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Abstract 
Impaired postprandial glucose handling and low-grade systemic inflammation are risk factors for developing insulin resist-
ance in individuals with overweight or obesity. Acute ingestion of anthocyanins improves postprandial glucose responses to 
a single carbohydrate-rich meal under strictly controlled conditions.
Purpose Examine whether acute and short-term supplementation with anthocyanin-rich New Zealand blackcurrant (NZBC) 
extract can improve postprandial glucose responses to mixed-macronutrient meals.
Methods Twenty-five overweight (BMI > 25 kg m2) sedentary individuals participated in one of the following double-
blinded, randomised controlled trials: (1) ingestion of 600 mg NZBC extract or placebo prior to consumption of a high-
carbohydrate, high-fat liquid meal (n = 12); (2) 8-days supplementation with NZBC extract (600 mg day−1) or placebo, with 
insulin sensitivity and markers of inflammation assessed on day-7, and free-living postprandial glucose (continuous glucose 
monitoring) assessed on day-8 (n = 13).
Results A single dose of NZBC extract had no effect on 3 h postprandial glucose, insulin or triglyceride responses. However, 
in response to short-term NZBC extract supplementation insulin sensitivity was improved (+ 22%; P = 0.011), circulating 
C-reactive protein concentrations decreased (P = 0.008), and free-living postprandial glucose responses to both breakfast 
and lunch meals were reduced (− 9% and − 8%, respectively; P < 0.05), compared to placebo.
Conclusion These novel results indicate that repeated intake, rather than a single dose of NZBC extract, is required to induce 
beneficial effects on insulin sensitivity and postprandial glucose handling in individuals with overweight or obesity. Continu-
ous glucose monitoring enabled an effect of NZBC extract to be observed under free-living conditions and highlights the 
potential of anthocyanin-rich supplements as a viable strategy to reduce insulin resistance.
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Introduction

Recent estimates suggest that nearly two-thirds of adults in 
the UK are classified as overweight or obese [1]. Individuals 
who are overweight or obese may exhibit elevated postpran-
dial glucose and triglyceride responses [2], as well as sys-
temic inflammation [3], leading to insulin resistance and an 
increased risk of type 2 diabetes (T2D) and cardiovascular 
disease. Emerging evidence has highlighted a potential role 

for foods and beverages containing flavonoids to reduce T2D 
risk. In this context, the anthocyanins (a major flavonoid 
subclass) are of particular interest because prospective stud-
ies demonstrate that higher anthocyanin intakes are associ-
ated with a lower risk of T2D and cardiovascular disease 
[4–6]. Several randomised controlled trials also report an 
ability for foods and beverages rich in anthocyanins to blunt 
postprandial glucose responses and improve insulin sensi-
tivity [7–14]. Although promising, the currently-available 
evidence is predominantly limited to single-meal experi-
ments conducted under strictly controlled laboratory con-
ditions [7–9, 12–14], in healthy individuals [7, 8, 12–15], 
using unsustainable portion sizes [16]. Thus, to truly exam-
ine whether anthocyanins can reduce T2D risk, it is vital to 
explore the ability of anthocyanins to modulate free-living 
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postprandial responses to multiple daily meals with mixed 
macronutrient contents, and to improve insulin sensitivity in 
less healthy individuals.

Blackcurrant (Ribes nigrum) is one of the richest sources 
of anthocyanins [17] and it was recently shown that acute 
ingestion of a blackcurrant extract prior to consumption 
of a carbohydrate-rich meal reduced postprandial glucose 
and insulin excursions in healthy individuals [7]. However, 
whether the acute improvements in postprandial glucose and 
insulin responses remain when protein and/or fat is included 
in the test meal is not known. This is important, because die-
tary fat creates a natural delay in the digestion and absorp-
tion of carbohydrate from the gut [18]. Moreover, inclusion 
of fat in the test meal also allows for the quantification of 
the postprandial triglyceride response, which is an important 
factor to consider given that postprandial triglyceride han-
dling is directly related to cardiovascular disease risk [19, 
20]. The translation of results obtained using gold stand-
ard laboratory approaches to assess postprandial glycaemic 
responses, such as plasma glucose concentrations following 
a glucose challenge, are also limited, since they provide no 
insight into the postprandial response to multiple mixed-
macronutrient meals throughout a typical day under ‘real 
world’ free-living conditions. This can be overcome through 
the use of continuous glucose monitoring systems (CGMS), 
which have been used successfully to assess the severity of 
postprandial hyperglycaemia in T2D patients [21] and in our 
own lab to investigate the prevalence of hyper- and hypogly-
caemic episodes following exercise in people with type 1 
diabetes [22]. No previous studies though have investigated 
the effect of (blackcurrant) anthocyanins on postprandial 
glucose excursions under free-living conditions.

