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RESEARCH ARTICLE Open Access

Pentagalloylglucose, isolated from the leaf
extract of Anacardium occidentale L., could
elicit rapid and selective cytotoxicity in
cancer cells
Bamigboye J. Taiwo1,2*, Temidayo D. Popoola3, Fanie R. van Heerden2 and Amos A. Fatokun3*

ABSTRACT

Background: The leaf of Anacardium occidentale L. has been a component of many herbal recipes in South-
Western Nigeria. The work reported herein, therefore, explored the phytochemical composition of this plant and
the potential anti-cancer activity of an isolated chemical constituent.

Methods: Phytochemical methods (including chromatographic analysis) combined with spectroscopic and
spectrometric analyses (IR, HRMS and NMR (1D and 2D)) were used to identify chemical constituents. Cytotoxic
effects were determined using the MTT viability assay and bright-field imaging. Induction of oxidative stress was
determined using the fluorescence-based 2′,7′-dichlorofluorescein diacetate (DCFDA) assay.

Results: For the first time in the plant, Compound 1 was isolated from the leaf extract and identified as
pentagalloylglucose. Compound 1 was significantly cytotoxic against the cancer cell lines HeLa (human cervical
adenocarcinoma cell line) and MRC5-SV2 (human foetal lung cancer cell line), with IC50 of 71.45 and 52.24 μg/ml,
respectively. The selectivity index (SI) for Compound 1 was 1.61 (IC50 against the normal human foetal lung
fibroblast cell line MRC-5 was 84.33μg/ml), demonstrating better cancer cell-selectivity compared to doxorubicin
with a SI of 1.28. The cytotoxic activity of Compound 1 in HeLa cells was also rapid, as shown by its concentration-
and time-dependent 3 h and 6 h cytotoxicity profiles, an effect not observed with doxorubicin. Generation of
reactive oxygen species at high concentrations of pentagalloylglucose to induce oxidative stress in cancer cells was
identified as a mechanistic event that led to or resulted from its cytotoxicity.
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Conclusions: We suggest that pentagalloylglucose is selectively cytotoxic to cancer cells, and at high
concentrations could exhibit pro-oxidant effects in those cells, as opposed to its general anti-oxidant effects in cells.
Also, the presence of Compound 1 (pentagalloylglucose) in the plant and its cancer cell-selective cytotoxicity
provide some rationale for the ethno-medicinal use of the plant’s leaf extract for treating diseases associated with
excessive cell proliferation. Further studies are required to dissect the molecular mechanisms and players
differentially regulating the biphasic anti-oxidant and pro-oxidant effects of pentagalloylglucose in normal and
cancer cells.

Keywords: Anacardium occidentale, Pentagalloyl glucose, Selectivity index, Cytotoxicity

Background
Anacardiaceae is a family of plants well known for its
tannin-rich constituents. The taxa and the vegetative
parts being investigated determine the type of constitu-
ent tannin(s). Most members of Anacardiaceae are trees
or shrubs located mainly in tropical but also in subtrop-
ical and temperate regions of the world, while the family
is subdivided into 5 tribes, based on morphological char-
acteristics [1–3], namely: Anacardiaceae, Rhoeae, Spon-
diadeae, Semecarparpaceae, and Dobineeae. The plants
in these tribes have been widely explored as sources of
many biologically useful polyphenols. Therefore, the
presence of polyphenols in a member tribe is of chemo-
taxonomic significance. Chemotaxonomy seeks to utilize
chemical information to improve the classification of
plants [4]. However, beyond this, the presence of certain
chemical constituents in a particular plant species could
have a significant influence on the array of biological ac-
tivities that could be obtained from such plant and,
therefore, the medicinal uses for which it could be
harnessed.
Anacardium occidentale L., commonly referred to as

Cashew, is a prominent member of the Anacardiaceae
family. In Nigeria, it is one of the plants with multi-
purpose medicinal uses. Almost all parts of the cashew
tree have medicinal uses. The leaf is especially a com-
mon component of the recipes for many ailments. Re-
ported ethno-medicinal uses of the leaf formulation
include treatment of inflammation, infection, sore throat,
asthma and oxidative conditions [5, 6]. It is also used in
the treatment of fevers [7–9], aches and pains [8, 10], in-
flammation of the extremities [11], and asthma [12].
Mustapha [13] indicated the use of the leaf extract of A.
occidentale in the treatment of Human immunodefi-
ciency virus/ Acquired immunodeficiency syndrome
(HIV/AIDS) opportunistic infections in the Northern
part of Nigeria. A. occidentale was shown to possess
anti-inflammatory effects in some models of
inflammation [14]. A leaf extract of the plant showed
anti-inflammatory and analgesic effects in the
carrageenan-induced rat paw oedema and acetic acid-
induced writhing assays, respectively [15]. Towards

explaining the rationale for the application of the leaf of
this plant for the treatment of cancerous diseases in
ethno-medicine, this study isolated, from the plant part
for the first time, pentagalloylglucose, a polyphenol with
multiple medicinal applications. The cancer cell-selective
cytotoxicity of pentagalloylglucose was demonstrated at
its high concentrations to be partly as a result of, or
causal to, the induction of oxidative stress.

