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Abstract
Introduction: Watchkeeping is a significant activity during maritime operations, and 
failures of sustained attention and decision-making can increase the likelihood of a 
collision.
Methods: A study was conducted in a ship bridge simulator where 40 participants 
(20 experienced/20 inexperienced) performed: (1) a 20-min period of sustained at-
tention to locate a target vessel and (2) a 10-min period of decision-making/action 
selection to perform an evasive maneuver. Half of the participants also performed 
an additional task of verbally reporting the position of their vessel. Activation of the 
prefrontal cortex (PFC) was captured via a 15-channel functional near-infrared spec-
troscopy (fNIRS) montage, and measures of functional connectivity were calculated 
frontal using graph-theoretic measures.
Results: Neurovascular activation of right lateral area of the PFC decreased dur-
ing sustained attention and increased during decision-making. The graph-theoretic 
analysis revealed that density declined during decision-making in comparison with 
the previous period of sustained attention, while local clustering declined during sus-
tained attention and increased when participants prepared their evasive maneuver. 
A regression analysis revealed an association between network measures and be-
havioral outcomes, with respect to spotting the target vessel and making an evasive 
maneuver.
Conclusions: The right lateral area of the PFC is sensitive to watchkeeping and de-
cision-making during operational performance. Graph-theoretic measures allow us 
to quantify patterns of functional connectivity and were predictive of safety-critical 
performance.
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1  | INTRODUC TION

Human factors are implicated in 75%-96% of accidents that occur 
at sea (Fan et al., 2020; Trucco et al., 2008). According to an annual 
report on marine casualties and incidents issued by the European 
Maritime Safety Agency, 71% of the factors that contributed to 1170 
accident events originated from shipboard operations (EMSA, 2017). 
It is notable that nontechnical skills (NTS) (Saeed et al., 2016), such as 
situational awareness (SA) (Stanton et al., 2001) and decision-mak-
ing, play a significant role in common types of a maritime accident, 
such as collisions. For example, a failure to spot another vessel and 
a failure to correctly estimate speed (of another vessel) are common 
causes of collisions at sea (Macrae, 2009). The analysis of collision 
accidents performed by Uğurlu et al. (2015) identified two primary 
causal pathways, those originating from failures of navigation or 
maneuvering (e.g., faulty route and wrong maneuver) and those 
stemming from perception failures (e.g., failures of communication 
and failure to interpret information correctly). Other analyses of 
collisions at sea have identified a number of significant precedents, 
including reduced visibility, misinterpretation of instruments, loss 
of situational awareness, attention deficits of the officer, and poor 
intership communication (Chauvin et al., 2013).

Watchkeeping is one of the most significant tasks performed by 
a desk officer on the bridge (O’Connor & Long,  2011) and is cru-
cial for prevention of collisions at sea. During watchkeeping, offi-
cers must observe and record the position of the vessel at regular 
intervals while paying attention to onboard equipment. In order to 
sustain high levels of situational awareness, information from radar, 
visual lookout, and Automatic Identification System (AIS) apparatus 
are amalgamated into an assessment of the scenario by an officer 
on the bridge. There are two aspects to watchkeeping activity; one 
involves sustaining attention to potential obstacles in the vicinity of 
the vessel. The second incorporates decision-making and action se-
lection if another vessel is located, and the officer’s vessel is obliged 
to alter its course. It has been proposed that insufficient watchkeep-
ing accounts for two-thirds of all collisions at sea (MAIB, 2004). An 
analysis of collision accidents between vessels and offshore facilities 
(Sandhåland et al., 2015) identified three distinct categories of error; 
they were failures to correctly perceive the situation, accurately 
comprehend the situation, and project the situation into the future. 
Failures of perception, communication, and decision-making all play 
significant roles in a sequence of events known to increase the prob-
ability of a collision.

The neuroscience of watchkeeping can be understood 
from a neuroergonomic perspective (Ayaz & Dehais,  2019; 
Parasuraman,  2003; Parasuraman & Rizzo,  2008) with respect to 
the neuroscience of vigilance and action selection. The task of sus-
taining attention over a long period of time has been extensively 
studied in human factors psychology (Davies & Parasuraman, 1982; 
Hancock,  2017; Mackworth,  1948; Warm,  1984). It is known that 
sustaining attention can be particularly challenging when the task 
is monotonous and intellectually undemanding (Parasuraman, 1984; 
Robertson & O’Connell, 2010), as is the case during watchkeeping 

at sea. It has been argued that availability of those attentional re-
sources that are necessary to sustain attention on a specific task 
declines over time and reduces the quality of attention focused on 
the task (Warm et al., 2008). Alternatively, it has been claimed that 
the monotonous and uninteresting nature of vigilance tasks leads 
inevitably to disengagement from the task at hand (Smallwood & 
Schooler, 2006); see review by Fortenbaugh et al. (2017) for recent 
discussion of both perspectives. With respect to those areas of the 
brain that are implicated during sustained attention, early work on 
neuroimaging suggested that vigilance performance was associ-
ated with increased activation in the right prefrontal cortex (Cohen 
et al., 1988, 1992; Coull et al., 1998; Lewin et al., 1996; Parasuraman 
et al., 1998). The meta-analyses performed by Langner and Eickhoff 
(2013) identified neurological clusters in the right hemisphere as-
sociated with sustained attention and the duration of a vigil, which 
included anterior sulcus, inferior frontal sulcus (BA46), middle/an-
terior thalamus, precentral sulcus, inferior parietal lobule, posterior 
inferior frontal gyrus, cerebellum, and temporoparietal junction. The 
same analysis also identified an association between sustained at-
tention and activation of the right midlateral area of the prefrontal 
cortex (BA9, BA46), particularly tasks with a variable (as opposed 
to a fixed) schedule of event occurrence, where no overt response 
was required; more importantly, in addition, this region was impli-
cated across multiple modalities of stimuli, for example, visual and 
auditory.

