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ABSTRACT

Context. The density split statistics in weak gravitational lensing analyses probes the correlation between regions of different (fore-
ground) galaxy number densities and their weak lensing signal, which is measured by the shape distortion of background galaxies.
Aims. In this paper, we reconsider density split statistics, by constructing a new angular filter function that is adapted to the expected
relation between the galaxy number density and shear pattern, in a way that the filter weighting the galaxy number density is matched
to the filter that is used to quantify the shear signal.
Methods. We used the results of numerical ray-tracing simulations, specifically through the Millennium Simulation supplemented by
a galaxy distribution based on a semi-analytic model, to construct a matched pair of adapted filter functions for the galaxy density
and the tangential shear signal. We compared the performance of our new filter to the previously used top-hat filter, applying both to
a different and independent set of numerical simulations (SLICS, cosmo-SLICS).
Results. We show that the adapted filter yields a better correlation between the total matter and the galaxy distribution. Furthermore,
the adapted filter provides a larger signal-to-noise ratio to constrain the bias between the total matter and the galaxy distribution, and
we show that it is, in general, a more sensitive discriminator between different cosmologies, with the exception of cosmologies with
very large σ8 values. All analyses lead to the conclusion that our adapted filter should be favoured in future density split statistic
works.
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1. Introduction

The large-scale structure (LSS) of the Universe is thought to
originate from initially Gaussian density perturbations, a view
supported by the apparent absence of non-Gaussian features in
the cosmic microwave background (see Planck Collaboration V
2020). Correspondingly, at early times, these Gaussian pertur-
bations result in a total symmetry in the abundance and ampli-
tude of over- and under-dense regions. As structures evolve, this
symmetry breaks so over-densities can grow to very large ampli-
tudes. However, the fractional density contrast of under-densities
is bounded from below.

Studying the matter distribution of the present LSS reveals a
wealth of information about the evolution of the Universe. In par-
ticular, its distorting effect on the propagation of light from dis-
tant galaxies, dubbed cosmic shear, can be captured by analysing
weak lensing surveys. By comparing the results of cosmological
models with the observed signal, one can constrain cosmologi-
cal parameters (see Hildebrandt et al. 2017; DES Collaboration
2020; Hamana et al. 2020).

The preferred methods to infer statistical properties of the
matter and galaxy distribution are second- and higher-order
statistics. Two-point correlation functions, or power spectra,
measure the variance of density fluctuations as a function of
scale. More generally, an n-point correlation function describes
how probable it is to find a constellation of n connected objects.

The advantage of analysing three-point statistics, which are more
computationally time-consuming than second-order statistics, is
its connection to the skewness of the density distribution result-
ing from the asymmetric behaviour of over- and under-dense
regions. Another advantage of third-order statistics is that they
scale differently with cosmological parameters. Hence, by simul-
taneously investigating second- and higher-order statistics, the
power to constrain cosmological parameters increases (Pires
et al. 2012; Fu et al. 2014).

First in Gruen et al. (2016), and later in Gruen et al. (2018)
and Friedrich et al. (2018), a new weak lensing approach to anal-
yse the LSS was introduced, the density split statistics (hereafter
DSS), which differs from the usual n-point correlation analyses.
The idea is to divide the sky into sub-areas of an equal size,
according to the foreground (or lens) galaxy density (counts-
in-cells, or CiC), and to measure the mean tangential shear, γt,
around all points within a given sub-area. These sub-areas are
defined by quantiles of the galaxy number density field. One
expects that around points with a high density of (foreground)
galaxies, that is, for the upper quantiles of the CiC, the tangential
shear is larger, given that a high galaxy number density should
correspond to a large matter over-density on average. In order to
extract cosmological information from this DSS, Friedrich et al.
(2018) derived a lognormal model which predicts the shear pro-
files and the probability density of CiC by using the redshift
distribution of sources, lenses, and the mean CiC as inputs. In
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Gruen et al. (2018), the model was used to constrain cosmolog-
ical parameters from DSS measurements from the Dark Energy
Survey (DES) First Year and Sloan Digital Sky Survey (SDSS)
data, where they included in their analysis the tangential shear
profiles for scales greater than the top-hat filter size θth. Their
analysis yields constraints on the matter density Ωm = 0.26+0.04

−0.03
that agree with the DES analysis of galaxy and shear two-point
functions (see Abbott et al. 2018).

Brouwer et al. (2018) applied the DSS to the Kilo-Degree
Survey (KiDS; Kuijken et al. 2015) data, using the catalogue of
Bilicki et al. (2018) for the foreground (lens) galaxies, whereas
the source galaxies used for estimating the shear were taken from
the third data release of KiDS (see de Jong et al. 2017). In order
to parameterised their measured shear signals, they fitted, for
every quantile in the foreground galaxy CiC, a relation of the
form γt = A/

√
θ to their tangential shear profile, for θ > θmin,

where θmin is approximately the radius of the peak of the shear
profile. By using this relation, they defined their signal-to-noise
ratio S/N = A/σA, whereσA is the 1σ error on the best-fit ampli-
tude based on the full analytical covariance matrix of the shear
profiles. With a top-hat of size 5′, they found for the regions with
the highest 20% values of the aperture number a S/N = 21.7 and
for the lowest 20% a S/N = 16.9. We use this fit relation later in
this analysis to compare the S/N of our adapted filter to that of
the top-hat filter.

The prime motivation for this work is based on the fact that
the two components of the DSS – the CiC of galaxies inside a
radius θ, and the tangential shear profile γt(ϑ) for ϑ > θ – are
poorly matched. For example, the shear at radius ϑ > θ around
a given point is affected by the matter distribution at all radii
<ϑ, not just by that inside θ. Hence, even if the (foreground)
galaxy density n(θ) had the same shape as the lensing conver-
gence field κ(θ), the two aforementioned quantities would not be
perfectly correlated. Instead, we consider here a pair of statis-
tics for the foreground galaxy distribution and the shear profile
that are “matched”, in the sense that in the hypothetical case
n(θ) ∝ κ(θ), there would be a one-to-one relation between them.
This is achieved by using the aperture statistics (see Schneider
1996, 1998), that is, aperture mass and aperture number counts.
Although the case n(θ) ∝ κ(θ) is not a realistic assumption, due
to different redshift weighting in the projected galaxy number
density on the sky and the projected matter density between us
and the lensed source population to obtain the convergence, we
nevertheless expect a strong correspondence on the same angular
scales, described by the galaxy-dark matter bias b and correla-
tion coefficient r (Pen 1998). Instead of using the CiC, we now
split the sky into areas of different quantiles of the aperture num-
ber counts, and consider the mean shear profile for each quantile;
the latter is then quantified by the aperture mass. For the purpose
of selecting a suitable filter function for the aperture statistics,
we employ results from the ray-tracing through the Millennium
Simulation (hereafter MS; Springel et al. 2005; Hilbert et al.
2009), supplemented by a galaxy distribution obtained from a
semi-analytic model (Henriques et al. 2015). Hence, our filter
function is adapted to expectations from cosmological simula-
tions.

