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Abstract: The property of nonlinearity has high importance for the design of strong substitution
boxes. Therefore, the development of new techniques to produce substitution boxes with high
values of nonlinearity is essential. Many research papers have shown that optimization algorithms
are an efficient technique to obtain good solutions. However, there is no reference in the public
literature showing that a heuristic method obtains optimal nonlinearity unless seeded with optimal
initial solutions. Moreover, the majority of papers with the best nonlinearity reported for
pseudo-random seeding of the algorithm(s) often achieve their results with the help of some cost
function(s) over the Walsh-Hadamard spectrum of the substitution. In the sense, we proposed to
present, in this paper, a novel external parameter independent cost function for evolving bijective
s-boxes of high nonlinearity, which is highly correlated to this property. Several heuristic
approaches including GaT (genetic and tree), LSA (local search algorithm), and the Hill Climbing
algorithm have been investigated to assess the performance of evolved s-boxes. A performance
comparison has been done to show the advantages of our new cost function, with respect to cost
functions for s-boxes like Clark’s and Picek’s cost functions.

Keywords: substitution boxes; cost function; nonlinearity; Walsh-Hadamard spectrum;
optimization

1. Introduction

Today, the information shared online by users is a highly valuable resource. The integrity of
such data rests in the use of cryptographic algorithms, which provide a set of algorithmic tools to
maintain the consistency and security of the data. Therefore, the design of cryptographic algorithms
with high level of security is a wide area of investigation from researchers tasked to information
security and reliability. There exist two large groups of cryptographic algorithms, public-key
algorithms and private-key algorithms, but the first group is not in the scope of this paper. We center
our attention in private-key algorithms, particularly in block ciphers. Elementary, a block cipher
partition the flow of information in k bit pieces, where each piece of data is matched with a different
one. The Data Encryption Standard (DES) [1] and the Advanced Encryption Standard (AES) [2] are,
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perhaps, the most representative examples of symmetric block ciphers, although there are other
good examples in the literature [3-5], even some that do not rely on nonlinear components—this can
reduce the security against linear and differential attacks —because they want to ensure the security
of statistical properties in the encryption scheme [6].

Substitution-boxes (s-boxes) are the prominent nonlinear components of modern-day block
ciphers, adding confusion to encryption process. Hence, any confusion layer highly depends on the
s-boxes to maintain the integrity of shared secrets. Although the primary use of s-boxes is for
symmetric block ciphers [2-5], one cannot restrict the use of s-boxes only to these encryption
systems. s-boxes are also applied to image encryption schematics with excellent results [7-9].
Therefore, the effectiveness of any symmetric encryption system using s-boxes will rest in the
selection of such components.

To warrant the integrity of one s-box, it must satisfy a set of properties which assess the
resistance of the s-box towards several cryptanalytic techniques [10,11]. The search for cryptographic
sound s-boxes is a well-studied subject in the literature. The construction of s-boxes mainly follows
approaches namely: algebraic constructions [2,12,13], pseudo-random generation, chaos-based
generation [7,14,15], and heuristic methods [16-18]. Algebraic constructions achieve unsurpassed
outcomes with regards of many security properties of s-boxes [19]. Random generation makes it
possible to yield a considerable number of s-boxes in short periods. However, any random s-box
lack of good values of its properties, therefore it is not suitable for practical applications. Like in
random generation, chaos-based s-boxes are quickly integrated into the encryption process,
particularly in images encryption, but they mainly ensure a more randomness and statistical sound.
The last direction focuses on the use of heuristic methodologies to find s-boxes with strong
cryptographic features. Next, we present a representative set of such research findings.

1.1. Related Work

The public literature contains an extensive survey of evolutionary computation papers related
to design of s-boxes having good cryptographic properties. We present a brief resume of some
important results in this area of research. In 2005, Clark et al. proposed a cost function for evolving
of s-boxes coupled with simulated annealing to obtain s-boxes with nonlinearity values up to 102
[16]. Later in 2010, Tesaf perform an extensive parameter tuning of Clark’s cost function which, in
combination with a special genetic algorithm named genetic and tree (GaT), makes it possible to
obtain 8-bit s-boxes with good nonlinearity [17]. In 2013, Kazymyrov et al. presented a modified
gradient descent method to obtain s-boxes with nonlinearity 104 and high algebraic resistance [20].
Ivanov et al. experiment with modified immune algorithm using three different cost functions,
included the tuned version of Clark’s cost function proposed by Tesaf and a function over the
differential spectrum of s-boxes to achieve nonlinearity 104 and differential uniformity 6 [21]. They
applied genetic algorithms working in reverse mode to evolve high nonlinear bijective s-boxes of
sizes from 8 X8 up to 16 X 16 [22]. In 2014, Picek et al. investigated side-channel analysis
resilience of s-boxes considering the confusion coefficient property [23]. Later, in 2016, Picek et al.
presented a cost function for evolution of high nonlinear s-boxes [24]. More research was presented
by Picek et al. in 2017, making use of cellular automata and genetic programming for design s-boxes
with good cryptographic features [25,26]. Isa et al. presented a hybridization of heuristic methods for
generating 8-bit permutations with good nonlinearity and differential uniformity results [27].
Menyachikhin (2017) presented the spectral-linear and spectral differential techniques for
constructing s-boxes consisting of near-optimal security features of s-boxes [28], wherein, they used
the information from linear approximation table and differential spectrum of s-boxes to improve the
properties of resulting s-boxes. Lerman et al. are assisted by genetic algorithms in the generation of
side-channel attacks robust s-boxes of small dimensions [29]. Martinez-Diaz works with local search
algorithms to evolve s-boxes with improved side-channel resistivity having good values of
nonlinearity [30]. This line of research was continued by Freyre-Echevarria in 2020, presenting a
hybrid heuristic algorithm capable of produce s-boxes with high theoretical resistance to SCA
attacks, as well as acceptable nonlinearity and low differential cryptanalysis performance [31].
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Bolufé and Tamayo use hybrid heuristic methods and machine learning for the evolution of s-boxes,
taking in count the properties of nonlinearity and transparency order [32]. Ahmad et al. propose the
use of particle swarm optimization and chaotic Renyi’s map to obtain 8 X 8 s-boxes with high
nonlinearity scores [7].