The second aspect of watchkeeping concerns those cognitive 
control processes of decision-making and action preparation/se-
lection, which are activated when another vessel has been located 
and the potential for a collision is apparent. Koechlin et al.  (2003) 
described a hierarchical model of cognitive control, wherein the se-
lection of motor actions in response to task stimuli (sensory control) 
is informed by existing stimulus–response associations for the situ-
ational context (contextual control), which, in turn, are determined 
by recall of previous experience (episodic control). This model hy-
pothesized that sensory control was localized to the motor cortex. In 
contrast, contextual and episodic levels of control were associated, 
respectively, with bilateral activation of caudal (BA44/45) and ros-
tral (BA46) regions of the lateral prefrontal cortex (LPC). This model 
was further developed by Koechlin and colleagues (Domenech & 
Koechlin, 2015; Koechlin & Summerfield, 2007), who proposed two 
methods of arbitration for executive control: (a) a peripheral system 
located in the premotor/caudal/orbitofrontal regions for action se-
lection based on perceptual cues and reward values that are stable 
and (b) a core system incorporating regions of the ventromedial, dor-
somedial, lateral, and polar PFC that adjust between exploitation/
adjustment of previously learned behavioral sets and exploration/
creation of a new behavioral set. According to this model, the possi-
bility of a obtaining a desirable outcome via a specific behavioral task 
set is explored via the ventromedial region of the PFC. If there is a 
mismatch, the system reverts to the dorsomedial and lateral regions 
of the PFC to either create a new task set or select an alternative 
task set with a greater chance of a desirable output; for elaboration 
of model and further explanation, see Koechlin (2016).
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Both sustained attentional and cognitive control are fundamen-
tal to the activity of watchkeeping during ship operations and asso-
ciated with distinct patterns of activation within the PFC. Functional 
near-infrared spectroscopy (fNIRS) (Ferrari & Quaresima,  2012; 
Scholkmann et al., 2014) has been used widely to study neurophysio-
logical activation during operational performance (Ayaz et al., 2012, 
2013), both during task simulation (Gateau et  al.,  2015; Modi 
et al., 2018; Unni et al., 2017) and real-world environments (Dehais 
et  al.,  2018; Foy et  al.,  2016). It is often reported that increased 
cognitive demand is associated with an increased level of oxygen-
ated hemoglobin (HbO) in the prefrontal cortex (Causse et al., 2017; 
Fairclough et al., 2018). Alternatively, one can utilize fNIRS to index 
changes in functional connectivity under different task conditions by 
measuring the degree of correlation between HbO values collected 
simultaneously at various locations across the cortex. For example, 
Verdière et al. (2018) utilized a number of connectivity features (e.g., 
covariance, correlation, and wavelet coherence) to successfully dis-
tinguish low from high levels of mental workload during a simulated 
aircraft landing scenario. Frontal connectivity across the PFC has 
also been found to increase with cognitive demand using laboratory 
tasks (Baker et al., 2018; Racz et al., 2017; Sun et al., 2019). In addi-
tion, global indices of connectivity (e.g., wavelet phase coherence) 
between the left PFC and sensorimotor areas were found to decline 
during a vigilance task (Wang et al., 2016). Similarly, a study of simu-
lated driving reported reduced connectivity between PFC and motor 
cortex over an hour of sustained performance (Xu et  al., 2017). A 
decline of connectivity in association with task-related fatigue was 
also reported in maritime operators with respect to bilateral activity 
in the PFC (Bu et al., 2016). Some researchers have deployed metrics 
derived from graph theory (Welton et al., 2015) in order to describe 
connectivity networks revealed by fNIRS data (Einalou et al., 2017; 
Racz et al., 2017). This approach is utilized in order to describe func-
tional brain networks as connectomes, capable of describing the de-
velopment of mental fatigue (Qi et al., 2019) or the level of expertise 
of a specific operator (Deligianni et al., 2020).

A study was conducted in a ship bridge simulator to explore 
neurophysiological activation in the prefrontal cortex when partic-
ipants performed watchkeeping activity that was divided into two 
phases: sustained attention and decision-making/action selection. 
It was hypothesized that the right lateral region of the PFC (e.g., 
BA9 and BA46 on right side) would be activated during sustained 
attention. Action selection/preparation during the decision-making 
phase of the simulation will bilaterally activate the caudal and ros-
tral areas of the PFC as participants appraise the situational context 
of the scenario. It was also predicted that neurovascular activation 
and functional connectivity across the PFC would decline over the 
period of sustained attention. It was anticipated that experienced 
seafarers with greater number of hours at sea and higher level of 
qualification would demonstrate greater situational awareness and 
efficient decision-making and maintain a greater safety margin, that 
is, the target vessel will be spotted earlier, and an evasive maneuver 
would be made at greater distance from the target vessel. In addi-
tion, it was hypothesized that experienced individuals would exhibit 

greater neural efficiency, that is, reduced activation of the PFC when 
performing the simulation compared to inexperienced participants 
(Causse et al., 2017). Half of the participants were also required to 
perform an additional distraction task in conjunction with watch-
keeping. This requirement to regularly report the position of the 
vessel was designed to increase mental workload and activation of 
the PFC, and degrade performance outcomes (i.e., spot and respond 
to target vessel at a lower distance).

2  | METHOD

2.1 | Experimental design

The independent variables for the study were as follows: experi-
ence of participant, mental workload (watchkeeping vs. watchkeep-
ing + ship position reporting), and the periods of the task simulation 
(sustained attention vs. decision-making). Participant experience 
and mental workload served as between-participant variables, 
whereas the periods of the simulation constituted a within-partic-
ipant manipulation.

2.2 | Participants

Forty participants were recruited from the Nautical Institute London 
Branch and Liverpool John Moores University’s Maritime Centre. 
Participants were divided into two groups of 20 individuals based on 
their Standards of Training, Certification, and Watchkeeping (STCW) 
qualification and seafaring experience. The group of experienced 
seafarers were all qualified as MM (Master), CM (Chief Mate), and 
OOW (Officer of the Watch), this group included one female, their 
average age was 44.6 yrs (sd = 15.5), and they had an average of 
213.4  months (sd =  188.8) experience at sea. The inexperienced 
group were qualified as AB (Able Seaman) or cadets; this group in-
cluded two females, had an average age of 25 yrs (sd =  5.4), and 
had acquired 27.2 months (sd = 30.5) experience at sea. Exclusion 
criteria included history of head injury, high blood pressure, anxiety, 
or currently taking medication for anxiety. The experimental proto-
col for the study was approved by the institutional ethics committee 
prior to data collection.

2.3 | Ship bridge simulator and scenario

The experiment took place in a ship bridge simulator (Transas) fitted 
with instrument panels located at Liverpool John Moores University. 
An illustration of the participant view of the facility is provided in 
Figure 1. The Transas simulator is configurable for specific ship types 
using ship modeling software which manages the simulation envi-
ronment, allowing for positioned interactive tides, currents, geo-
graphically variable wind, and sea, and changing conditions such as 
light, visibility, fog, and rain. The bridge simulator can deliver a 360° 
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field of view, but the display was constrained to a 180° field of view 
for the purpose of the current study for two reasons: (a) The scenario 
involved watchkeeping in the forward view only, and (b) we wished 
to avoid significant lateral movement of the head and upper body to 
minimize artifacts in the fNIRS data.

The task scenario was designed to occur along a north/south axis 
to better accommodate a realistic reporting system. All participants 
were required to keep watch over 180° field of view of the open sea. 
This watchkeeping period was terminated when participants spot-
ted a “target” vessel that appeared randomly at one of 10 locations 
in the field of view (see Figure 2). The target vessel was the only 
other ship on the ocean in the whole of the task simulation.