This work is structured as follows. In Sect. 2 we review the
basics of the aperture statistics. In Sect. 3 we describe the simu-
lation data used in this paper. Beside the MS, we use the Scinet
Light Cone Simulations (SLICS; see Harnois-Déraps et al. 2018,
hereafter HD18) to compare the performance of our new statis-
tics to that of the previously employed DSS. For studying the
sensitivity to cosmological parameters, we use the cosmo-SLICS
simulations (see Harnois-Déraps et al. 2019), which are a suite

of simulations for 26 different cosmologies. The derivation of
the adapted filter is described in Sect. 4, and the comparison of
the original DSS with our new method is performed in Sect. 5.
In Sect. 6 we investigate the different relationships between the
total matter and galaxy distribution for a non-linear and lin-
ear galaxy bias model. This is achieved by calculating aper-
ture masses and aperture numbers with our new method and the
method used in the previous DSS. In Sect. 7 we compare both fil-
ters in their power to distinguish different cosmologies by use of
cosmo-SLICS. In Sect. 8 we conclude and summarise our work.
Furthermore, we give an outlook of possible future work and
applications of our adapted filter.

2. Aperture statistics

Given a convergence (or dimensionless surface mass density)
field κ(θ), the aperture mass is defined as

Map (θ) B
∫

κ(θ + θ′) U(|θ′|) d2θ′, (1)

where U(|θ|) is a compensated filter function, such that∫
θU(θ) dθ = 0. As shown in Schneider (1996), Map can also

be expressed in terms of the tangential shear γt and a related
filter function Q as

Map(θ) =

∫
γt(θ + θ′) Q(|θ′|) d2θ′, (2)

where

Q(θ) =
2
θ2

θ∫
0

θ′U(θ′) d′ − U(θ), (3)

which can be inverted, yielding

U(θ) = 2

∞∫
θ

Q(θ′)
θ′

d′ − Q(θ). (4)

In analogy to Map, we define the aperture number counts
(Schneider 1998), or aperture number, as

Nap(θ) B
∫

n(θ + θ′) U(|θ′|) d2θ′, (5)

where U(θ) is the same filter function as in Eq. (1) and n(θ) is the
galaxy number density on the sky. Our proposed modified DSS
consists of splitting the sky into quantiles of Nap, and stacking
the azimuthal-averaged tangential shear profile around all points
of the given quantile. By setting Q(θ) = γt(θ), we then define
a new U filter for Nap with Eq. (4), and iteratively repeat the
process until we reach convergence (see Sect. 4 for details). This
differs from Gruen et al. (2016) who determine the CiC from
Eq. (5) with a top-hat filter where

Uth(θ) = H(θth − θ), (6)

with θth is the size of the top-hat and H is the Heaviside step
function. Since the top-hat filter Uth is not compensated, we can
not use Eq. (3) to calculate a corresponding filter Qth. Instead,
we set

Qth(θ) ∼
{

1/
√
θ, if 1.2 θth < θ < θmax

0, otherwise
(7)
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following the work of Brouwer et al. (2018), where they used a
1/
√
θ profile to parameterise their shear signals. The radius θmax

is the size up to which we measure the shear profiles.
To efficiently calculate the aperture number we make use of

the convolution theorem

Nap(θ) = F −1 [F {n(θ)}F {U(|θ|)}] , (8)

where F denotes the Fourier transformation and F −1 the inverse
Fourier transformation (see Frigo & Johnson 2005, hereafter
FFT).

3. Mock KiDS data

In this work, we use three different simulation suites, which
we modify to be KiDS-like. As KiDS is not so dissimilar from
DES (see Drlica-Wagner et al. 2018) and Hyper Suprime-Cam
(see Aihara et al. 2019), we expect our conclusion to also hold
for these weak lensing surveys. We use the well tested MS to
develop our adapted filter, and test our filter with an independent
set of simulation, SLICS, to avoid recurring systematic effects.
We also use the cosmo-SLICS to compare the adapted and top-
hat DSS filters in their power to discriminate different cosmolo-
gies.

3.1. Millennium Simulation (MS)

The MS, described in Springel et al. (2005), follows the evo-
lution of 21603 dark matter particles of mass 8 × 108 M� h−1

enclosed in a cube of size (500 Mpc h−1)3. Galaxies are added
to the simulation afterwards using a semi-analytical galaxy-
formation model, where Saghiha et al. (2017) showed that the
best match with the observed galaxy-galaxy lensing and galaxy-
galaxy-galaxy lensing signals from the Canada-France-Hawaii
Telescope Lensing Survey data (see Heymans et al. 2012) is
obtained from the model of Henriques et al. (2015). Hilbert et al.
(2009) described ray-tracing simulations through the MS. They
constructed a suite of 64 pseudo-independent light cones of size
4 × 4 deg2. For each of them, they calculated the lensing Jacobi
matrix A on a 4096 × 4096 pixel grid, for a set of source red-
shifts, using a multiple lens plane algorithm. The Cartesian com-
ponents of the shear for each grid point and each source redshift
zc are then obtained from the corresponding Jacobi matrix A.
We note that the same set of simulations has been used in sev-
eral previous studies, for example, in Sadeh et al. (2016), Simon
et al. (2019), and Unruh et al. (2019, 2020).

3.1.1. Constructing foreground galaxy number densities

To create the galaxy number density field n(θ) for each light
cone, we project all galaxies with an SDSS r-band magnitude
mr < 20.25 mag1 onto pixels of size (4 deg/4096)2. The magni-
tude cut is chosen such that the galaxy number density in the MS
matches the one in Bilicki et al. (2018). The resulting redshift
distribution of the galaxies over all 64 light cones is displayed in
Fig. 1 in orange, together with the redshift distribution of Bilicki
et al. (2018) shown in blue. We note that our lens redshift distri-
butions is broader compared to Gruen et al. (2018); especially at
small redshifts our lenses extend down to z ≈ 0.