In most of the aforementioned works, the property of nonlinearity is taken under consideration
in the optimization process [7-9,14,16,17,20-22,24,27,28,30,31,33,34-40]. However, heuristic
techniques cannot achieve nonlinearity values close to algebraic constructions unless they are
seeded with s-boxes having optimal properties [22]. The best value of nonlinearity reported from
papers that use random initial s-boxes to seed their algorithms is bounded above by 104 for 8 x 8
s-boxes [16,17,21,24]; and, in most of cases (for not being absolute), these values cannot be achieved
without the assistance of cost functions. Cost functions help to describe the behavior of coefficients
in the Walsh-Hadamard spectrum of s-boxes. Hence, a well descriptive cost function will
undoubtedly help to improve the final nonlinearity of s-boxes. With respect to nonlinearity, the most
accurate cost functions are Clark’s [16] and Picek’s [24] cost functions, each one with its own
characteristics described in Section 3.

The rest of the paper is managed as follows. Section 2 contains several definitions with regard to
s-boxes and their properties. In Section 3, we briefly describe Clark’s and Picek’s cost functions and
present the contribution of this paper. Section 4 is dedicated to explaining the heuristic methods we
have employed and the parametric configuration of the same for each different s-box dimension.
Finally, in Section 5, we present and discuss our experimental results and establish some comparison
with respect to the results obtained from Clark’s and Picek’s cost functions.

2. Preliminaries

An s-box S:Fj7 — F7'is often described as multi-input and multi-output Boolean functions
consisting of m Boolean functions in 7 variables known as the coordinates of s-box S. However, all
coordinates functions and their all linear combinations are responsible for deciding the
cryptographic strength of the s-box [41].

Definition 1. Let S:F' — FJ* be an s-box. The components of s-box S are called the n-variable Boolean
functions

Spx—= 21 Sx)

for any A € F;*. The component corresponding to A = 0 is called zero (or trivial) component (Definition 2.1
from [39]).

Definition 2. One s-box S:F}' — FJ* is balanced if every value x € FJ* appears exactly equal to 2™"™™
times. When m = m, the s-box S is known as bijective, i.e., that each input value is uniquely mapped to one
output value.

Balanced n X n s-boxes are permutations in F;' [13,19]. In particular, the fact that an s-box is
invertible (i.e., a permutation) can be characterized by its coordinates [33]. For the sake of simplicity,
we restrict ourselves to the study of bijective substitution boxes only.

Definition 3. Let S:F' = FJ* be an s-box. The Walsh—Hadamard transform of S is computed as [19]:

Ws(x,y) = Z (—1)y'S(z)€|9x~z

ZEF}
The linearity (resp. nonlinearity) is the highest (resp. lowest) of any nontrivial component
function of one s-box [13,19]. The two can be described in terms of the Ws transform as:

LS = max |WS(x' y)l (1)

X€EFJyeF™
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1
Ng=2""1—=  max  [Ws(x)| @)

2 xeF}yeF™
This gives the following relation between linearity and nonlinearity of s-boxes.

2L

Ny =— ®

Definition 4. (Parseval’s relation) Given any Boolean function f:F}' — F,, its Walsh-Hadamard
transform satisfies that

Z va (W)Z = p2n
WEF}
A direct result from Parseval’s relation is that linearity of Boolean functions (resp. s-boxes) is
n
lower bounded by 2z. Notice that equality can only be achieved when 7 is even, and such functions
are known as the bent functions [42]. Bent functions have the maximum achievable nonlinearity, but
they are not balanced. For the case of bijective substitution boxes the maximum achievable
nonlinearity cannot be greater than the Sidelnikov—Chabaud—-Vaudenay (SCV) bound [43]:
n-—1
Ng<2m1—-272 4)
which immediately resolves in
n+1
Ly=272Z ®)
The case of equality denotes the functions which are called the Almost Bent (AB) function.
Notice that AB-functions only exists when 7 is an odd number [19]. When 7 is even, the maximum

value of nonlinearity is achieved through power permutations over the finite field F,» and equals
to [8]:

n
Ng = 2""1 - 22 (6)

