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ABSTRACT
We evaluate the ability of convolutional neural networks (CNNs) to predict galaxy cluster masses in the BAHAMAS
hydrodynamical simulations. We train four separate single-channel networks using: stellar mass, soft X-ray flux, bolometric
X-ray flux, and the Compton y parameter as observational tracers, respectively. Our training set consists of ∼4800 synthetic
cluster images generated from the simulation, while an additional ∼3200 images form a validation set and a test set, each with
1600 images. In order to mimic real observation, these images also contain uncorrelated structures located within 50 Mpc in
front and behind clusters and seen in projection, as well as instrumental systematics including noise and smoothing. In addition
to CNNs for all the four observables, we also train a ‘multichannel’ CNN by combining the four observational tracers. The
learning curves of all the five CNNs converge within 1000 epochs. The resulting predictions are especially precise for halo
masses in the range 1013.25 M� < M < 1014.5 M�, where all five networks produce mean mass biases of order ≈1 per cent with
a scatter of �20 per cent. The network trained with Compton y parameter maps yields the most precise predictions. We interpret
the network’s behaviour using two diagnostic tests to determine which features are used to predict cluster mass. The CNNs
trained with stellar mass images detect galaxies (not surprisingly), while CNNs trained with gas-based tracers utilize the shape
of the signal to estimate cluster mass.

Key words: hydrodynamics – galaxies: clusters: general – galaxies: groups: general – dark matter – large-scale structure of
Universe.

1 IN T RO D U C T I O N

Galaxy groups and clusters are collections of several up to thousands
of galaxies that are bound by their mutual gravity. With masses in the
range of 1013–1015 M�, they are the most massive collapsed objects in
the Universe. Their abundance, distribution, and morphology depend
both on local physical processes and the underlying cosmological
model. Stars typically comprise about 1 per cent of a cluster’s mass
(e.g. Leauthaud et al. 2011; Zu & Mandelbaum 2015), while hot gas
contributes anywhere from ≈7 to 13 per cent (depending on cluster
mass; e.g. Allen, Schmidt & Fabian 2002; Pratt et al. 2009; Sun et al.
2009), with the remainder residing in a dark matter halo.

The cluster mass function is a particularly sensitive probe of
cosmological parameters and the evolutionary history of large-scale
structure (e.g. Voit 2005; Allen, Evrard & Mantz 2011; Planck
Collaboration XXIV 2016). However, it is difficult to precisely
and accurately measure cluster masses directly because they are
dominated by dark matter. Masses can be inferred from weak
gravitational lensing data (e.g. Umetsu 2010; Shan et al. 2012; von
der Linden et al. 2014; Hoekstra et al. 2015), but the current signal-
to-noise ratio of such observations limits the precision of individual
cluster masses to typically (at least) tens of per cent. This is not

� E-mail: yanza15@phas.ubc.ca (ZY); waerbeke@phas.ubc.ca (LVW)

sufficiently precise to be used directly for precision cosmology (via
the mass function), but weak lensing is still a very important probe
because it can be used to calibrate the mean bias1 of other tracers
whose system-to-system scatter is lower. Examples of such tracers
include the total stellar mass or cluster richness, X-ray emission in
the form of thermal bremsstrahlung and recombination lines from the
hot intracluster medium (ICM), and the tSZ effect (i.e. the inverse
Compton scattering of cosmic microwave background photons off
hot ICM electrons as they pass through clusters).

Note that X-ray emission itself can be used to infer mass by
combining spectroscopic measurements of the temperature profile
with surface brightness measurements that strongly constrain the
density profile, allowing one to infer a mass under the assumption
of hydrostatic equilibrium. How well this assumption holds is
currently a subject of strong debate, with the level of deviation
from hydrostatic equilibrium having been estimated to be any-
where from 40 per cent (i.e. the hydrostatic mass underestimates
the true mass by this amount; e.g. von der Linden et al. 2014)
to only � 5 per cent (e.g. Melin & Bartlett 2015; Smith et al.

1It has been shown from mock analyses of weak lensing observations of sim-
ulated clusters that weak lensing mass measurements yield a nearly unbiased
mean mass estimate (e.g. Becker & Kravtsov 2011; Bahé, McCarthy & King
2012).
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2016). The Halo Occupation Distribution (Peacock & Smith 2000;
Seljak 2000) model links halo mass with galaxy properties. Moster
et al. (2010) study relations between stellar mass and halo mass.
The thermal Sunyaev-Zel’dovich (tSZ) effect is also known to be
related to cluster masses through Y500−M500 relation where Y500

is the Compton y parameter within r500(Melin et al. 2011). These
studies link stellar mass, X-ray luminosity, and tSZ with cluster
mass, which suggests that they are an important supplement to
gravitational lensing to estimate cluster masses and probe cluster
physics.