Nutritional intervention studies investigating the effect of 
acute consumption of blackcurrant extract on postprandial 
responses do not provide information regarding the potential 
adaptation to repeated intake. To try and address this, Wil-
lems et al. [15] investigated the effect of short-term (7 days) 
supplementation with New Zealand blackcurrant (NZBC) 
powder, and demonstrated reduced postprandial glucose and 
insulin excursions to a glucose challenge. Whether NZBC 
powder improved whole-body insulin sensitivity was not 
assessed. Further, this study did not include a placebo arm 
and was conducted in healthy individuals. Therefore, a ran-
domised controlled trial is now required to investigate the 
effects of short-term blackcurrant extract supplementation 
in individuals with lower insulin sensitivity, such as those 
with overweight or obesity.

Two separate but inter-related randomised controlled 
studies were conducted to explore the effectiveness of 
blackcurrant anthocyanins as a simple nutritional strat-
egy to reduce T2D risk factors in overweight and obese 
individuals. First, the hypothesis that acute NZBC extract 
intake would improve postprandial plasma glucose, insulin 

and triglyceride responses to a high-carbohydrate, high-
fat meal was examined. Second, the hypothesis that short-
term (8 day) intake of NZBC extract would improve insulin 
sensitivity and free-living postprandial glucose excursions 
(under standardised dietary conditions), as well as reduce 
biomarkers of inflammation in overweight/obese individuals 
was investigated.

Methods

Participants

A total of 25 overweight (BMI 28.8 ± 3.9 kg m−2), inactive 
office-workers to take part in two inter-related but separate 
studies. Characteristics for participants in each study are pre-
sented in Table 1. Participants were deemed to be inactive if 
they undertook < 1 h structured physical activity per week 
(in the preceding 6 months). All participants were absent 
of any other metabolic comorbidities and cardiovascular 
disease. Both trials were approved by the Liverpool John 
Moores University Research Ethics Committee. Written, 
informed consent was obtained following an explanation of 
the experimental procedures.

Screening procedures

Screening procedures were identical for both studies. Dur-
ing an initial visit, height and weight were measured to 
determine BMI, and an assessment of body composition 
was conducted using bioelectrical impedance (Tanita BC 
418 MA Segmental Body Composition Analyser, Tanita, 
Japan). Habitual dietary intake was assessed using a written 
diary for 72 h, with diaries analysed for total energy intake 
and macronutrient composition of the diet using Nutritics 
software (Nutritics Ltd, Dublin, Ireland). At the first visit, 

Table 1  Participant characteristics

Values are means ± S.D
BMI body mass index

Study 1 (n = 12) Study 2 (n = 13)

M/F 6/6 10/3
Age (years) 28 ± 9 30 ± 10
Height (m) 1.73 ± 0.10 1.75 ± 0.10
Body mass (kg) 88.9 ± 16.1 83.6 ± 6.4
BMI (kg m−2) 29.9 ± 4.8 27.6 ± 3.3
Lean mass (kg) 62.1 ± 14.2 64.0 ± 7.2
Fat mass (kg) 25.5 ± 12.8 25.5 ± 5.6
Body fat (%) 28.6 ± 4.8 30.5 ± 3.1
Habitual anthocyanin 

intake (mg day−1)
30 ± 25 15 ± 13
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participants also completed a food frequency questionnaire, 
which listed the quantity and frequency of anthocyanin-con-
taining foods and drinks compiled from the Phenol Explorer 
database [23]. By multiplying the anthocyanin content of 
the portion size by the total consumption frequency of each 
food, daily anthocyanin intake was calculated (Table 1).