Definition 5. The autocorrelation function of one s-box S: F;* — F;"is defined as [19]:

ACs(x,y) = Z (—1)yS@®y-5zdx)

n
ZEF,

There exists two significant cryptographic parameters: (1) global avalanche characteristics
(GAC) [44], which is related to the autocorrelation function, used to measure the level of diffusion
ensured by a function; and (2) The absolute value of the autocorrelation function is called an
absolute indicator of anticipated s-box. In practice, the absolute indicator is determined as:

Almax(S) = _max_ |4Cs(x,y)] (7)

Definition 6. Let S: F3' — F;* be an s-box. For any x € F}',y € FJ* one can define:

§(x,y) =l{v € =S +x) + f(v) =y}

The multi-set Ag = {6(x,y),x € F;¥",y € FJ*} represents the 1/O differential distribution spectrum of S and
its maximum value is called differential uniformity of S, denotedés.

For any balanced s-box S the differential uniformity of s-box satisfies as 65 = 2 [13]. The
functions having 6; = 2 are called almost perfect nonlinear (APN) functions. As for nonlinearity
property, the APN condition only exists for odd number of variables, and when n = 6 [45]. In the
case of 1 even, the best-known differential uniformity value is 4 [12,19,33].
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3. Motivation and Contribution

The outcomes of any optimization algorithm are heavily dependent on the fitness functions
used to guide the optimization process. Here, we discuss about some cost functions with proven
effectiveness towards nonlinearity of s-boxes obtained by heuristic methods.

In 2005, Clark et al. introduce a cost function that consider all values of the Walsh-Hadamard
spectrum for Boolean functions, which can be scaled for the multi-output case (s-boxes) [16]:

WHSs = Z Z Wy x| —X|R

YEF xeF]

where X and R are real-valued parameters like R =3 and X € {—4,-3,-2,-1,0,1,2,3,4} [16]. The
maximum nonlinearity obtained by Clark et al. using simulated annealing and WHS as the cost
function was 102 for 8 X 8 s-boxes. Later in 2010, Tesaf perform an extensive parameter tuning on
WHS, obtaining that the best set of parameters has R = 7,X = 21, after establishing some heuristic
ranking over more than one thousand pairs of values for X and R [17]. The highest value of
nonlinearity reported for the tuned version of WHS, and the genetic and tree algorithm was 4, 10,
22, 48, and 104 for s-boxes of sizes from 4 X 4 up to 8 X 8 respectively.

In 2016, Picek et al. propose the representation of the Walsh-Hadamard spectrum as the
histogram of frequencies for all absolute values in the spectrum [24]. The histogram is represented
by a vector having in the i-th component the count of coefficients associated to absolute value 4i
from the Walsh-Hadamard spectrum of the s-box. Let I indicates the las component of the vector
with nonzero value. The absolute value of the Walsh-Hadamard spectrum associated with [ is the
linearity of the s-box S, therefore the nonlinearity of S is related to this value. Then, the function
PCF is given by the formula [24]:

N-1

H(S) s
PCFs:Z (23“

i=0

where H(S), is the k-th component of the zero-indexed vector H(S), which represent the
aforementioned histogram of frequencies, and H(S); = 0,Vk < 0. Multiplying by the term 27, i.e.,
dividing 2! as shown in (14), the authors pretend to give some ranking to the influence of one
coefficient over the final value of the function. For example, the maximum absolute value of the
Walsh-Hadamard spectrum is divided by 2° = 1, implying that it is the most influential on the
final result of PCF. Altogether, Picek et al. set the value of parameter N to 10, given by the fact that
if one s-box does not contain ten levels of coefficients (N < 10), then all coefficients of the spectrum
are considered when PCF is calculated.

One can characterize both functions in terms of the count of coefficients in the Walsh—
Hadamard spectrum taken into account to compute their value and the dependence of any external
parameter with no relation with such coefficients. In the case of Clark’s cost function, the whole
spectrum is analyzed to get the final value of the function. However, the values of parameters X and
R represent a major disadvantage, since they have to be tuned in order to achieve the best results
[18]. In contrast, Picek’s cost function selects a sample of the coefficients in the spectrum depending
on the value of parameter N; if sufficiently large, all the values in the spectrum are taken into
account. Moreover, after the study of results from [18], we notice that selection of parameter N has
influence in the outcome nonlinearity of evolved s-boxes, as well the number of solution evaluations
to obtain desired values of this property. We refer the readers to [16,17,24] for more information
about Clark’s and Picek’s cost functions.

Our Contribution

The main contribution of our paper is the construction of a novel cost function for evolving the
performance of high nonlinearity s-boxes without depending on in any external parameter unlike
the Clark’s and Picek’s cost functions which are external parameter dependent [16,24]. Moreover,
further contributions includes in the form of statistical analysis of correlation between Clark’s,
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Picek’s, and our function with respect to nonlinearity of s-boxes and the convergence rate of various
algorithms for different s-box dimensions using our new cost function.

