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Abstract Probabilistic classifiers induce a similarity metric at each location
in the space of the data. This is measured by the Fisher Information Matrix.
Pairwise distances in this Riemannian space, calculated along geodesic paths,
can be used to generate a similarity map of the data. The novelty in the paper
is twofold; to improve the methodology for visualisation of data structures in
low-dimensional manifolds, and to illustrate the value of inferring the structure
from a probabilistic classifier by metric learning, through application to music
data. This leads to the discovery of new structures and song similarities be-
yond the original genre classification labels. These similarities are not directly
observable by measuring Euclidean distances between features of the original
space, but require the correct metric to reflect similarity based on genre. The
results quantify the extent to which music from bands typically associated
with one particular genre can, in fact, crossover strongly to another genre.
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1 Introduction

A unique property of probabilistic classifiers stems from the fact that the met-
ric is induced in either the space of model parameters, or the space of data.
This does not apply to classifiers arising from computational learning theory,
for instance Support Vector Machines, which work on the basis of discriminant
vector spaces. The metric is linked to the Fisher information matrix which is
calculated directly from the conditional probabilities inferred from the model.
This property is most often ignored but it holds the key to derive important
properties about the data structure, which provide insights on the question
addressed by the classifier. In binary or multinomial classification, the ques-
tion addressed by the classifier is the probability of class membership of any
given test point. Therefore the metric will make explicit the similarity struc-
ture of the data, by weighting each input variable precisely according to the
information it contains about class membership. New questions may be asked
by changing the class labels and so the data structure will change accordingly.
In other words, the Fisher information opens the door to the discovery of
knowledge that is otherwise implicit in the scalar output of the model.

This paper illustrates this process by using class membership of three mu-
sical genres as the driver to map the structure of recordings from the Million
Song Dataset (MSD). This will show how some songs appear at the extremes
of the distribution of the data, reflecting a genre that might be considered
close to pure, while others lie between genres, so indicating a fusion of two
or more types. This is helpful in the context of the MSD as the genre can
be associated with the band that plays the song, when reality can be quite
different. So music from say the Rolling Stones is generally classed under Pop
Rock, but at least one instance can be found halfway to Rap. Listening to the
song Cherry Oh Baby confirms that this is the correct assignment of genre.

The main novelty in the paper is to improve the methodology of the origi-
nal derivation of Fisher information from estimates of the posterior probabil-
ity modelled by the Multi-Layer Perceptron (MLP) [42] by the use of classical
Multidimensional Scaling (cMDS) [11,51] to derive a faster and more stable
Euclidean embedding of the data structure, compared with the use of Sam-
mon mapping in the original paper. The Euclidean embedding is obtained
from the pairwise distances along geodesics of the Riemannian space induced
by the Fisher metric. This is crucial to enable the application of projective
methods, such as clustering approaches, to profit from the re-scaling of the
dimensions for each variable according to their importance from classification.
This provides a practical solution to a general question: how can we mitigate
the bias suffered by clustering methods as a result of the potentially arbitrary
distance measure, typically calculated as the Euclidean distance between data
points, when the scale of the axis for each variable is set by the user without
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reference to any objective principle? The answer we provide is that in the con-
text of allocating data to two or more classes with a probabilistic model, an
appropriate metric can be calculated which will enable clustering (or perhaps
semi-supervised clustering) to be carried out in a principled manner.

The second improvement to the methodology is the application of Quan-
tum Clustering [18] to map out the data density in the embedded Euclidean
manifold. This is made possible by an extension of the method that sets it
within a probabilistic framework [7]. The aim in doing so was to provide ob-
jective measures to quantify how well each clustering solution fits the data.
In this paper, we show that Probabilistic Quantum Clustering (PQC) is well
suited to fine tune the granularity of the clustering to the structure of the
data.

The third novelty is the application of the Fisher information to derive the
structure of songs originally labelled with one of three common genres, Pop
Rock, Rap and Jazz. The paper will show that songs lie on a continuum that
links all three genres, with clusters of higher population density appearing at
the corners of this triangle. To our knowledge, this is the first time that the
manifold of data induced by genre-specific content has been mapped explicitly.

Finally, an important element of the paper is to use this case study to
validate the plausibility of the results and show the value that Fisher informa-
tion has for knowledge discovery from data sets, by exposing the richness of
structure that is concealed within the numerical predictions from the model.

The MSD set was used as the source for our study cohort because indi-
vidual songs often combine multiple musical genres. We provide a principled
method to derive and visualise the manifold of musical data represented in
the data set across the three specific genres. Neighbourhood structures within
the map of songs can potentially be used by subject experts to validate the
prediction made by the MLP. This is the final, and arguably most important,
message of the paper, namely that it is possible to find graphical ways of inter-
preting the operation of neural networks using data structures that end users
can understand and reason with; and this enables end users to validate the
operation of the model, by testing whether the plausibility of the similarities
that the model induces in the data.

Under the scope of Music Information Retrieval (MIR), the dataset com-
prises spectral features of multiple songs which are labelled by music genre.
We will use this label for classification in order to generate the Fisher manifold
onto which the songs are projected to obtain a genre-informed low-dimensional
visualisation and clustering of the data.

The MSD has been one of the first benchmark datasets for large-scale ap-
plications in the MIR research, where historically there have been difficulties
in sharing information among the research community due to copyright is-
sues. The original MSD comes with a set of features extracted by the API
of The Echonest 1 and meta-data songs; nevertheless, the audio files are not
easily accessible and the features provided by The Echonest services are lim-

1 http://the.echonest.com/

http://the.echonest.com/
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ited. For this reason, some works [47,48] focused on adding more features,
including features of temporal domain, ground truth assignments and labels
for supervised machine learning tasks. The features and meta-data are pub-
licly available without copyright restrictions, helping to extend the use of the
dataset as a benchmark. One of the most popular tasks in Music Information
retrieval research is musical genre classification, which is where the present
work fits in.

Clustering and segmentation will apply PQC [7]. This is a Bayesian exten-
sion of the Quantum Clustering (QC) method [18] that provides an objective
function for setting the main adjustable parameter in QC, namely the length
scale inherent in the Schrödinger equation, which drives the granularity of the
resulting clusters.

MIR has evolved considerably in the last two decades [45], not only ex-
tracting information from audio signals, but also from contextual data sources,
user experience, folksonomy or collaborative tags [8]. More recently and pow-
ered by the music streaming services, models have been shifted from system-
centric towards user-centric designs, focusing on aspects like novelty, popular-
ity, serendipity or location/time-awareness, all concepts that are very useful
for recommender systems [59].