Study 1 experimental design—acute 
supplementation

Study 1 required participants to undertake two experimental 
trials separated by a washout period of ≥ 7 days. 24 h before 
each experimental trial participants consumed a standardised 
diet (50% carbohydrate, 30% fat, 20% protein) that was oth-
erwise matched to habitual energy intake. Participants were 
also instructed to abstain from vigorous exercise for 48 h and 
alcohol and caffeine for 24 h prior. On the morning of each 
experimental trial, participants attended the laboratory fol-
lowing an overnight fast (> 10 h) and first consumed a stand-
ardised high-carbohydrate breakfast (70% CHO, 10% pro-
tein, 20% fat, and equivalent to 25% of daily caloric intake) 
generally consisting of Weetabix with semi-skimmed milk, 
orange juice, an Upbeat protein drink and a banana. After 
they had consumed the breakfast they worked at a com-
puter or sat quietly for 3 h. In a randomised, double-blind, 
crossover design, participants then ingested 2 capsules of 
NZBC extract (600 mg) or a visually-identical placebo, with 
water, 30 min prior to lunch. Each 300 mg NZBC capsule 
contained 105 mg of anthocyanins, consisting of 35–50% 
delphinidin-3-rutinoside, 5–20% delphinidin-3-glucoside, 
30–45% cyanidin-3rutinoside, and 3–10% cyanidin-3-glu-
coside (CurraNZ™, Health Currancy Ltd., Surrey, UK). 
Each placebo capsule contained 300 mg microcrystalline 
cellulose. Following ingestion of either the NZBC extract or 
placebo, an indwelling cannula was placed into the antecubi-
tal vein of one arm and an initial blood sample was obtained. 
Thirty min following ingestion of NZBC extract or placebo, 
participants consumed a high-carbohydrate, high-fat liquid 
test meal consisting of 75 g maltodextrin (MyProtein™, The 
Hut Group, Cheshire, UK) and 50 g unsaturated fatty acids 
(Calogen, Nutricia, Amsterdam, NL). Blood samples were 
subsequently collected at 15 min intervals for the first hour 
and 30 min intervals for the remaining two hours. Once the 
testing procedure was completed the cannula was removed 
and participants were able to leave the laboratory.

Study 2 experimental design—short‑term 
supplementation

In a randomised, double-blinded, crossover design partici-
pants undertook 8 days supplementation with either NZBC 
extract (600 mg per day) or a visually-identical placebo. The 
supplement and placebo were identical to that used in study 

1. One 300 mg capsule was ingested prior to breakfast, and 
one 300 mg capsule was ingested before dinner throughout 
the supplementation period. An overview of the experi-
mental design for study 2 is provided in Fig. 1. On day 1 
of each supplementation period a fasted blood sample was 
obtained from the antecubital vein of one arm. On day 5, 
participants were fitted with a continuous glucose monitor-
ing system (CGMS) (described below), and provided with 
a standardised diet to be consumed on days 6, 7 and 8. On 
day 7, participants returned to the laboratory following an 
overnight fast (> 10 h) to undergo an oral glucose tolerance 
test (OGTT). Following collection of a fasted blood sample 
from an indwelling cannula placed in an antecubital vein, 
participants consumed 75 g maltodextrin (MyProtein™, The 
Hut Group, Cheshire, UK) diluted in 225 ml of water. Fur-
ther blood samples were collected after 15, 30, 45, 60, 90 
and 120 min, and collected into EDTA-containing vacutain-
ers. Isotonic saline was used to keep the cannula patent every 
15 min during the OGTT. On day 8, participants undertook 
their usual daily activities and the CGMS was used to exam-
ine interstitial glucose concentrations under free-living con-
ditions. Each cross-over trial was separated by ≥ 15 days, 
which is based on a previous study that provided an antho-
cyanin dose greater than that used in the current study for 
1 month and 15 days were required for antioxidant biomark-
ers to return to baseline levels (Alvarez-Suarez 2014).

