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• The new EC reactor removed 99.9% of
30 mg/l of iron.

• The performance of the new unit was
modelled with R2 of 0.9788.

• The newEC reactor reduced theneed for
external mixing devices.

• The operating cost for the iron removal
using the proposed EC unit was 0.623
£/m3.
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The process of Electrocoagulation (EC), the in-situ production of coagulants by passing an electric current
through sacrificial electrodes, is free of chemical additives and cost-effective. This makes it the most widely
used water and wastewater treatment method. However, the literature highlights some significant drawbacks
of this method including EC unit design limitations. This research therefore aimed to develop a new EC unit de-
sign using drilled plates (electrodes) to mix the solution being treated without using external mixers, this
minimising power consumption. The performance of the new EC unit was validated by applying it to remove
iron from water taking into account the effects of applied current density (ACD), the pH of the water (PoW),
iron concentration (IC) and treatment time (TT). The effects of these parameters were optimised using the
Box-Behnken model. Synthetic water samples containing different concentrations of iron (10-30 mg/l), were
treated in a continuous flow, using the new EC reactor at different ACD (1.5–4.5 mA/cm2), PoW (4–10) and TT
(10–50 min). The results revealed that the removal of 99.9% of iron was achieved by keeping PoW, ACD, IC and
TT at 7, 3 mA/cm2, 10 mg/l and 50 min, respectively. The effects of ACD, POW, IC and TT on iron removal could
be successfully simulated with R2 = 0.9788. The cost of removing iron using the proposed EC unit was 0.623
£/m3.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Environmental pollution is a serious problem that threatens the ex-
istence of humankind and other forms of life on planet Earth (Pandey
and Singh, 2019; Wen et al., 2017). Unfortunately, recent significant
growth in both global population and industry has intensified the prob-
lem of environmental pollution via the production of huge amounts of
t, K. Hashim, et al., Continuo
Environment, https://doi.org
solid wastes and wastewaters (Hashim et al., 2017b). Environmental
pollution has already changed our global climate in turn increasing
water demand and limiting the availability of freshwater (Hashim
et al., 2019; Koop and van Leeuwen, 2017; Zubaidi et al., 2019). At pres-
ent, water polluted by heavy metals represents a serious challenge for
the water industry because of the serious impacts of heavy metals on
both human health and the environment (Bosch et al., 2016). Iron is
one of the heavy metals commonly occurring in surface water and
groundwater (between 0.5 and 50 mg/l) due to its elevated concentra-
tions in the lithosphere and because of the discharge of iron-containing
us-flow electrocoagulation (EC) process for iron removal from water:
/10.1016/j.scitotenv.2020.143417
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wastewater into water resources (Chaturvedi and Dave, 2012). The lit-
erature indicates that iron forms 5% of the chemical composition of
the lithosphere, and it can be found at elevated concentrations in
the effluents of several industries, such as mining and steel indus-
tries (Ityel, 2011). Although iron is an essential element for human
health, excessive concentrations cause a wide range of health prob-
lems, such as cognitive disorder (Hashim et al., 2017b; Yan et al.,
2014). Elevated iron concentration is a cause for concerns for both
industry and the economy this including the development of un-
pleasant odours, laundry staining and unwanted colouring in papers
and textiles (Dahshan et al., 2013; Tang et al., 2013; Yan et al.,
2014). Iron also contributes to pipe clogging as it promotes bacterial
growth inside pipes, resulting in costly maintenance (Chaturvedi
and Dave, 2012; Ityel, 2011). Based on these considerations, the
World Health Organization (WHO) sets 0.3 mg/l as the maximum
allowable concentration of iron in drinking water (Hashim et al.,
2017b).

To meet this limitation, different types of advanced treatment pro-
cesses have been used to remove iron fromwater, such as ion exchange,
activated carbon, supercritical fluid extraction, bioremediation, oxida-
tion by aeration, chlorination and filtration (Bolisetty et al., 2019;
Dahshan et al., 2013; Tang et al., 2013; Yan et al., 2014). Among these
methods, electrocoagulation methods (EC) offer attractive merits, such
as the in-situ generation of coagulants without the need for chemical
additives, ease of operation, low power consumption, requiring less
maintenance in comparison with other methods, and the production
of only a small amount of sludge (Abdulhadi et al., 2019; Doggaz et al.,
2019; Hansen et al., 2019). As such, EC has been used to treat a wide
spectrum of pollutants, in particular, heavy metals (Hashim et al.,
2020b; Hashim et al., 2018).