1 These magnitudes are provided by the semi-analytical galaxy-
formation model.

Fig. 1. Redshift distribution p(z) of galaxies with mr < 20.25 in the
64 MS light cones, compared to the estimated redshift distribution of
KiDS galaxies with mr < 20.30 (Bilicki et al. 2018, in the plot B18).
Shown in green is the weighted source redshift PDF of the highest three
tomographic bins; from Hildebrandt et al. (2020).

3.1.2. Constructing the source galaxy distribution

In order to mimic the KiDS shear estimates, we create for each
grid point in a light cone a weighted mean of the shear over all
source redshifts. We use the redshift distribution of the combined
data set from the optical KiDS (see de Jong et al. 2013) and the
near-infrared VISTA Kilo degree Infrared Galaxy survey (see
Edge et al. 2013). In this combined data set (hereafter KV450),
redshifts are estimated through photometric redshifts, zphot, and
calibrated with spectroscopic redshifts (Hildebrandt et al. 2020).
We consider only sources with 0.5 < zphot < 1.2, such that our
sources are mostly behind our low-redshift lenses, and adopted
the redshift distribution n(z) from Hildebrandt et al. (2020) to
model these sources (shown in green in Fig. 1). From this distri-
bution the weights for the redshift slices zc (see Sect. 3.1) of the
simulation are calculated to

w(zc) =

zup(zc)∫
zlow(zc)

p(z′) d′, (9)

where zlow,up(zc) are the boundaries of the consecutive redshift
slices in the MS with central redshift zc. With these weights, the
shear at each grid point γ(θ) is given as

γ(θ) =

∑
i
w(zc,i) γ(θ, zc,i)∑

i
w(zc,i)

, (10)

where γ(θ, zc,i) is the shear value at position θ from the ith red-
shift slice calculated with the corresponding Jacobi matrix A.
Since the MS are exclusively used to construct our new filters,
it is best to ignore shape noise, hence we work directly with the
noise-free shear values provided with Eq. (10).

3.2. Scinet Light Cone Simulations (SLICS)

In order to compare the performance of our adapted filter to that
of the Gruen et al. (2016) top-hat filter, and to find the appro-
priate size of the top-hat filter such that the comparison is rea-
sonable, we use the SLICS. This simulation suite is indepen-
dent of the MS and is described in HD18. The SLICS are a set
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of over 800 realisations, where each run follows 15363 parti-
cles inside a cube of comoving side length Lbox = 505 h−1Mpc
and nc = 3072 grid cells on the side. By use of the Zel’dovich
approximation (see White 2014) each run starts with slightly dif-
ferent initial conditions at z = 120, computes the non-linear evo-
lution of these collision-less particles to z = 0, and produces
on-the-fly the halo catalogues and mass sheets required for a full
light cone construction at 18 different source redshifts from z = 0
to z = 3. The underlying cosmological parameters for each run
are Ωm = 0.2905, ΩΛ = 0.7095, Ωb = 0.0473, h = 0.6898,
σ8 = 0.826 and ns = 0.969 (see Hinshaw et al. 2013). Given
a particle mass of 2.88 × 109 h−1 M�, dark matter haloes with
masses above 1011 h−1 M� and structure formation deep into the
non-linear regime are resolved. Furthermore, it has been shown
in HD18 that for Fourier modes k < 2.0 h Mpc−1, the three-
dimensional dark matter power spectrum P(k) agrees within 2%
with the predictions from the Extended Cosmic Emulator (see
Heitmann et al. 2014), followed by a progressive deviation for
higher k-modes.

3.2.1. KV450 SLICS mocks

We use the KV450 SLICS as source galaxies2. These mock
galaxies are placed at random angular coordinates on 100 deg2

light cones, with the KV450 number density ngal = 6.93
arcmin−2 and the best-estimated redshift distributions from
Hildebrandt et al. (2020, see the DIR method therein). The galax-
ies are assigned their shear information γ from the lensing maps,
following the linear interpolation algorithm described in Sect. 2
in HD18; and the observed ellipticities εobs are obtained as

εobs =
ε int + γ

1 + ε intγ∗
+ η ≈

εn + γ

1 + εnγ∗
, (11)

where εobs, ε int, εn, η, and γ are complex numbers; the aster-
isk ∗ indicates complex conjugation. This equation relates the
observed ellipticity εobs to the intrinsic shape ε int and the shear
γ, and adds measurement noise η to it. In order to combine intrin-
sic and measurement shape noise, both are incorporated into one
pre-sheared noisy ellipticity εn. This ellipticity εn is generated
by drawing random numbers from a Gaussian distribution with
width σ = 0.29, which is consistent with the weighted observed
ellipticity distribution of the KiDS data. Furthermore, we apply
a selection cut on the photometric redshift of 0.5 < zphot < 1.2,
resulting in a galaxy number density of ngal = 5.17 arcmin−2.

3.2.2. Galaxy And Mass Assembly (GAMA) SLICS mocks

For the lens sample we use the publicly available Galaxy And
Mass Assembly (GAMA, see Driver et al. 2011) SLICS mocks,
which are based on the halo occupation distribution (HOD) pre-
scription of Smith et al. (2017, see HD18 for details on its imple-
mentation). The motivation to use these mocks is that they are
an excellent source of lenses for a DSS analysis with KiDS
data as sources, as demonstrated by Brouwer et al. (2018). The
galaxy number density is ngal ∼ 0.25 arcmin−2, which is smaller
compared to Bilicki et al. (2018) due to the smaller limiting
magnitude of mr < 19.8 mag and the smaller redshift range of
0 < z < 0.5, but since we use both data sets in two indepen-
dent analyses it does not matter. Theses different values of ngal

2 These SLICS KV450 mocks are made publicly available on the
SLICS portal at https://slics.roe.ac.uk/

propagate into the aperture number, Nap via Eq. (5), where we
count these GAMA lens galaxies in squares of size 1 arcmin2

and assign the resulting galaxy number density n(θ) to the asso-
ciated pixel. Finally, it was demonstrated in HD18 that on large
scales these mock GAMA galaxies have a linear bias of about
1.2, and that the non-linear bias observed at smaller scales is
similar to that seen in the GAMA data. This match was not guar-
anteed given that the galaxy bias in the simulations emerge from
the HOD, and not from an input model.