4. Experimental Setup

Optimization algorithms can be divided in two groups: exact methods and heuristic methods.
While exact methods guaranty the optimal solution in a finite time, for more complex problems, like
that in our paper, the notion of time exponentially growth with regard to the dimensions of the
problem. Hence, the heuristic methods are suitable to challenge these problems. It is well known that
heuristic methods do not guaranty to find the optimal solution, but they often achieve a good
solution in a reasonable time. Most of heuristic methods are problem dependent. In counterpart,
meta-heuristic algorithms establish a high-level algorithmic framework to bring the more accurate
solution to the problem.

In Section 1.1, we commented on successful applications of meta-heuristic techniques to
improve different parameters related to the security of s-boxes. The effectiveness of these algorithms
to obtain desired nonlinearity values differ on the fitness function, the selection, variation and
mutation operators and the characteristics of the selected algorithm. Nonetheless, these optimization
algorithms ensure substitution boxes applicable to real life encryption systems with the advantage of
randomized structure, unlike algebraic constructions, different pool of high nonlinear solutions each
time the algorithm is executed and low consumption of time. Moreover, these algorithms can be
seeded with optimal s-boxes instead of pseudo random substitutions, and they will manage to
produce optimal or almost optimal s-boxes in terms of nonlinearity.

In our experiments, we applied three optimization methods, namely, genetic and tree
algorithm (GaT) [17], local search algorithm (LSA) [24], and a hill simple climbing algorithm (HC)
explained later in this section. We choose these optimization methods to obtain a high non-linear
value, because their exploitation capabilities over the solution search space. The experiments
conducted on this paper present the results achieved with proposed cost function for evolving
bijective s-boxes of sizes ranging from 5x5 to 8 x 8. We also include pseudo-code of each
algorithm in the appendix of this paper (see Appendix B, C, D).

4.1. Common Parameters

We execute different amounts of experiments according to dimensions of the analyzed s-box
space. The stopping condition for each algorithm is reached when a fixed number of solution
evaluations are done, which differ in relation to the size of the space as shown in Table 1. In all
algorithms used, we define the fitness function as the tuple (Ns,Cs). Here, Ns represents the
nonlinearity of the solution and Cs represents the value of our new cost function. We decide not to
include small 4 x 4 s-boxes since the best value of nonlinearity can be achieved without the
assistance of optimization algorithms. However, for larger sizes, s-boxes having maximal
nonlinearity are quite difficult to found by any evolutionary algorithm when it starts from random
n-bit permutations. Thus, our goal is to increase nonlinearity of evolved s-boxes as much as
possible.

4.2. Local Search Algorithm

The local search algorithm from [24] receives as input a random s-box from the space. In each
iteration, the algorithm generates new solutions with given mutation operators. The mutation
operator randomly decides k different positions in solution and then permutes the element at
selected positions. To get the best results, Picek et al. set mutation operators with k € {2,3,4,5,6,7}.

In the LSA algorithm, each mutation operator is defined with two parameters k and I, where k
is a number of positions whose elements are to be permuted, and I defines how many times that
mutation operator is to be applied on the current solution (see Table 6 from [24]). The best solution
is selected and set as the current solution from generated solutions.
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4.3. Genetic and Tree

The genetic and tree algorithm was presented by Tesar in [17]. The algorithm is a combination
of a special case of the genetic algorithm and total tree search. We note two important aspects of the
method: the criterion to begin the total tree search portion of it and the stopping condition. The
algorithm swap between the genetic and the tree part when an s-box with nonlinearity close to
desired value is found (see Table 2), then, it executes the tree portion of the algorithm until a s-box
with desired non-linearity is obtained or the algorithm depletes all solution evaluations presented
in Table 1 for the corresponding s-box space. For more information about the configuration of GaT
algorithm, we refer the readers to [17,24].

Table 1. Common parameters.

S-box size Experiments Number of Evaluations Maximum Nonlinearity

5%X5 100 125,000 12
6X6 100 250,000 24
7Xx7 30 500,000 56
8Xx8 30 1,000,000 112

Table 2. Parameters for GaT algorithm. NT —value of nonlinearity to swap between genetic and tree
part of the algorithm. NEL —desired nonlinearity.

S-BoxSize 5X5 6%x6 7x7 8x8
NT 8 20 46 102
NEL 10 22 48 104

4.4. Hill Climbing Algorithm

We propose the use of a simple hill climbing mechanism to produce s-boxes having good
nonlinearity in a small amount of solution evaluations. The algorithm receives a random
permutation as input. Then, while the number of solution evaluations is not depleted, the algorithm
creates a new s-box by swapping a pair of outputs on the target s-box. If the new s-box is better than
the current solution of the algorithm, according to the fitness condition of the problem, it replaces
the solution, becoming the best solution found by the algorithm.

5. Results and Discussion

The current section is entirely dedicated to the analysis of results obtained in our experiments.
First, we proposed a novel cost function for evolution of high nonlinearity s-boxes. Then, we
present the results achieved by the optimization algorithms described in Section 4 using this new
function. Note that we also show the values of differential uniformity and absolute indicator of
evolved s-boxes.