In this context, the current research investigates the removal of iron
from synthetic water using an aluminium-based electrocoagulation re-
actor, focusing mainly on the influence of applied current density (CD).
The experimental work was carried out under continuous flow con-
ditions at a flow rate of 50 ml/min, initial pH of 6.5, a 5 mm gap be-
tween electrodes and a room temperature of 20 ± 1 °C. The initial
pH of the water samples was kept constant at 6.5 because aluminium
electrodes work efficiently at this value (Chafi et al., 2011; Hashim
et al., 2020a).

2. Electrochemical reactions

When aluminium (Al) is used as an electrode material, the anodes
produce Al3+ ions. These cations instantaneously experience additional
reactions forming various kinds of monomeric and polymeric species,
which also instantly coagulate forming aggregates (Essadki et al.,
2009; Ghosh et al., 2008). These reactions are as follows (Chaturvedi,
2013; Ghosh et al., 2008):
Fig. 1. A) the EC reactor, B)
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At anodes:

Al solidð Þ→Al3þaqueousð Þ þ 3e ð1Þ

At cathodes:

3H2Oþ 3e⇔
3
2
H2↑þ 3OH− ð2Þ

The produced Al3+and OH− will react forming Al(OH)3 as follows:

Al3þ þ 3H2O→Al OHð Þ3 þ 3Hþ ð3Þ

Reactions between Al3+ and hydroxide ions form various alumin-
ium monomeric and polymeric species, such as Al(OH)+2, Al2(OH)24+,
Al7(OH)174+, and Al13O4(OH)247+, according to the pH of the solution
(Ghosh et al., 2008). These species are transformed, according to com-
plex precipitation kinetics, into Al(OH)3(S) (Ghosh et al., 2008).

The removal of iron ions using an aluminium-based EC unit can be
summarised as follows (Chaturvedi andDave, 2012; Ghosh et al., 2008):

Fe2þ þ 1
4

� �
O2 þ Hþ⇔Fe3þ þ 1

2

� �
H2O ð4Þ

H2O⇔Hþ þ OH− ð5Þ

NaCl⇔Naþ þ Cl− ð6Þ

Fe2þ þ 2Cl−⇔FeCl2 ð7Þ

FeCl2 þ 2OH−⇔Fe OHð Þ2↓þ 2Cl− ð8Þ

Cl− reacts with hydrogen ions near the cathodes, forming hydro-
chloric acid or evaporating near the anodes, in the form of Cl2 (Ghosh
et al., 2008).

3. Experimental work

3.1. The new EC reactor

Mollah et al. (2004) and Hashim et al. (2017a) have shown that EC
reactor designs have not significantly changed over the last few de-
cades. Generally speaking, rectangular reactors with plane rectangular
electrodes were, and still are, the predominant design. As such, the
first stage of the current study was to develop a new EC reactor which
would minimise power consumption by replacing external water
mixers with drilled electrodes. This new reactor consists of a 1.0 l rect-
angular Perspex container, (Fig. 1-A), supplied with four rectangular
perforated aluminium electrodes with a total effective area of 280 cm2
Aluminium electrode.



Fig. 2. The design and arrangement of the EC unit's electrodes.
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(Fig. 1-B). Each electrode has 35 holes (5 mm in diameter), drilled in 3-
holes and 4-holes lines to ensure that holes in the anodes are shifted by
5 mm from those in the cathodes (the very next electrode). This design
of electrodes (distribution of holes), forces the solution being treated to
flow in a convoluted path, this increasing water mixing efficiency with-
out the need for external stirrers (Fig. 2). This design may be a cost-
effective alternative to conventional EC reactors that depend on an ex-
ternal mixing device (magnetic or mechanical stirrers) which needs
extra power to work.

Aluminium was used as it is an effective electrode material
(Chaturvedi and Dave, 2012), while Perspex was used as it is inert and
an affordable material (Ghosh et al., 2008; Heffron, 2015).