Participants were required to push the button when they spotted 
the target vessel, the approximate location of which was recorded by 
the staff in the control room. On average, the duration of this watch-
keeping/sustained attention phase of the task was 19 min:42  sec. 
The distance in nautical miles between the target vessel and the 
participants’ ship when the button was pressed was captured as a 
dependent variable. The target vessel approached the participants’ 
ship on a course that would lead to a collision if a change of course 
was not made; the speed of approach from the target vessel was ap-
proximately 15–20 knots. Once participants had spotted the target 
vessel, the scenario enters a decision-making/action selection phase 
where participants had to visually monitor the course and speed of 

the vessel in order to assess the risk of collision. This decision-mak-
ing/action selection phase was terminated when participants turned 
the helm on the bridge (Figure 1) to change course and make an eva-
sive maneuver; the experiment also ended at this point. On average, 
all participants made an evasive maneuver at 24 min: 26 sec; the dis-
tance in nautical miles between target vessel and participants’ ship 
when the maneuver was made was also recorded as a dependent 
variable.

2.4 | distraction task

In addition to the scenario described in the previous section, half 
of the participants (10 experienced and 10 inexperienced) were re-
quired to perform a reporting task, which served as a distraction 
and was based on existing procedures. Participants were required to 
monitor the ECDIS (Electronic Chart Display and Information System) 
in order to make a verbal report of the position of their vessel, that 
is, numeric coordinates of ships’ current position. Participants in 
the distraction group made this verbal report whenever their ves-
sel crossed a predetermined reporting point, for example, they must 
report the ship position when the vessel crossed each minute of lati-
tude as displayed on the ECDIS. With their vessel steering a north-
erly course at a constant speed of 20 knots, this task amounted to a 
requirement to make a report every three minutes.

2.5 | Subjective mental workload

The NASA Task Load Index (TLX) (Hart & Staveland, 1988) was ad-
ministered at the end of the experiment. This is a self-assessed ques-
tionnaire constructed upon six 10-point scales: Mental Demand, 
Physical Demand, Temporal Demand, Performance, Effort, and 
Frustration.

2.6 | fNIRS device and montage

The NIRSport 88 (NIRx Medical Technologies LLC, USA) fNIRS de-
vice was utilized to capture neurovascular measures of activation. 
This device records optical density data at a frequency of 8.9Hz and 
consists of 8 sources and 8 detectors. The device was configured to 
detect deoxygenated and oxygenated hemoglobin at wavelengths of 
760 nm and 850 nm. The NIRSite software was used to construct a 
montage of 15 channels over the prefrontal cortex (Figure 3).

2.7 | fNIRS analysis I: average HbO

The fNIRS data (15 channels × 2 wavelengths) were preprocessed 
using nirsLAB software. Raw data were checked for discontinui-
ties and spikes and interpolation applied where necessary via the 
nirsLAB software. A low-pass filter was subsequently applied in 

F I G U R E  1   View of the participant in the ship bridge simulator

F I G U R E  2   The ten potential positions of the target vessel in the 
180° field of view relative to sightline of participant (vertical dotted 
line)
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order to reduce high-frequency instrument noise and physiological 
noise such as fast cardiac oscillations (e.g., heartbeat 1 ~ 1.5Hz) with 
the frequency of 0.4Hz. Changes in oxygenated hemoglobin (HbO) 
and deoxygenated hemoglobin (Hbb) were calculated using the mod-
ified Beer–Lambert law (mBLL) using differential path factor (DPF) of 
7.25 (760nm) and 6.38 (850nm). The HbO and Hbb data were sub-
jected to a correlation-based transformation, the correlation-based 
signal improvement (CBSI) (Cui et al., 2010) that forces HbO and Hbb 
to be negatively correlated. As Hbb is transformed into the inverse 
of HbO after this point, that is, correlations between HbO and Hbb 
varied between −0.78 and −0.98 after application of the CBSI, only 
HbO data were used in the subsequent analyses, and these data are 
relabeled as CBSI_HbO to differentiate them from original values 
calculated using the mBLL.

In order to create ANOVA models for statistical testing, 15 chan-
nels of CBSI_HbO were divided into three regions of interest: left lat-
eral PFC (channels 1-5), central PFC (channels 6-10), and right lateral 

PFC (channels 11–15) (see Figure 3 and Table 1). The placement of 
the optodes and corresponding areas from the 10/20 system and 
Brodmann’s areas are described in Table 1. The average CBSI_HbO 
for each region was calculated and used in the ANOVA model. In 
addition, for the purposes of statistical testing, the sustained at-
tention portion of the task simulation (before the ship was located) 
was divided into four periods of equal duration for each participant 
(watch1, watch2, watch3, and watch4). Once the ship had been spot-
ted, the subsequent decision-making phase of the simulation was di-
vided into two periods of equal duration (decision2 and decision2). 
Values of average CBSI_HbO were calculated for each region of in-
terest for watch1-4 and decision1-2 for testing in ANOVA models.

2.8 | fNIRS analysis II: functional connectivity

The analysis of functional connectivity used in the current study was 
based on the procedure described by Racz et al. (2017). Unlike those 
authors, our analysis of functional connectivity was based upon a 
matrix of partial correlation coefficients calculated between each 
available channel of CBSI_HbO, that is, partial correlation coeffi-
cients represent association between two channels of CBSI_HbO 
while controlling for the effect of the other 13 channels (Akın, 2017; 
Dadgostar et al., 2016). A matrix of partial correlation coefficients 
(partial r) was calculated for all 15 channels of CBSI_HbO for each of 
the six periods of the simulation (watch1, watch2, watch3, watch4, 
decision2, and decision2) for each participant.

A process of thresholding was applied to each matrix of partial r 
values in order to construct a binary functional connection network. 
The first step of this analysis was to remove any partial r values that 
fell below zero to consider only positive associations. A criterion 
level of 0.28 was selected in order to remove weak or spurious levels 
of correlation; this value represents the critical value for a one-tailed 
test of Pearson’s coefficient at p < .05 for N = 40. This thresholding 
process converted the original matrices of partial correlations into 
binary adjacency matrices suitable for graph-theoretic analyses.