3.3. Cosmo-SLICS

We use the cosmo-SLICS simulations described in Harnois-
Déraps et al. (2019), to investigate the sensitivity of the top-hat
filter and the adapted filter to cosmological parameters. These
are a suite of simulations sampling 26 wCDM cosmologies dis-
tributed in a Latin hypercube, ray-traced multiple times to pro-
duce 50 pseudo-independent realisations for every cosmology,
each producing light cones of size 100 deg2. The corresponding
cosmologies are listed in Table A.1. In these simulations, the
matter density Ωm, the dimensionless Hubble parameter h, the
normalisation of the matter power spectrum σ8 and the time-
independent dark energy equation-of-state w0 are varied over a
range that is large enough to complement the analysis of current
weak lensing data (see Hildebrandt et al. 2020).

For each realisation, the algorithm to creates KV450-like
catalogues follows the same pipeline as for the SLICS mocks,
notably it reproduces the same galaxy number density and red-
shift distribution n(z), but the different underlying cosmologies
modify the lensing properties.

In contrast to the SLICS simulations, the cosmo-SLICS dark
matter haloes are not fully post-processed into light cones at the
moment of writing this paper, and therefore HOD-based mocks
are not yet available. This does not prevent us from using the
cosmo-SLICS to generate GAMA-like mocks, however these
are instead based on a linear bias model (see Appendix A2 of
HD18). Given the GAMA n(z), this construction required four
mass sheets3. Following the redshift distribution shown in Fig. 8
in HD18 each of these sheets was populated with a bias of unity,
and accordingly to Sect. 3.2.2 the resulting number density for
all four sheets together is ngal = 0.25 arcmin−2. To be consistent
with Sect. 3.2.2, we sum the galaxies in squares of size 1 arcmin2

and assign the galaxy number density n(θ) to the respective
pixels.

4. The derivation of the adapted filter function

In order to investigate the projected galaxy number density n(θ)
and lensing convergence κ(θ) on the same angular scales, we
generate a compensated filter for θ < 30′ using an iterative pro-
cedure with the MS as an input. Schematically the iterative pro-
cess is structured as follows: The first step is to calculate the
aperture number Nap with a compensated filter Ui defined for
θ < 10′. Next, we extract the pixels which have the highest 10%
aperture number values, and measure the tangential shear profile
γt(θ) around these pixels up to 10′. With setting Q(θ) ∝ γt(θ)
and Eq. (4) we create a revised compensated filter Ui+1. The last
step is to repeat all prevoius steps with the revised filter Ui+1.
This iteration continues as long as the change in relative signal-
to-noise ∆(S/N)/(S/N)1 > 10−3 between consecutive iterations.

3 For the fiducial cosmology these mass sheets are at redshifts zi =
0.130, 0.221, 0.317, 0.410.
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We note that this value is chosen arbitrarily, but it is sufficient,
because the deviation of the resulting shear profiles in Sect. 5,
determined with a filter of a later iteration, would be less than
the uncertainties of the shear profiles. Once we achieve conver-
gence in this iterative process, we extrapolate the U and Q filters
to 30′ to use the strong tangential shear signal beyond 10′.

After presenting the general approach of our derivation, we
next explain the individual steps in more detail. The initial filter
U1 of the pipeline is defined as a compensated top-hat

U1(|θ|) B


1 arcmin−2, if θ < 1′

− 1
99 arcmin−2, if 1′ ≤ θ < 10′

0 arcmin−2, if θ > 10′
, (12)

where the chosen inner radius of 1′ is not crucial, because the
iterative process finds the final shape of the filter independent of
this boundary. The upper bound of 10′ is motivated by the fact
that we expect the shear profiles with our filter to peak at roughly
2/3 of the filter size, which would then coincide with the shear
profiles generated with a top-hat filter of size 5′ in Brouwer et al.
(2018) which had the best S/N. The value −1/99 arcmin−2 arises
from the compensated nature of U. To calculate the aperture
number with Eq. (5), we convolve the galaxy number density
n(θ) with the filter U1 by means of the convolution theorem
Eq. (8). The resulting aperture number for one light cone is
shown in the upper panel of Fig. 2, where over-dense regions
are shown in red and under-dense regions in blue. Following
the pipeline, we extract those pixels that have the highest 10%
values of the aperture number and display them in the lower
panel of Fig. 2. The outer 30′ edges are not considered since
the FFT, which we use to efficiently apply the convolution theo-
rem, assumes periodic boundary conditions. The reason to cut at
30′ instead of 10′ is that we want to use the same area of the light
cones for the extended shear profile as for the ones measured in
the iterative process.

Using the shear grids described in Sect. 3.1, an averaged
shear grid around the extracted pixels is calculated as

γ(θ) =
1

Npeaks

Npeaks∑
i=1

γ(θ + θi), (13)

where Npeaks is the number of extracted pixels with positions θi,
which have the 10% highest values of Nap. Next, we construct
the grids of tangential and cross shear γt,×(θ), with

γt(θ) = −Re
[
γ(θ)e−2iφ

]
; γ×(θ) = −Im

[
γ(θ)e−2iφ

]
, (14)

where φ is the polar angle of θ. For all shear profiles we subtract
the shear signal around random pixel positions per light cone to
reduce the noise in the measurements (Singh et al. 2017).

The shear profiles for one light cone result from azimuthally
averaging the γt,×(θ) grids in 40 linearly spaced annuli for 0′ <
θ < 10′. By further averaging the signals over all 64 light cones,
we extract the shear profiles indicated with the blue dots in
Fig. 3, where the error bars are the uncertainties on the mean,
obtained from the sample variance of all 64 light cones. In the
lower panel the γ× profile is displayed, and although a 40 × 40
covariance cannot be reliably calculated from only 64 realisa-
tions, the cross shear profiles appear to be consistent with zero.
The shape of the γt profiles are as expected for a DSS analysis
and similar to those of previous DSS works (Brouwer et al. 2018;
Gruen et al. 2018; Friedrich et al. 2018).