5.1. Definition of a New Cost Function

The nonlinearity of one s-box is dependent of the highest absolute value of the Walsh—
Hadamard spectrum. Most of evolutionary research papers that only use the value of nonlinearity
as fitness function to guide the evolutionary process are not able to reach nonlinearity values
greater than 100 in the case of 8-bit permutations. This may happen, since nonlinearity only
contains information about the highest score of the Walsh-Hadamard spectrum, without extracting
any data of the remaining values in the spectrum. Reviewing of the definition of nonlinearity itself,
it is straightforward to notice that reducing the highest absolute values of the spectrum leads to an
increase of final nonlinearity of s-boxes. However, if the extreme values of the spectrum are
reduced, some other values in the same must be increased, in accordance with Parseval’s relation.
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Hence, any function exploiting the Walsh-Hadamard spectrum is tasked to make the spectrum as
flat as possible.

Let C be the set of all absolute coefficients lower or equals to the SCV bound [41]. Then, we
have the following;:

n+1
. c=1{0,4,..,22} if n is odd
e (= {0, 4. 25“} if 11 is even

Proposition 1. The nonlinearity of one s-box S is maximal if, and only if, all the absolute values of the
coefficients in the Walsh—Hadamard spectrum of S are contained in C.

Proof: We reduce the demonstration to the case when n is odd since one must review the same
conditions when 7 is even. First, let us demonstrate the direct implication, i.e., if the nonlinearity of
S is maximal, then all the absolute values of the coefficients in its Walsh-Hadamard spectrum are

contained in C. O

n-1
For n odd, if the nonlinearity of S is maximal, then Ny = 2""' — 27z satisfying the equality in
+1
(4). Moreover, the result in (5) implies that equality in (4) results in Lg = ZnT. Since Lg is the
greatest absolute value of the coefficients in the Walsh-Hadamard spectrum of S, then Ls > |X| for
+1
any arbitrary coefficient X in spectrum. By definition, one has that max(C) = ZnT, thus, max(C) =
Ls = |X]. Hence, all the absolute values of the coefficients in the Walsh-Hadamard spectrum of S
are contained in C.

Conversely, if all coefficient in the Walsh-Hadamard spectrum of S are contained in C, then we
n+1 n+1 n+1
have Lg < 272". However, the inequality in (5) sustain that Lg = 272", hence, we have that 272 <
n+1 n+1
Ls <272, which resolves in Lg =272, the minimal value of linearity achievable for bijective

s-boxes with odd number of variables, i.e., the nonlinearity of S is maximal. Therefore, the proof is
now complete.

Proposition 2. Let x be an integer and K a finite set of positive integers such that |x| € K. Then the
following equality holds
P=1—[(|x|—i)=0

iek
Proof: Let M be the size of K. One can decompose the formula of P in the multiplication of M
subtractions as follows

P = (lx] = iy) - (Ix[ = iz) - (x| = ip)

where the term i, denote the f-th element of K. If |x| € K, exist some i, such that |x| =i, i.e,
|x] —i, = 0. Hence, substituting the previous subtraction in the decomposition we have P =
(xl =) - (x| =iz) ..o 0 - ...- (Jx] — iy), which results in P = 0. Therefore, the proof is complete.
On the basis of propositions 1 and 2 we define our new cost function. [

Definition 7. Let S:F3' — F3"* be an s-box. Our new cost function is defined as
= > | [Imsceni-]
Y€ F}t xe FJ' z€C

where W is the Walsh—Hadamard transform of S.

The result from Proposition 2 warranties that any coefficient in the Walsh-Hadamard
spectrum whose absolute value is contained in C does not interfere with the final result of our cost
function. Hence, the calculus of Cs is deduced from the coefficients with absolute values greater
than the SCV bound. Moreover, the minimum value of Cs is achieved when the largest absolute
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value in the Walsh-Hadamard spectrum equals to the greatest coefficient in C, where (s is equal to
zero, implying that S has maximum nonlinearity, according to Proposition 1.

5.2. Relation to Nonlinearity

We perform a statistical analysis on the relation between nonlinearity property and our new
cost function as well as Clark’s and Picek’s cost functions. For such an analysis, we compute the
trajectory of the values of one cost function with respect to nonlinearity as follows:

1. Setup a fixed number M of cost function upgrades.
Execute hill climbing algorithm upgrading the value of the cost function regardless
nonlinearity.

3.  Save the value of the cost function and the corresponding nonlinearity each time the cost
function is upgraded.

4. Repeat Step 3 until there is no available upgrade on the cost function (i.e., the function was
updated M times).

The two vectors obtained through this method contain information about both, the cost
function and the nonlinearity each time the cost function is improved. Hence, we can calculate the
correlation between the cost function and nonlinearity by means of these vectors.

To obtain a more accurate result, we repeat the procedure described above 100 times for each
cost function, with M = 50 for s-boxes of dimension eight. Then, we obtain the average trajectories
of the cost function and nonlinearity and proceed to calculate the Pearson’s correlation coefficient
between the two trajectories, i.e., the correlation between the values of the cost function and the
value of nonlinearity property. For better understanding of the experiment, Figure 1 present the
average trajectory of each cost function w.r.t nonlinearity.