Measures of connection density (D) and local clustering coeffi-
cient (C) were calculated for each participant per period of the ex-
periment on the basis of the binary matrices (Racz et al., 2017). The 

F I G U R E  3   Illustration of fNIRS 
montage: (a) 2D montage (b) 3D montage. 
Red = emitter, blue = detector

TA B L E  1  Placement of optodes by ROI, channel number, 10/20 
system, and Brodmann’s areas (see also Figure 3)

ROI
Optode/
channel 10/20 System Brodmann

1 (Left) 1 F5/F7 47/46

2 AF7/F5 46

3 AF7/AF3 46/9

4 F3/F5 46/8

5 F3/AF3 8/9

2 (Central) 6 F1/F3 8

7 Fz/F1 8

8 Fz/AFz 8/9

9 Fz/F2 8

10 F2/F4 8

3 (Right) 11 F4/AF4 8/9

12 F4/F6 8/46

13 AF4/AF8 9/46

14 AF8/F6 46

15 F6/F8 46/45
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connection density of a network is the fraction of the existing con-
nections to all possible connections, which is calculated as follows: 

where n is the number of channels in the network, and aij equals 
1 if there is a connection between channels i and j, 0 otherwise. In 
summary, Density describes the overall level of connectivity be-
tween all nodes in the network. A clustering coefficient was also 
calculated for the network. This index of local clustering quantifies 
the proportion of neighbors to a node which are also neighbors of 
one other (Watts & Strogatz, 1998), that is, reflecting the number 
of triangles around the given node (Rubinov & Sporns, 2010). The 
clustering coefficient was calculated as follows: 

where ki is the degree of channel i, and C is how the neighboring 
channels in the network form connected groups. These functions 
were obtained from the Brain Connectivity Toolbox (Rubinov & 
Sporns, 2010). Measures of D and C were calculated per participant 
for each period of the task and subjected to statistical testing via 
ANOVA.

2.9 | Experiment procedure

Participants arrived at the simulator and were required to read the 
Participant Information Sheet and provide signed consent. The par-
ticipant subsequently took a seated position at the helm (Figure 1) 
of the vessel and completed a short familiarization session to check 
that they understood how to operate the helm and read data from 
the displays (Figure 1). All participants were told that they would be 
asked to monitor their vessel, which was on a fixed course in a ship-
ping lane and completes a watchkeeping task; they were provided 
with no other information. Participants in the distraction group re-
ceived additional instructions pertaining to the distraction task (as 
described in section 2.4). Each participant was fitted with the NIRx 
Sport head cap, which was placed using nasion and inion as anatomi-
cal points for longitudinal placement and the pre-auricular points 
above the ears for lateral placement. Once the head cap had been 
fitted, the quality of the signal was assessed. The study did not com-
mence until acceptable signal quality was obtained from all 15 chan-
nels. Once the signal quality had been approved, the experimenter 
took a seated position behind the participant and the participants 
conducted the task scenario as described in section 2.3, commenc-
ing with the watchkeeping task, that is, they would navigate in the 
open water under watchkeeping task and make an evasive maneuver 
if necessary. Participants were instructed to press a button on the 
console if they spotted another vessel; if this occurred, they were 
instructed to monitor the course and position of the other vessel 

and change course if there was any possibility of a collision. The task 
scenario ended when participants made their evasive maneuver to 
avoid the target vessel. Participants in the distraction group received 
additional instructions pertaining to that task. When the experiment 
had been completed, all participants completed the TLX question-
naire. Participants were subsequently debriefed and thanked for 
their time, and received a gift voucher for their time.

3  | RESULTS

The results section is divided into four sections: behavioral data, 
subjective mental workload, average level of CBSI_HbO at specific 
sites, and functional connectivity. Data are subjected to statistical 
analyses via ANOVA, ANCOVA, and MANOVA models using SPSS 
v.26. Outliers were defined as any data point lying more than 3 
standard deviations from the mean for that “cell” in either a positive 
or negative direction. For those models with a repeated-measures 
component, sphericity was tested using Mauchly’s test and the 
Greenhouse–Geisser adjustment was performed.

3.1 | Behavioral data

Behavioral data were derived from two responses required from 
all participants; they were required to (1) spot another vessel (tar-
get spotted) and to (2) change their course as an evasive maneu-
ver to avoid collision (course change). Distance in nautical miles 
was calculated when the target vessel was spotted (1) and when 

D=
1

2n (n−1)
in∈

∑

jn∈
∑
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TA B L E  2  Means and standard deviations for distance (in 
nautical miles) from participant ship to target vessel when the latter 
was spotted (N = 40)

inexperienced distraction 4.45
[1.27]

4.51
[1.16]

No distraction 4.57
[1.10]

experienced distraction 4.60
[1.03]

4.77
[0.94]

No distraction 4.94
[0.86]

TA B L E  3  Means and standard deviations for distance (in 
nautical miles) from participant ship to target vessel when course 
change occurred (N = 40)

inexperienced distraction 1.80
[1.37]

1.85
[1.43]

No distraction 1.90
[1.56]

experienced distraction 2.10
[1.26]

2.76
[1.37]

No distraction 3.41
[1.19]
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a course change was made (2). The analysis of the target spotted 
distances took the form of a univariate ANCOVA (Experience x 
distraction) with the relative position of the target vessel func-
tioning as a covariate (Figure 2). This model failed to reveal any sig-
nificant effects of Experience [F(1,40) = 0.58, p = .45], distraction 
[F(1,40) = 0.47, p = .50], Target Location [F(1,40) = 0.59, p = .45], 
or any interaction (see Table  2 for descriptive statistics). The 
analyses of distance when course was changed was performed 
as an ANCOVA (Experience x distraction), which revealed a sig-
nificant effect of Experience [F(1,40) = 4.53, p = .04, ηp

2 = 0.11], 
no significant effect for distraction [F(1,40) = 2.75, p =  .11], and 
no significant interaction. Inspection of means (Table 3) revealed 
that experienced participants performed the course change at 
greater distance from the target vessel compared to inexperi-
enced participants.

3.2 | Subjective mental workload

TLX data were analyzed via a 2 (experienced/inexperienced) x 2 (dis-
traction/no distraction) x 6 (TLX factor) MANOVA. This analysis re-
vealed a main effect of distraction with respect to Temporal Demand 
(“How much time pressure?”) [F(1, 36) = 3.89, p =  .05, ηp

2 = 0.10], 
that is, participants in the distraction group perceived a higher level 
of temporal demand; see Table  3 for descriptive statistics. It was 
also apparent that experienced participants rated the quality of their 
Performance as greater than that in the inexperienced group [F(1, 
36) = 9.19, p < .01, ηp

2 = 0.20]; in addition, subjective levels of Effort 
were lower for experienced compared to inexperienced participants 
[F(1, 36) = 5.31, p = .03, ηp

2 = 0.13]. All descriptive statistics are pre-
sented in Table 4, and there were no other significant main effects or 
interactions in the MANOVA model.

distraction No distraction Mean

MENTAL Demand inexperienced 6.50
[1.65]

7.50
[2.53]

7.00
[2.09]

experienced 6.30
[2.16]

6.20
[2.49]

6.25
[2.33]

Mean 6.40
[1.89]

6.70
[2.49]

PHYSICAL Demand inexperienced 2.30
[1.34]

3.10
[2.08]

2.70
[1.71]

experienced 2.40
[2.01]

2.20
[1.14]

2.30
[1.58]

Mean 2.35
[1.89]

2.65
[1.69]

TEMPORAL Demand inexperienced 5.20
[1.87]

4.50
[1.96]

4.85
[1.92]

experienced 4.90
[2.47]

3.10
[1.66]

4.00
[2.07]