Large-scale hydrodynamical simulations are playing an increas-
ingly important role in calibrating the inference of cluster masses
from observational data. These simulations are now capable of
capturing gravitational and gas dynamics on cosmological scales
and can therefore provide large samples of realistic clusters in
order to assess mass inferences statistically. They also aid in
understanding systematic effects that may hinder these inferences
(see Borgani & Kravtsov 2011 for a review of hydrodynamical
simulations). However, even with these simulations, the complexities
of substructure, morphology, and small-scale physical processes,
such as active galactic nuclei (AGN) feedback (Gitti, Brighenti &
McNamara 2012) and gas clumping (Nagai & Lau 2011), hinder
the accuracy of many cluster mass estimates. Yan et al. (2020)
used hydrodynamical simulations to assess the effect of cluster
miscentring on mass determinations.

Machine learning (ML) is a technique in which computer systems
learn to analyse data without using explicit instructions or model
parametrizations but instead are ‘trained’ to make decisions based
on properties of the data itself. In astronomy, ML algorithms such
as linear regression, decision tree, random forest, and Principal
Component Analysis have been widely used in model fitting and
feature extraction [see Baron (2019) for a review].

Artificial Neural Networks (ANNs) are a popular class of ML
tools inspired by the way in which biological nervous systems, such
as the brain, process information. ANNs use a hierarchy of simple
functions, called activation functions, to construct a highly non-linear
function. Given their ability to mimic complicated functions, ANNs
form the basis of many voice recognition and image identification
tools. A Convolutional Neural Network (CNN) is a category of
ANN that is particularly useful in the field of object identification
and image classification. CNNs have been used by astronomers to
classify galaxy morphology (Banerji et al. 2010), to identify lensing
shear (Lanusse et al. 2017), to generate cosmic webs (Rodrı́guez
et al. 2018), and to directly constrain cosmological parameters (Ribli,
Pataki & Csabai 2019).

Cohn & Battaglia (2020) and Armitage, Kay & Barnes (2019)
use multiple machine-learning algorithms to estimate cluster mass
from a set of observable quantities. Green et al. (2019) use X-ray
observational parameters, Ntampaka et al. (2019) use mock X-ray
images, and Gupta & Reichardt (2020) use simulated microwave sky
to train neural networks to predict cluster mass. Here, we extend
their work and utilize CNNs to predict cluster masses from stellar
mass data, X-ray data, Compton y data, and from combinations of
them. The test data are the BAHAMAS hydrodynamical simulations
(McCarthy et al. 2017). We choose M200 as the proxy for cluster mass.
This is the total mass within the characteristic radius r200, the radius
at which the cluster density falls to 200 times the critical density of
the (simulated) universe.

The structure of this paper is as follows: Section 2 describes the
simulation data and the setup of our CNN; Section 3 presents our
results; Section 4 describes a test to understand the behaviour of the
CNN; and Section 5 presents our conclusions.

Figure 1. The mass distribution of galaxy clusters that we analyse from the
BAHAMAS simulation.

2 DATA A N D M E T H O D

2.1 The BAHAMAS simulation

We employ data from the BAHAMAS (BAryons and Haloes of
MAssive Systems, McCarthy et al. 2017, 2018) simulations. BA-
HAMAS is a suite of cosmological, hydrodynamical simulations run
using a modified version of the TreePM SPH code GADGET3. The
simulations consist of 400 cMpc/h periodic boxes containing 2 ×
10243 particles (with equal numbers of dark matter and baryonic
particles). The run we use adopts the WMAP 9-yr best-fitting
cosmology with massless neutrinos (Hinshaw et al. 2013).

BAHAMAS includes subgrid treatments of important physical
processes that cannot be directly resolved in the simulations, in-
cluding metal-dependent radiative cooling, star formation, stellar
evolution and mass loss, black hole formation and growth, and stellar
and AGN feedback. The subgrid models were developed as part of
the OWLS project (Schaye et al. 2010). The parameters governing
the efficiencies of AGN and stellar feedback were adjusted so that
the simulations approximately reproduce the observed galaxy stellar
mass function for M∗ ≥ 1010 M� and the hot gas fraction–halo mass
relation of groups and clusters, as determined from high-resolution
X-ray observations of local systems. As shown in McCarthy et al.
(2017), the simulations match the galaxy–halo–tSZ–X-ray scaling
relations of galaxies and groups and clusters.

For the present study, friends-of-friends haloes are selected from
the dark matter-only simulation that accompanies the BAHAMAS
hydrodynamical simulations.2 We select up to 200 haloes in each of
10 mass bins of width of 0.25 dex, spanning the range M200 = 1013 −
1015 M�, resulting in a sample of almost 2000 haloes (some bins
have slightly fewer than 200 haloes). This sample is then matched to
the BAHAMAS hydrodynamical simulation. The resulting number
distribution of clusters as a function of mass is shown in Fig. 1. The
distribution is not perfectly flat because the hydrodynamical masses
are different from the underlying dark matter-only masses.