The EC reactor was connected to both a benchtop DC power supply
(HQ Power; 0–30 V) and a peristaltic pump (Watson Marlow, model:
504 U) to supply the required electrical current and to circulate water
through the reactor, as seen in Fig. 3.
3.2. Material and methods

3.2.1. Experimental work
The concentration of iron in natural surface water normally

ranges between 0.5 and 20 mg/l but can be as high as 50 mg/l in
some cases (Doggaz et al., 2018; Hashim et al., 2017b). Therefore,
synthetic water samples with three different iron concentrations
(IC) (10, 20 and 30 mg/l) were prepared by dissolving the correct
amount of Fe2 SO4. 7H2O in 1000 ml of deionised water (Ghosh
et al., 2008). To investigate the influence of the other parameters, ap-
plied current density (ACD), pH of water (PoW) and treatment time
Fig. 3. EC setup: 1. Influent tank (polluted water). 2. Peristaltic pump
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(TT), on the removal of iron, the synthetic water samples were
electrolysed at different ACD (1.5, 3 and 4.5 mA/cm2) and PoW (4,
7 and 10) for different TT (10, 30 and 50 min) under continuous
flow conditions. The gap between electrodes, water conductivity,
and initial water temperature were kept constant during the course
of the experiments at 5 mm, 6.5, 0.4 mS/cm, and 20 ± 1 °C, respec-
tively. The initial pH and initial conductivity were adjusted to the de-
sired level using HCl or NaOH, and NaCl, respectively, all chemicals
supplied by Sigma Aldrich.

The progress of iron removal wasmonitored by collecting 5ml-sam-
ples at specific intervals. These sampleswere filtered using 0.45 μm filter
papers (Whatman filters) to separate outsludge, the residual concentra-
tion measured using an atomic absorption spectrophotometer (Thermo
Scientific, Model: ICE 3300) (Ghosh et al., 2008). The removal efficiency
was calculated as follows:

Iron removal %ð Þ ¼ initial iron concentration−residual iron concentrationð Þ
initial iron concentration�100%

ð9Þ

3.2.2. Cost-effectiveness estimation
The preliminary operating cost of the new EC reactor was estimated

according to the amount of the power consumed, chemicals and elec-
trodes material, all summarised in the following equation (Hashim,
2017):

OC ¼ β1 Cpower þ β2 Celectrodes þ β3 Cchemicals ð10Þ

where Cpower (kWh/m3), Celectrode (kg/m3), and Cchemical (kg/m3) are
power consumed, electrodes and chemicals. β1, β2 and β3 are the unit
prices of power, electrode materials and chemicals. Unit prices, accord-
ing to the UKmarket 2019, were 0.1383 £/kWh of electricity, 0.8 £/kg of
aluminium, 0.45 £/l of HCl, and 0.3 £/kg of NaCl.

The amount of electrodes consumed can be measured by weighing
the anodes before and after the treatment process. Because deposits
on the surfaces of anodes can influence this measurement, Faraday's
second Law was used to estimate the consumed weight of electrodes
(Hashim, 2017; Vidal et al., 2016):

Cmaterial gð Þ ¼
Applied current ampð Þ � treatment time secð Þ �molecular weight

g
mol

� �

3� 96500
C

mol

� �
� Volume of solution m3ð Þ

ð11Þ
. 3. Power supply. 4. Plastic container. 5. Wires. 6. Final storage.



Table 1
Maximum and minimum limits of the studied parameter.

Parameters Maximum limit Minimum limit

ACD (mA/cm2) 1.5 4.5
PoW 4 10
IC (mg/l) 10 30
TT (min) 10 50

B. Abdulhadi, P. Kot, K. Hashim et al. Science of the Total Environment xxx (xxxx) xxx
Power consumption was calculated as follows (Hashim, 2017):

Cpower kWh=m3� � ¼ Appplied current ampð Þ � cell voltage voltð Þ � treatment time
1000

ð12Þ

The amount of chemicals consumedwas measuredmanually during
the experimental work.
3.2.3. Optimisation of the effects of the studied parameters
The Box-Behnken model was used to optimise the effects of applied

current density (ACD), pH of water (PoW), iron concentration (IC) and
treatment time (TT) on the removal of iron using the electrocoagulation
method. This model minimises the number of experiments required
and it produces a regression model that can be used to predict the be-
haviour of the process under different operation conditions (Acharya
et al., 2018; Chauhan et al., 2013). To perform the Box-Behnken
model, the maximum and minimum limits of the parameters selected
were specified as seen in Table 1 (Hashim et al., 2017b; Isa et al.,
2014), the model applied using Minitab software (version 19.2).

Table 2 details the resultant experiment designs.
Table 2
Experiment designs.