In contradiction with the results presented in [24], the data presented in Table 3 and the curve
representing Picek’s cost function in Figure 1 (blue) indicates that higher values of the function are
better to improve nonlinearity. However, one knows from [24] that for a fixed value of nonlinearity,
the minimization of Picek’s cost function will lead to maximization of the nonlinearity. Thus,
Picek’s cost function will not achieve good results if the value of nonlinearity of the s-box is
depreciated.

The curve representing the trajectory of Clark’s cost function (Figure 1—red) and the
corresponding correlation in Table 3 may be helpful to give some explanation of the late
convergence of Clark’s cost function in [17,24]. Although there is some improvement in the final
nonlinearity, one can easily see in the plot that there is no stability in the trajectory. In accordance,
the correlation coefficient describes very well this phenomenon. The correlation coefficient indicates
an inverse relation between Clark’s cost function and nonlinearity, but not enough to ensure a fast
convergence of nonlinearity to higher values as the value of Clark’s cost function decreases, which
agrees with the results obtained by Tesar [17] and Picek et al. [24].

Table 3. Correlation of the cost functions w.r.t. nonlinearity. S-box dimension 8 x 8.

Cost Function  Clark’s Picek’s Ours
Correlation -0.553 0.824 -0.998
p-value 3.13x107%  2.04x1073 3.84x107°!
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Figure 1. Average trajectory of cost function w.r.t nonlinearity.

Finally, one can observe in Figure 1 (green plot) and Table 3 the results of the analysis for our
new cost function. As shown, our proposed cost function is extremely well correlated to
nonlinearity. Moreover, Table 4 shows the correlation coefficient between the values of nonlinearity
and our new cost function for each s-box dimension we analyze in this paper. Data in Table 4
suggest a strong inverse relation (almost linear) between the values of Ny and Cs. Hence,
minimizing the results of (s will certainly improve the nonlinearity of the s-box. Next, we present
the results collected with the proposed cost function.

Table 4. Correlation between nonlinearity and our new cost function.

S-Box Size 5x5 6%x6 7%x7 8x8
Correlation  -0.968 -0.998 -0.992 -0.998
p-value  3.49x107° 2.03x107'7 5.01x1072% 3.84x107%!

5.3. Results with Our New Cost Function

This section is dedicated to providing and discussing the performance results obtained with
our new cost function seeding the optimization algorithms with pseudo-random s-boxes. Together
with the values of nonlinearity, differential uniformity, and an absolute indicator of evolved
s-boxes, we provide the average number of solution evaluations for each algorithm, to obtain the
best value of nonlinearity reported in each s-box space.

In all the experiments conducted on this section, the tuple (Ns,(Cs) determine the fitness
conditions of one s-box A over other s-box B, as follows:

N, = N and (4 < Cy if rule 1 is not satisfied

Table 5 shows the results achieved by our new cost function for s-boxes of various sizes. The
best nonlinearity values among the results equals the presented by Tesar [17] and Picek et al. [24]
for the respective s-box dimension. In addition, we present, in Table 6, the average number of
solution evaluations each algorithm needs to obtain the best nonlinearity values reported in Table 5.
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Table 5. Results with our new cost function for each s-box dimension. Data is given in the format
best/average value.

Algorithm Property 5x5 6 X6 7x7 8x8
LSA Ng 10/9.9 22/22 48/48  104/104
8s 4/5.8 6/708  6/8.07 8/9.6
ACpnax(S) 16/22.88 32/3824 56/59.2 88/94.4
GaT Ng 10/10 22/22 48 /48 104 /104
8 4/548  6/7.04 8/8.2 8/9.8
ACpnax(S) 16/23.76 32/38.08 56/58.93 80/92.53
HC N 10/9.8 22/22 48/48  104/104
Os 4/51 6/7.2 6/8 8/9.53

ACrax(S) 16/223 32/37.8 56/59.3 88/94.93

Table 6. Convergence rate of the algorithms to best nonlinearity reported in Table 3 in terms of
average solution evaluations.

Algorithm 5x5 6x6 7x7 8x8
LSA 10480 2358 7751 149,539
GaT 1260 1563 7007 116,266
HC 9831 1437 5162 70,596

The values of differential uniformity and absolute indicator of evolved s-boxes are not optimal
for all dimensions. Notice that all optimization algorithms maintain similar behavior towards
differential uniformity and absolute indicator (GaT slightly improves ACp,,,(S) for 8 X 8 s-boxes),
due the fact that these properties were not considered in the optimization process, and any
improvement on the same is result of existing relation to nonlinearity.

Since no reasoning in the convergence rate of algorithms for s-boxes of sizes lower than 8 x 8
was presented in [17,24], we cannot establish a fair comparison with the results for such s-box
spaces. However, for 8 X 8 s-boxes, we can make a direct comparison with the results of LSA and
GaT.