Continuous glucose monitoring

A Dexcom G4 Platinum CGM probe (Dexcom, San Diego, 
CA, USA) was inserted subcutaneously into the lower 
abdominal region on day 5 of each supplementation period. 
This provided adequate time for “bedding in” and for the 
participants to become accustomed to using the CGMS. Par-
ticipants were trained how to use the device and instructed 
to calibrate the device a minimum of four times daily using 
capillary blood samples. The monitor remained in place for 
the next 4 days, during which participants were provided 
with a standardised diet to consume that was matched to 
habitual energy intake but with a set macronutrient con-
tent (see Table 2 for overview of energy and macronutri-
ent composition). On day 8, free-living glucose responses 
were assessed. On this day, participants were instructed to 
undertake their habitual daily activities, but consume their 
meals at pre-defined time points; 7–9 am breakfast, 12–2 pm 
lunch, and 5–7 pm evening meal. These times were chosen 
to ensure that there was a minimum 3 h postprandial period 
between meals.

Blood sample analysis

Across both studies, plasma samples for each time point 
were obtained following centrifugation (10 min at 1000 g 
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at 4  °C) and stored at − 80  °C for subsequent analyses. 
Plasma glucose and triglyceride concentrations were 
determined spectrophotometrically using a semiautomatic 
analyser in combination with commercially available 
kits (Randox Laboratories, Antrim, UK). Plasma insulin, 
high-sensitivity interleukin-6 (hsIL-6), C-reactive protein 
(CRP) and hsTNF-ɑ concentrations were determined using 
commercially available ELISA kits (Invitrogen, Thermo 
Fisher Scientific, UK). For all assays the intra-assay coef-
ficient of variation was ≤ 8.5% and the inter-assay coef-
ficient of variation was ≤ 9.8%. The analytical sensitiv-
ity of the assays for insulin, CRP, hsIL-6 and hsTNF-ɑ 
was 0.17  µIU  mL−1, < 10  pg  mL−1, 0.03  pg  mL−1, and 
0.13 pg mL−1, respectively. Each sample was analysed in 
duplicate.

Calculations and statistical analysis

Area under the curve (AUC) for plasma glucose, insulin and 
triglycerides was calculated using the conventional trapezoid 
rule. Insulin sensitivity was assessed using the homeostatic 
model assessment (HOMA) index and Matsuda [24] insulin 

sensitivity index. CGMS data were downloaded from the 
device using Dexcom Studio™ software (12.0.4.6) and first 
the glucose responses to each meal were investigated. In this 
regard, the 3 h postprandial period was evaluated for mean, 
peak and end glucose concentrations, and the area under the 
curve for the entire postprandial period was also calculated. 
All statistical analyses were performed using SPSS (v26.0, 
Chicago, IL, USA). Results are expressed as means ± S.D, 
and significance was set at the 0.05 level of confidence. For 
both study 1 and 2, time-dependent variables were assessed 
using a two-factor repeated-measures ANOVA, with the 
within-subject factors ‘condition’ (NZBC vs. placebo) 
and ‘time’. Significant main effects and interactions were 
assessed using Bonferroni adjustment post-hoc analysis. All 
other variables were investigated using a paired t-test. Both 
studies were powered to detect differences in glucose AUC 
between conditions (NZBC vs. placebo), with G*Power 3.1 
software (G*Power Software Inc., Kiel, Germany) used to 
calculate the required sample size. A medium effect size 
(f = 0.30) was adopted and deemed to be physiologically-
relevant, based on the data from two previous studies [7, 
15], and used alongside an alpha of 0.05 and power of 0.80, 
to calculate the required sample size.

Results

Study 1—acute supplementation

Plasma glucose, insulin and triglyceride responses to the 
carbohydrate-fat test drink are depicted in Fig. 2. Baseline 
plasma glucose, insulin and triglyceride concentrations 
were not different between conditions. In response to the 
carbohydrate-fat test drink, there were main time effects 
for plasma glucose and insulin concentrations (P = 0.02), 
although neither peak glucose nor insulin concentrations 
differed between conditions. In contrast, there was no 
main effect of time for plasma triglyceride concentrations 
in response to the carbohydrate-fat test drink (P = 0.21). 
Finally, AUC glucose, AUC insulin, or AUC triglyceride were not 
different between conditions.