More related to the proposals made in this work, the comparison between
a human classification and an automatic one has also been a topic of study
since the first works on MIR [52]. However, within user-centred frameworks,
tasks like music similarity or genre classification still remain without a clear
consensus [29,49]. Different studies [53,44,54,21] state that human agreement
on the similarity of two music pieces is roughly bounded at 80%.

Different music similarity measures have been evaluated in the context of
recommender systems [3], where results using audio content-based distances
can be comparable to results based on high-level semantic measures formed
by Support Vector Machine (SVM) classifiers. Genre classification can also be
tackled using text-based features [46,25] or a combination of content-based
features with temporal/co-occurrence context-based ones in order to improve
auto-tagging tasks with conditional Restricted Boltzmann Machines [32,35],
a weighted vote k-Nearest Neighbour classifier [50,24] or random forest clas-
sifiers [49].

Some works have made use of a user-interface map representation as music
browser to enhance the user experience; for instance, a Self-Organizing Map
(SOM) on content-based features to reduce the dimensionality is presented
in [26]; [31] uses a exponential similarity model to heuristically combine three
distances of different nature: content-based, metadata-based and collaborative
tag distances; the combined pairwise distances are embedded into a Multidi-
mensional Scaling (MDS) with high dimensionality to later apply a SOM for
visualization. Other music browsers with a similarity map visualization can be
found in [14,16].

Our approach differs from all these previous works that are mainly user-
centred models within the framework of recommender systems. As far as the
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authors’ knowledge, this paper is the first attempt to map the manifold of
data induced by genre-specific content explicitly.

The rest of the paper is now outlined. Section 2 introduces the three meth-
ods applied in this paper, namely Fisher Information (FI), classical multidi-
mensional scaling (cMDS) for embedding the Fisher manifold, and PQC to
segment the data. The data projections form a continuum, hence the purpose
of clustering is to identify regions with high data density, for which PQC is
efficient. Section 3 describes the data set and the procedure to select bench-
mark datasets based on its MIR features. Section 4 summarizes the proposed
methodology in a pipeline. The experimental results are presented and dis-
cussed in section 5, the limitations and challenges of the implementation in
section 6, ending up the paper with the conclusion of the work in section 7.

2 Methodology

2.1 Fisher manifold

2.1.1 Fisher metric introduction

Generally, most of the works in the literature that involve the FI metric [2,20,
41,1,27,4] use the metric defined in parameter manifolds based on generative
models, p(x|θ). However based on [22,23], it is possible change the approach
and apply the Fisher metric on discriminative models p(y|x) that classify an
external auxiliary information y. In this case, the metric measures parameter
distortions with reference to the input space x instead of the parameters θ:

d (x, x + dx)
2

= dxTFI (x) dx

FI (x) = Ey
[
∇xlog p(y|x) · ∇xlog p(y|x)T

] (1)

Generally, the auxiliary information y represents a class label C composed
by J discrete values, y ∈ [c1, · · · , cJ ]. The probability function p(y|x) repre-
sents the discrete probability distribution conditioned on x, where the expected
value Ey over p(y|x) is the summation of FI matrix over each class in p(y|x):

FI (x) =

J∑
j=1

∇xlog p(cj |x) · ∇xlog p(cj |x)T p(cj |x) (2)

This metric measures local distances in the input space dx as a function
of the variations on the class probabilities, assigning longer distances in the
direction of the posterior probabilities that have more variation, and shorter
distances where there are no class probability changes. In other words, the FI
metric contains local relevant information about the probability rate of change
of class y membership.
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2.1.2 Choice of discriminative model for the FI matrix

The form of the FI matrix (eq. 2) strictly depends on the election of the dis-
criminative model p(y|x). There are some constraints that the discriminative
model must follow:

– Be a multinomial classifier with a probabilistic output.
– Be able to deal with non-linear data.
– Have a mechanism to avoid over-fitting.
– Allow the model to be easily differentiable up to second order with respect

to the input space. This requirement is due to the fact that the Fisher
Information matrix [41] can be derived as the Hessian of the KL-divergence
(also called relative entropy), implying derivatives of second order.

Because of these constraints, a Multi-Layer Perceptron (MLP) [17] classifier
regularized with weight decay was chosen for the implementation. Although
the MLP fits very well the above-mentioned requirements indeed, other clas-
sifiers could also be chosen; for instance, the vanilla SVM [10] do not have a
probabilistic output, but they can be adapted [40] and can be useful for feature
selection [39].

Using the MLP as a discriminative model, the posterior probability esti-
mation is evaluated with the soft-max activation:

p(cj |x) =
exp (aj(x))∑J
k=1 exp (ak(x))

(3)

where cj are the J different class labels, and aj are the MLP outputs described
in the following expression:

a(x) = WO ·Θ
(
WH · x + BH

)
+ BO (4)

where W and B are the MLP weights of the hidden layer (H) and output
layer (O), and Θ(z) is the sigmoid function.

Using the eq. 3 in the FI matrix (eq. 2) and applying derivatives, the FI
matrix can be expressed as a function of the MLP output, aj , in the following
equation:

FI (x) =

J∑
j=1

J∑
k=1

J∑
l=1

∇ (aj − ak)∇ (aj − al)T pjpkpl (5)

A more detailed derivation can be found in appendix A.
The MLP architecture is set empirically with one hidden layer of 10 neu-

rons, which provides good enough results to discriminate any non-linear shape
without adding too much model complexity. The other hyper-parameters are
listed below:

– MLP architecture: One hidden layer of 10 neurons
– Neuron activation: Sigmoid
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– Learning rate: 0.001
– Momentum: 0.9
– Weight decay: 0.05
– Maximum epochs: 2000

The weights are updated by training a log-likelihood objective function
with a regularized back-propagation:

εLL = − 1

N

N∑
i=1

J∑
j=1

cj(xi)log (p(cj |xi)) + (1− cj(xi)) log (1− p(cj |xi)) (6)

With the eq. 5 the metric is estimated locally, computing differential dis-
tances as:

d(x, x + dx)2 = dxT · FI(x) · dx (7)

2.1.3 Fisher pairwise distances

The Fisher manifold is formed by the pairwise distances between observations
under the Fisher metric. Because the metric is variable depending on the input
space, two approximations are needed to calculate the geodesic distances, one
to estimate local distances and another for global distances. It should be taken
into account that there is an inherent problem of scalability when measuring
pairwise distances due to the O(n2) sample size dependence; this problem was
already addressed in [6].

The first approximation estimates local distances by path integrals, where
the path is a straight line between observations and the metric is sampled
across this path.