Fig. 2. Upper panel: aperture number Nap on a 4 × 4 deg2 grid of the
MS light cone 37 as an example light cone. Lower panel: extracted pix-
els which have the highest 10% number values of Nap. The outer 30′
margins are not considered since the FFT assumes periodic boundary
conditions. Therefore, the outer margins in the Nap field are disregarded
and marked with the black square in the upper panel.

For determining the filter function U, we quantify the infor-
mation content about these shear profiles through Map, by defin-
ing a signal-to-noise ratio (Schneider 1996),

S
N

=

√
2

σε

∑
i γt(θi) Q(θi)√∑

i Q2(θi)
, (15)

where the noise here is taken to be pure shape noise due to intrin-
sic source ellipticity, with a dispersion of σε = 0.3.

The next step of the pipeline is motivated by Eq. (15), which
following the Cauchy–Schwarz inequality, is maximised if the
filter Q is proportional to the shear γt. We therefore set the Q2
filter function to

Q2(θ) ∝
{
γt(θ), if 0′ < θ < 10′

0, otherwise
. (16)
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Fig. 3. Upper panel: tangential shear profiles, γt, for the first eight iterations, showing how the peak moves to larger radii. Lower panel: γ× profiles
are consistent with zero. The uncertainties are the standard deviation on the mean determined with the 64 MS realisations.

Fig. 4. Resulting filter U , from Eq. (4), after each iteration. With each iteration the filter gets wider until it converges after ∼7 iterations. The filters
are scaled such that the value of the first θ-bin is unity, which eases comparison with the compensated top-hat filter.

With this filter Q2 and Eq. (4), we obtain filter U2, displayed
with the blue colour in Fig. 4.

Now the iterative process starts, where we rerun the pipeline
with the new filters Ui+1. As seen in Fig. 3 the peak of the tangen-
tial shear moves to larger radii after each iteration, as the filter
Ui+1 gets wider with each iteration. This effect is not surprising,
because we are calculating the filters Ui+1 from the shear signals,
and therefore, the changes are strongly related. After some itera-
tions this broadening starts to converge; in order to measure this
convergence, we make use of the S/N calculated with Eq. (15).
As a reference S/N value for the first iteration, we calculate an
initial filter Q1 from Eq. (3) as

Q1(θ) =
1
θ2

(
1 +

1
99

)
H(θ − 1′)H(10′ − θ). (17)

The resulting S/N values relative to the S/N of the first iter-
ation are stated in Table 1. The S/N does not change after
the 7th iteration by more than 10−3, and therefore indicates
convergence.

Once we have converged on a final filter U7, we expand the
range up to a radius of 30′ to make use of the strong tangential
shear signal beyond 10′. This size is restricted to 30′ to minimise
the rejected margins due to the boundary effects of the FFT, as
seen in the lower panel of Fig. 2. The resulting shear profile, and
thus the shape of the final adapted filter Q, is shown in Fig. 5. The

Table 1. S/N relative to the S/N of the first iteration step.

Step 1 2 3 4

(S/N)/(S/N)1 1. 1.819 2.189 2.257

Step 5 6 7 8
(S/N)/(S/N)1 2.271 2.274 2.275 2.275

corresponding adapted filter U, from Eq. (4) using the extended
adapted filter Q, is displayed in Fig. 6. Compared to the filters
in Fig. 4 the zero crossing of the adapted filter U is at larger θ.
This is due to the positive extended tail of the tangential shear
profile (adapted filter Q in Fig. 5), which is used to determine
the adapted filter U. After this point we do not change this filter
anymore, and all filter functions mentioned from now on refer to
this pair of adapted filters. We note that the used angular scales
for the derivation of the filter function (1′, 10′ and 30′) may not
be optimal, but for the purpose of this work in comparing it to
an analysis with a top-hat filter function (Sects. 5–7) the opti-
mised sizes are not crucial. Nevertheless, they will be reviewed
in future analyses. Since the comparisons of the adapted and the
top-hat filter in the following sections is exclusively done with
the SLICS and cosmo-SLICS, the MS is from this point on no
longer used.
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Fig. 5. Tangential shear profile, γt, around the highest 10% pixel values
of Nap determined with the filter U7 for θ < 10′ and measured up to
radii of 30′ to use the strong tangential shear signal beyond 10′. For
the rest of this analysis, this is the shape of the adapted filter Q. The
uncertainties are the standard deviation on the mean determined with
the 64 MS realisations.

Fig. 6. Adapted compensated filter U(θ) calculated from the shear pro-
file of Fig. 5 and Eq. (4). The filter is normalised such that the first value
is 1 arcmin−2. This final U(θ) filter is adopted for the rest of the analysis.

5. Suitable top-hat size and S/N comparison

In order to compare the DSS measured using the adapted filter U
to the Gruen et al. (2016) top-hat filter function Uth(θ) we must
determine the size of the top-hat filter θth such that the averaged
shear peak positions around the highest and the lowest quantiles
of the aperture number field are comparable between both filters.
For that, we use 64 realisations of SLICS, with KV450 sources
and GAMA lenses.

Following the work of Gruen et al. (2018), we divide the
sky according to the aperture number, Nap, into five sub-areas of
equal size and call them quantiles of the aperture number field.
The aperture number is calculated either with the adapted filter
function U or with three different top-hat filters of size θth = 5′,
6′, and 7′. For each quantile, we calculate the tangential shear
profiles in 25 logarithmic θ annuli with the software treecorr
(see Jarvis et al. 2004); this is different to the approach in Sect. 4,
since for the SLICS and cosmo-SLICS the shear estimates are
not given on a grid but from mock catalogues. The resulting
shear profiles are displayed for the different filter functions in
Fig. 7. We neglect shape noise here to find the optimal top-hat
size.

In order to determine the most comparable top-hat filter, we
calculate for each filter the angular position of the measured peak
of the γt profile of the highest and lowest quantile and report in
the legend of Fig. 7 the average of these two. The averaged peak
position θ = 9.3′ of the shear profiles generated with a top-hat
filter of size θth = 6′ matches the averaged peak position θ = 9.3′
of the shear profiles generated with the adapted filter. Therefore,
we set the size of the top-hat filter for all following analyses to
θth = 6′.