Table 2  Macronutrient 
composition and intake during 
the free-living CGMS day (day 
8)

Values are means ± S.D. for carbohydrate, fat and protein

Macronutrient composition 
(% CHO/Fat/Protein)

Carbohydrate (g.kg 
body  mass−1)

Fat (g.kg body 
 mass−1)

Protein (g.kg 
body  mass−1)

Breakfast 73%/13%/14% 6.3 ± 1.1 1.0 ± 0.2 1.2 ± 0.2
Lunch 54%/24%/22% 4.6 ± 0.8 1.8 ± 0.3 1.9 ± 0.3
Dinner 35%/45%/20% 4.0 ± 0.7 5.1 ± 0.9 1.9 ± 0.6
24 h 54%/26%/20% 5.0 ± 0.9 2.6 ± 0.5 1.7 ± 0.4

Fig. 1  Schematic overview of experimental protocol for study 2. 
Participants undertook 8  days supplementation with NZBC extract 
(210 mg anthocyanins per day) or placebo, in a randomised, double-
blind design. On day 1 participants provided a fasted blood sample*, 
and returned to the laboratory on day 5 to be fitted with a continuous 
glucose monitoring system (CGMS). A standardised diet was pro-
vided on days 6, 7 and 8 (50% carbohydrate, 30% fat, 20% protein), 
matched to each participant’s habitual energy intake. Participants 
underwent an oral glucose tolerance test (OGTT) on day 7, and 24 h 
glucose concentrations were collected under free-living conditions on 
day 8 using CGMS.
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Study 2—short‑term supplementation

Glucose tolerance and insulin sensitivity (Fig. 3)

Fasting plasma glucose and insulin concentrations were 
not different between conditions. There was a main time 
effect for both glucose (P < 0.001) and insulin (P = 0.002) 
during the OGTT, and mean plasma glucose concentra-
tions were significantly lower following NZBC supple-
mentation (P = 0.002). Furthermore, a significant time × 
condition interaction was observed for glucose (P = 0.048), 
with post-hoc analysis revealing significant reductions in 
plasma glucose concentrations following NZBC supple-
mentation at 45 min (− 1.0 ± 0.9 mmol L−1; P = 0.003), 
60  min (−  1.3 ± 1.0  mmol  L−1; P = 0.001) and 90  min 
(− 0.8 ± 0.7 mmol L−1; P = 0.008) of the OGTT. Finally, 
both AUC glucose (− 76 ± 48 mmol L−1.120 min−1; − 8%; 
P < 0.001) and AUC insulin (− 2487 ± 2315 µIU mL−1.120 

min−1; − 14%; P = 0.032) were reduced following NZBC 
supplementation compared to placebo. While HOMA index 
of insulin sensitivity tended to improve after NZBC supple-
mentation (Placebo: 5.1 ± 2.5, NZBC: 4.4 ± 2.0; P = 0.053), 
whole-body insulin sensitivity assessed using the Mat-
suda insulin sensitivity was significantly increased (22%; 
P = 0.011) in response to NZBC supplementation compared 
to placebo.

Free‑living glucose excursions and glycaemic variability

The 3  h postprandial AUC glucose response was 9% 
lower at breakfast (−  99 ± 110  mmol  L−1.120  min−1; 
P = 0.01) and 8% lower at lunch on the free-living day 
(−  82 ± 105  mmol  L−1.120  min−1 P = 0.021) following 
NZBC supplementation compared to placebo (Fig. 4). How-
ever, 3 h postprandial AUC glucose response to dinner was not 
significantly different between conditions (Fig. 4). The mean 

Fig. 2  Postprandial responses 
to acute ingestion of NZBC 
extract or placebo. Participants 
ingested a single dose of NZBC 
extract (210 mg anthocyanins) 
or placebo, in a randomised, 
double-blinded design, 30 min 
prior to consuming a high-
carbohydrate (75 g glucose), 
high-fat (50 g) liquid meal. 3 h 
postprandial plasma glucose (a), 
serum insulin (c), and plasma 
triglyceride concentrations (e), 
and the corresponding area 
under the curve (b, d, f, respec-
tively). Values are presented as 
means ± S.D. (n = 12)
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glucose level at breakfast was significantly lower following 
NZBC supplementation (P = 0.03), tended to be lower at 
lunch (P = 0.059), but was not different at dinner (Table 3). 
Neither peak glucose levels, nor the final postprandial glu-
cose levels following each meal during the free-living day, 
were different between conditions (Table 3).

