiple-objective decision support for environmental sustainability in the 

maritime industry 

Sustainability has become an essential concern in designing the organisational business 

models (Sarkis et al., 2013) of many industries, including shipping and ports. A literature 

review is conducted to examine the potential of multi-objective optimisation (MOO) as a 

decision support system (DSS). There are fifty-two journal papers collected from by 

Mansouri et al. (2015), which are presented in three categories relating to shipping such as 

Environmental sustainability, DSS and MOO. Environmental sustainability in shipping is a 

vital attribute of the literature review. DSS is commonly considered to be implemented for 

maritime business (Fagerholt et al., 2009, Lam, 2010). MOO is the common optimisation in 

maritime shipping (Finkelstein et al., 2009, Kollat and Reed, 2007). There are forty studies in 

the environmental sustainability category, twelve in DSS, and fourteen in MOO, including 

overlaps (see Figure 1). 14 overlapped studies, providing useful insights on the newly 

proposed MOO-based DSS for sustainability in shipping, are in-depth analysed in the ensuing 

section. Mansouri et al. provide an pioneering insight that MOO-based DSS for sustainability 

in maritime shipping is a possible new reseach direction. 

  

Figure 1. The scope of the literature review for multiple-objective decision support for 

environmental sustainability in the maritime industry  

There are five studies for inventing DSSs to enhance sustainability in shipping and eight 

studies on sustainability trade-offs in the maritime sector. There is only one study on MOO-

based DSS in shipping. Ballou et al. (2008) develop a DSS to support optimised ship 

operation including the vessel’s hull design, propulsion system, seakeeping models and a safe 

operating limit for reducing fuel consumption and GHG emissions. Balmat et al. (2011) 

implement a risk assessment in shipping regarding safety at sea with a focus on pollution 
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prevention at open sea. Windeck and Stadtler (2011) develop a DSS for designing liner 

shipping networks by considering environmental factors and minimising cost and CO2 

emissions. Bruzzone et al. (2010) present a simulator for assessing the environmental impact 

on port operations. A fuzzy framework for maritime risk assessment for safety and oil 

pollution prevention at sea is designed (Balmat et al., 2009, Balmat et al., 2011). Palacio et al. 

(2016) determine container depots for minimising the total cost of the network and the 

environmental impact of the depots and their associated delivery operations. Chen et al. 

(2013) propose a model for optimising truck arrival patterns at marine container terminals to 

reduce emissions from idling truck engines by minimising both trucks waiting times and 

arrival pattern changes. Qi and Song (2012) optimise vessel scheduling considering 

uncertainty in port availability and frequency requirements on the liner schedule, considering 

service level and fuel consumption. Brouer et al. (2013) analyse a vessel schedule recovery 

problem (VSRP) to evaluate a given disruption scenario and to select a recovery action that 

balances the trade-off between increased bunker consumptions and the impact on service 

levels. Hu et al. (2014) establish a model for allocating the berth and quay-cranes to vessels 

by minimising fuel consumption and emissions of vessels. Song and Xu (2012a) compare 

CO2 emissions from direct and feeder liner services in the case of Asia–Europe Services and 

they develop an operational activity-based method for estimating CO2 emissions from 

shipping networks (Song and Xu, 2012b) . Corbett et al. (2009) analyse the impacts of a fuel 

tax policy and a speed reduction mandate on CO2 emissions by applying a profit-maximising 

equation to estimate route-specific speeds which are economically efficient. Grabowski and 

Hendrick (1993) assess the trade-offs between shipboard safety and crew size.  

2.3 The Artificial Bee Colony algorithm for vehicle routing problems and supply chain 

management 

The ABC algorithm simulating the foraging behaviour of honey bees was invented by 

Karaboga (Karaboga, 2005). Among different swarm intelligence (SI) algorithms mentioned, 

the ABC is one of the algorithms based on bee swarms which have been most widely studied 

and applied to solve real-world problems, so far (Karaboga et al., 2014). One of the primary 

applications is the vehicle routing problem (VRP) with different constraints, including 

vehicle capacities and carbon emissions. For instance, three studies were working on the 

capacitated vehicle routing problems (CVPR) by the ABC algorithm (Brajevic, 2011, Szeto et 

al., 2011, Gomez and Salhi, 2014). Then, three enhanced versions of the ABC heuristic are 

also proposed to improve the solution qualities of the original version. Afterwards, time 

constraint is imparted to the CVPR (Ji and Wu, 2011, Shi et al., 2012, Yao et al., 2013), and 

there are case studies on public bike repositioning (Shui and Szeto, 2015) and green vehicle 

routing with cross-docking (Yin and Chuang, 2016).  
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SCM is being adopted as the most efficient way of managing operations in an enterprise, and 

organisations deploying supply chain systems are globally on the rise. The main objective of 

SCM is to establish the highest coordination between all the entities of the network. Swarm 

Intelligence (SI) techniques have been applied to the realm of SCM in the following 

significant areas (Soni et al., 2019):  

• Distribution network design; 

• Supplier management;  

• Inventory optimisation; 

• Vehicle routing; and  

• Resource allocation. 