Our first performance comparison is based on a respec-
tive S/N. The signal S is the averaged aperture mass for axis-
symmetric tangential shear profiles γt(θ) = γt(θ), such that
Eq. (2) simplifies to

Mi
ap = 2π

∫
γi

t(θ
′) Q(θ′) θ′d′, (18)

where i denotes the quantile around which the tangential shear
profile γi

t(θ) is azimuthal-averaged. To calculate the aperture
mass with the tangential shear profiles of the DSS with the top-
hat filter, we use Eq. (7) for the Q = Qth filter with θmax = 30′.
We reiterate that Qth is not adapted to Uth, but we use it here
to provide a comparison to the earlier work of Brouwer et al.
(2018). In order to have a S/N, which measures the significance
of a nonzero detection, we estimate the noise N as the standard
deviation of Mrand

ap determined by tangential shear profiles around
Npix random pixel positions from the 64 realisations, where Npix
is the number of pixels in one quantile. Together this gives the
signal-to-noise ratio of the i-quantile to( S

N

)i

=
〈Mi

ap〉√
〈(Mrand

ap − 〈Mrand
ap 〉)2〉

, (19)

where 〈. . .〉 refers to the ensemble average over all 64 realisa-
tions. For this S/N comparison we use the treecorr γt esti-
mates obtained from ellipticities with shapes noise, so that the
noise here describes the sampling variance as well as the shape
noise in the data. The resulting S/N for each quantile i, shown
in Fig. 8, reveals that the adapted filter performs better, which is
consistent with the higher amplitude of the shear profiles seen in
Fig. 7.

6. Nap versus Map

After deriving the adapted filter and specifying the top-hat filter
size, we want to test our expectation that the adapted filter yields
a better correlation between the galaxy and total matter distri-
bution. For this analysis, we make use of 25 light cones from
SLICS with a non-linear bias model and 25 light cones from the
fiducial cosmology of cosmo-SLICS with a linear bias model,
where we expect that for the latter the correlation is stronger
since n(θ) ∝ κ(θ) here. For both models we calculate the aper-
ture number with Eq. (5) and the aperture mass with Eq. (2) for
all pixels with the corresponding adapted filters and top-hat fil-
ters, where θth = 6′ and θmax = 30′. For the aperture number
we sum, as before, the foreground (lens) galaxies in squares of
size 1 arcmin2, and for the aperture mass we average the elliptici-
ties of background (source) galaxies in squares of size 1 arcmin2.
Although we would expect similar relative correlation coeffi-
cients if we included shape noise in the shear estimates, we opted
for the noise-free estimate to be closer to the true correlation
coefficient. The results for both filter pairs are shown in Fig. 9,
where the upper panels corresponds to the non-linear bias model
(SLICS) and the lower panels to the linear bias model (fidu-
cial cosmology from cosmo-SLICS). The correlation coefficient
specified in the upper left corner of each panel is determined as

ρ =

〈(
Map(θ) − 〈Map〉

) (
Nap(θ) − 〈Nap〉

)〉
√〈(

Map(θ) − 〈Map〉
)2
〉 〈(

Nap(θ) − 〈Nap〉
)2
〉 , (20)
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Fig. 7. Tangential shear profiles, γt, from SLICS generated with the adapted filter and three top-hat filters of different sizes. The measurements
using a top-hat of size 6′ have roughly the same peak position as the adapted filter results. The uncertainties are the standard deviation on the mean
determined with the 64 SLICS realisations, and since shape noise is not included, the error bars are almost unseen.

Fig. 8. Comparison of the |S/N|i between the adapted filter and a top-
hat filter of size θth = 6′ calculated with Eq. (19) for the quantiles i.
The uncertainties of the S/N are calculated with a jackknife estimator
resampling the S/N data 64 times, removing at each draw one of the γt
measurement and are below 2%. The values next to the points in the
plot are the relative differences.

where 〈. . .〉 refers to the ensemble average over all pixel posi-
tions θ of the 25 light cones4. The higher the correlation factor
ρ is, the better the galaxy number density field traces the under-
lying matter field. As expected, the adapted filter yields a bet-
ter correlation as seen in the correlation coefficient ρ, which is
∼20% higher for the adapted filter. Furthermore, it is seen that
for the linear-bias model ρ is ∼10% higher.

7. Sensitivity to constrain cosmological parameters

In this section, we investigate the sensitivity of the adapted and
top-hat filters to varying cosmological parameters by use of the
cosmo-SLICS, based on the aperture mass of Eq. (18). As seen
in Fig. 10 for the highest and lowest quantile, Map and S 8 have
a strong correlation, which indicates that Map is suitable as a
metric for the comparison of different cosmologies.

For each of the 50 realisations per cosmology we first com-
pute the aperture number with the two different filters and the

4 Due to the periodic boundary effects of the FFT we do not consider
the outer 30′ margins.

Fig. 9. Pixel-by-pixel Map(θ) vs. Nap(θ) comparison for a non-linear
bias model (upper panels) and linear bias model (lower panels).
The aperture mass and number are calculated except for the outer
margins for each individual pixel, which is different to Sect. 5
where Mi

ap is calculated from shear profiles of specific quantiles.
To ease the comparison between Map(θ) and Nap(θ) we re-scaled
Map(θ) → M̃ap(θ) := (Map(θ) − 〈Map〉)/

√
〈(Map(θ) − 〈Map〉)2〉, corre-

spondingly Nap(θ) → Ñap(θ), where 〈. . .〉 is the ensemble average over
all pixel positions θ. This re-scaling does not affect the correlation coef-
ficient ρ shown in the upper left corner of each panel. The panels on the
left-hand side correspond to the adapted filter, and those on right-hand
side to the top-hat filter. For both bias models, the adapted filter yields
a stronger correlation, computed with Eq. (20).

treecorr γt profiles with shape noise of the five quantiles5.
Afterwards, we calculated an aperture mass Mi

ap by use of
Eq. (18) with the shear profiles of each realisation n. With these

5 Each quantile corresponds to one of the five sub-areas of the aperture
number as in Sect. 5.
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Fig. 10. Comparison between Map and S 8 for the highest and lowest
quantile from Nap with the adapted filter of all cosmologies given in
cosmo-SLICS. These two quantities are strongly correlated which indi-
cates that Map is a useful cosmological probe. For the fiducial case of
S 8 = 0.8231 the blue and the orange dot are both at Map/Mfid

ap = 1, so
that you see only one orange dot since they are on top of each other.

aperture masses we determine for each quantile in each cosmol-
ogy an averaged aperture mass 〈Mi

ap〉, where we average over
the 50 realisation of each cosmology. Additionally we calculate
one 5 × 5 covariance matrix for each filter (adapted and top-hat)
from the shear profiles of the 50 fields for the fiducial cosmology,
which captures the correlation between the individual quantiles
as

Ci j
fid =

1
50 − 1

50∑
n=1

(Mi
ap,n − 〈M

i
ap〉)(M j

ap,n − 〈M
j
ap〉), (21)

where i and j indicate the individual quantile and subscript “fid”
indicates the fiducial cosmology. Using these quantities, we cal-
culate for each cosmology with cosmological parameters x a
χ2 as a measure of the deviation from the fiducial cosmology
as

χ2(x|Mfid
ap ,Cfid) =

[
Mfid

ap −Map(x)
]>

C−1
fid

[
Mfid

ap −Map(x)
]
, (22)

where Map is the vector of the averaged amplitudes 〈Mi
ap〉 of the

five quantiles of the respective cosmology, with large χ2 values
corresponding to deviations that are easier to detect.