In more detail, if two points are close enough, the distance between them
can be approximated as:

d(xA,xB)2 ≈ (xB − xA)
T · FI

(
xB + xA

2

)
· (xB − xA) (8)

Since usually the points are not close enough, the theoretical solution for
this case is to use the path integral:

d(xA,xB) =

∣∣∣∣∫ tB

tA

√
ẋ(t)T · FI (x(t)) · ẋ(t)dt

∣∣∣∣ (9)

The MLP density estimators, a(x), are non-linear functions of x making
the path integral impossible to be solved analytically. Therefore, the distances
must be estimated numerically, which approximates the path to a straight line
that connects both points, being FI(x) evaluated by taking T samples across
the path. The total distance is approximated as the sum of T small segments
computed like in eq. 8.
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dT (xA,xB)
2

=

T∑
t=1

d

(
xA +

t− 1

T
(xB − xA) , xA +

t

T
(xB − xA)

)2

(10)

The quantity of segments T can be set empirically; one option with a good
trade-off in runtime versus accuracy is fixing the segments number in T = 10,
where the segments will have a variable length depending on the Euclidean
distances between xA and xB .

The second approximation estimates global distances by shortest path al-
gorithms applied to a fully connected network formed by nodes (observations)
and edges (local distances).

The Floyd-Warshall algorithm [13,56] was used; it is an algorithm of the
kind All-Pairs-Shortest-Path (APSP) based on weighted graphs. In our case,
the nodes are the data samples and the edges are the local pairwise distances,
creating a fully connected graph. The global distances are found by search-
ing paths through previously calculated edges, thus shortening those global
distances.

With these two approximations a manifold with geodesic distances can
be estimated, forming an adjacency matrix that defines the structure of the
Fisher manifold.

2.2 Multidimensional scaling

Fisher manifolds are usually embedded into a low-dimensional space (typically
in two or three dimensions) for the purpose of visualization. Our preferred
method is to transform the pairwise distances of the Riemannian manifold
into coordinates, embedded in a Euclidean space.

A commonly used embedding is Sammon Mapping [43]. However, this
method is computationally expensive for large data sets and can be unsta-
ble in the sense that removing only a few points can significantly change the
overall map. We will apply classical Multidimensional Scaling (cMDS) [11,51,
57], also known as Principal Coordinate Analysis (PCoA) [15]. This method is
computationally efficient and much less affected by small changes in the data
set. It is a powerful method for preserving the global structure of the mani-
fold, but it needs more dimensions to properly embed a Riemannian manifold
with the advantage of gaining mapping accuracy. It gives information about
the eigenvalues associated with each eigenvector of the Euclidean embedding,
measuring the relative importance of each dimension, and therefore discarding
the least relevant dimensions given a threshold of the cumulative sum of the
eigenvalues, thus providing a clear indication of the number of dimensions that
are needed to effectively map the Fisher manifold.

From a theoretical standpoint, it is important to mention the Nash embed-
ding theorem [36,37], which states that every Riemannian manifold of dimen-
sion D can be isometrically embedded into a Euclidean space of dimension M ,
where M ≥ D + 1. Isometric meaning the length of every path is preserved.
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In the case of cMDS, it tries to find a solution X = [x1, · · · xN ] hence
di,j = ||xi − xj ||, where xi ∈ RM and M ≥ N − 1. The solution can be
expressed as a function of the N ×N Gram matrix B = XT ·X, where now
the distances depend on B:

d2ij = bii + bjj − 2bij (11)

where the expression has been obtained taking into account ||xi − xj ||2 =
x2
i + x2

j − 2xixj , and considering the assumption of centred configuration:

N∑
i=1

xik = 0 ∀ k (12)

This assumption will serve as a constraint for obtaining a unique solution,
and for the purpose of dimensionality reduction. Summing for all variables in
eq. 11, using the constraint eq. 12 and rearranging the terms, the final solution
can be obtained:

bij =
−1

2
(
d2ij −

∑
i d

2
ij −

∑
j d

2
ij +

∑
i

∑
j d

2
ij

) (13)

If B is decomposed by its eigenvectors, B = V ·Λ ·V T , then X = Λ1/2 ·V T .
In this way, X is expressed as the eigenvectors of B, allowing a dimensionality
reduction similar to PCA, just discarding the eigenvectors whose eigenvalues
have less weight (variance). In fact, the coordinates are ordered from the largest
to the smallest variances, allowing any dimension from 1 to M to be selected.

The distance dij is called a Euclidean distance if there exists a finite M :

dij ≡ ||xi − xj || ∀ i, j (14)

Otherwise, dij is called a non-Euclidean distance, which is the case of the
distances obtained in the Fisher manifold.

For Riemannian distances (non-Euclidean) some of the eigenvalues of B
are negative, hence these eigenvectors are discarded. In all the cases where
the cMDS with the Fisher manifold has been tested, M is quite high but the
eigenvalues present an exponential decay with a long tail, with the smallest
eigenvalues being negative. Therefore, they carry little variance; in practice,
only the first two or three eigenvalues are kept, particularly when the accu-
mulated sum of variance is greater than 80%. On the other hand, when the
cMDS is applied to Euclidean pairwise distances the same results as the PCA
are recovered, with no eigenvalue being negative.

2.3 Probabilistic Quantum Clustering

A probabilistic approach to QC by means of wave functions comprising nor-
malised joint probability distributions is proposed. This enables the parame-
ters for local covariance estimation to be optimised by maximising a Bayesian
probability of cluster allocation.
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2.3.1 Introduction to original Quantum Clustering

Quantum Clustering (QC), originally proposed in [19], is a paradigm to find
clusters or data profiles based on the Schrödinger equation, Eq. (15), one
of the cornerstones of Quantum Mechanics. In particular, Eq. (15) generates
a potential function V (x) from a wave function Ψ(x) as a constant energy
solution of the Schrödinger equation:

HΨ ≡
(
−σ

2

2
∇2 + V (x)

)
Ψ(x) = EΨ(x) (15)

where H is the Hamiltonian, E the energy, and σ is a length scale parameter
assciated with the wave function. Therefore, the potential can be expressed
as:

V (x) = E +
σ2

2

∇2Ψ(x)

Ψ(x)
(16)

QC has the potential to match complex data structure by connecting neigh-
bouring points by defining a potential function derived from a Parzen density
estimator. The key idea is to associate clusters with potential wells, deter-
mined by identifying the connected regions around that potential. The main
advantage of such an approach is that clusters with different shapes can be
found by connecting nearby points together using the potential as a smoothing
function.

The data points are allocated into clusters performing a stochastic gradient
descend (SGD) over the potential to find the potential wells (some of them
can be local minima), which are identified as clusters.