Except for VRP, ABC has been applied to different sectors in SCM. By the summary from 

Soni et al., eleven studies are imparting the ABC algorithm on shipping logistic problems 

after 2010. Kumar et al. (2010) minimise the supply chain cost with embedded risk using 

computational intelligence approaches. Pal et al. (2011) use the ABC algorithm to solve an 

aggregated procurement, production, and shipment planning decision problem for a three-

echelon supply chain. Taleizadeh et al. (2013) propose a hybrid method of ABC fuzzy 

simulation to optimise constrained inventory control systems with stochastic replenishments 

and fuzzy demand. Then, Zhang et al. (2016) develop a mixed-integer nonlinear 

programming (MINLP) model to design supply chains. Kefer et al. (2016) use a fuzzy multi-

criteria-based ABC classification method. Gökkus and Yildirim (2017) compute a container 

traffic forecasting model by using the ABC. Zeng et al. (2017) present a metaheuristic model 

for gantry crane scheduling and the storage space allocation problem in railway container 

terminals. Zhu et al. (2017) optimise a shipping model by the ABC. Sumner and Rudan 

(2018) propose a hybrid MCDM approach to transhipment port selection. Zhang et al. (2018) 

develop a mixed-integer linear programming model to obtain the optimal repositioning of 

empty containers through an intermodal transportation network. Poo and Yip (2019) propose 

an optimisation model for container inventory management. Wang et al. (2019) construct a 

three-level marine logistics network site-distribution model based on a low-carbon scenario. 

By understanding the use of ABC in VPR and SCM, ABC can solve routing problems at a 

global scale. An advanced ABC model is applied to integrate the climate change impacts to 

assess the impacts of port disruptions and incorporate climate resilience into shipping 

network configuration. For assessing the impacts of port disruptions due to climate extremes 

on global shipping networks, an ABC algorithm is favourable for imparting into a MOO 

model to find a heuristic solution as the global shipping network is always vast with many 

solutions.  

3 Solution methodology 
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For optimising the climate resilience on a global shipping network from climate risk 

indicators, a two-step methodology is introduced to assess the climate vulnerabilities of the 

network. First, a multi-centrality assessment is done for measuring the importance of seaports 

in the worldwide network. This is a crucial step to sort out the hubs, as known as the 

important port, for case study on route changes. Second, a shipping route optimisation model 

is designed to estimate the climate change impacts on shipping routes. The program 

formulations have been set up and can be used to solve shipping routing problems (Poo and 

Yip, 2019). For optimising the performance, an ABC based heuristics method is suitable to 

sorting out the solution within many possible answers. For constructing a notable global 

shipping network for assessing climate resilience, a suitable dataset with independent climate 

risk indices on different ports is needed. The centrality assessment 136 large port cities, 

population exceeding one million inhabitants in 2005, are chosen to form the global shipping 

network in this study (Hanson et al., 2011). Briguglio (2010) has defined a framework to 

assess the risk of being harmed by climate change. The vulnerability and adaptability are both 

assessed for each port and then the risks of territories being affected by climate change (CR) 

are ranked as shown in Annex 1. The mechanism of the experiment is to compose a total 

travel time by summarising voyage times and port service time. Voyage time is referred to 

the information from Maersk website, and port service time is referenced by an index, basic 

service time, and CR. CR is associated with the possible disruption by climate change on port 

cities, which results in different extra basic service time. 

3.1. Multi-centrality assessments 

3.1.1. Structuring the global shipping network and data collection 

Structuring the global shipping network is an crucial step to undergo vulnerability assessment 

as some seaports that are not in the city centres (Pape, 2017). So, a criterion is set up before 

further investigation: The seaports within 2-hour circle and 200km travelling distance can be 

used to represent a traffic flow of the city. The required information is collected from Google 

map, as shown in Figures 2 and 3 (Google Maps, 2019). For examples, Tema Harbour is 

chosen to represent Accra, and Thilawa Port is chosen to represent Yangon. After grouping 

some sub-urban ports to cities, there are two cities mismatched, Hangzhou and Rabat. By the 

first criteria, Hangzhou and Rabat can be referenced to Ningbo and Casablanca. 

The data of service route sourced in our research is from the Maersk shipping line from 12th 

July 2019 to 31st July 2019 from Maersk website (http://www.maerskline.com). July is 

assessed by Baltic Dry Index (BDI) to best represent the average traffic volume comparing to 

other months, and it is the typhoon season for most of port cities in the northern hemisphere, 

including Pacific Ocean, Atlantic Ocean, and Indian Ocean. BDI in July proves that the 

activities of the shipping market are ordinary in July. The port cities are chosen for data 
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collection (see Annex 1), and twenty transit ports are found between the shipping routes as 

shown in Annex 2, and six agglomerations cannot locate any routes related to them, they are 

Dhaka, Belem, Maceio, Natal, Nampo, and Sapporo. Therefore, 2397 attributes are found 

between all chosen port cities and transit port cities. Thus, 154-node shipping network is 

formed and modelled.  

 

Figures 2 & 3. Google map recommended travel routes in Ghana and Myanmar 

3.1.2. Modelling of the global shipping network 

UCINET 6 for Windows is a software package for the analysis of social network data, and it 

is chosen for the data analysis in this study (Borgatti et al., 2002). To present a network into 

the tool, an adjacency 154 x 154 matrix 
154 154A 

is created, ija is the attribute or route from i to 

j. 0ija = means the service does not exist, and 1ija =  means otherwise. After inputting the 

data for all values between two nodes, the network can be visualised by the software. 