The resulting χ2-values for the 25 cosmologies are displayed
in Fig. 11, in which the χ2 for both filters are compared to each
other. It can be seen that the top-hat filter performs slightly better
for some cosmologies with a low χ2. But for most cases, the
adapted filter performs better in distinguishing between different
cosmologies.

In order to investigate the sensitivity of the DSS to cosmolog-
ical parameters in more detail, we display the two-dimensional
parameter space in Fig. 12a, where the colour represents the χ2

of the analysis with the adapted filter. We see that the DSS is
particularly powerful to distinguish between different values of
S 8 = σ8

√
Ωm/0.3. Unfortunately, the cosmo-SLICS set does not

cover values of S 8 > 0.9, but we expect that the χ2 would further
increase. In contrast, there is hardly any correlation between χ2

and w0, so that this parameter cannot be well constrained by DSS
without a tomographic analysis.

Returning to the comparison between the adapted and the
top-hat filter, we show in Fig. 12c the two-dimensional param-
eter space, but encoding in colour ∆χ2 = χ2

ad − χ
2
th. For most

cosmologies, the adapted filter performs better, or no significant
difference is seen, which is consistent with Fig. 11. Whereas for
most parameter pairs no clear trend with ∆χ2 is seen, a clear cor-
relation is present for S 8: for small S 8 values, the adapted filter
performs better, but for large S 8 and small Ωm values (i.e. large
σ8), the top-hat filter is more sensitive. High σ8 values imply
strong clustering of the matter distribution. As a consequence,

the analysis with the top-hat filter has difficulties to correctly
assign regions of the sky within the lowest four quantiles, result-
ing in shear profiles with quite similar amplitudes, as seen in the
lower right panel of Fig. 13. The adapted filter is less affected by
this effect, and therefore, χ2, which is a measure of the deviation
to the fiducial cosmology, is larger for the top-hat filter than for
the adapted filter (see Fig. A.1 for a visualisation of the ∆χ2 in a
σ8 − Ωm parameter space). Nevertheless, for all other cosmolo-
gies, the adapted filter is the better choice to distinguish different
cosmologies.

Gaussian process regression emulator (GPRE)

As all four cosmological parameters vary between the differ-
ent cosmo-SLICS models, a comparison between the different
cosmologies is non-trivial. To investigate the performance of
the DSS with the two different filters on a continuous two-
dimensional projected parameter space, we make use of a flex-
ible GPRE described in Appendix A1 in Harnois-Déraps et al.
(2019) to emulate averaged tangential shears γt for various cos-
mologies. The training of the emulator for each individual quan-
tile and for both filters is carried out with the 26 cosmo-SLICS
cosmologies. In order to test the accuracy of the GPRE we
apply the “leave-one-out” cross-validation method and show the
results in Fig. A.2. The shear profiles of the highest and low-
est two quantiles can be predicted with an accuracy of gener-
ally better than 10%. The shear profiles of the fourth and third
quantile have a relative accuracy far worse than that, but this is
not surprising since these quantiles have a very low shear signal.
However, we checked that our results are robust with respect to
including or excluding these two quantiles.

In order to produce smooth two-dimensional constraints on
the four cosmological parameters, we vary two of the four
parameters in 41 steps in the same range as the parameters
were given in cosmo-SLICS and fixed the other two remain-
ing parameters to the fiducial cosmology. Next, we calculate for
each grid point the aperture masses Mi

ap from Eq. (18) and χ2

from Eq. (22) as measures of the deviation of the predicted shear
profiles from the predicted fiducial shear profiles. We emulate
directly the averaged shear profiles, so that Map in Eq. (22) is
the vector of Mi

ap calculated with the emulated shear profiles.
The covariance matrix employed is the one calculated with the
50 realisations from the fiducial cosmology of cosmo-SLICS by
use of Eq. (21). The results for the individual parameter pairs
are displayed in Fig. 12b. As expected, the further we deviate
from the fiducial cosmology the higher is the χ2. By inspecting
the individual panels, we see that the S 8 and Ωm parameters are
well constrained. Furthermore, it is clearly visible that these two
parameters are dominating the change in the shear profiles for
all parameter pairs. This can be seen especially in the case when
S 8 and Ωm are fixed and h or w0 are varied, where the χ2 has a
very weak gradient.

We also investigated the difference between the adapted and
top-hat filters, seen in Fig. 12d. Around the fiducial cosmol-
ogy, the χ2 values of both filters are indistinguishable, but as the
trend of the 25 cosmo-SLICS nodes (Fig. 12c) already suggests,
the analysis with top-hat is more sensitive for large σ8 values,
whereas the adapted filter is better for the remaining parameter
regions.

Summarising this section, we find that the top-hat and
adapted filters perform similarly around the fiducial cosmology
to differentiate cosmologies, but moving away from the fiducial
cosmology the adapted filter is more constraining than the top-
hat filter, with the exception of large σ8 values.
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Fig. 11. Comparison of the χ2 for all 25 cos-
mologies between the two filters, where the blue
plus signs represent the top-hat filter and the
red crosses correspond to the adapted filter. The
parameters of the 25 cosmological model are
shown in Table A.1.