Nevertheless some aspects of QC remain open questions. In particular,
the accuracy in matching the correct data density structure depends strongly
on the assumed length scale [5]. However, when heteroscedasticity is present
this length scale will vary across feature space. Therefore, it is necessary to
estimate the length scale locally for which several methods of local covariance
estimation have been proposed [28,55,58].

2.3.2 The use of local length scales

One of the main novelties of the PQC is the introduction of a local estimation
of the length scale and a probabilistic approach of the cluster allocation. These
improvements will allow to define a likelihood function of cluster membership
introduced in next subsection.

In order to deal with heteroscedastic data, information about local density
changes is required. This can be done by means of the length scale by setting
σ not to a a constant value, but as a function of the KNNs:
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σi ≡
1

K

K∑
j ∈ knn(xi)

dist(xi,xj) (17)

Assuming Gaussian kernels for simplicity, each observation is associated
with a different Gaussian contributing to the overall wave function:

Ψ(x) =
1

n

n∑
i=1

ψi (x) =
1

n

n∑
i=1

e
− (x−xi)

2

2σ2
i(√

2πσi
)d (18)

where d is the dimensionality of the sample. The potential will be given by

V (x) = E +

∑
i
σ2
i

2 ∇
2ψi∑

i ψi
= E − d

2
+
〈 (x− xi)

2

2σ2
i

〉
Ψ

(19)

As a result of having a length scale dependent on nearest neighbours, the
shape of the wave function therefore relies on the local density, thus show-
ing narrow and high peaks in areas of high density, whilst smooth and flat
shapes are associated with low density regions. An additional advantage of
this approach based on a variable σ stems from the fact that outliers can be
easily detected since an outlier will have the average distance of its nearest
neighbours considerably larger than the rest of the observations, and hence,
the corresponding wave function will be flat.

Given the length scale of the Gaussian can be considered as the area of
influence of each observation, the same interpretation can be extended to the
potential, i.e., regions with high density will create deep potential wells with
a steep decay (“volcano” shape), and this property can be used, in turn, to
discriminate clusters depending on its density.

This model based on local length scales can be generalised to kernels
that are not hyper-spherical by analysing how the nearest neighbours are
distributed. Therefore, the resulting wave functions can be a more accurate
representation of the probability density function, thus being able to model
complicated shapes in the data distribution. To this end, the length scale can
be estimated by means of a covariance matrix based on the local manifold
information [55], so that a local covariance matrix, Σi is computed using the
KNNs of each observation:

Σi =
1

Nk − 1

Nk∑
j ∈ knn

(xj − xi)
T

(xj − xi) (20)

As each observation has a kernel with the form of a multivariate normal
distribution, the following wave function is obtained:

Ψ(x) =
1

n

n∑
i=1

ψi (x) =
1

n

n∑
i=1

1√
|2πΣi|

e−
1
2 (x−xi)

TΣi(x−xi) (21)
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2.3.3 The probabilistic approach

In particular, clusters are no longer defined by the groups of points found
after a SGD; those groups are now used to define component elements (sub-
functions) that add to make the overall wave function. Assuming that the joint
probability of observing the cluster k in the position x corresponds with the
sum of Gaussian functions associated with the observations grouped in the
cluster (subfunction) k:

Ψ(x) =

K∑
k=1

∑#k
i∈k ψi (x)

n
=

K∑
k=1

P (k,x) = P (x) (22)

where n is the sample size, K the total number of clusters, and #k the number
of observations in cluster k.

The probability of k can be obtained by marginalizing the joint probability
over R:

P (k) =

∫
R
P (k,x)dx =

∫
R

∑#k
i∈k ψi (x)

n
dx

=

#k∑
i∈k

∫
R ψi (x) dx

n
=

#k∑
i∈k

1

n
=

#k

n

Once the joint probability is defined, the required conditional probabilities
follow by application of Bayes’rule:

P (k|x) =
P (k,x)

P (x)
=

∑#k
i∈k ψi (x)∑K

k=1

∑#k
i∈k ψi (x)

(23)

P (x|k) =
P (k,x)

P (k)
=

∑#k
i∈k ψi (x)

#k
n

(24)

Cluster allocation follows from the most likely value of k:

kw = arg maxk P (k|x) / x ∈ cluster kw (25)

This is a significant improvement over the original method for cluster al-
location because any region of the input space can be allocated to a cluster
without the need to apply SGD over the potential [7]. The probabilistic cluster
allocation draws a probability map to define the boundaries between clusters.
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2.3.4 Unsupervised performance assessment

It now remains to find an objective function to determine, or at least provide an
indication for an appropriate value for the length scale. A maximum likelihood
approach applied to the probability of cluster allocation is proposed:

LL(K|X) = log

(
n∏
i

P (kw|xi)

)
=

n∑
i

log (P (kw|xi)) (26)

This is normalised to the range [0, 1] as follows:

ALL(K|X) =
−
∑n
i log (P (kw|xi))

N
(27)

The intuition for this approach is that the lower the ALL, the better the
model in terms of the probability assigned to each observation. The crucial
aspect is to determine whether ALL is correlated with an accepted score for
supervised classification, such as the Jaccard score. In [7], it is shown that they
are correlated, hence ALL can be an unsupervised metric for an indirect mea-
sure of the clustering performance without the need of external (supervised)
labels.

In addition to the size of the neighbourhood given by %KNN, an improve-
ment in the use of ALL involves including a hyperparameter, Eth to control
how to merge close clusters with small potential differences between their lo-
cal minima. Due to the fact that ALL is sensitive to the different hierarchical
solutions provided by each %KNN, Eth sets a threshold to merge two clus-
ters if the maximum potential difference between their centroids is lower than
Eth. This avoids producing sub-clusters around the same minimum when the
potential shape is very flat.

Therefore, as the value of Eth increases, clusters are merged starting from
those clusters with the lowest potential differences, and ending when all clus-
ters are merged, i.e., Eth allows the generation of a quantum hierarchical clus-
tering without modifying the length scale %KNN. The ALL score decreases
when the clusters are merged, reaching zero for the trivial case of a unique
cluster. Nevertheless, ALL may also have small values, even zero, when the
density functions associated to each cluster are perfectly separated.