3.1.3. Modelling of the global shipping network 

The analyses are conducted on degree centrality, closeness centrality, and betweenness 

centrality independently. Degree centrality is defined as the number of links directly 

connected to it, which represents the association and importance of that node with other 

nodes. Closeness centrality represents the sum of the shortest distances from all nodes to a 

fixed node, which indicates the central location of the node in the network. Betweenness 

centrality measures the extent to which a node is in the “middle” of other “point pairs” in the 

graph, reflecting the role of the node in the network. Degree centrality and closeness 

centrality are directional, and then the two rank sets are based on accumulative values of two 

directions. Also, transit port cities are not included in any ranks. The top 20 ports with these 

three centralities are listed in Table 1. 

Table 1. Top 20 agglomerations in Relation to Centralities 

Rank ID Seaport 

Degree 

centrality ID Seaport 

Close-

ness 

centrality ID Seaport 

Between-

ness 

centrality 

1 31 Shanghai 151 31 Shanghai 1.302 99 Singapore 8.919 
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2 29 Ningbo 141 29 Ningbo 1.268 31 Shanghai 8.629 

3 99 Singapore 133 99 Singapore 1.218 29 Ningbo 7.806 

4 93 Busan 114 93 Busan 1.162 86 Panama City 6.341 

5 27 Guangzhou 107 27 Guangzhou 1.152 93 Busan 6.041 

6 28 Shenzhen 101 28 Shenzhen 1.142 84 Rotterdam 5.063 

7 38 Hong Kong 99 38 Hong Kong 1.114 49 Hamburg 4.758 

8 30 Qingdao 85 82 Rotterdam 1.103 38 Hong Kong 4.542 

9 86 Panama City 83 30 Qingdao 1.095 27 Guangzhou 3.687 

10 82 Rotterdam 81 112 London 1.082 120 New York 3.479 

11 120 New York 72 86 Panama City 1.079 28 Shenzhen  2.661 

12 112 London 67 120 New York 1.078 110 Dubai  2.623 

13 48 Hamburg 65 49 Hamburg  1.060 30 Qingdao 2.101 

14 110 Dubai 65 57 Mumbai 1.042 112 London  1.974 

15 39 Barranquilla 62 12 Santos 1.041 39 Barranquilla  1.855 

16 57 Mumbai 62 110 Dubai 1.040 114 Baltimore  1.640 

17 12 Santos 61 39 Barranquilla 1.032 33 Tianjin 1.598 

18 72 Tokyo 60 129 Virginia 

Beach 

1.031 62 

Surabaya 

1.351 

19 35 Xiamen 59 118 Miami  1.024 116 Houston  1.341 

20 33 Tianjin 55 116 Houston  1.016 97 Jeddah 1.332 

20 116 Houston 55       

20 118 Miami  55       

20 129 Virginia 

Beach 

55       

 

If some seaports have the same values, they will be assigned the highest rank to the set of 

duplicates. For example, Hamburg and Dubai rank the same for degree centrality. Shanghai 

has the highest degree centrality and closeness centrality. Ningbo and Singapore rank second 

and third places. Singapore scores the highest on betweenness centrality table and follow 

closely by Shanghai and Ningbo. Busan, Guangzhou, Hong Kong, and Rotterdam are top 10 

in both three ranks, and these show their contributions to the global shipping network too. 

Moreover, the six exempted agglomerations are ranked the lowest. To obtain a final rank for 

chosen agglomerations, multi-centrality indicator is implemented, and the ranking is 

visualised in Table 2. 

Table 2. Top 20 agglomerations of multi-centrality ranking 

Rank ID Final score Agglomeration 

1 31 461 Shanghai 

2 29 458 Ningbo 

2 99 458 Singapore 

4 93 452 Busan 

5 27 444 Guangzhou 

6 38 440 Hong Kong 

7 28 439 Shenzhen 

8 86 437 Panama City 

8 82 436 Rotterdam 
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10 30 426 Qingdao 

11 49 425 Hamburg 

11 120 425 New York 

13 112 418 London 

14 110 414 Dubai 

15 39 403 Barranquilla 

16 57 397 Mumbai 

17 12 394 Santos 

18 33 390 Tianjin 

19 116 389 Houston 

20 35 382 Xiamen 

 

More than half of the top 20 agglomerations are from Asia. Then, the other remaining 

agglomerations are from Europe, Northern America, South America, and Middle East. Global 

vulnerabilities of all chosen agglomerations are found, and the data set is going to be 

analysed with local vulnerability data set. 

3.2. Shipping route optimisation model 

Shipping route optimisation model is designed to choose the best route from a starting port to 

the ending port. There are possibly different numbers of transhipment ports for the whole 

route. Program formulations have been set up and can be used to solve the shipping routing 

problems (Poo and Yip, 2019).  

3.2.1. The ABC algorithm 

In the ABC algorithm, it is population-based, and the position of a food source is a possible 

solution with a corresponding fitness. The “bees” are going to find out a food source as fit as 

possible in a scope. There are three key steps or types of “bee” in the whole algorithm: 

employed bees, onlooker bees and scout bees (Karaboga, 2005). 