We tag all particles (gas, dark matter, and stellar) within 2r200 of
the most bound particle for analysis. We also generate a catalogue

2We select haloes from a dark matter-only simulation so as to facilitate com-
parisons with hydrodynamical runs that vary feedback and the cosmological
model.
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Galaxy cluster mass CNN 3447

of simulated galaxies within this radius that have Mgal > 1010 M�.
(Simulated galaxies are defined as the stellar component of self-
gravitating substructures identified with the SUBFIND algorithm.)

The soft and bolometric X-ray luminosity of each gas particle is
provided with the simulation. For the tSZ signal, a quantity ϒ is
calculated for each gas particle (McCarthy et al. 2018),

ϒ ≡ σT
kbT

mec2

m

μemH
, (1)

where T is the gas particle’s temperature, m is the gas particle’s
mass, μe is the mean molecular weight per free electron of each gas
particle, and mH is the atomic mass of hydrogen.

2.2 Data set and image generation

The data sets used to train the neural networks are images of each of
the four observables derived from the simulated cluster sample. The
simulated clusters are provided at redshift 0, but we place them at
random redshifts between 0.03 and 0.07 (with a uniform distribution)
when we produce images. The cluster catalogue contains ∼2000
clusters, but this is insufficient to train the neural network to the
desired level of precision. To overcome this, we generate four images
of each cluster by projecting along four different directions: x-, y-,
z-axis and along (

√
2/2, −√

2/2, 0). To make the images of same
cluster look more different, we rotate it with a random azimuthal
angle before projecting. To properly include the correlated structure
and foreground contamination, which are difficult to remove in real
observation, we also project all the particles within 50 Mpc in front
and 50 Mpc behind each cluster to the images. To make the images of
the same cluster look more different from each other, all the clusters
are rotated with a random angle around the line of sight before
projection. In the end, we have ∼8000 clusters at different redshifts
with which to train the neural networks.

The image of each cluster is made by projecting it on to the x–y
plane and binning the particles on to a 120 × 120 grid with an overall
angular size of 20 arcmin. For a cluster at redshift z, the signal in
pixel (i, j) for each observable is obtained as follows.

2.2.1 Stellar density

We evaluate the stellar surface density in each pixel as

Iij =
∑
p∈(i,j)

Ms(rp)/S, (2)

where the sum is over all stellar particles that project into pixel (i, j),
Ms(rp) is the stellar mass of particle p (located at position rp with
respect to the cluster centre), and S is the physical area of pixel (i, j).
The angular coordinates of pixel (i, j) are

θp = (xp, yp)/dA(z), (3)

where (xp, yp) are the x and y components of rp and dA(z) is the
angular diameter distance to redsfhit z.

2.2.2 X-ray emission

We convert luminosity into flux using F = L/4πdL(z), where dL(z)
is the luminosity distance to redshift z. The signal in pixel (i, j) is the
flux due to all gas particles that project into that pixel,

Iij =
∑
p∈(i,j)

F (rp) =
∑
p∈(i,j)

L(rp)

4π dL(z)
. (4)

Table 1. Simulated data set properties. The labels are used throughout this
paper.

Signal Label Units Noise Beam
(rms) (FWHM)

Stellar mass Star M� 2.14 × 1011 –
Soft X-ray Fxs erg/s/cm2 9 × 10−16 4′′

Bolometric X-ray Fxb erg/s/cm2 9 × 10−16 4′′

Compton y Ypar – 10−8 1.4′

2.2.3 Compton y parameter

The signal in pixel (i, j) is obtained by summing ϒ /S (McCarthy
et al. 2018) over all gas particles that project into that pixel,

Iij =
∑
p∈(i,j)

ϒ(rp)/S. (5)

For low-mass clusters (those with 2θ200 < 20′), all cluster particles
reside within the image, while for high-mass clusters, some particles
extend outside the image and are lost. Our choice of image size
strikes a balance between performance and computation time.

In order to mimic realistic data, we add noise to our images and
smooth them to mimic a telescope point spread function. For stellar
images, we take the rms to be 1/10 the mean mass across the whole
sample giving a signal-to-noise ratio roughly 10, which mimics
an SDSS-like observation(Abazajian et al. 2009). No smoothing
is applied since most optical telescopes have a beam size smaller
than our pixel size. The gas-based images have Gaussian random
noise added and are then smoothed with a Gaussian beam. For the
X-ray images, the rms noise and beam size are chosen to match the
Chandra HRI sensitivity and full width at half-maximum (FWHM),
respectively (Abazajian et al. 2009). For the Compton y image, the
rms noise is taken to be 10−8 per pixel and the beam FWHM is
1.4 arcmin, corresponding to an ACT-like experiment (Hasselfield
et al. 2013). We have also considered a Planck-like experiment
with rms noise 10−6 and an FWHM of 9.66 arcmin (Aghanim
et al. 2016), but the CNN performed quite poorly in this case. The
parameters discussed above are summarized in Table 1. Images of
each observable, in four clusters selected to have different masses,
are shown in Fig. 2.