In summary PQC addresses open questions for QC, which is an objective
framework to optimise the local estimation of the length scale around each data
point. This provides a more reliable cluster allocation which better reflects the
data structure as measured by the Jaccard score. In particular, this framework
detects overlapping clusters thus handling heteroscedacity, a common situation
in real-world data. The proposed framework is robust to outliers and allows the
use of ALL supported by Eth and %KNN as an indirect measure of clustering
performance, crucial in assessing the correct number of clusters in a given data
set.
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2.4 K-means comparison with Se-Co framework

For comparison purposes, K-means has also been used in the cMDS embed-
ding. The SeCo framework [30,9,5] has been applied to find out the most
stable number of K-means clusters; this framework basically repeats K-means
multiple times with different centroid initializations for a range of K clusters,
and then analyses the separation (intra-cluster centroid distance) and the con-
cordance (using Cramer’s V statistic) of the cluster solutions for the same K;
these pairs of separation-concordance measures are represented in a graph,
where one can observe which K provides the most concordant solutions (as
a measure of stability) and offers the highest possible separation. Those so-
lutions with highest concordance indicate the K values where K-means finds
similar clusters independently of the centroid initialization.

3 Data description and feature selection

Data was acquired from the Information Management and Preservation Lab,
at the Department of Software Technology and Interactive Systems, Vienna
University of Technology. This laboratory has extensively used the MSD in
MIR2. There are many benchmark datasets based on different MIR features.
The list of features eventually tested in this work are listed in table 1; they
were chosen according to the following criteria:

1. The higher accuracy of the discriminative model the better. The Fisher
manifold requires the discriminative model to be able to classify with a
minimum predictive power; experimentally it is shown that a ≈ 65% ac-
curacy is good enough. The accuracy metric is used because the Fisher
metric only needs the classifier to match as many cases as possible.

2. The lower number of features the better; it affects the computation load
of the Fisher manifold, but it is not critical.

3. The higher number of labels (genres) the better; the dimensionality of
the Fisher manifold will be increased with the number of different labels.
However, the model performance will decrease as the number of labels to
predict increase.

4. The lower linearity of the feature set the higher dimensionality of the Fisher
manifold.

5. The noise in the data tends to smooth the decision borders of the classifier,
drops its accuracy, and implicitly reduces the dimensionality of the Fisher
manifold.

A feature selection process was carried out making use of a MLP that was
trained on the data set; the goal was to assess the performance of the MLP
in classifying the different musical genres depending on the features used for
training, thus selecting a data set that yields an appropriate trade-off between

2 http://www.ifs.tuwien.ac.at/mir/msd/

http://www.ifs.tuwien.ac.at/mir/msd/
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dimensionality and performance. Logistic Regression (LR) was also applied for
comparison purposes.

Table 1 shows a summary of the MLP and LR accuracy on the test set
(20% sample size) for different feature sets related to MIR domain. All datasets
were standardized (z-score) as pre-processing. Originally, the data contained
13 different genres, but they were reduced to only three (keeping the same
samples per genre) because the MLP performance worsened considerably with
more labels. MLP and LR showed similar performances thus suggesting the
linearity of the data set, probably due to the high noise levels. According to
the MLP accuracy for three genres, where there are almost 5,000 observations
with roughly 1,600 songs per genre, it can be concluded that the best trade-
off between MLP accuracy and dimensionality was obtained with Low-level
features, made up of 16 features and achieving an accuracy of 72.5%. This
performance is crucial for next steps since the Fisher metric is based on the
information contained in the classifier model.

Table 1 – Multilayer Perceptron and Logistic Regression: Performance on dif-
ferent feature sets.

MLP acc. (%) LR acc. (%)
Features set Dim

13 genres 3 genres 3 genres

Rhythm histogram 60 28.4 60.0 60.8

Statistical Spectrum Descriptors 168 41.1 73.7 77.3

Area moments 20 20.5 54.4 55.0

MFCC 26 34.6 67.3 69.6

Low-level features 16 31.8 72.5 70.3

Low-level features Derivatives 96 36.7 71.3 76.5

LPC 20 29.9 66.2 64.6

Moment Methods 20 27.0 64.3 64.6

A more detailed MLP performance of the selected benchmark, Low-level
features, is depicted in figure 1, where the results (accuracy, sensitivity, speci-
ficity, PPV and NPV) are presented following the format of the table 2. In the
figure, the genres correspond with the following numbers: Rap is 1, Pop-rock
is 2 and Jazz is 3.

Table 2 – Template for showing the MLP results.

Target 1 Target 2

Predicted 1 True Positive False Positive PPV

Predicted 2 False Negative True Negative NPV

Sensitivity Specificity Accuracy
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Fig. 1 – Music MLP performance for genre labels, where Rap is 1, Pop-rock is
2 and Jazz is 3.

The description of the spectral low-level features is shown in table 3, where
there are two main different types: features based on the standard deviation
([X1, X8]) and those based on average features ([X9, X16]). Bear in mind that
these means and standard deviations are the features themselves, as they were
defined in this benchmark. Additional information of this benchmark can be
found in [34,33].
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Table 3 – Music spectral low-level features

Feature Names of Low-Level features

X1 Spectral Centroid Std

X2 Spectral Rolloff Point Std

X3 Spectral Flux Std

X4 Compactness Std

X5 Spectral Variability Std

X6 Root Mean Square Std

X7 Fraction of Low Energy Windows Std

X8 Zero Crossings Std

X9 Spectral Centroid Mean

X10 Spectral Rolloff Point Mean

X11 Spectral Flux Mean

X12 Compactness Mean

X13 Spectral Variability Mean

X14 Root Mean Square Mean

X15 Fraction of Low Energy Windows Mean

X16 Zero Crossings Mean

4 Pipeline

This section summarizes the pipeline of the methods described in section 2 in
the following steps:

0. Select one of the benchmark features sets based on the MSD, handling the
best trade-off between classifier-accuracy, features-number and the amount
of genre labels. This dataset will be used for the rest of the pipeline.

1. Choice a random sample of the benchmark dataset, in our experiments a
sample size of 5000 observations was used, with well-balanced genre labels.

2. The data is standardized with z-score as pre-processing for the MLP.
3. Compute the Fisher metric with the discriminative model (MLP) and ob-

tain the local pairwise distances.
4. Compute the global pairwise distance with Floyd-Warshall algorithm (APSP),

the outcome is the Fisher manifold defined by the adjacency matrix of pair-
wise distances.

5. Apply the spectral clustering to obtain communities from the similarity
matrix, the outcome is a set of community labels.

6. Apply a Euclidean embedding of the Fisher manifold with cMDS and anal-
yse the manifold density distribution.

7. Choose a representative number of main eigenvectors based on its eigenval-
ues, as estimation of the variance explained in principal component analysis
(PCA).

8. Once in the cMDS space, it is important to mention that any kind of prepro-
cessing that modify the relation between eigenvectors should be avoided,
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like z-scoring, as the Euclidean distance between points should be pre-
served.

9. Apply the PQC in the embedded Fisher manifold and obtain the cluster
labels.

10. Apply K-means and check cluster concordance in the embedded Fisher
manifold just to compare with PQC labels.

11. Compare label results between both clustering methods.
12. Analyse the clusters patterns and how they are distributed in the embedded

Fisher manifold.
13. Show the location of some famous songs in the manifold.