The value, or say the quality, of a food source, depends on two factors, which are travel time 

and service time.  For the sake of simplicity, a single quality is used to represent a food 

source. Employed bees are associated with a food source which they are recently exploiting.  

They grab the information of the source and share the information with the probability of 

profit.  Onlooker bees are waiting in the nest and establishing food sources by receiving the 

information shared by the employed bees.  Scout bees are searching for the whole search area 

for new food sources randomly. 

The part of the colony consists of “employees”, and the other part consists of “onlookers”.  

For every food source, there is only one employed bee.  The employed bees whose food 

sources have been exhausted will convert to be a scout. Based on the basic idea of ABC, the 

steps of the ABC algorithm are summarized as follows: 



 

Assessing the climate resilience of the global shipping network 
by an optimisation model 

Paper ID 112 

 

IAME 2020 Conference, 10-13 June, PolyU, Hong Kong  11 

1. Generate a set of solutions randomly as initial food sources wi, i = 1,…,π. Assign each 

employed bee to a food source 

2. Evaluate the fitness f(xi) of each of the randomized food sources wi, i = 1,…,π 

3. Set a counter, z = 0 and limitation of food sources (solution), w1 = w2 = … = wπ = 0 

4. REPEAT 

a. Employed Bee Phase 

i. For each food source xi, enforce a neighbourhood operator, xi → x* 

ii. If f(xi) > f(x*), xi is substituted by xi
* and wi = 0. Otherwise, wi = wi  + 1 

b. Onlooker Bee Phase 

i. For each food source xi, undergo the fitness-based roulette wheel selection 

method. 

ii. For each food source xi, enforce a neighbourhood operator, xi → x# 

iii. If f(xi) > f(x#), xi is substituted by x# and wi = 0. Otherwise wi = wi  + 1 

c. Scout Bee Phase 

i. For each food source xi, wi = Limit, xi is substituted by a randomly 

generated food source 

d. z = z + 1 

5. UNTIL (Reaching Operation Cycle) 

 

After figuring out the idea of ABC, the solution representation and neighbourhood operators 

have to be introduced to make the shipping route problem fitted to the ABC algorithm.  

3.2.2. Solution representation 

In order to apply the ABC in shipping route problems, identifying the food sources as the 

route solutions, is essential for the bees throughout the whole algorithm. z(x) is set up as the 

cost function of the whole delivery process. First, the solution is represented in the form of a 

vector with a length of (starting port + transhipments + ending port). A sequence denotes the 

starting point in the beginning and ending node at the end. The list of ports is shown in 

Annex 1 and Annex 2. Figure 2 presents a delivery route with 6 transshipment ports, starting 

at Port 13 and ending at Port 44. The port number is referenced from Annex 1, and the details 

of port are further explained in Section 4. 

13 15 24 46 38 7 91 116 34 

Figure 4. Solution Representation 

The ship passes through 13→15→24→46→38→7→91→116→34. Then, an initial solution 

is generated by putting the ports into the solution vector accordingly. Then the sequence will 

be shuffled several times. The shuffling time equals to half of the number of ports. A total of 

τ solutions are generated during initialization. Then, a neighbourhood operator is used to find 
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out new solution from the current solution. A neighbourhood operator will be further 

explained in the next part.  

3.3.3. Neighbourhood operators 

A neighbourhood operator is used to find out new solution X# from the current solution Xi.  A 

neighbourhood operator will be chosen between three neighbourhood operators and applied 

for one time.   

Three neighbourhood operators, which are widely used in VRP (Kıran et al., 2013, Poo and 

Yip, 2019), are chosen to put in the program for random selection: 

• Random swaps: The operator randomly chooses two positions, i and j with i ≠ j and 

exchanges the positions. 

Before: 

13 15 24 46 38 7 91 116 34 

After: 

13 15 91 46 38 7 24 116 34 

Figure 5. Example of Random Swap 

• Reversing a subsequence: The operator randomly chooses a subsequence and reverses it. 

Before: 

13 15 24 46 38 7 91 116 34 

After: 

13 15 24 46 38 116 91 7 34 

Figure 6. Example of Reversing a subsequence 

• Random swaps of reversed subsequence: The operator randomly chooses two sub-

sequences and swaps them. Then each of the swapped subsequence has a chance to be 

reversed with a 50% probability.  

 Before: 

13 15 24 46 38 7 91 116 34 

 After: 

13 15 91 116 38 7 24 46 34 

Figure 7. Example of Random swaps of reversed subsequence 

The length of sequence has been limited to 3. For exploring the whole solution sets, scout bee 

takes places to rearrange the sequence. A new node is created by shuffling the sequence. 