For both the local search algorithm and the genetic and tree algorithm, the obtained results are
better than those presented in [24] for the best configuration of Picek’s cost function. The notorious
difference for both algorithms using our cost function with regard to Picek’s cost function is the
average solution evaluations to obtain nonlinearity 104. The local search algorithm reduces more
than 22,500 solution evaluations from the best result with PCF in the result presented in Table 6. In
addition, the GaT algorithm shows greater improvement, reducing more than 50,000 solution
evaluations to obtain the aforementioned nonlinearity. However, the best performance is achieved
by hill climbing algorithm. Notice that hill climbing only needs approximately 1000 solution
evaluations to obtain s-boxes having nonlinearity value 102, equal to the best nonlinearity reached
by Clark’s cost function when R = 3,X = 4 and the most repeated result for Picek’s cost function in
its initial version, both, after nine million solution evaluations [24]. To obtain nonlinearity 104, the
hill climbing algorithm reduces to half the best performance of the algorithms in [24]. Moreover, the
worst performance of HC is better than the best average solution evaluations for an algorithm using
Picek’s cost function in [24] GaT by approximately 30,000 solution evaluations. Substitution boxes
having nonlinearity value equal to 104 were obtained in less than 35,000 solution evaluations
through the hill climbing algorithm. Figure 2 shows the convergence rate for each algorithm referred
in Table 6.
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Figure 2. Convergence of algorithms for our new cost function.

We perform larger experiments to search for s-boxes having nonlinearity greater than 104, but
no interesting results were found starting from random s-boxes. Hence, other seeding methods or
more complex optimization algorithms should be tested with our new cost function, in order to
obtain s-boxes with higher nonlinearity values than the achieved in this paper.

6. Conclusions

In this paper, we presented an effective novel cost function for evolving highly nonlinear
s-boxes based on the existing bounds for the values in the Walsh-Hadamard spectrum. Altogether,
we removed the cost function, the intervention of external parameters unrelated to the coefficients in
the spectrum that may affect the performance of the older cost functions, and increase the correlation
with the non-linearity property. We also showed that our new function is capable of producing the
same results as other important cost functions in a lower number of solution evaluations; therefore,
it is more effective for evolution of s-boxes. However, it is still an open problem as to how to achieve
s-boxes with a nonlinearity higher than presented in Table 5 for an optimization algorithm seeded
with random s-boxes in a reasonable amount of solution evaluations.

Future investigations will be directed to the study of the autocorrelation and differential
spectrum of s-boxes for the definition of new cost functions that help to improve other properties,
such an absolute indicator and differential uniformity. We also plan to include our cost function in a
trade-off multi-objective optimization related to the resistance against other attacks different from
classical linear and differential attacks.
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have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
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Appendix A. Some Substitution Boxes with the Best Nonlinearity Achieved

Ss = {7,12,21,29,17, 23, 10, 26, 31, 16, 27, 30, 28, 3, 5, 15, 8,18, 1, 19, 9, 2, 11, 25, 4, 0, 6, 20, 22, 24, 13,
14}
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Se = {28,17,1, 13, 38, 41, 46, 6, 0, 29, 53, 20, 59, 5, 24, 21, 35, 26, 61, 16, 48, 37, 58, 22, 55, 44, 39, 56, 34,
43,15, 27,51, 12, 62, 52, 14, 33, 10, 2, 31, 49, 57, 42, 11, 3, 30, 40, 36, 19, 63, 60, 4, 45, 32, 50, 47, 23,
54,7,9,25,8,18}

S, = {14,73, 38, 4,71, 99, 108, 19, 61, 39, 82, 55, 60, 95, 125, 106, 23, 117, 119, 76, 120, 46, 7, 34, 96, 86,
28,31, 81, 41, 42,57, 87,0, 79, 116, 13, 52, 74, 3, 33, 43, 25, 47, 68, 53, 16, 121, 85, 15, 17, 32, 63, 37,
26,93, 29,107, 6,126, 22, 66, 124, 77, 89, 102, 30, 59, 75, 24, 40, 127, 88, 70, 98, 54, 109, 1, 48, 35, 112,
11, 90, 111, 92, 8, 114, 2, 94, 122, 80, 56, 100, 78, 27, 72, 103, 84, 45, 115, 101, 113, 20, 9, 44, 36, 123,
62, 64, 69, 83, 51, 104, 58, 105, 49, 12, 67, 21, 110, 10, 65, 5, 91, 97, 18, 50, 118}