5 Results

This section analyses the Fisher manifold structure under the Euclidean em-
bedding once the MLP is trained and the Fisher pairwise distances computed.

5.1 Manifold structure with cMDS

Figure 2 shows the embedding obtained with Sammon mapping; colours are
associated with the original genre labelling of the songs. The Sammon mapping
tends not to preserve the global distances, and as a result of this, some out-
liers with distorted distances are observed. When compared to the embedding
obtained by cMDS, Sammon mapping appears to be less reliable to represent
density distributions, and hence, we focus on cMDS embedding as the main
purpose of the work is to find clusters directly on the manifold embedding.

Figure 3 shows the eigenvalues associated with the eigenvectors of the
cMDS embedding, their relative accumulated sum can be interpreted as the
relative variance retained by the embedding as a function of the number of
dimensions used. In this case, figure 3 suggests that the Fisher manifold is
bi-dimensional, i.e., the MLP only needs two dimensions to discriminate the
genres. This low-dimensionality is partly due to the noisy data, that makes
linear boundaries equally efficient as a non-linear MLP as previously shown in
table 1.

The two main eigenvectors of the FIN cMDS embedding are represented
in figure 4 (left), where songs are coloured by genres. The high noise of the
data can be appreciated, with all three genres being mixed. In contrast, MLP
predictions, shown in figure 4 (right), depict simple boundaries separating
the genres in approximately equal areas of the Fisher manifold; this is why
LR achieves a similar performance. It should be emphasized that the cMDS
embedding for a manifold based on Euclidean pairwise distances would need
at least four or five eigenvalues to retain more than 80% of the variance.

Newman’s algorithm [38] was used for community detection. Figure 5 shows
five regions that are apparently arbitrary and do not seem to be related to the
density peak distributions. In fact, figure 6 shows a two-dimensional histogram
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Fig. 3 – Music FIN cMDS eigenvalues (top). Their relative accumulated sum
of the top three eigenvalues (bottom)

with density peaks centred at the edges of the Fisher manifold where the most
pure genre concentrations appear. This effect can be observed in the plot
legend of figure 5, that shows the ratio of maximum genre membership per
community. Communities 1, 2 and 3 have ratios of 0.80, 0.79, 0.84 respectively,
that contrast with communities 4 and 5 (in the middle of the manifold), that
have ratios of 0.47 and 0.42, respectively.
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Fig. 4 – (Left) Two main eigenvectors of cMDS embedding. Songs are coloured
by genres. (Right) Two main eigenvectors of cMDS embedding. Songs are
coloured according to the predictions provided by MLP
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Fig. 5 – Newman’s community detection for FIN cMDS

5.2 Cluster finding with PQC in cMDS embedding

PQC can be a suitable choice to find clusters in the cMDS embedding. As
shown in [7], PQC hyperparameters can be optimized minimizing the Average-
negative-Log-Likelihood (ALL) of cluster membership. In particular, the hy-
perparameters to be optimized are the length scale σ and the threshold Eth
to merge two clusters. Figure 7 (left) shows that σ = 15%knn and log(Eth) ∈
[−3,−1.5] are adequate choices for this data set. The maxK P (X|K), depicted
in figure 7 (right), represents the maximum probability of belonging to a clus-
ter; there are some regions where the cluster membership is clear, but there are
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also some areas without a dominant cluster, that correspond with scenarios
of genre mixing. With the selection of parameters provided by figure 7 (left),
figure 8 is obtained, that shows the genre prevalence per cluster in the case of
PQC clusters. There are six clusters, three of them belonging to high-density
regions, namely, 0.82, 0.85 and 0.91 for Jazz, Pop-Rock and Rap, respectively.
The other three clusters lie in intermediate regions, with lower prevalences
∈ [0.47, 0.60].
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fined by the two main principal components
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Fig. 8 – Clusters obtained by the Probabilistic Quantum Clustering

5.3 K-Means in cMDS embedding

K-means clustering also has been used to benchmark PQC solutions. Since K-
means depends on the centroid initialization and the number of clusters (K)
should be provided beforehand, we have used the Se-Co framework to detect
the most stable value of K that at the same time maximizes the separation.

The SeCo framework is depited in figure 9; each group of points indicated
in the plot legend corresponds with the best K-means solutions for the same K;
those groups with high variability in concordance mean that this K is unsta-
ble, and each solution is affected by the random centroid initialization. Those
solutions located in the top-right corner tend to be the most appropriate ones,
giving priority to the concordance with respect to the separation. In partic-
ular, the best group of solutions corresponds with K = 9; the solution with
the highest separation within this group is shown in figure 10. As expected,
the communities are more segmented than those obtained by the PQC solu-
tions (fig. 8) because of the higher cluster number; this is not a problem itself,
because there is not a correct number of clusters and the purpose of this anal-
ysis is to find similarities in the Fisher manifold beyond the rough genre label
classification.
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Fig. 9 – K-Means solutions of cMDS embedding, represented with the Se-Co
framework for selecting the cluster number of K-means with highest concor-
dance and separation. The group of solutions with K = 9 have high concor-
dance and one of the highest separations.

Although K-means solutions could be acceptable for segmentation in the
Fisher manifold embedding, they have the inherent drawback to form clus-
ters with spherical distributions and similar size, and this effect may split
some non-spherical regions with a homogeneous density. Therefore, in terms
of finding homogeneous regions with similar density, PQC is more adequate.
As additional information, appendix B provides the Silhouette figure for all
cluster solutions, included the genre labels and the MLP predictions.
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Fig. 10 – Clusters obtained by the best solution of K-means with K = 9.
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In summary, the Fisher manifold tends to create similarity regions with
high density and dissimilar regions with low density, but it is not always the
case, especially if the discriminative model has a poor performance. For that
reason any clustering method able to detect density variations would be suit-
able for this task, but it is a good practice to contrast the results with another
clustering method able to segment regions with low density variations.

5.4 Cluster profiles

When dealing with a practical problem, like the one faced in this paper, it
is especially relevant to analyse the Fisher manifold in terms of the cluster
profiles:

profilecomk (xn) =
µcomk (xn)− µ (xn)

σ (xn)
(28)

where µcomk is the mean value of patterns assigned to the k-th cluster, µ (xn)
the mean value of the data set and σ (xn) the corresponding standard devia-
tion. The most important attributes of each genre can be found in high-density
clusters that can be compared to other clusters that are made up of fusion of
different genres. It is also possible to illustrate the main attributes of the
external labels without taking into account their distribution in the Fisher
manifold. Tables 4 and 5 present the results for the features based on stan-
dard deviation and mean value, respectively. As the profiles are standardized,
only those absolute values greater than one can be considered different enough
from the mean data (significance in terms of one standard deviation).