 Before: 



 

Assessing the climate resilience of the global shipping network 
by an optimisation model 

Paper ID 112 

 

IAME 2020 Conference, 10-13 June, PolyU, Hong Kong  13 

13 4 24 46 38 7 91 116 34 

 After: 

13 97 3 113 23 9 98 117 34 

Figure 8. Example of shuffling subsequence 

3.3.4. Fitness evaluation 

In every period, each onlooker chooses a food source randomly. In order to drive the 

choosing process towards a better solution, a roulette-wheel selection method is implemented 

for randomly choosing a solution by setting the fitness value of each bee is inversely 

proportional to the cost function value. Higher fitness value of each bee gives a higher chance 

to be selected. The probability of choosing the solution Xi is then calculated as: 

𝑝(𝑋𝑖) =
𝑧(𝑋𝑖)

∑ 𝑧(𝑋𝑗)𝜏
𝑗=1

, 𝑖 = 1,2, … , 𝜏  

3.3.5. Numerical Experiment 

In terms of parameter setting, the bee colony size is set to be 50, which is a reasonable 

amount commonly used by other experiment (Diwold et al., 2011). Then, the numbers of 

employed bees and onlooker bees are equal to half of the bee colony size (i.e., 25 for each). It 

can help reduce parameters when conducting the program including the algorithm without a 

heavy drop of accuracy (Karaboga and Basturk, 2007).  25 employed bees represent that 25 

routes are recently exploited, and 25 onlooker bees represent that 25 routes are established by 

receiving information from “employed bees”. All experiments were performed on a computer 

equipped with Windows 10, an Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz 2.83 

GHz, and a 8.00GB of RAM, and the program was coded by using Dev-C++ 4.9.9.2.  

4. Computation result 

There are two parameters for measuring the performance of modelling: (1) The best route 

between starting port and ending port, and (2) Accumulated minimum times of all the best 

routes between starting port and ending port with different transshipment times (MinTimes). 

The best route between starting port and ending port is used to observe the global climate 

change impact, each origin-destination pair’s best route is found to observe the importance of 

each port upon different levels of climate change impact. MinTimes is the parameter used to 

observe the performance of the model, and the minimum of transshipment times is zero and 

that of maximum is eight. 20 numerical runs have been done for each test and each 

transhipment time. The length of the solution representation is fixed from two ports to ten 

ports for the ECR problem. 

A 10-node benchmark model has been designed to validate the experiment result and explain 

two parameters. The heuristic model and a Dijkstra’s shortest path model (Gass and Fu, 
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2013) implemented by Excel solver are both run to compare the accuracy of the heuristic 

model and access the possibility of performing experiments for a larger network. Then, they 

have given the same results and it is possible to examine the 154-node global shipping 

network.  

Table 3. Result of 10-node model with origin port 4 and destination port 5 

Transhipment 

time 

Route Average 

objective value 

(days) 

Minimum 

objective value 

(days) 

0 4 -> 5 9 9 

1 4 -> 6 -> 5 8 8 

2 4 -> 6 -> 8 -> 5 11 11 

3 4 -> 8 -> 7 -> 6 -> 5 22 22 

4 4 -> 6 -> 8 -> 7 -> 1 -> 5 2012 2012 

5 4 -> 6 -> 8 -> 7 -> 1 -> 2 -> 5 3014 3014 

6 4 -> 6 -> 8 -> 7 -> 2 -> 3 -> 1 -> 5 4017 4017 

7 4 -> 6 -> 8 -> 7 -> 1 -> 2 -> 9 -> 10 

-> 5 5020 5020 

8 4 -> 6 -> 8 -> 7 -> 2 -> 9 -> 10 -> 1 

-> 3 -> 5 6023 6023 

(1) The best route between starting port and 

ending port 8 8 

(2) Accumulated minimum times of all the best 

routes between starting port and ending port with 

different transshipment times (MinTimes) 20136 20136 

 

Four sets of computational experiments have been further conducted. Three pairs of starting 

ports and ending ports are used for the experiment (Starting port/ Ending port): Benghazi/ 

Zhanjiang (75/37), Luanda/ Wenzhou (2/34), Copenhagen/ Visakhapatnam (43/59). Three 

pairs, rather than only one pair, are chosen as there will be variations for on performance. The 

first set of experiments is to test the performance of the heuristic optimisation programme 

with the ABC algorithm for assessing the climate resilience of the global shipping network. 

Afterwards, the neighbourhood operator combinations are tested, and the best values of limit 

and maximum operation cycle are found to optimise the programme performance. Therefore, 

combination of neighbourhood operator, values of limit and maximum operation cycle are 

fixed for global shipping network assessment and Top 20 port cities assessment. Two 

assessments provide two different insights. One is the overview, and the other one is the case 

study on hubs. 

4.1. Global shipping network assessment 
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Different basic service days are assigned to run the model to forecast the shipping routing in 

the future with more extreme weather and port disruption days. Changes on route selection by 

the increase of service days can imply changes in the nature of the global shipping network 

and the importance of each port. The best routes with different basic service days and port 

pairs are shown in Table 3. The route from Benghazi (75) to Zhanjiang (37) is going across 

Krishnapatnam (140), Tanjung Pelepas (148), and Hong Kong (38). The route from Luanda 

(2) to Denmark (34) is going across Cape Town (101), London (112), and Hamburg (49). The 

route from Wenzhou (34) to Visakhapatnam (59) varies if basic service time increases. If 

basic service time is one day, it goes across Hong Kong (38), Cape Town (148), and 

Colombo (137). If basic service time is more than one day, it just passes through Hong Kong 

(38), and Colombo (137). 