2.3 Artificial Neural Network

An ANN is a function that maps inputs to outputs,

ANN (I ) = O, (6)

where I is the input and O is the output. In practice, the inputs can
be images, sounds, text, etc., and the output can be a parameter to
measure, a classification, and so on. A typical ANN is a sequential
nest of functions that are defined on each layer of the network. In the
simplest case of a feed-forward neural network, the neuron layers
are evaluated in sequence, passing information from layer to layer.
The output, al

k , of the k-th neuron in the l-th layer may be written as

al
k = f

⎛
⎝∑

j

W l
jka

l−1
j + bl

k

⎞
⎠ , (7)

where f is called an activation function (our choice of f is defined
in the following section), Wl

jk is a matrix of weights, and bl
k is a

vector of additive biases. a0
k is the input data, I, and a in the last

layer is the output, O. Schematically, Wl
jk connects the j-th neuron

MNRAS 499, 3445–3458 (2020)
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3448 Z. Yan et al.

Figure 2. Selected cluster images from the BAHAMAS simulation. Each row is a cluster drawn from a different mass range, as indicated, and each column is
a different observable: stellar density, soft X-ray luminosity, bolometric X-ray luminosity, and Compton y parameter. The colour scales are the same across the
mass range (rows). The angular size of all the images is 20 arcmin.

in layer (l − 1) to the k-th neuron in layer l. The number of neurons
and layers, or equivalently, the dimensions of Wl

jk and bl
k are called

the architecture of the ANN. Given the architecture and activation
functions, the ANN is completely specified Wl

jk and bl
k .

ANN training is a fitting procedure to determine the parameters W
and b required to reproduce known information (so-called ‘labels’)
from data. The labels can be categories (for a classification task) or
quantities (for a regression task), and so on. For example, an ANN
designed to recognize hand-written numbers is a classifier that takes

hand-written images of numbers as input and generates numbers as
output labels.

ANN training involves iteratively optimizing the weights so as
to minimize the difference between the output labels and the known
labels, as quantified by the loss function. The ANN is initialized
with random weights and biases and then, during each iteration
(‘epoch’), the training data are provided to the ANN and outputs are
predicted from them. The weights and biases are updated to reduce
the loss function by an algorithm called an optimizer. The training is

MNRAS 499, 3445–3458 (2020)
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complete when the loss function converges. In order to validate the
model, a ‘validation set’ (whose labels are also known) is needed.
The loss function is calculated on the validation set during each
epoch to monitor the training. The training is considered to be
finished when the validation loss converges. After that, a ‘test set’
is then supplied to the ANN. If the ANN gives accurate predictions
for the test set, then one can safely use it to predict labels from data
whose labels are not known.

2.4 Convolutional Neural Network

In our analysis, we use a category of ANN called a Convolutional
Neural Network (CNN) (see, for example, Aloysius & Geetha 2017
for a review on CNN). The typical input of a CNN is a two-
dimensional image, and the CNN uses convolution layers to extract
features from them (for example, textures, edges, gradual changes,
and so on). Unlike fully connected layers, in which each neuron
is connected to each of the previous neurons, convolutional layers
pass forward information from a small neighbourhood around each
neuron. A convolution layer comprises several filters, which are
smaller than the input image. The filtered image is given by

IF
ij =

∑
i′j ′

Fi′j ′Ii+i′,j+j ′ , (8)

where the sum runs over the filter pixels, centred on (i′, j′) =
(0, 0). The output is called a feature image, and within the same
convolutional layer, different filters extract different kinds of features
(for example, horizontal and vertical textures). The parameters in a
filter define a set of weights that are optimized during training. The
feature images are downsized into a ‘pooling layer’, so the feature
images get smaller as they pass through convolution-pooling layers.
Different convolution layers can be designed to extract information
on different scales by tuning the filter size and the feature image size.
In our analysis, we take 3 × 3 square filters, which means in equation
(8), i′ and j′ take the value {−1, 0, 1}. The pooling filter is 2 × 2 with
a stride of 2 pixels. This means that each pixel in the pooling layer
is the average of a 2 × 2 patch in the previous feature image with
a stride of 2 pixels. This process is called ‘average pooling’, which
downsizes the feature image by a factor of 2. As the feature images are
downsized from layer to layer, the deeper convolution layers extract
larger scale features. By using convolution and pooling layers, one
can also reduce the computational cost and make the result easier
to interpret. A sequence of convolution-pooling layers is flattened
into a one-dimensional layer, followed by fully connected layers to
further parametrize the features.

In our application, we utilize a CNN to predict cluster masses, so
the output layer is a single neuron: the cluster mass. In the training set,
we label each cluster with the M200 value calculated by summing the
masses of all simulated particles within r200 of the cluster centre. In
the rest of this paper, we denote this value as Mtrue, and we denote the
CNN-predicted mass by Mpred. For each training run, we randomly
select images of ∼ 4800 (60 per cent) simulated clusters as the train-
ing set, ∼ 1600 (20 per cent) as the validation set and the remaining
∼ 1600 (20 per cent) as the test set. The training and testing sets are
carefully split so that we never train on a simulated cluster and then
test on the same cluster as viewed from a different angle.