The position notation is PR for Pop-Rock, J for Jazz and R for Rap. Those
positions are referred to the cMDS embedding where Jazz is at lower left, Rap
at lower right and Pop-Rock at the upper region of the plot. Analysing the
features, Jazz and Rap hold more characteristic features, with greater absolute
values. However, Pop-Rock has many feature attributes closer to zero; it makes
sense because Pop-Rock includes many different music styles from heavy-metal
to commercial-pop, producing average values that might be near zero. The
intermediate clusters also have lower absolute values than the pure ones. With
respect to the different kinds of features, the ones based on standard deviations
present greater absolute values than the ones based on mean values.

Finally, it is important to remark that in this case, but also happens in
general, the profiles based on external labels tend to be close to zero, due to the
fact that external labels are not clustered by similarities or feature distances,
producing averaged profiles close to the whole data average.

5.5 Analysis of popular songs

This section studies a sample of widely known songs from the database and
maps them into the embedded Fisher manifold to find out where they are
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Table 4 – Cluster profiling using features based on the standard deviation

Com. Position X1 X2 X3 X4 X5 X6 X7 X8

1 PR & R 0.40 0.45 0.42 -0.02 0.46 0.44 -0.15 0.45

2 J -0.89 -1.02 -1.00 0.21 -1.00 -1.00 0.32 -0.98

3 J & R -0.06 -0.07 -0.40 0.37 -0.25 -0.23 0.59 0.00

4 PR -0.22 -0.09 0.22 -0.46 -0.05 -0.08 -0.50 -0.25

5 J & PR -0.45 -0.41 -0.62 -0.22 -0.63 -0.61 -0.13 -0.44

6 R 1.26 1.19 1.29 0.15 1.44 1.44 -0.03 1.26

External labels X1 X2 X3 X4 X5 X6 X7 X8

Rap 0.73 0.69 0.71 0.13 0.83 0.81 -0.03 0.74

Pop-Rock -0.20 -0.11 -0.06 -0.24 -0.18 -0.18 -0.20 -0.20

Jazz -0.52 -0.56 -0.64 0.11 -0.64 -0.61 0.23 -0.53

Table 5 – Cluster profiling using features based on the mean value

C Pos. X9 X10 X11 X12 X13 X14 X15 X16

1 PR & Rap 0.11 0.12 0.40 -0.35 0.39 0.37 -0.05 0.19

2 J -0.74 -0.81 -1.00 0.68 -1.04 -1.05 -0.22 -0.95

3 J & R -0.51 -0.54 -0.57 0.11 -0.53 -0.57 0.18 -0.55

4 PR 0.62 0.79 0.75 -0.34 0.80 0.90 -0.10 0.81

5 J & PR 0.01 -0.02 -0.56 0.22 -0.36 -0.33 -0.16 0.02

6 R 0.47 0.41 0.86 -0.34 0.67 0.61 0.42 0.45

Ext. labels X9 X10 X11 X12 X13 X14 X15 X16

Rap 0.23 0.19 0.50 -0.30 0.42 0.37 0.21 0.22

Pop-Rock 0.21 0.31 0.20 -0.13 0.28 0.34 -0.11 0.31

Jazz -0.43 -0.49 -0.69 0.43 -0.69 -0.69 -0.10 -0.53

located in the manifold, and thus, the corresponding genre. Table 6 lists the
songs by ID in order to identify them in figure 11. Table 6 also provides
information about the external genre and the one predicted by the MLP. On
top of the most popular themes, two more songs were included due to their
closeness and rare positioning in the upper area of the manifold. Their IDs are
19 (Pop-Rock) and 27 (Jazz); song #19 is authentic heavy metal although it
was surprisingly labelled as Pop-Rock; with respect to song #27, its style is
very experimental and it sounds like industrial noise, what explains why it is
located far away from the main Jazz region (lower-left area).
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Table 6 – Sample of widely known songs from the database mapped into the
Fisher manifold.

Id Lab/MLP Song Artist Song title

1 J - J Count Basie Segue In C

2 J - J Duke Ellington Black And Tan Fantasy

3 R - R Eminem We Made You

4 J - J Frank Sinatra I Should Care

5 J -R George Benson Stairway To Love

6 J - J Glenn Miller Happy In Love

7 R - R Ice Cube A Bird In The Hand

8 J - R Jamie Cullum Love Aint Gonna Let You Down

9 R - R Jay-Z Threat

10 J - J Juliet Roberts Carriacou Sunrise

11 R - R Kanye West Flashing Lights

12 PR - PR Korn Politics (Claude Le Gache Edit)

13 PR - J Led Zeppelin Since Ive Been Loving You

14 PR - J Little Richard Long Tall Sally (Take 1)

15 J - J Louis Armstrong I Can’t Give You Anything But Love

16 J - J Louis Armstrong Alexanders Rag Time Band

17 PR - J Martha Wainwright These Flowers

18 J - J Miles Davis Dear Old Stockholm

19 PR - PR Naer Mataron The Life And Death Of Europa

20 J - J Nat King Cole I Get A Kick Out Of You

21 PR - J Neil Diamond Girl Youll Be A Woman Soon

22 PR - PR Neil Young Revolution Blues

23 PR - PR Pet Shop Boys Rent (2001 Digital Remaster)

24 PR - J Robbie Williams Morning Sun Reprise

25 J - J Slavic Soul Party! Juan Colorado

26 R - PR Snoop Dogg Gangsta Luv

27 J - PR The Flying Luttenbachers Clank

28 PR - PR The Jimi Hendrix Exp. Hey Joe

29 PR - R The Rolling Stones Cherry Oh Baby

30 PR - PR The Velvet Underground Rock And Roll (LP Version)

31 R - PR Vanilla Ice It’s A Party

32 R - R Will.I.Am Tai Arrive
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Fig. 11 – Location of famous songs in the cMDS embedding of the Fisher
manifold

6 Challenges and limitations of the current implementation

6.1 Scalability

One of the main limitations of the Fisher manifold is the scalability with
the sample size, mainly because the Riemannian manifold relies on estimating
pairwise distances and this produces a bottleneck in the runtime. This work [6]
has partly addressed the problem for 15,000 samples, still far away from big
data environments. For instance, the current implementation could not have
handled all the MSD at once. This point remains for future work. In any case,
a good sampling is usually enough to build a Fisher manifold able to get data
insights.