Table 4. Climate change impact assessment on route selection 

Basic service time Route for 75/37 Route for 2/43 Route for 34/59 

1 day 75 -> 140 -> 148 -> 

38 -> 37 

2 -> 101 -> 112 -> 

49 -> 43 

34 -> 38 -> 148 -> 

137 -> 59 

2 days 75 -> 140 -> 148 -> 

38 -> 37 

2 -> 101 -> 112 -> 

49 -> 43 

34 -> 38 -> 137 -> 

59 

3 days 75 -> 140 -> 148 -> 

38 -> 37 

2 -> 101 -> 112 -> 

49 -> 43 

34 -> 38 -> 137 -> 

59 

4 days 75 -> 140 -> 148 -> 

38 -> 37 

2 -> 101 -> 112 -> 

49 -> 43 

34 -> 38 -> 137 -> 

59 

5 days 75 -> 140 -> 148 -> 

38 -> 37 

2 -> 101 -> 112 -> 

49 -> 43 

34 -> 38 -> 137 -> 

59 

 

It can prove that the model can observe the route changes and the service time affects the 

shipping route selection. Therefore, a global whole network assessment is necessary as the 

importance of each agglomeration needs to be assessed. The mechanism of the assessments is 

assigning three basic service time, one day, three days, and five days. One day is assumed as 

the present situation, and three days and five days represent the near future and the long 

future situation. Then, CR of each port city, an index between one to four, is assigned to 

multiply the basic service time to be the service time of each port.  

11,935 OD pairs between 154 port cities are assessed, and their routes are all evaluated by the 

program. The highest 10 positive and negative changes from the present to the near future 

and long future are recorded to show the changes among all seaports. Then, the changes of 

total transhipments are also counted to observe the changing natures of routing. Kuala 

Lumpur (77) is ranked number 1 on both changes. Then, Shenzhen (28), Busan (93), Santos 

(12), Dubai (110), Shanghai (31), Barranquilla (39), Hamburg (49), and Miami (18) are listed 

twice in the Table 4. Finally, Ningbo (29) and Panama City (86) are on the table once. For the 
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higher influence side, Singapore (99) is ranked number 1 twice, and Tokyo (72) and 

Barcelona (103) are both in the top 3 twice. Then, Lisbon (90), Hong Kong (38), Yangon 

(80), Jeddah (97), and Naples (66) are ranked twice in Table 5 while Montreal (23), 

Vancouver (24), Athens (51), and Tel Aviv (65) are only ranked once. Furthermore, the total 

number of transhipments on each agglomeration is counted by the three cases again, and it 

drops as -14.22% in the near future and -19.12% in the long future. 

Table 5. Rank of agglomerations having a lower influence on global shipping network by 

climate change 

Rank 

Changes in the near future Changes in the long future 

ID Agglomerations Changes ID Agglomerations Changes 

1 77 Kuala Lumpur -530 77 Kuala Lumpur -686 

2 28 Shenzhen -354 93 Busan -420 

3 93 Busan -292 12 Santos -379 

4 12 Santos -230 28 Shenzhen -318 

5 110 Dubai  -209 49 Hamburg -310 

6 31 Shanghai -204 110 Dubai -277 

7 39 Barranquilla -200 31 Shanghai -258 

8 49 Hamburg -190 86 Panama City -232 

9 29 Ningbo -184 118 Miami  -229 

10 118 Miami  -184 39 Barranquilla -214 

 

  Table 6. Rank of agglomerations having higher influence on global shipping network by 

climate change 

Rank 

Changes in the near future Changes in the long future 

ID Agglomerations Changes ID Agglomerations Changes 

1 99 Singapore 378 99 Singapore 739 

2 72 Tokyo  185 103 Barcelona 257 

3 103 Barcelona 138 72 Tokyo  225 

4 90 Lisbon  63 97 Jeddah  112 

5 38 Hong Kong 56 90 Lisbon  93 

6 80 Yangon  50 66 Naples  54 

7 97 Jeddah  46 80 Yangon  28 

8 66 Naples  15 51 Athens  25 

9 23 Montreal 5 65 Tel Aviv  19 

10 24 Vancouver 4 38 Hong Kong 11 

 

4.2. Top 20 port cities assessment 

The top 20 port cities shown in Table 2, which are the hubs of global shipping network, are 

assigned as five regions as Table 7. Then, the changes of 190 origin-destination (OD) pairs 

between them are recorded, and the OD pairs between the same region are exempted. Then, 



 

Assessing the climate resilience of the global shipping network 
by an optimisation model 

Paper ID 112 

 

IAME 2020 Conference, 10-13 June, PolyU, Hong Kong  17 

Hong Kong (38), Rotterdam (82), Singapore (99), and London (112) become more important 

to the global shipping network as they are shown in Table 6 more than 3 times. On the other 

hand, Shenzhen (28), Qingdao (30), Shanghai (31), Panama City (86), Busan (93), and New 

York (120) are listed in Table 8 more than 3 times. 