Inflammatory markers (Table 4)

Serum CRP concentrations were reduced in response to 
NZBC supplementation (P = 0.008), but not in response to 
placebo. In contrast, NZBC supplementation had no effect 
serum hsIL-6 or hsTNF-ɑ concentrations. All values were 
within the detection limits for each assay.

Discussion

The key novel observations from the two studies described 
are: (1) acute ingestion of NZBC extract did not improve 
the postprandial glucose, insulin or triglyceride responses 

to a high-carbohydrate, high-fat meal in individuals with 
overweight or obesity; and (2) short-term (8 days) sup-
plementation with NZBC extract improved free-living 
postprandial glucose responses and increased whole-body 
insulin sensitivity in individuals with overweight or obesity. 
Taken together, these findings suggest that repeated intake 
of anthocyanin-rich NZBC extract is required to induce a 
beneficial effect on insulin sensitivity and postprandial glu-
cose excursions to ‘real world’ mixed-macronutrient meals.

A number of previous studies have reported a reduction 
in postprandial glucose and insulin excursions following a 
high-carbohydrate meal when the meal was preceded by, or 
combined with, anthocyanin-rich berries or berry-derived 
extracts [7–9, 12–14]. This effect is purported to be linked 
to the capacity for anthocyanins to (1) inhibit salivary and 
pancreatic ɑ-amylase and ɑ-glucosidase, thereby suppress-
ing carbohydrate digestion, and (2) reduce the activity and/or 
expression of sodium-dependent glucose transporter-1 and 
glucose transporter-2 in the gut [25, 26], thereby reducing 
glucose absorption. Although these studies provide proof-of-
concept evidence for the ability of anthocyanins to improve 
postprandial glucose excursions, they do not provide insight 

Fig. 3  Effect of short-term supplementation with NZBC extract or 
placebo on glucose tolerance and insulin sensitivity. Concentration 
time-course responses of plasma glucose (a) and serum insulin (b) to 
an oral glucose tolerance test, and the corresponding area under the 
curves (c and d, respectively), following short-term (7 days) supple-

mentation with NZBC extract (210 mg anthocyanins per day) or pla-
cebo. Whole-body insulin sensitivity was calculated using the Mat-
suda index [24] (e). Values are presented as means ± S.D. (n = 13). 
*P < 0.01 vs. corresponding placebo value (time × condition interac-
tion; P = 0.048). †P < 0.05 vs. placebo
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into the capacity for anthocyanins to modulate postprandial 
responses to meals consisting of a mixture of macronutri-
ents. Therefore, in this study, we first sought to determine 
the effect of acute blackcurrant anthocyanin ingestion on 
postprandial responses to a mixed-macronutrient challenge 
representative of a westernised (i.e. high-carbohydrate, high-
fat) meal. The first novel finding of the present study, and 
contrary to our hypothesis, was that acute intake of NZBC 
extract had no effect on postprandial glucose, insulin or tri-
glyceride responses to a high-carbohydrate, high-fat liquid 
meal. By including fat in the test drink, which naturally 
delays glucose digestion and absorption [18], it is possible 
that any potential effect of NZBC extract to mediate post-
prandial glucose responses to the high-carbohydrate, high-
fat challenge was masked by the fat component. A similar 
finding was reported by Edirisinghe et al. [9] who also failed 
to observe reduced postprandial glucose concentrations to a 
high-carbohydrate, moderate-fat meal following consump-
tion of a beverage containing strawberry anthocyanins. The 
timing of the high-carbohydrate, high-fat challenge in our 
study should also be considered. In this context, the experi-
mental meal was provided at lunch ≥ 3 h following a high-
carbohydrate breakfast. This is important because postpran-
dial glucose responses to a mixed-macronutrient meal are 
dampened when preceded by a meal several hours earlier 
[27, 28], termed the ‘second-meal phenomenon’. Thus, it is 
also possible that the preceding breakfast may have masked 
the effect of NZBC extract to suppress postprandial glucose 
responses to the high-carbohydrate, high-fat challenge.