Run PoW ACD IC TT

1 4 1.5 20 30
2 10 1.5 20 30
3 4 4.5 20 30
4 10 4.5 20 30
5 7 3 10 10
6 7 3 30 10
7 7 3 10 50
8 7 3 30 50
9 4 3 20 10
10 10 3 20 10
11 4 3 20 50
12 10 3 20 50
13 7 1.5 10 30
14 7 4.5 10 30

Table 3
Experimental removal of iron using the electrocoagulation method.

Run PoW ACD IC TT Removal (%)

1 4 1.5 20 30 34.6
2 10 1.5 20 30 26.4
3 4 4.5 20 30 54.1
4 10 4.5 20 30 44.2
5 7 3 10 10 79
6 7 3 30 10 56.2
7 7 3 10 50 99.9
8 7 3 30 50 83.5
9 4 3 20 10 38.1
10 10 3 20 10 27.2
11 4 3 20 50 51.5
12 10 3 20 50 45.2
13 7 1.5 10 30 68.8
14 7 4.5 10 30 98.5
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4. Results and discussion

4.1. Cost-effectiveness estimation

The experiments listed in Table 2 were carried out under con-
trolled conditions, the results listed in Table 3. The relationships be-
tween the removal of iron and the studied parameters are shown in
Fig. 4.

Almost all the iron (99.9%) was removed at an initial neutral PoW
(7.0), the longest TT (50 min), the lowest IC (10 mg/l) and an ACD of
3 mA/cm2, while the least amount of iron removal occurred when the
PoWwas alkaline (10.0), ACD at its lowest (1.5 mA/m2) and with mod-
erate values of TT and IC. There are two known significant effects of PoW
on iron removal. Firstly, PoW changes the chemical formula (speciation)
of the freshly produced aluminium hydroxides this changing their ca-
pacity for pollutants; the predominant type of aluminium hydroxide at
neutral PoW is Al13O4(OH)247+, this having a good capacity to remove pol-
lutants (Hashim et al., 2017a; Kim et al., 2016; Matis and Peleka, 2010).
Secondly, Alam et al. (2017) found H2 bubbles which are produced at
neutral pH, are small in size that increases the surface area of these bub-
bles, consequently enhancing the separation of pollutants through a
floatation path. A wide body of literature proved the direct relationship
between ACD and the production rate of aluminium hydroxides and
H2 bubbles, an increase in ACD resulting in a significant increase in the
amount of aluminium hydroxides and H2 bubbles in the solution being
treated (Betancor-Abreu et al., 2019; da Mota et al., 2015). This impacts
positively on the removal of iron. In the same vein, increasing the TT,
leads to an increase in the amount of aluminiumhydroxides andH2 bub-
bles, this also positively reflected in the removal of iron (Kolesnikov
et al., 2017; Perfil'eva et al., 2016). Finally, an increase in iron concentra-
tion (IC) requires more aluminium hydroxides to remove it (Hashim
et al., 2017b), this negatively influencing removal efficiency.
Run PoW ACD IC TT

15 7 1.5 30 30
16 7 4.5 30 30
17 4 3 10 30
18 10 3 10 30
19 4 3 30 30
20 10 3 30 30
21 7 1.5 20 10
22 7 4.5 20 10
23 7 1.5 20 50
24 7 4.5 20 50
25 7 3 20 30
26 7 3 20 30
27 7 3 20 30

Run PoW ACD IC TT Removal (%)

15 7 1.5 30 30 53.3
16 7 4.5 30 30 88.8
17 4 3 10 30 51.2
18 10 3 10 30 40.8
19 4 3 30 30 43.5
20 10 3 30 30 34.7
21 7 1.5 20 10 51
22 7 4.5 20 10 69.9
23 7 1.5 20 50 66
24 7 4.5 20 50 95.3
25 7 3 20 30 74.8
26 7 3 20 30 73.6
27 7 3 20 30 73.6



A) Iron removal vs. PoW and ACD. B) Iron removal vs. PoW and TT.

C) Iron removal vs. PoW and IC. D) Iron removal vs. IC and TT. 

E) Iron removal vs. ACD and TT. F) Iron removal vs. ACD and IC. 

Fig. 4. Relationships between the removal of iron and the studied parameters.
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The results were used in the Box-Behnken method to develop a re-
gression model that simulates the effects of ACD, PoW, IC and TT on
the removal of iron using the electrocoagulation, the regression model
shown below.