Table 7. Summary of top 20 agglomerations having lower influence on global shipping 

network by climate change 

    From   

  North America South 

America 

Europe West Asia East Asia 

To 

North 

America 

N/A Shenzhen 

(28), 

Barranquilla 

(39), 

Busan (93), 

Philadelphia 

(121) 

No change New York 

(120) 

Melbourne (6) 

Shenzhen (28) 

Shanghai (31) 

Guayaquil (45) 

Los Angeles 

(117), San Diego 

(124) 

South 

America 

Santo Domingo 

(44), Panama 

City (86), 

Miami (118), 

New Orleans 

(119) 

N/A Panama City 

(86) 

New York 

(120) 

Qingdao (30), 

Shanghai (31), 

Hong Kong (38) 

Tokyo (72), 

Kuala Lumpur 

(77), Panama 

City (86) 

Europe London (112) 

Miami (118) 

New York 

(120) 

No change N/A No 

change 

Shenzhen (28), 

Kuala Lumpur 

(108) 

West 

Asia 

No change No change Rotterdam (82) N/A Guangzhou (27), 

Wenzhou (34), 

Mumbai (57), 

Busan (93) 

East 

Asia 

Shenzhen (28), 

Qingdao (30), 

Shanghai (31), 

Hamburg (49), 

Busan (93), 

Inchon (95), 

Miami (118) 

Shenzhen 

(28), 

Ningbo (29), 

Qingdao 

(30), 

Hamburg 

(40), 

Busan (93) 

Rio de Janeiro 

(12), Shenzhen 

(28), Shanghai 

(31), Hamburg 

(49), Busan 

(93) 

 

Shenzhen 

(28), 

Bangkok 

(105) 

N/A 

 

Table 8. Summary of top 20 agglomerations having higher influence on global shipping 

network by climate change 

    From   

  North 

America 

South 

America 

Europe West Asia East Asia 
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To 

North 

America 

N/A Singapore 

(99) 

No change London 

(112) 

Brisbane (5), 

Tokyo (72), 

Auckland (83), 

Lisbon (90), 

Busan (93) 

South 

America 

No change N/A London 

(112) 

Singapore 

(99), 

London 

(112) 

Santos (12), 

Auckland (83), 

Los Angeles 

(117) 

Europe Lisbon (90) No change N/A London 

(112) 

Jeddah (97), 

Singapore (99) 

West 

Asia 

No change Singapore 

(99) 

No change N/A Melbourne (6), 

Hong Kong (38), 

Singapore (99) 

East 

Asia 

Tokyo (72), 

Rotterdam 

(82), 

San Francisco 

(125), 

San Jose 

(126) 

Seattle (127) 

Hong Kong 

(38), 

Rotterdam 

(82), 

Singapore 

(99), Miami 

(118) 

Jeddah (97), 

Singapore 

(99) 

Hong Kong 

(38), 

Singapore 

(99) 

N/A 

5. Conclusion 

This section presents a methodology for assessing the climate resilience on global shipping 

network, by integrating climate risk indices, centrality assessment, and shipping route 

modeling together. it gives a new direction for multiple-objective decision support for 

environmental sustainability in the maritime industry. From the results, it shows the possible 

changes in shipping routing in the future which cannot be reflected by the independent local 

climate vulnerability assessment in different regions. As port disruption due to climate 

change likely takes place more frequently and it is inevitable, it is necessary to provide more 

routes as the total number of transhipments is decreased. The new routes can be added to bear 

the risks of port disruption in any location, and it can be known as decentralization.  

Further improvement on climate risk indicators can be done to present the global and local 

climate vulnerabilities more rationally First, climate sensitivity and adaptive capacity can be 

included. Also, more climate threats, such as snow storming and heatwave, can be included in 

the indicator framework. A more comprehensive and worldwide climate risk and resilience 

assessments are necessary for an in-depth global shipping network evaluation.  On the other 

hand, the methodology can be implied to different perspectives, including comparing the 

performance of shipping companies, and assessing other transportation networks. 

Annex 1. List of the 136 port cities analysed by United Nations 
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ID Region CR Agglomeration ID Region CR Agglomeration 