Mean 5.05
[2.14]

3.80
[1.91]

PERFORMANCE inexperienced 7.80
[1.23]

8.10
[1.37]

7.95
[1.30]

experienced 9.00
[0.82]

9.10
[1.10]

9.05
[0.96]

Mean 8.40
[1.19]

8.60
[1.32]

EFFORT inexperienced 6.40
[1.27]

6.40
[2.68]

6.40
[1.98]

experienced 5.70
[1.83]

4.20
[1.93]

4.95
[1.88]

Mean 6.05
[1.57]

5.30
[2.54]

FRUSTRATION inexperienced 2.70
[1.95]

3.10
[1.97]

2.90
[1.98]

experienced 3.00
[1.56]

2.50
[1.84]

2.75
[1.96]

Mean 2.85
[1.73]

2.80
[1.88]

TA B L E  4  Descriptive Statistics 
for NASA Task Load Index ratings of 
subjective mental workload (N = 40)
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3.3 | fNIRS Data I: Average CBSI_HbO

Inspection of fNIRS data indicated portions of missing data from 
four participants due to equipment failure during the study, who 
were not included in these analyses; the remaining numbers in each 
experimental group were as follows: experienced/no distraction: 
9; experienced/distraction: 9; inexperienced/no distraction: 9; and 
inexperienced/distraction: 10. fNIRS data were averaged for each 
channel and divided into three regions of interest (ROI) correspond-
ing to the left lateral, central, and right lateral areas of the PFC. 
CBSI_HbO data for each ROI were subjected to a 2 (experienced/
inexperienced) x 2 (distraction/no-distraction) x 6 (task period: 
watch1, watch2, watch3, watch4, decision2, and decision2) ANOVA.

Analyses of left lateral and central ROI failed to indicate any sta-
tistically significant main effects or interactions. However, the analy-
sis of CBSI_HbO data from the right lateral ROI revealed a significant 
main effect for task period [F(5,30) = 3.76, p  =  .02, ηp

2  =  0.4], as 
well as significant interactions between distraction x task period 
[F(5,30) = 3.99, p  <  .01, ηp

2  =  0.43] and Experience x task period 
[F(5,30) = 2.30, p=.05, ηp

2 = 0.27]. Post hoc testing revealed that 
average CBSI_HbO at the right lateral ROI was significantly lower 
during watch3 and watch4 than all other periods (p<.05); this effect 
is illustrated in Figure 4.

A number of post hoc t tests were conducted to analyze the 
two significant interaction effects at the right lateral ROI. It was 
found that average CBSI_HbO was significantly higher for partici-
pants who performed the distraction task during the two periods 
of decision-making that occurred once the ship had been spotted: 
decision1 [t(36)=2.17, p=.04] and decision2 [t(36)=2.69, p=.02]. This 
effect is illustrated in Figure 5.

The interaction effect between Experience x task period was 
also explored using t tests. These tests revealed that average CBSI_
HbO was higher for experienced participants at the right lateral ROI, 
but only during the fourth period of watchkeeping (watch4) when 

the approaching ship was spotted [t(36)=2.78, p<.01]. This interac-
tion is illustrated in Figure 6.

3.4 | Functional connectivity

A 2 (experienced/inexperienced) x 2 (distraction/no distraction) x 6 
(task period) ANOVA was conducted on the measure of connection 
density (D). This model revealed a significant main effect for task pe-
riod [F(5, 28) = 15.88, p < .01, ηp

2 = 0.33], but no significant effects 
for either experience level [F(1, 32) = 0.97, p = .33] or distraction [F(1, 
32) = 0.82, p = .37]. Post hoc Bonferroni tests revealed a significant 
decline of D during both decision-making periods of the task com-
pared to the four watchkeeping periods [p<.01]. Descriptive statis-
tics for connection density are illustrated in Figure 7. There was only 
one significant interaction effect in the ANOVA model, which indi-
cated an effect between distraction and task period [F(5, 28) = 3.15, 
p = .03, ηp

2 = 0.09]. This effect is illustrated in Figure 8. Post hoc t 
tests revealed a significant increase in D during the fourth period of 
watchkeeping (watch4) for those participants in the no-distraction 
group compared to the distraction group [t(34)=2.97, p<.01]. In addi-
tion, the significant trend over the six periods of the task differed for 
the distraction group in comparison with the main effect observed in 
Figure 7, that is, there was no significant difference between watch4 
and either of the two decision periods (Figure 8).

The same 2 x 2 x 6 ANOVA was conducted on the clustering coeffi-
cient (C). There were no significant main effects for either Experience 
or distraction, but a significant effect was found with respect to task 
period [F(5,28) = 2.60, p = .05, ηp

2 = 0.32]. Post hoc Bonferroni tests 
revealed that (i) C was significantly higher during decision2 compared 
to watch3 and watch4 (p<.01), (ii) C was significantly higher during de-
cision2 compared to watch4 (p<.01), and (iii) C was significantly lower 
during watch4 compared to watch1 (p=.05). Descriptive statistics for 
C are presented in Figure 9 for the main effect of task period.

F I G U R E  4  Mean CBSI_HbO and 
standard error during all task periods for 
right lateral ROI (N = 38)
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This ANOVA also produced one significant interaction between 
distraction and task period [F(5, 28) = 2.79, p = .04, ηp

2 = 0.34]. Post 
hoc t tests revealed that the clustering coefficient was significantly 
lower at watch4 compared to watch1 [t(17)=−2.21, p=.04] and d2 
[t(17)=−1.98, p=.05] for the no-distraction group only. This interac-
tion is illustrated in Figure 10.

In order to understand those patterns of functional connectiv-
ity observed in the graph-theoretic analyses, data from the binary 
adjacent matrices were combined into a connectome visualization 
based on the arc diagram (Figure 11). The purpose of this visualiza-
tion was to represent the frequency of individual connections within 
the frontal network across the participant group as a whole; the vi-
sualization is intended to reveal which connections and patterns of 
connections are most prominent during all six periods of the task 
simulation. In Figure 11(a-f), the color coding represents the number 

of participants for whom a particular connection passed the thresh-
old, that is, partial r = 0.28 or above. A red connection denotes this 
connection that was observed in 22 or more of our participants, the 
orange lines indicate the presence of a connection for 17 - 21 par-
ticipants, the green for 13-16 participants, and the blue for less than 
12 participants. Hence, the color coding in Figure 11 does not cor-
respond to the strength of each connection but rather the number 
of participants for whom that connection passed the threshold for a 
positive connection at each phase of the task simulation.