We train the four ‘single-channel’ CNNs with the four data sets
described in Table 1. We can write

CNNc
(
I c
ij

) = Mpred (9)

where I c
ij is the image of tracer c ∈ {Star, Fxs, Fxb, Ypar}, (i, j) is

the 2D pixel index, and Mpred is the predicted M200. To assess the

advantage of multiple tracers, we also train a ‘multichannel’ CNN,
denoted CNNmc, by simultaneously feeding all four data sets into one
neural network,

CNNmc
(
I Star
ij , I Fxs

ij , I Fxb
ij , I

Ypar
ij

)
= Mpred. (10)

For each layer except the output layer, we use the Rectified Linear
Unit as our activation function (Nair & Hinton 2010). This is defined
as f(x) ≡ max {0, x}. To prevent over-fitting, we force a 20 per cent
dropout between fully connected layers (Srivastava et al. 2014),
which means that, for each training epoch, 20 per cent of the weights
(randomly selected) between those layers are set to zero. A dropout
fraction slows down the training, so we chose this value to prevent
over-fitting while keeping the training fairly fast. For the output layer,
we use the mean-squared logarithmic error as our loss function,
defined as

δ ≡
〈(

log Mpred − log Mtrue

)2
〉

. (11)

During training, the loss function of the validation set (the so-called
validation loss) is calculated in each epoch to monitor the progress
of the training. Our convergence criterion is discussed below.

Our CNN is implemented using the keras package with a Ten-
sorflow back end written in PYTHON. Our network architecture is
similar to that used by Ntampaka et al. (2019), which is a simplified
version of that used by Simonyan & Zisserman (2014):

(1) 3 × 3 convolution with 16 filters
(2) 2 × 2, stride-2 average pooling
(3) 3 × 3 convolution with 32 filters
(4) 2 × 2, stride-2 average pooling
(5) 3 × 3 convolution with 64 filters
(6) 2 × 2, stride-2 average pooling
(7) Flatten
(8) Fully connected with 200 neurons
(9) 10 per cent dropout
(10) Fully connected with 100 neurons
(11) 10 per cent dropout
(12) Fully connected with 100 neurons
(13) 10 per cent dropout
(14) Fully connected with 20 neurons
(15) Output neuron

For our multichannel network, each data channel is convolved,
pooled, and flattened separately, using the same architecture as the
single-channel network. As shown in Fig. 3(b), the flattened layers
from each channel are concatenated into one flattened layer, followed
by fully connected layers with the same architecture as the single-
channel network.

We use RMSprop (Hinton, Srivastava & Swersky 2012) as our
optimizer because it converges quickly in this application. We set
the learning rate (the step size in the parameter space) to be 0.01
with decay rate of 10−4. We tested other combinations of optimizers
and learning rates, but this choice gave the best performance. The
training data are divided into batches of 50 images each. In one
training epoch, the network is trained through each batch separately,
and the CNN weights are obtained by averaging over all batches.
Each network was trained for 1000 epochs on 2 GPUs with 6 CPUs.
The training took about 20 min for a single-channel network, and
45 min for the multichannel network.

Fig. 4 shows the ‘learning curve’ (validation loss as a function of
training epoch) for each of our CNNs. During training, the validation

MNRAS 499, 3445–3458 (2020)
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3450 Z. Yan et al.

Figure 3. Upper panel: Architecture of the single-channel CNN used in this analysis. Our network utilizes three convolutional and pooling layers for feature
extraction and four fully connected layers for parameter estimation. Lower panel: Architecture of the multichannel CNN. The four channels take images: Star,
Fxs, Fxb, and Ypar, respectively, and perform feature extraction independently. The feature extraction layers have the same structure as the single-channel
portion outlined in the upper panel.

Figure 4. The learning curves for each of our five CNNs as a function of
training epoch. The y-axis is the loss function on the validation set defined in
equation (11).

loss drops quickly at first and then converges after ∼600 epochs. The
final CNN weights are taken to be those that gave the minimum
validation loss during training.

3 R ESULTS

Our cluster mass predictions are shown in Fig. 5. For each cluster
in the test set, we show the CNN-predicted mass versus the true
M200 measured in the simulation. In this rendition, all five data sets
produce similar results. Fig. 6 shows the fractional mass bias for
each tracer as a function of the true mass. From Fig. 6, we see a
clear tendency that the CNN generally over-predicts the mass by
∼20 per cent in the lowest mass bin, while it under-predicts the
mass by ∼10 per cent in the highest mass bin. The is due to the fact
that for these extreme masses, there are not enough samples, so the
CNNs tend to predict towards the mean mass of the whole sample.
To mitigate this ‘towards-the-mean’ bias, one needs to extend the
mass range of training set than the test set, or alternatively, only trust
the results of test clusters with masses close to the mean.

MNRAS 499, 3445–3458 (2020)
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Galaxy cluster mass CNN 3451

Figure 5. The CNN-predicted cluster mass versus the true mass for each cluster in the test set. Each tracer is shown separately for clarity.