Because there was no apparent benefit of acute NZBC 
intake on postprandial glucose responses, we next investi-
gated whether repeated intake of NZBC extract was required 
to improve postprandial glucose responses to mixed-macro-
nutrient meals. Accordingly, the second novel finding of 
this study is that repeated NZBC extract intake over 8 days 
reduced postprandial glucose responses to both breakfast 
and lunch meals in individuals with overweight/obesity. 
It was notable, though, that there was no improvement in 
the postprandial glucose response to dinner, although this 
could be, at least partly, due to the smaller proportion of 

Fig. 4  Daily free-living glucose concentrations and postprandial 
responses to short-term supplementation with NZBC extract or pla-
cebo. a Average glucose concentrations over time under standardised 
dietary, but otherwise free-living conditions, on the 8th day of sup-
plementation with NZBC extract or placebo. The time-point at which 
the main meals were consumed is indicated by the dashed vertical 
lines. b Area under the curve for the 3 h postprandial period follow-
ing each main meal, derived from the CGMS on day 8 of supplemen-
tation. Values are presented as means ± S.D. (n = 13). *P < 0.05 vs. 
placebo

Table 3  Key postprandial metrics from CGMS data

Values are means ± S.D
*P < 0.05 vs. placebo

Placebo NZBC

Breakfast
 Mean glucose (mmol L−1) 5.77 ± 0.69 5.36 ± 0.43*
 Peak glucose (mmol L−1) 7.46 ± 1.41 6.87 ± 0.73
 End value (mmol L−1) 4.65 ± 0.59 4.69 ± 0.93

Lunch
 Mean glucose (mmol L−1) 5.84 ± 0.72 5.52 ± 0.40
 Peak glucose (mmol L−1) 7.14 ± 1.15 6.69 ± 0.51
 End value (mmol L−1) 5.09 ± 1.02 5.24 ± 0.68

Dinner
 Mean glucose (mmol L−1) 5.97 ± 0.55 5.75 ± 0.65
 Peak glucose (mmol L−1) 6.97 ± 0.72 6.92 ± 0.92
 End value (mmol L−1) 5.70 ± 0.81 5.83 ± 1.08

Table 4  Effect of NZBC extract on circulating markers of inflamma-
tion

Values are means ± S.D
*P < 0.05 vs. corresponding Pre value

Placebo NZBC

Pre Day 7 Pre Day 7

CRP (mg L−1) 1.71 ± 0.73 1.60 ± 0.82 1.69 ± 0.85 1.27 ± 0.63*
IL-6 (pg mL−1) 1.63 ± 0.86 1.76 ± 1.37 1.59 ± 0.74 1.70 ± 1.46
TNF-ɑ 

(pg mL−1)
1.49 ± 0.34 1.52 ± 0.26 1.56 ± 0.41 1.54 ± 0.42
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carbohydrate in this meal (compared to breakfast and lunch). 
Nevertheless, by leveraging CGMS we were able to observe, 
for the first time, improved postprandial glucose responses 
under free-living conditions, albeit with standardised die-
tary control where participants were instructed to maintain 
their habitual daily activities. The translational nature of the 
CGMS data suggests, therefore, that NZBC extract could be 
a simple nutritional strategy to improve postprandial glucose 
responses in the ‘real world’.

Interestingly, the improved postprandial glucose 
responses to breakfast and lunch meals occurred in the 
absence of a change in peak postprandial glucose concen-
trations, and the 3 h postprandial (end) glucose concentra-
tions were also similar between placebo and NZBC. This 
suggests that the overall effect of NZBC extract appears to 
be related to an increased rate of glucose clearance. To sup-
port this assertion, a significant decrease in plasma glucose 
and insulin concentrations was also observed during the 
OGTT following NZBC extract supplementation. The latter 
is important in the context of the OGTT, because it sug-
gests that less insulin is required to clear the same quantity 
of glucose from the circulation. In line with this and for 
the first time, our data reveal that short-term NZBC intake 
improved whole-body insulin sensitivity in overweight and 
obese individuals. Improvements in insulin sensitivity have 
been reported following supplementation with anthocyanin-
rich blueberry powder for 6 weeks in obese individuals, [11], 
but not freeze-dried blueberries for 6 months in individuals 
with metabolic syndrome [29]. Whether longer-term supple-
mentation with NZBC intake also results in improved insulin 
sensitivity should be the focus of future work.