1 AFRICA 3 Algiers 68 SE ASIA 2 Hiroshima 

2 AFRICA 3 Luanda 69 SE ASIA 2 Nagoya 

3 S. AMERICA 4 Buenos Aires 70 SE ASIA 2 Osaka 

4 AUSTRALASIA 1 Adelaide 71 SE ASIA 1 Sapporo 

5 AUSTRALASIA 1 Brisbane 72 SE ASIA 1 Tokyo 

6 AUSTRALASIA 1 Melbourne 73 ASIA 1 Kuwait City 

7 AUSTRALASIA 1 Perth 74 EUROPE 1 Beirut 

8 AUSTRALASIA 1 Sydney 75 AFRICA 1 Benghazi 

9 ASIA 4 Chittagong 76 AFRICA 3 Tripoli 

10 ASIA 4 Dhaka 77 SE ASIA 3 Kuala Lumpur 

11 ASIA 4 Khulna 78 AFRICA 3 Casablanca/ Rabat 

12 S. AMERICA 3 Santos 79 AFRICA 4 Maputo 

13 S. AMERICA 3 Belem 80 ASIA 2 Yangon 

14 S. AMERICA 3 Fortaleza 81 EUROPE 2 Amsterdam 

15 S. AMERICA 4 Vitoria 82 EUROPE 1 Rotterdam 

16 S. AMERICA 3 Maceio 83 AUSTRALASIA 4 Auckland 

17 S. AMERICA 3 Natal 84 AFRICA 3 Lagos 

18 S. AMERICA 3 Recife 85 ASIA 3 Karachi 

19 S. AMERICA 3 Porto Alegre 86 S. AMERICA 3 Panama City 

20 S. AMERICA 4 Rio de Janeiro 87 S. AMERICA 3 Lima 

21 S. AMERICA 3 Salvador 88 SE ASIA 4 Davao 

22 AFRICA 3 Douala 89 SE ASIA 1 Manila 

23 N. AMERICA 1 Montreal 90 EUROPE 1 Lisbon 

24 N. AMERICA 2 Vancouver 91 EUROPE 2 Porto 

25 ASIA 4 Dalian 92 S. AMERICA 2 San Juan 

26 ASIA 4 Fuzhou 93 ASIA 1 Busan 

27 ASIA 4 Guangzhou 94 ASIA 2 Ulsan 

28 ASIA 4 Shenzhen 95 ASIA 4 Inchon 

29 ASIA 4 Hangzhou/ Ningbo 96 EUROPE 1 St Petersburg 

30 ASIA 4 Qingdao 97 ASIA 3 Jeddah 

31 ASIA 4 Shanghai 98 AFRICA 1 Dakar 

32 ASIA 4 Taipei 99 SE ASIA 3 Singapore 

33 ASIA 4 Tianjin 100 AFRICA 3 Mogadishu 

34 ASIA 4 Wenzhou 101 AFRICA 3 Cape Town 

35 ASIA 4 Xiamen 102 AFRICA 1 Durban 

36 ASIA 3 Yantai 103 EUROPE 1 Barcelona 

37 ASIA 4 Zhanjiang 104 EUROPE 4 Stockholm 

38 ASIA 2 Hong Kong 105 SE ASIA 4 Bangkok 

39 S. AMERICA 3 Barranquilla 106 AFRICA 4 Lome 

40 AFRICA 4 Abidjan 107 EUROPE 3 Istanbul 

41 N. AMERICA 3 Havana 108 EUROPE 4 Izmir 
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42 ASIA 3 Nampo 109 ASIA 2 Odessa 

43 EUROPE 1 Copenhagen 110 ASIA 1 Dubai 

44 N. AMERICA 3 Santo Domingo 111 EUROPE 2 Glasow 

45 S. AMERICA 4 Guayaquil 112 EUROPE 3 London 

46 AFRICA 4 Alexandria 113 AFRICA 2 Dar es Salaam 

47 EUROPE 1 Helsinki 114 N. AMERICA 2 Baltimore 

48 EUROPE 1 Marseille 115 N. AMERICA 2 Boston 

49 EUROPE 2 Hamburg 116 N. AMERICA 2 Houston 

50 AFRICA 3 Accra 117 N. AMERICA 2 Los Angeles 

51 EUROPE 1 Athens 118 N. AMERICA 2 Miami 

52 AFRICA 3 Conakry 119 N. AMERICA 2 New Orleans 

53 N. AMERICA 3 Port-au-Prince 120 N. AMERICA 2 New York 

54 ASIA 4 Chennai 121 N. AMERICA 1 Philadelphia 

55 ASIA 4 Cochin 122 N. AMERICA 2 Portland 

56 ASIA 4 Kolkata 123 N. AMERICA 1 Providence 

57 ASIA 4 Mumbai 124 N. AMERICA 2 San Diego 

58 ASIA 4 Surat 125 N. AMERICA 1 San Francisco 

59 ASIA 3 Visakhapatnam 126 N. AMERICA 1 San Jose 

60 SE ASIA 4 Jakarta 127 N. AMERICA 2 Seattle 

61 SE ASIA 4 Palembang 128 N. AMERICA 2 Tampa 

62 SE ASIA 3 Surabaya 129 N. AMERICA 1 Virginia Beach 

63 SE ASIA 3 Ujung Pandang 130 N. AMERICA 3 Washington 

64 EUROPE 1 Dublin 131 S. AMERICA 3 Montevideo 

65 EUROPE 1 Tel Aviv 132 S. AMERICA 4 Maracaibo 

66 EUROPE 1 Naples 133 ASIA 4 Haiphong 

67 SE ASIA 2 Fukuoka 134 ASIA 2 Ho Chi Minh City 

Note: “CR” means risk of a territory being affected by climate change, and the definition of CR groups: “1” = Lowest risk 

scenario, “2” = Managed-risk scenario, “3” = Mismanaged-risk scenario, and “4” = Highest risk scenario 

Annex 2. List of the 20 transit port cities 

ID Region Agglomeration ID Region Agglomeration 

135 AFRICA Tangier 145 N. AMERICA Freeport 

136 ASIA Salalah 146 AFRICA Port Elizabeth 

137 SE ASIA Colombo 147 EUROPE Gdansk 

138 EUROPE Algeciras 148 ASIA Tanjung Pelepas 

139 EUROPE Valencia 149 AFRICA Pointe Noire 

140 ASIA Krishnapatnam 150 ASIA Kaohsiung 

141 EUROPE Marsaxlokk 151 S. AMERICA Buenaventura 

142 S. AMERICA Navegantes 152 N. AMERICA Charleston 

143 AFRICA Port Said East 153 ASIA Pipavav 

144 AUSTRALASIA Tauranga 154 AFRICA Port Reunion 
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