Figure 6. The bias in our CNN-predicted cluster masses as a function of
the true mass for each tracer. The plotted uncertainties show the standard
deviation of the bias in each bin. The bias is small within the central mass
range of 13.25 < log (M200, true/M�) < 14.5 (the shaded region).

Within the central mass range of 13.25 < log (M200, true/M�) < 14.5
(the shaded region in Fig. 6), the mass bias is quite small. Histograms
of the mass bias in these central bins are shown in Fig. 7. Each tracer
is plotted as a separate colour, with the gas-based tracers plotted as
dashed curves, for clarity. A summary of our numerical results, both
the average bias and the rms scatter, is given in Table 2.

The average mass bias, �M/Mtrue, in the central mass bins is on
the order of 1 per cent with an uncertainty of ∼0.5 per cent. The

Figure 7. The probability distribution of the mass bias for each tracer for
mass bins in the range 13.25 < log (M200, true/M�) < 14.5 (the shaded region
in Fig. 6).

uncertainty per individual cluster is of order 15 per cent (Table 2).
Somewhat surprisingly, the multichannel network is not the most
precise. We assume that this is due to limitations in the CNN
architecture to synthesize information across all four tracers.

Armitage et al. (2019) apply an ML method on cluster masses
and report a 7 per cent mass scatter. However, they use multiple
observables derived from simulations to train their model. These
observables may suffer from uncertainty in real observation. In
addition, they do not include observational effects such as instrument

MNRAS 499, 3445–3458 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/3/3445/5917093 by Liverpool John M
oores U

niversity user on 09 N
ovem

ber 2020



3452 Z. Yan et al.

Table 2. The mean mass bias (�M ≡ Mpred − Mtrue) and scatter obtained
from the test set for 13.25 < log (M200, true/M�) < 14.5.

Data set
〈

log
Mpredict
Mtrue

〉 〈
Mpredict
Mtrue

〉
− 1(%) 〈rms〉

Star − 0.01 ± 0.003 − 0.516 ± 0.621 19.028
Fxs − 0.007 ± 0.002 − 0.349 ± 0.517 16.49
Fxb − 0.004 ± 0.002 0.094 ± 0.524 16.036
Ypar 0.002 ± 0.002 1.814 ± 0.559 17.662
Multichannel − 0.001 ± 0.002 1.075 ± 0.575 17.693

noise or beams, which will degrade the performance of the mass
estimation. Henson et al. (2016) evaluate the performance of
conventional mass estimation techniques applied to the BAHAMAS
hydrodynamical simulations. They fit azimuthally averaged shear
profile of each simulated cluster with both NFW and Einasto
models with the cluster mass as a free parameter. By comparing
best-fitting mass with the true cluster mass, they find mass biases
of �M/Mtrue = −8.9+0.3

−0.2 per cent, and −6.4+0.3
−0.2 per cent for the

NFW and Einasto profile, respectively. Yan et al. (2020) anal-
yse the same BAHAMAS catalogue by fitting an NFW model
to the density profile of all particles in a cluster and found a
mean mass bias of −10 per cent. These studies are based on
weak lensing profiles, which is an unbiased tracer of the cluster
masses, while the present study uses biased tracers like galaxy or
gas. Moreover, the previous studies do not include observational
effects such as noise and smoothing. We conclude that our CNN-
based results are more accurate than these profile-based analy-
ses performed on the same hydrodynamical simulation even with
biased tracers, possibly due to limitations in the profile models
they use. As we will see in the next section, CNN is capable of
extracting shapes, orientations, and substructures from 2D clus-
ter images, which contains more information about the cluster
masses.

As a reference to real observation, Zhang et al. (2008) use scale
relations of X-ray observations to evaluate real cluster masses and get
an individual mass uncertainty of ∼ 30 per cent; Bleem et al. (2015)
also use scale relation of tSZ signal to estimate mass for South
Pole Telescope (SPT) galaxy clusters and get a mass uncertainty
of ∼ 24 per cent for each cluster. Hoekstra et al. (2015) use weak
lensing techniques to evaluate the masses of clusters. They estimate
an uncertainty of about 20 per cent which, if correct, indicates that
the precision of our CNN-based method is not significantly better
than weak lensing analysis. However, the weak lensing analysis is
generally performed on more massive clusters that are not readily
available in our simulation, so the comparison is not completely apt.

There are three causes of the mass bias of our CNN prediction:
(1) the underlying scatter between cluster mass and morphology
correlation; (2) the observational biases caused by smoothing and
noise; and (3) the imperfection of our CNN algorithm. The first
cause is not able to overcome by observation; the second one could
be suppressed by carefully handling instrument systematics; the third
one could be suppressed by improving the CNN architecture and
training setup. In addition, to apply this method on real observation,
one needs to take care of the difference between simulation and
observation. This can be done by either comparing simulated galaxy
clusters with real clusters or introducing real data in the testing set,
which are left for future work.