Sg = {236, 60, 6, 66, 185, 96, 206, 221, 167, 103, 159, 174, 156, 152, 239, 200, 45, 28, 38, 136, 107, 243, 34,
8, 71, 115, 201, 114, 157, 91, 47, 233, 16, 124, 70, 122, 46, 183, 203, 104, 158, 58, 179, 63, 166, 247,
123,74, 230, 188, 72, 39, 145, 139, 210, 106, 125, 246, 205, 253, 204, 13, 20, 142, 56, 10, 128, 191, 198,
55,197, 216, 116, 105, 195, 224, 144, 141, 22, 169, 138, 199, 154, 49, 234, 244, 121, 119, 252, 249, 153,
0, 112, 127, 75, 42, 160, 130, 209, 9, 193, 213, 172, 35, 102, 220, 109, 51, 53, 242, 180, 151, 120, 170,
111, 14, 44, 110, 215, 79, 255, 97, 11, 29, 99, 228, 81, 189, 147, 4, 192, 176, 184, 76, 163, 23, 26, 254, 5,
61, 133, 143, 214, 32, 37, 222, 88, 84, 171, 1, 146, 85, 30, 15, 212, 162, 187, 40, 41, 92, 94, 113, 186, 95,
232,245, 12, 227, 235, 50, 150, 126, 148, 219, 100, 62, 131, 65, 68, 82, 226, 2, 57, 59, 223, 135, 80, 251,
31,7, 36, 25, 155, 108, 98, 218, 118, 86, 101, 134, 54, 48, 78, 149, 21, 90, 207, 225, 217, 231, 18, 73, 69,
202, 129, 67, 24, 178, 237, 27, 240, 87, 137, 196, 161, 19, 168, 140, 173, 182, 190, 33, 229, 181, 3, 241,
83, 89, 17, 64, 132, 238, 208, 177, 93, 77, 211, 175, 165, 52, 250, 248, 194, 164, 117, 43}

Appendix B. Pseudo-Code of the Local Search Algorithm

Require: a random substitution S
Require: the number of solution evaluations NoE (given in Table 1)
Require: set of mutation operator given in [18] with parameters k,

while NoE >0 do:
Generate a population of neighbors of S applying the mutation operators supplied in the
input. The population is denoted as N.
for each s-box S”in N do
if Ny > Ng or (Ng = Ng and Cgr < Cs) then
S« §
NoE =NoE-1
Return S

Appendix C. Pseudo-Code of the Hill Climbing Algorithm

Require: a random substitution S
Require: the number of solution evaluations NoE (given in Table 1)

while NoE >0 do:
S« S
Select at random two different positions i and j and swap the outputs on S’ corresponding
toiandj

if Ny > Ng or (Ngs = Ng and Cgr < Cs) then
S« S8
NoE = NoE -1
Return S

Appendix D. Procedure of the Genetic and Tree Algorithm

Require: the number of solution evaluations NoE (given in Table 1)
Require: the size of the farm M and the number of successors C for each for each s-box in the
farm
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Require: parameters NT and NEL (see Section 4.3 and Table 2)

Step 1: Randomly generate M x C s-boxes which is taken as the initial population P. Save the current best
nonlinearity in P to the value CN. If CN = NEL return the s-box with nonlinearity CN. If CN > NT, then
proceed to Step 4. Otherwise, sort P according to the value of the function CF (our cost function) and select the
best M candidates to be the new farm, reduce NoE in M X C and proceed to Step 2.

Step 2: For each S, randomly select C successors from the neighborhood N(S) resulting of swap the outputs
corresponding to a pair of different inputs of S, where S can also be chosen, and repetition is permitted. Then,
for all S from the new population, determine the cost function CF and the nonlinearity. Update CN), reduce
NoEin M x C and proceed to Step 3.

Step 3: If any s-box in P present nonlinearity greater or equals NEL return such s-box. In the case of NT < N; €
P < NEL, then proceed to Step 4. Otherwise, sort P according to the value of the function CF (and select the best
M to become the new farm and proceed to Step 2.

Step 4: Let S; be the s-box with nonlinearity higher or equal to NT and with cost CF(S;). Put CN = NT. Search
overall N(S;), until:

(a) find s-box S” with nonlinearity equal to NEL, then return S’

(b) find s-box with nonlinearity greater than CN, then proceed to Step 5

(c) find s-box with nonlinearity equal to CN and a improved cost than CF(S;), then proceed to Step 5.

(d) no s-box from N(S;) has values to go to option a, b or ¢, or the number of solution evaluations is
depleted, then FAIL (unless the number of solution evaluations is depleted, one can ignore this
failure condition to have the algorithm perform more exploration of the space, always returning to
Step 3).

Step 5: Let S, be an s-box from option Step 4 b) or c). Set CN = Ng,. Save S; with ordinal number of S, over
N(S;) into a LIFO (Last In First Out) stack and set j = 2 (ordinal number of the diagnostic s-box). Then proceed
to Step 6.

Step 6: Search the overall N(S;) until:

a) find s-box S” with nonlinearity equal to NEL, then return §’

b) find s-box with nonlinearity greater than CN, then proceed to Step 7

c) find s-box with nonlinearity equal to CN and a better cost than CF(S;), then proceed to Step 7.
d) the number of solution evaluations is depleted, then FAIL

e) no s-box from N(S;) has values to go to option a, b or ¢, then proceed to Step 8

Step 7: Set j =j + 1. Let S; be the s-box from the option Step 6 b or c. Set CN = Ny,. Save S;_; with ordinal
number of S; over N(Sj_,) into the LIFO stack. Then proceed to Step 6.

Step 8: Set j =j — 1. If j=0, then FAIL (this failure condition can be omitted like option d in Step 4), else resume
S; from LIFO stack and proceed to Step 6.
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