The overweight/obese phenotype is often associated 
with low-grade chronic inflammation, which is believed to 
promote insulin resistance in these individuals [3]. Several 
biomarkers of low-grade chronic inflammation were inves-
tigated, each of which has been reported to be positively 
associated with insulin resistance [3, 30]. In this regard, 
CRP, but not hsIL-6 or hsTNF-ɑ, was reduced in response 
to short-term supplementation with NZBC extract compared 
to placebo. This is the first study to report an effect of black-
currant anthocyanins alone on CRP, although several studies 
have observed a reduction in CRP concentrations following 
supplementation with anthocyanins derived from a com-
bination of blackcurrants and bilberries [31–33]. Notably 
though, these studies were ≥ 3 weeks in duration and used 
a dose of ≥ 300 mg anthocyanins per day. Therefore, our 
data provides new insight demonstrating that circulating 
CRP concentrations are sensitive to change to as little as 
210 mg anthocyanins per day over a 7 day supplementation 
period. CRP is produced by the liver in response to inflam-
mation [34], and directly impairs hepatic insulin sensitiv-
ity in rodents [35]. Furthermore, HOMA-IR, which reflects 
hepatic insulin resistance, tended to be reduced following 

7 days intake of NZBC extract, in line with the results of a 
recent meta-analysis [36]. Thus, the reduction in circulat-
ing CRP concentrations provides evidence for the potential 
of NZBC extract to improve hepatic insulin sensitivity, and 
thereby contribute to the observed improvement in whole-
body insulin sensitivity. Further studies are required to iden-
tify additional mechanisms underpinning the increase in 
whole-body insulin sensitivity in response to NZBC extract 
supplementation.

A strength of this work is the ability to demonstrate that 
improved postprandial glucose responses to mixed-macro-
nutrient meals only occurred following short-term supple-
mentation with NZBC extract. This observation was only 
possible because we examined the time-course response to 
NZBC intake, which in itself is a strength of the study. The 
bioavailability of anthocyanins is relatively low; only ~ 12% 
of ingested anthocyanins appear in the blood [37]. How-
ever, anthocyanin metabolites remain in the blood for up to 
48 h following ingestion [38], and therefore repeated intake 
of NZBC will likely result in an accumulation of blackcur-
rant anthocyanin metabolites over time. Whether it is the 
anthocyanin metabolites, or the anthocyanins themselves, 
which underpins the improved insulin sensitivity and post-
prandial glucose handling remains to be determined. A fur-
ther strength is the use of CGMS, which provides impor-
tant novel insight into the effectiveness of NZBC extract 
to improve postprandial glucose handling under normal 
free-living conditions. We also standardized dietary intake 
during the CGMS period, which could be considered both 
a strength and a limitation of the study. We acknowledge 
that controlling dietary intake precludes conclusions to be 
drawn regarding the effect of NZBC intake on postprandial 
responses to meals habitually consumed by participants. 
However, as this was a proof-of-concept study, it is impor-
tant to standardize dietary intake during the CGMS period to 
be able to compare postprandial glucose responses between 
conditions. We also acknowledge that trials are required to 
determine whether the effect of NZBC extract on insulin 
sensitivity persists over a longer-duration, and also to inves-
tigate whether the beneficial effects described here translate 
to more insulin resistant populations, such as T2D patients. 
In this regard, though, our study does reveal that NZBC 
extract can induce improvements in insulin sensitivity and 
postprandial glucose handling even in relatively metaboli-
cally healthy overweight and obese individuals.

In summary, we show for the first time that short-term, 
but not acute intake, of NZBC extract improves postpran-
dial glucose handling and whole-body insulin sensitivity 
in individuals with overweight or obesity. Importantly, the 
beneficial effect of NZBC extract was observed under stand-
ardised dietary, but otherwise free-living conditions. We also 
report that NZBC extract reduced circulating CRP concen-
trations, highlighting that reduced hepatic inflammation may 
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be one mechanism by which NZBC extract improves insulin 
sensitivity.
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