In order to evaluate the impact of the foreground and background
interlopers, we also train a set of CNNs with images that do not
have fore- and background. The scatter of mass bias is lower than
our fiducial results by ∼ 2 per cent. This indicates that the presence

of uncorrelated structure along the line of sight has only a marginal
impact on our results.

4 IN T E R P R E T I N G TH E C N N P E R F O R M A N C E

Cluster masses are traditionally estimated using scaling relations
based on known physics. For example, in relaxed clusters, X-ray
luminosity is related to cluster mass via the virial theorem. In contrast,
neural networks contain a large number of parameters, which makes
their behaviour difficult to interpret. What makes the network predict
a particular value of mass? What cluster feature(s) is it sensitive to?
In this section, we attempt to interpret our single-channel networks
in two ways.

4.1 Deep Dream

Google’s Deep Dream (DD) (Mordvintsev, Olah & Tyka 2015) is an
iterative, gradient ascent algorithm that is applied to an input image
to determine which image pixels affect a particular output neuron the
most. In our application, we have one output neuron, Mpred, so DD
may be expressed in the form

I
(p)
ij = I

(p−1)
ij + α

∂Mpred

∂Iij

∣∣∣∣
I (p−1)

, (12)

where I
(p)
ij is the image at the p-th iteration of the algorithm, and α is

the step size. For small α, the difference between successive image
iterations is proportional to the gradient of Mpred with respect to the
image.

We ran one iteration of DD for each data tracer, selecting images
from a range of true cluster masses. (We also ran two iterations,
as did Ntampaka et al. (2019), and found similar results.) The
gradient images for these examples are shown in the middle columns
of Figs 8–11. In the stellar mass examples, the pixels that affect the
predicted mass the most (rendered in yellow) appear to lie mostly
adjacent to the galaxy locations. This suggests that CNNstar is mainly
triggering on the number and the size of galaxies in the image.

The gas-based tracers are more diffuse and symmetric, and this
is reflected in the DD gradient images. For the X-ray tracers, the
gradient images are quite granular, reflecting the granularity of the
input images. But the critical information captured by the CNNs
appears to be the shape of a cluster. For example, in the third row
of Fig. 9, we see that the Fxs image has substructure at the top-right,
which is also seen in the gradient image. The central regions appear
to be relatively uninformative, in agreement with the conclusions of
Ntampaka et al. (2019). In addition, the lack of sensitivity of the
central region with the DD images generally mimics the shape of
the cluster itself (it is clear, for instance, in the lowest two rows of
Fig. 10). For the Compton y images, the DD gradient images show
two contours at different radius for massive clusters, both sketching
the outskirt of the cluster without the fine granularity seen in the
X-ray tracers.

4.2 Gaussian mask

A somewhat complimentary approach to interpreting the CNN
performance is to examine the predicted mass when selected regions
of the image are masked. For this study, we define a Gaussian mask
in the image plane as

Maskij = 1 − exp

[
− (i − a)2 + (j − b)2

2σ 2

]
, (13)
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Figure 8. Left column: stellar mass images of four galaxy clusters selected to cover our mass range; middle column: the relative signal change, ∝ �Mpred, after
two Deep Dream iterations; right column: the signal change, �Mpred, when masking the image with a Gaussian mask centred, in turn, on each image pixel (see
text for details). The inner black circles indicate 0.15R200, while the outer circles indicate R200. The red circles highlight galaxy positions, with radii that are
proportional to the galaxy’s mass.

where a and b define the centre of the mask in pixel coordinates, and
we take σ = 5 pixels, corresponding to 1.25 arcmin for our images.
For each a and b in the image plane, we multiply the original image
by this mask and then use the pre-trained CNN to (re)predict the
cluster mass, Mpred(a, b). The results of this test are presented in the

right column of Figs 8–11, in the form of images of �Mpred(a, b), the
change in predicted mass when pixels in the neighbourhood of pixel
(a, b) of the corresponding cluster image are masked. Pixels that
contribute significantly to the original mass estimate will produce a
negative �M when masked.
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Figure 9. Left column: soft X-ray images of four galaxy clusters; middle column: change of signal after two Deep Dream iterations; right column: change of
mass prediction when masking the image with Gaussian masks centred at each pixel. The inner circles show the radius of 0.15R200 and the outer circles R200.

For the stellar images, masking the central galaxy reduces the
predicted mass dramatically, as we might expect. Beyond the central
galaxy, the effects are much less clear. There is some mild anticorre-
lation between the masked image and the DD image, as we might ex-
pect, but these are lower level effects compared to the central region.

For the X-ray-based tracers, the mask analysis shows that the
outskirt of the X-ray data, where the signal gradient is largest,

appears to be the most decisive feature the CNN triggers on.
For Compton y images, the mask analysis shows that the central
region plays an important role but it fails to capture the details
of the cluster. In summary, the mask method generally agrees
with the DD analysis but is less informative, probably because
the mask removes a fairly large region with details about cluster
structure.
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Figure 10. Left column: bolometric X-ray images of four galaxy clusters; middle column: change of signal after two Deep Dream iterations; right column:
change of mass prediction when masking the image with Gaussian masks centred at each pixel. The inner circles show the radius of 0.15R200 and the outer
circles R200.