When describing the patterns of connectivity observed within 
each task period, we will focus on connections that were most fre-
quently observed within our participants, that is, red and orange 
lines. The first period of watchkeeping (watch1) indicates a high 
frequency of local clustering (i.e., red/orange lines between adja-
cent sites) with a number of bilateral connections (Figure 11a). This 

F I G U R E  5  Average CBSI_HbO and 
standard error in the right lateral ROI 
for task period x distraction Interaction 
(N = 38)

F I G U R E  6  Average CBSI_HbO and 
standard error in the right lateral ROI 
for task period x Experience Interaction 
(N = 38). Note: ** = significant difference 
at p < .01
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pattern persists into watch2, but the frequency of bilateral connec-
tions increased (Figure 11b). During watch3 (Figure 11c), the num-
ber of adjacent and bilateral connections is observed to decline. The 
fourth phase of watchkeeping (Figure 11d) represented the period 
when participants spotted the target vessel, which was character-
ized by increased frequency of bilateral connections. During the first 
period of the decision-making phase of the task (decision1), there is 
a general decrease in frequent connections (Figure 11e) with some 
local clustering observed at lateral areas of the montage on the left 
side (BA46-BA47), the fronto-central region (BA8/9), and a small 
number of bilateral connections (BA46, BA46-BA8/9). The final part 
of the task (decision2) represents the period immediately prior to 
the participants’ performance of an evasive maneuver. During this 
period, the most frequent connections were clustered around the 
fronto-central region (BA8) with a small number of bilateral connec-
tions at the left/right edges of the montage, for example, BA46 and 
BA46-BA47 (Figure 11f).

3.5 | Prediction of Behavior based on Functional 
Connectivity

A regression analysis was conducted to explore whether behavioral 
data could be predicted on the basis of functional connectivity met-
rics, for example, density and clustering. Behavioral data were ob-
tained from two period of the task: watch4 (i.e., distance from target 
vessel when it was spotted) and decision2 (i.e., distance from the tar-
get vessel when course was changed). Two linear regression models 
were created, one for watch4 and another for decision2, each using 
distance as a dependent variable with density (D) and clustering (C) 
as independent variables.

The regression analysis conducted on data from watch4 revealed 
an R2 of 0.29 (Adj R2 =  0.25), which was a statistically significant 
model [F(2,34) = 6.79, p<.01]. Detailed inspection of the model 
(Table 4) revealed that increased density and clustering were both 
associated with the target vessel being spotted at a greater distance 

F I G U R E  7  Average levels of D 
(connection density) with standard error 
across all fNIRS channels for six periods of 
the task (N = 36)

F I G U R E  8   Interaction between 
distraction group x task periods for mean 
D (connection density) with standard error 
across all fNIRS channels for six periods 
of the task (N = 36). Note: ** = significant 
difference at p < .01
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from the participant’s ship. From the model, density is the most re-
liable predictor of distance relative to clustering (Table 5). The same 
model was applied to comparable data from decision2; this model 
also reached statistical significance [F(2,34) = 8.07, p<.01] with an 
R2 value of 0.33 (Adj R2 = 0.29). The model revealed an inverse rela-
tionship between density and distance to the target vessel when the 
participant changed the course of their ship (Table 5).

4  | DISCUSSION

The task simulation was divided into two major cognitive activi-
ties, watchkeeping (watch1-4) and decision-making/action selection 
(decision1-decision2). The former represents a visual vigilance task 
where the participant must monitor the forward view for the ap-
pearance of other vessels. Once the target vessel was located dur-
ing watch4, the participant must appraise the situation and select an 

appropriate course of action. During decision1, participants actively 
monitor the approach of the target vessel and appraise the likelihood 
of collision until they formulate and execute an evasive maneuver 
during decision2. Both categories of cognitive activity are associ-
ated with increased activation within the prefrontal cortex (PFC). 
The periods of watchkeeping (watch1-watch4) require the partici-
pant to sustain attention in the absence of any overt stimuli, which is 
associated with activity in right lateralized regions of the dorsome-
dial, mid-, and lateral prefrontal cortex (Langner & Eickhoff, 2013). 
With respect to the process of appraisal and action selection, the 
cascade model of cognitive control (Koechlin et al., 2003; Koechlin & 
Summerfield, 2007) argues that actions are selected on the basis of 
current context and past experience, and this evaluative process is 
localized to the caudal and lateral regions of the PFC.

Our analysis of neurovascular activation across four periods of 
watchkeeping (watch1-watch4) revealed a number of statistically 
significant trends, specifically: (a) A decline of CBSI_HbO during 

F I G U R E  9  Average levels of C 
(clustering) with standard error across all 
fNIRS channels for six periods of the task 
(N = 36)

F I G U R E  1 0   Interaction between 
distraction group x task periods for mean 
C (clustering) with standard error across 
all fNIRS channels for six periods of the 
task (N = 36)
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watch3 and watch4 in the right lateral PFC compared to watch1 
and watch2 (Figure  4), and (b) a decline of local clustering from 
watch1 to watch4 (Figure 9). Hence, reduced activation in the re-
gion of the right PFC was accompanied by a general reduction of 
local clustering across the whole montage. With respect to the 
visualization of connectivity (Figure 11), the first and second pe-
riods of watchkeeping (Figure 11a,b) are characterized by high fre-
quency of connections across the montage, particularly on the left 
lateral channels 1-5 and significant levels of bilateral connectivity. 
During watch3 (Figure 11c), participants have been monitoring an 
empty ocean for approx. 14.5 minutes and we observed bilateral 

activation in the central (BA8) and lateral (BA46) regions with lo-
calized connections on the right hemisphere, for example, BA46 
and BA8-BA46. Activation of right PFC during vigilant attention 
has been reported in a number of neuroimaging studies (Langner & 
Eickhoff, 2013; Parasuraman et al., 1998) and damage to this area 
of the brain associated with a diminished capacity for sustained 
attention (Swick & Knight, 1998). The reduction of local clustering 
observed during watch3 receives circumstantial support from an 
existing fNIRS study where reduced functional connectivity was 
associated with the performance of a sustained attention task 
(Wang et al., 2016).

F I G U R E  11  Data visualization 
showing relative frequency of significant 
connections observed in the adjacency 
matrices across all six task periods 
(N = 36): (a) watch1, (b) watch2, (c) 
watch3, (d) watch4, (e) decision1, and (f) 
decision2. Labels correspond to channels 
and Brodmann’s areas. Color key indicates 
the number of participants who exhibited 
a significant partial correlation coefficient 
for this connection, that is, red = 22 
participants or more, orange = 17-21 
participants, etc

Watch4 Decision2

t Std. ß Partial r Sig t Std. ß Partial r Sig

Density 3.56 0.54 0.53 <.01 -3.47 -0.50 -0.52 <.01

Clustering 1.94 0.30 0.32 .06 1.37 0.20 0.23 0.18

TA B L E  5   Results of the linear 
regression models with distance to Target 
Vessel as the dependent variable
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The final period of watchkeeping (watch4) marked a transition 
from vigilance to action selection when participants had located 
the target vessel. While neurovascular activation during watch4 
was characterized by reduced activation in the right lateral PFC 
(Figure  4) and a decline of local clustering (Figure  9), it was also 
marked by a noticeable increase in bilateral connections, that is, rel-
ative to the previous period watch3 (Figure 11c). In comparing the 
period of action selection with the vigilance phase, we noted a sig-
nificant decline of connection density (Figure 7) and increased local 
clustering (Figure 9). It has been argued that the rostral area of the 
lateral PFC (BA 46) is crucial for the integration of previous experi-
ence with the current context during action preparation (Domenech 
& Koechlin,  2015; Koechlin & Summerfield,  2007); therefore, in-
creased activation in the right lateral PFC (Figure 4) is broadly con-
sistent with this explanation.