Removal %ð Þ ¼ −93:9þ 50:76� PoWþ 8:61� ACD−3:02
� IC−0:046� TT−3:774� PoW2−0:685� ACD2

þ 0:0437� IC2−1:4� 10−4 � TT2−0:094� PoW
� ACDþ 0:0133� PoW� ICþ 0:0192� PoW
� TTþ 0:097� ACD� ICþ 0:0867� ACD� TT
þ 8� 10−4 IC� TT ð13Þ
5

This model was used to predict the removal of iron using different
values of ACD, PoW, IC and TT, as shown in Table 2, the results of this
shown in Table 4. To validate the performance of the model, pre-
dicted levels of iron removal were compared to observed removal
(Table 4). These results show a good agreement between measured
and predicted removal percentages, the maximum difference be-
tween measured and predicted removal of iron 4.48%. Fig. 5 shows
that the coefficient of determination (R2) of the relationship be-
tween predicted and measured removal of iron was 0.9788. The re-
gression model can therefore predict 97.88% of the effects of the
studied parameters on iron removal using the electrocoagulation
method.



Table 4
Experimental and predicted removal of iron.

Run PoW ACD IC TT Measured removal (%) Predicted removal (%) Difference (%)

1 4 1.5 20 30 34.6 30.12 4.48
2 10 1.5 20 30 26.4 21.87 4.53
3 4 4.5 20 30 54.1 56.11 −2.01
4 10 4.5 20 30 44.2 46.17 −1.97
5 7 3 10 10 79 76.47 2.53
6 7 3 30 10 56.2 60.31 −4.11
7 7 3 10 50 99.9 93.27 6.63
8 7 3 30 50 83.5 83.51 −0.01
9 4 3 20 10 38.1 35.75 2.35
10 10 3 20 10 27.2 24.35 2.85
11 4 3 20 50 51.5 53.45 −1.95
12 10 3 20 50 45.2 46.66 −1.46
13 7 1.5 10 30 68.8 72.26 −3.46
14 7 4.5 10 30 98.5 94.50 4.00
15 7 1.5 30 30 53.3 56.40 −3.10
16 7 4.5 30 30 88.8 84.46 4.34
17 4 3 10 30 51.2 55.91 −4.71
18 10 3 10 30 40.8 46.01 −5.21
19 4 3 30 30 43.5 42.15 1.35
20 10 3 30 30 34.7 33.85 0.85
21 7 1.5 20 10 51 52.50 −1.50
22 7 4.5 20 10 69.9 72.45 −2.55
23 7 1.5 20 50 66 67.31 −1.31
24 7 4.5 20 50 95.3 97.66 −2.36
25 7 3 20 30 74.8 74.08 0.72
26 7 3 20 30 73.6 74.08 −0.48
27 7 3 20 30 73.6 74.08 −0.48
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4.2. Cost-effectiveness estimation

To calculate the preliminary operating costs of the new EC unit, the
amount of electrodes material and power consumed were calculated
using Eqs. (11) and (12), respectively. The operating costwas calculated
using Eq. (2), standing at0.623 £/m3 (approximately 0.78 $/m3). Other
comparative treatment methods, i.e. membrane filtration method, cost
approximately 0.94 $/m3 (Alzahrani and Mohammad, 2014; Sagle and
Freeman, 2004).
5. Conclusion

The results obtained from the current study demonstrate the suc-
cessful application of the new EC unit for iron removal from water
based solutions. The results of the present study indicate that the per-
formance of the new EC unit depends on the applied current density
(ACD), pH of water (PoW), iron concentration (IC) and treatment time
(TT). Generally, the removal of iron using the new EC unit increases
with an increase of ACD and TT, but it decreases with an increase of IC.
Fig. 5. Relationship between predicted and measured removal of iron using the
electrocoagulation method.

6

In terms of PoW, the results indicate that both acidic and alkaline envi-
ronments are not beneficial for iron removal.

The statistical analysis revealed that the effects of ACD, PoW, IC and TT
on iron removal using the new EC unit could be simulated using the Box-
Behnkenmodel. The simulated results had a strong linear agreementwith
the experimentalmeasurements at R2=0.9788. The operating cost of the
newEC reactor is 0.623 £/m3 (approximately 0.78 $/m3),whereas the cost
of the traditional treatmentmethod i.e. membrane filtration, is 0.94 $/m3.
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