As with the DD analysis, the CNN seems to be relatively
insensitive to central regions. We attribute this to the observation
that the signal in the central region is more scattered with respect to
cluster mass (Mantz et al. (Maughan 2007; Mantz et al. 2018). We
quantify this by calculating the correlation between the true mass

and Fcent on the one hand, and Fring on the other, where Fcent is the
integrated X-ray signal in the range r < 0.15R200 and Fring is the
integrated signal in the range 0.15R200 < r < R200. The former has
a correlation coefficient of 0.58 while the latter is 0.94 (for both Fxs

and Fxb).
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Figure 11. Left column: y parameter images of four galaxy clusters; middle column: change of signal after two Deep Dream iterations; right column: change
of mass prediction when masking the image with Gaussian masks centred at each pixel. The inner circles show the radius of 0.15R200 and the outer circles R200.

5 C O N C L U S I O N

We construct and train a set of CNNs to predict galaxy cluster
masses and test the network using cluster catalogues derived from the
BAHAMAS hydrodynamical simulations. The clusters used in our
study range in mass from 1012.7 to 1014.8 M�. Using the simulation
data base, we generate mock data sets of stellar mass, soft X-ray flux,
bolometric X-ray flux, and Compton y-parameter images as input,

and train four single-channel networks on each of these observables
independently. Each network has three convolutional layers and three
pooling layers for feature extraction, followed by five fully connected
layers. We also construct a multichannel network that takes all
four data sets as simultaneous input. The multichannel network is
configured to run the four single-channel feature extraction sections
independently. The output is then concatenated and processed by six
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fully connected layers. We train each network with 4800 randomly
selected cluster images and validate our training using ∼1600
validation images. The pre-trained network is then tested with ∼1600
test images.

Our results are presented in Section 3. All five of the networks
successfully learn to predict cluster masses from mock data images.
In the mass range 1013.25 M� < M < 1014.5 M�, our networks pre-
dict the true mass with a mean bias that is of order of 1 per cent.
Outside of this range, our networks tend to over-predict the mass of
low-mass clusters and under-predict the mass of high-mass clusters,
which reflects a tendency towards mean. The per-cluster rms scatter is
∼15 per cent, with the Compton y parameter and soft X-ray networks
giving modestly lower scatter than the rest. This performance is
better than X-ray and tSZ-based analysis like Zhang et al. (2008) and
Bleem et al. (2015) while comparable to the weak lensing analysis
of real data reported by Umetsu et al. (2014). However, we note that
weak lensing profiles bear richer mass information than the tracers
we study, and current weak lensing studies focus on higher mass
clusters. Future work applying CNNs to simulated weak lensing
images would be needed to make a fairer comparison.

Henson et al. (2016) estimate cluster masses in the BAHAMAS
simulation by fitting the weak lensing profiles of all particles with
empirical models. They find a comparable mass bias to ours; however,
they do not include noise, so the results are not directly comparable.
So, we conclude that our method is more accurate than previous
methods that used the same hydrodynamical simulation, although the
overall precision does not improve significantly. Although we have
considered realistic systematics that could affect the performance of
CNN, including beam smoothing, instrumental noise, and additional
structure along the line of sight, systematics in real observations
are generally more complicated than what we have included in our
analysis. Particularly, by introducing fore- and background correlated
signals, the mass scatter gets higher by ∼ 2 per cent. We want to
emphasize that it is important to include such systematics in future
deep learning-related studies concerned with galaxy clusters mass
estimates. We also note that the data set in our analysis is still
idealized compared to real observational data.

We use two diagnostics to interpret the performance of our trained
networks. Both of them aim to identify image features that ‘trigger’
the network to reach a particular conclusion. The stellar mass CNN
clearly detects galaxies and takes them into account when predicting
cluster masses. The gas-based CNNs apparently trigger on the shape
and alignment of the gas, but the details are elusive. For example,
the X-ray-based CNNs treat the cluster outskirts more importantly
than the central region [in agreement with Ntampaka et al. (2019)].
The reason might be that cluster cores are known to be significantly
scattered with mass, so the neural networks choose to ignore the
central region for an optimal prediction. Similar future ML work
could take this fact into account and down weight the central part by
hand (by cutting out central region in pre-processing, for example).

This paper demonstrates a new approach to measuring galaxy
cluster masses, a key parameter for understanding the origin and
evolution of large-scale structure in the universe. We show that a
CNN is capable of recovering cluster masses directly from images
of observable signals, despite the presence of substructure and noise.
Our method does not require a physical model; however, it does
require that one be able to simulate realistic clusters and systematic
measurement errors reliably. Future work might aim to train networks
by combing data from different simulations, or even from real data.
We caution that neural networks are notoriously difficult to interpret,
so future work should aim to better understand the behaviour of
hidden layers of the network.
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