Concerning the pattern of functional connectivity observed in 
Figure 7, the primary distinction between watch4 and decision1 was 
a significant decrease in the overall number of connections. This 
pattern is supported by the visualization presented in Figure  11, 
that is, fewer orange and red connections appear in decision1 and 
decision2 compared to watch1-4 (Figure 11). This decline was par-
ticularly noticeable for bilateral connectivity as participants transi-
tioned from watch4 to decision1 (Figure  11). Closer inspection of 
Figure 11e indicated that the process of action selection that was 
initiated during decision1 was associated with a small number of lo-
calized connections in the central area (BA8) and left/right lateral 
channels (BA46, BA47); we also observed a limited number of bi-
lateral connections, for example, Ch3-Ch13 and Ch1-Ch11. During 
decision2 when participants actually executed an evasive control 
maneuver via the helm, we see a high number of bilateral activations 
at BA8 (Figure 11f). It should also be noted that BA8 lies very close 
to the premotor cortex (BA6) and preparation of the motor response 
may explain the high levels of connectivity in the fronto-central re-
gion that were observed during this period. This period was also as-
sociated with highly localized bilateral connectivity in the regions 
of BA46, BA47, and BA45 (Figure 11f). This observed pattern of bi-
lateral activation at BA46 is associated with Episodic control over 
action selection in previous experimental work, that is, guidance of 
action selection that can be attributed to past experience (Koechlin 
et al., 2003). The same model predicts that the caudal region of the 
lateral PFC (BA9, BA45) is associated with Contextual control where 
stimulus–response associations are selected on the immediate con-
text in which the stimulus (e.g., target vessel) occurs (Koechlin & 
Summerfield,  2007), that is, Figure  11e. The pattern of persistent 
bilateral connectivity and increased activity in the lateral PFC may 
represent a trade-off between the exploitation of previous experi-
ence and exploration of the immediate context, as participants as-
sessed the approach of a target vessel and formulated an evasive 
maneuver (Koechlin, 2016).

The purpose of the regression analyses was to explore the re-
lationship between functional connectivity in the PFC and be-
havioral outcomes during the task simulation. If the PFC exerts a 
top-down influence on fundamental psychological processes, such 

as sustained visual attention and action selection, it is reasonable 
to expect a degree of correlation between neurophysiological ac-
tivation in the PFC and performance outcomes. Two linear regres-
sion models were constructed to predict distance from the target 
vessel when it was (a) spotted and (b) when participants performed 
a course change to avoid collision (Table 5). Both models were statis-
tically significant, functional connectivity metrics accounted for ap-
proximately a third of variance observed in the performance data, a 
figure that was substantially higher than we anticipated. The watch4 
model revealed that density and local clustering were both positively 
associated with distance to target vessel when it was spotted by 
participants; however, this relationship was strongest for connec-
tion density (Table 5). By contrast, we found an inverse relationship 
between connection density and the safety margin in the decision2 
model (Table 5), that is, reduced density was associated with greater 
distance to target vessel when an evasive maneuver was performed. 
Both models reinforce trends observed in Figure 7, that is, increased 
connection density during vigilance and a significant decline of den-
sity during action selection. The regression models also confirm an 
association between measures of functional connectivity in the PFC 
and performance outcomes in an applied, safety-critical scenario.

Participants were divided into two groups based on previous 
seafaring experience. Our analysis of behavioral data revealed that 
experienced participants made an evasive maneuver at a greater 
distance from the target vessel compared to those participants 
who were less experienced (Table 3). Therefore, as one might ex-
pect, experienced seafarers respond with greater efficiency to a 
collision avoidance scenario, presumably due to a superior ability to 
assess and respond to a safety-critical situation that was informed 
by previous experience. Also, analyses of the subjective workload 
data revealed that experienced participants perceived the task sim-
ulation to be less effortful and appraised their own performance 
positively in comparison with inexperienced participants (Table 4). 
It was hypothesized that neurovascular activation would be lower 
for experienced participants due to greater neural efficiency (Causse 
et al., 2017; Di Domenico et al., 2015; McKendrick et al., 2014), but 
there was no evidence in the current study to support this position. 
The analysis of fNIRS data indicated that experienced participant ex-
hibited higher levels of CBSI_HbO during watch4 at the right lateral 
PFC (Figure 6). This finding was notable as higher activation of the 
PFC during watch4 may represent the influence of top-down con-
trol over visual attention (Paneri & Gregoriou, 2017) as experienced 
participants sought to resolve uncertainty over the presence and 
location of the target vessel. However, it should be noted that this 
pattern of neurovascular activation did not result in earlier detection 
of the target vessel by experienced participants (Table 2).

Half of the participants were required to perform a distraction 
task of reporting ship position, which was repeated approximately 
every three minutes. This additional task increased activation at 
the right lateral PFC during the two decision-making periods of 
the task (Figure  5), presumably due to the multiple demands of 
simultaneously monitoring the approach of the target vessel, for-
mulating change of course, and monitoring the current position of 
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their own ship in order to cue the next verbal report. It should be 
noted that the average duration of each decision-making phase 
was significantly shorter than the watchkeeping phases, for ex-
ample, 142s compared to 292.5s. Participants received 1.65 dis-
tractions per watchkeeping phase compared to 0.78 distractions 
in each phase of the decision-making part of the task; hence, the 
influence of distraction was not equivalent across both phases of 
the simulated task. The effects of the distraction task on func-
tional connectivity indicated: (a) a reduction of connection density 
during watchkeeping, which reached statistical significance during 
watch4 (Figure 8), and (b) the absence of the significant decline in 
local clustering over the watchkeeping phase (watch1-4) that char-
acterized participants in the nondistraction condition (Figure 10). 
Given that decreased connection density was associated with 
higher cognitive load during the decision-making phase (Figure 7), 
it could be argued that the distraction inflated cognitive demand 
for those participants during a monotonous vigilance task, which 
subsequently reduced connection density. Similarly, the decline 
of local clustering during watchkeeping did not occur for the dis-
traction group because these individuals received an additional 
level of cognitive demand, which may have helped to sustain at-
tention. It was hypothesized that the introduction of a distraction 
task would degrade performance concerning increasing response 
latencies, with respect to spotting the target vessel and making 
an evasive maneuver, but no evidence was found to support this 
prediction.