(a) Cosmo-SLICS: adapted filter (b) GPRE: adapted filter

(c) Cosmo-SLICS: difference (d) GPRE: difference

Fig. 12. Cosmological parameter space, where the colour in the upper panels indicates the χ2 corresponding to the adapted filter and in the lower
panels to ∆χ2 = χ2

ad − χ
2
th. The χ2 of the left-hand side are determined with the cosmo-SLICS data and on the right-hand side with the flexible

Gaussian process regression emulator. The grey cross marks the fiducial cosmology. One should not compare the right-hand side with the left-hand
side directly, since in each node on the left, all four cosmological parameters are varied, whereas on the right, only two of the parameters are varied
and the other two are fixed to the fiducial cosmology.

8. Summary and conclusion

In this work, we constructed a pair of adapted filter functions
for the DSS, using ray tracing and a semi-analytic model galaxy
population in the MS in an iterative process. Our new pair of
filters is matched with respect to the aperture mass and galaxy
number statistics. In other words, the adapted pair of filters
measures the lensing convergence and the galaxy number den-
sity with the same angular weighting. Based on numerical weak

lensing simulations, we confirmed our expectation that the corre-
lation between galaxy number density and shear signal is higher
with our adapted filter than for the top-hat filter. We verified that
this result holds both for a linear and a non-linear galaxy bias
model, using mock GAMA×KV450 data constructed from the
SLICS and the cosmo-SLICS weak lensing simulations.

Furthermore, we showed that the adapted filter is indeed
a useful improvement for the DSS, by comparing it with the
previously used top-hat filter of appropriate scale, using their
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Fig. 13. Tangential shear profiles, γt, for two different cosmologies for
the adapted filter on the left-hand side and the top-hat filter on the right-
hand side. The uncertainties are the standard deviation on the mean
determined with the 50 realisations.

resulting S/N in different sub-areas of the sky and their sen-
sitivity to discriminate between different sets of cosmological
parameters as metrics. These sub-areas are called quantiles of
the aperture number field. For the S/N comparison, we made use
of the wCDM SLICS simulation and showed that the adapted
filter has a higher S/N for most quantiles. For comparing the
sensitivity of both filters to different cosmologies, we employed
the cosmo-SLICS, which is a suite of 26 different cosmologies
with 50 realisations each. From the 50 realisations in each cos-
mology, we calculated a χ2 as a measure for the deviation from
the fiducial cosmology. It turned out that both filters behave sim-
ilarly near the fiducial cosmology, but that the adapted filter is
more constraining in most regions of parameter space probed
by cosmo-SLICS, except for very high values of σ8 where the
top-hat filter yielded higher deviation from the fiducial cosmol-
ogy. In order to investigate the performance of the DSS with the
two different filters on a continuous two-dimensional projected
parameter space, we also made use of a flexible GPRE, which
is a promising tool for future cosmological analyses. Both the
S/N and the cosmological analyses lead to the conclusion that
the adapted filter yields tighter cosmological constraints than the
top-hat filter and should be employed in future DSS analyses.

As an outlook, it would be interesting to investigate the arbi-
trariness of dividing the aperture number field into five quantiles.
For instance, one could optimally combine the shear profiles or
find a way to not bin the sky at all, as binning decreases the infor-
mation content. Furthermore, the filter size used here has not
been optimised and should also be varied. Our first attempt here
to look into the usefulness of the new DSS to constrain cosmo-
logical parameters relied fully on numerical simulations, we aim
to modify the analytical model derived by Friedrich et al. (2018)
to account for the adapted filter, allowing for an alternative mod-
elling option in an up-coming cosmological study, similar to the
approach of Gruen et al. (2018).
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Appendix A: Additional material

Table A.1. Overview of all the different cosmological parameters for the
26 cosmo-SLICS models, which are used in Sect. 7 for the cosmological
analysis.

Ωm h w0 σ8 S 8

fid 0.2905 0.6898 −1.0000 0.8364 0.8231
1 0.3282 0.6766 −1.2376 0.6677 0.6984
2 0.1019 0.7104 −1.6154 1.3428 0.7826
3 0.2536 0.6238 −1.7698 0.6670 0.6133
4 0.1734 0.6584 −0.5223 0.9581 0.7284
5 0.3759 0.6034 −0.9741 0.8028 0.8986
6 0.4758 0.7459 −1.3046 0.6049 0.7618
7 0.1458 0.8031 −1.4498 1.1017 0.7680
8 0.3099 0.6940 −1.8784 0.7734 0.7861
9 0.4815 0.6374 −0.7737 0.5371 0.6804
10 0.3425 0.8006 −1.5010 0.6602 0.7054
11 0.5482 0.7645 −1.9127 0.4716 0.6375
12 0.2898 0.6505 −0.6649 0.7344 0.7218
13 0.4247 0.6819 −1.1986 0.6313 0.7511
14 0.3979 0.7833 −1.1088 0.7360 0.8476
15 0.1691 0.7890 −1.6903 1.1479 0.8618
16 0.1255 0.7567 −0.9878 0.9479 0.6131
17 0.5148 0.6691 −1.3812 0.6243 0.8178
18 0.1928 0.6285 −0.8564 1.1055 0.8862
19 0.2784 0.7151 −1.0673 0.6747 0.6500
20 0.2106 0.7388 −0.5667 1.0454 0.8759
21 0.4430 0.6161 −1.7037 0.6876 0.8356
22 0.4062 0.8129 −1.9866 0.5689 0.6620
23 0.2294 0.7706 −0.8602 0.9407 0.8226
24 0.5095 0.6988 −0.7164 0.5652 0.7366
25 0.3652 0.7271 −1.5414 0.5958 0.6574

Fig. A.1. Cosmological parameter space σ8−Ωm, where the colour indi-
cates ∆χ2 = χ2

ad − χ
2
th of the 25 nodes of cosmo-SLICS determined in

Sect. 7. It is clearly seen that for large σ8 the analysis with the top-hat
filter yields higher χ2. The grey cross indicates the fiducial cosmology.

Fig. A.2. “Leave-one-out” cross-validation to test performance of accu-
racy of the GPRE, which is used in Sect. 7 to investigate the perfor-
mance of the DSS with the two different filters on a continuous two-
dimensional projected parameter space. On the y-axis the relative dif-
ference between the predicted shear profile of one cosmology if the
emulator is trained exclusively by the remaining cosmologies and the
corresponding shear profile which the emulator tries to emulate. The
black lines here are correspond to the fiducial case. The quantiles N4
and N3 are quite inaccurate, but the other quantiles are of the 10% level
accurate, which are indicated with horizontal grey lines.
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