6.2 New data allocation

Another issue is how to allocate new samples in the space created by the
embedded Fisher manifold. This space contains a projection of the network
created by pairwise distances under the Fisher metric; we propose two options
to allocate new data, the first one is more exact but requires more computa-
tional load, and the second option is faster but less exact.

Given M new samples in a manifold created by N samples, being M <
N , the first option consists in computing the new M · N and the M(M −
1)/2 local pairwise distances, and then apply a single source shortest path
algorithm (SSSP); for instance, the Dijkstra’s algorithm [12] computes faster
than APSP algorithms the shortest path between a single source (one sample
of M) with reference to the rest of the data (N + (M − 1)). Once the global
distance is computed, the Fisher manifold is embedded again with cMDS.
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The problem is that recomputing the cMDS with new data may change the
absolute positions of the previous data (the N samples) because the structure
of this space is based on relative positions. Therefore, the clustering should be
computed again.

The second option is focused on allocating the new (M) points just com-
puting a similarity network based on Euclidean distances with the features of
the input space. For instance a Gaussian kernel that transforms distances into
similarities:

Aij = exp

(
−dist (xi,xj)

2

σ2
G

)
(29)

where Aij is the element of the adjacency matrix, being i ∈ M and j ∈ N ,
and x is a vector of the input space, and σG is a scale factor that can be
heuristically estimated. Using this similarity matrix, the new data M can
be allocated directly in the cMDS space using a weighting average of the
coordinates of N :

ỹi =
1∑N
j Aij

N∑
j

Aijyj (30)

where y are the coordinates in the cMDS space. This approximation allows
a direct allocation of new samples without the need to compute pairwise dis-
tances on the Fisher manifold (nor re-compute the clustering).

6.3 Manifold interpretation

As the manifold is actually the structure created by pairwise distances, its
interpretation is related to analyze similar data (grouped in some clusters
with higher density), and dissimilar data (distributed in sparse regions).

The reason behind these distributions lies in how the Fisher metric mod-
ulates the Euclidean pairwise distance of the input space depending on the
information contained in the discriminative model, in that region of the input
space. At the same time, the discriminative model depends on the class labels
used to train it.

The Fisher metric tends to shorten Euclidean distances in those regions
with low rate-of-change of the discriminative model probabilities, p(c|x); in
contrast, it lengthens Euclidean distances in regions where the discriminative
model probabilities have a high rate-of-change.

Therefore, the structure is partly defined by the Euclidean distances be-
tween the features of the input space, and partly by the information contained
in the discriminative model (whose performance depends on the ability to pre-
dict the labels using the information present in the features). Changing the
labels will modify the discriminative model, and in consequence the structure
of Fisher manifold.
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7 Conclusion

We have described a principled approach to explicitly map the data manifold
induced by genre-specific content in three categories, Pop Rock, Rap and Jazz.
This comprises a case study in a challenging application, namely the manifold
structure of the genre content in popular music, which may be used for Musical
Information Retrieval.

The approach is generic, since all probabilistic classifiers define such a
metric. By making explicit the similarity measure that applies through the
space of input data, the paper shows how important knowledge about the
data, which is implicit in the classifier, can be pulled out and visualised by
end users. This enables the validation of the similarity structure according
to the plausibility of local neighbourhoods and global clusters induced in the
data. The paper also demonstrates the practical feasibility of using classical
multidimensional scaling to generate low-dimensional Euclidean embeddings
from the Riemannian space induced in high-dimensional data by the Fisher
Information matrix. Furthermore, we have shown that Probabilistic Quantum
Clustering can map the data density even for complex data structures that
form a continuum between high density peaks.

The similarities between songs are based on spectral wave sound features,
which purely objective measures without any subjective human-perception
whatsoever. The resulting Fisher manifold identifies and quantifies mixtures
between genres in songs that are typically labelled by the prevalent genre of
the band playing it. In this way, the results in this paper have potential for
more accurate labelling of the three genres.
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A Derivation of FI matrix as a function of MLP

For obtaining FI (x) as a function of the MLP output estimators, the soft-max logarithms
and their derivatives are needed:

pj =
exp (aj)∑J

k=1 exp (ak)
(31)

log(pj) = aj − log

(
J∑

k=1

exp (ak)

)
(32)

∇log(pj) = ∇aj −
J∑

k=1

pk∇ak (33)

where pj = p(cj |x), ∇ = ∇x = d
dx

and aj = aj(x) for notation abbreviation. Now, combin-
ing eq. 2 and eq. 31 and expanding the product:

FI (x) =
J∑

j=1

(
∇aj −

J∑
k=1

pk∇ak

)(
∇aj −

J∑
l=1

pl∇al

)T

pj

=

J∑
j=1

(
(∇aj)(∇aj)T −

J∑
l=1

(∇aj)(∇al)T pl

−
J∑

k=1

(∇ak)(∇aj)T pk +
J∑

k=1

J∑
l=1

(∇ak)(∇al)T pkpl

)
pj

(34)

Rearranging terms and considering that any variable t can be expressed as
∑J

i tpi =

t
∑J

i pi = t, we get:

FI (x) =
J∑

j=1

(
J∑

k=1

J∑
l=1

(∇aj)(∇aj)T pkpl

−
J∑

k=1

J∑
l=1

(∇aj)(∇al)T pkpl −
J∑

k=1

J∑
l=1

(∇ak)(∇aj)T pkpl

+

J∑
k=1

J∑
l=1

(∇ak)(∇al)T pkpl

)
pj

=

J∑
j=1

(
J∑

k=1

J∑
l=1

(
(∇aj)(∇aj)T − (∇aj)(∇al)T

−(∇ak)(∇aj)T + (∇ak)(∇al)T
)
pkpl

)
pj

(35)

After merging the summations, the final expression of the FI (x) for the MLP is obtained:

FI (x) =

J∑
j=1

J∑
k=1

J∑
l=1

∇ (aj − ak)∇ (aj − al)
T pjpkpl (36)

With this eq. 36 (equivalent to eq. 5) the metric is estimated locally, computing differ-
ential distances as:

d(x, x + dx)2 = dxT · FI(x) · dx (37)
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B Silhouette figures

The Silhouette metric is especially adequate when the clustering method is based on min-
imizing pairwise distances within the cluster members. However, when the clustering also
takes account of density similarity, non-spherical shapes are expected and hence, the Silhou-
ette metric of a PQC probably might be worse than K-means Silhouette even if the PQC
cluster better reflects the data profiles. In any case, the Silhouette metric is computed for
all cluster solutions based in the cMDs data.
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Fig. 12 – Silhouette figures for the different cluster solutions. The genre labels
correspond with: Rap (0), Pop-Rock (1), Jazz (2)
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