The current study was not without limitations and potential 
confounds. The task simulation was highly simplistic and designed 
to facilitate collection of neurophysiological data. It could be ar-
gued that the ecological validity of the simulation was compro-
mised by our desire to reduce artifacts in the fNIRS data. For 
example, the task simulation failed to accommodate any aspect 
of teamwork, which is the more common operational situation on 
the bridge of a large ship; besides, watchkeeping duty is often part 
of a multitasking activity that includes monitoring weather condi-
tions and running communications tasks. The duration of the vigil 
in the first part of the simulation was less than twenty minutes, 
and it is acknowledged that extending the period of watchkeep-
ing would have improved the ecological validity of the study. Also, 
the decision not to utilize the 360° field of view capability in the 
bridge simulator (in order to minimize the influence of physical 
artifacts in the fNIRS signal) was problematic, as it enormously 
simplified and artificially constrained the challenge of the vigi-
lance task in a maritime environment. Our decision to seat partic-
ipants at the helm of the vessel was also uncharacteristic of the 
bridge environment; participants were seated to minimize those 
systemic influences on the fNIRS signal that were likely to occur 
if they were standing and ambulatory. The fNIRS apparatus uti-
lized in the current study was problematic because we were un-
able to fully account for systemic influences on the fNIRS signal. 
The montage used in the study did not include “short-leads” that 
can be utilized to quantify and correct the systemic contribution 

of blood flow in the superficial tissues to the neurovascular re-
sponse; see Pfeifer et al.  (2018) for a recent discussion of signal 
processing protocols using fNIRS. The graph-theoretic measures 
used in the study were based upon a matrix of partial correlations, 
which has limitations as an index of connectivity; specifically, they 
only incorporate bivariate association and cannot account for rela-
tionships between cortical sites that occur with time lags (Baccalá 
& Sameshima,  2001). Alternative approaches, such as dynamic 
causal modeling (Stephan & Friston, 2010) and Granger causality 
modeling (Seth et al., 2015), do not suffer from these shortcom-
ings and may represent superior measures of fNIRS connectivity, 
for example, Sun et al. (2019)

Head movement represents a significant source of potential 
confounding for the fNIRS signal, particularly in combination with a 
frontal montage and participants being able to tilt the head longitu-
dinally, which could potentially elevating blood flow and CBSI_HbO 
when the head is tilted downwards (Cui et al., 2015). This confound is 
particularly of concern when participants performed the distraction 
task and were forced to switch their gaze from the ECDIS display and 
the forward view. It could be argued that increased CBSI_HbO ob-
served during decision1 and decision2 for the group performing the 
distraction task (Figure 5) may have been strongly influenced by re-
peated up/down head movements. In hindsight, the placement of an 
accelerometer on the head of the participant would permit these ep-
isodes to be identified, corrected, or removed during the data anal-
yses. The fNIRS montage was also limited in at least two aspects: (1) 
The montage sacrificed coverage of the cortex for resolution of the 
PFC, and an increased number of channels in other locations (e.g., 
central, parietal, and occipital) would have provided greater context, 
particularly for identifying unique patterns of frontal connectivity; 
and (2) the spatial placement of the optodes was based upon the 
10/20 system and should be regarded as highly approximate given 
differences in skull size, shape, etc. In order to improve the fidelity of 
the study while enhancing ecological validity, it is essential to com-
pensate for the influence of real-world factors on the fNIRS signal 
(Ayaz et  al.,  2013) and derive signal processing protocols (Kamran 
et al., 2016) that permit this method to be utilized with confidence in 
naturalistic settings (Pinti et al., 2019).

The current study introduced several issues that would ben-
efit from further study and investigation. Bridge simulators are 
generally used in the maritime industry for purposes of training, 
and there is little standardization of scenarios. If we wish to use 
these facilities to study maritime operations systematically, it 
is crucial to develop simulator scenarios that (a) incorporate re-
al-world complexity, (b) mimic operations and procedures that 
are associated with errors and accidents in the real world, and (c) 
capture demands concerning multiple individuals working within 
teams, including the inherent hierarchy within those teams. It is 
also crucial to design scenarios within the simulation that are fully 
representative with respect to capturing the duration and variety 
of demands that are encountered during actual maritime opera-
tions. The incorporation of techniques like fNIRS into this type of 
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task simulation represents the first step in a trajectory of research 
within the maritime domain that encompasses: (a) hyperscanning 
research to assess teamwork, that is, collecting neurophysiologi-
cal signals simultaneously from two individuals working collabo-
ratively in a safety-critical environment (Toppi et  al.,  2016), and 
(b) the utilization of fNIRS as an implicit measure of operator at-
tention during system automation, that is, when no behavioral re-
sponse is required from the operator (Verdière et al., 2018).

Concerning future work and developments in this area of re-
search, some aspects of the current study deserve further comment. 
The field of neuroergonomics (Ayaz & Dehais, 2019; Parasuraman & 
Rizzo, 2008) is based upon an implicit assumption that the integration 
of neuroscientific methods into human factors research will enhance 
our understanding of safety-critical performance (Hancock,  2019; 
Parasuraman, 2003). In order for this initiative to deliver on this po-
tential, neuroscientific models must be explored within the context 
of real-world behavior, for example, such as Koechlin’s model of cog-
nitive control in the current work (Koechlin & Summerfield, 2007). 
This process of neuroscientific inference can be challenging, and ap-
plication of these methods into applied, operational environments 
presents an additional level of complexity concerning data inter-
pretation. Secondly, for neuroscientific methods to have sufficient 
relevance for human factors research, neurophysiology must make 
a contribution to our understanding of safety and human–machine 
interaction that is both significant and unique. Measuring the brain 
at work is relatively straightforward with modern sensor technology, 
but imbuing these methods with explanatory power and predictive 
capability remains a challenge for this emerging field. The current 
study demonstrated a significant association between functional 
connectivity and behavioral outcomes in a safety-critical task, which 
provides an empirical demonstration of the potential utility of neu-
rophysiological assessment in operational settings. If this finding can 
be replicated and expanded, that is, see Ayaz et al. (2019) for a sim-
ilar initiative, neuroscientific methods will enhance our understand-
ing of safety-critical behaviors and deliver practical benefits for 
operator training, design of technology, and operational protocols.

To conclude, the current study measured neurovascular acti-
vation and functional connectivity in the context of ship bridge 
operations. Increased activation of the right lateral PFC, reduced 
connection density, and a higher level of local clustering across a 
frontal montage of fifteen channels were associated with action se-
lection in comparison with the earlier watchkeeping period of vigi-
lant attention. Activity in the right lateral PFC and the level of local 
clustering declined across the watchkeeping period for participants. 
The study also demonstrated a significant association between met-
rics of frontal connectivity (i.e., connection density) and behavioral 
responses to a safety-critical scenario.
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