Methods
Plant collection and preparation
Leaves of A. occidentale were collected at Road 9 Junction
of the Senior Staff Quarters, Obafemi Awolowo
University, Nigeria, in July 2015. The vegetative part was
identified by Mr. Ogunlowo A.A. of the Department of
Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo
University, Ile Ife, Nigeria, and a voucher specimen (Vou-
cher no. FPI 2107) was deposited in the IFE Herbarium.
The leaves were air-dried and milled to give 2.5 kg of pow-
dered material. The powdered leaves were extracted with
96 % ethanol. The extract was filtered and concentrated
in-vacuo at 400C to give 289 g (11.56 % w/w) of the crude
ethanolic extract. The crude extract was dissolved in 200
mL of water and partitioned successively between water
and n-hexane (3 x 500 mL), water and ethyl acetate (8 x
250 mL) and water and n-butanol (4 x 200 mL) to give n-
hexane (26.2 g), ethyl acetate (15.8 g), n-butanol (14.6 g)
and aqueous (210.4 g) fractions. The ethyl acetate fraction
(previously determined to be active against some cancer
cell lines) (15.1 g) was dissolved in methanol and adsorbed
on silica gel and allowed to dry. The dry powder was
packed into a column of silica gel (30 x 3 cm) and eluted
in descending mode with varied proportions of solvent of
increasing polarity from 100% hexane to 100% ethyl acet-
ate to 50% methanol. The fraction that was eluted with
100% ethyl acetate was further subjected to repeated frac-
tionation on silica gel and Sephadex LH-20 to give Com-
pound 1 (0.188 g).

Chromatography and spectroscopic analysis
1H and 13C Nuclear magnetic resonance (NMR) spectra
(for both 1D and 2D experiments) were obtained on the
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Bruker AV400 (IconNMR) Spectrometer at 400 and 100
MHz, respectively, while the Liquid Chromatography
Mass Spectroscopy (LCMS) analyses were carried out on
an Agilent LCMS comprising a 1100 series LC/MSD
Trap SL at the School of Chemistry and Physics of the
University of KwaZulu-Natal in Pietermaritzburg, South
Africa. Adsorption chromatography (open column) was
carried out with Silica gel (ASTM 230–400 mesh,
Merck). Size exclusion column chromatography was
achieved on Sephadex LH-20 (Pharmacia) pre-swollen in
a specified solvent before loading onto the column. The
column eluate was analyzed by Thin Layer Chromatog-
raphy (TLC) performed at room temperature using ana-
lytical silica gel 60 GF254 pre-coated aluminum backed
plates (Merck, 0.25 mm thick). The resulting spots on
TLC plates were visualized under Ultraviolet (UV) light
(254 nm) and detected by the use of 1% vanillin/H2SO4.

Cell culture
The HeLa cell (immortalized human cervical cell line)
and the MRC-5 SV2 cell (human foetal lung fibroblast
line transfected with the virus SV40) were used as
models of cancers, while the MRC-5 cell (human foetal
lung cell line) was used as a model of normal (non-can-
cerous) cells. [16]. They were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) (4.5 g/L D-glucose)
supplemented with 10% Foetal Calf Serum (FCS), 1% L-
Glutamine (2 mM) and 1% antibiotic-antimycotic
solution (penicillin/streptomycin/amphotericin B) and
maintained at 37°C in a humidified atmosphere of 5%
CO2 and 95% air [16]. All cells were from the European
Collection of Authenticated Cell Cultures (ECACC),
Salisbury, UK

Cell viability assay to determine toxicity of compound
Compound 1 at concentrations ranging from 6.25 to
100 μg/ml was evaluated for the potential to alter the
viability of HeLa, MRC-5 SV2 and MRC-5 cells. Cells
were seeded into opaque, flat bottom, microclear 96-well
plates at 7.5 x 105 cells/ml (7.5x104 cells per well at 100
μl/well) and incubated for 24 h at 37°C and 5% CO2 to
allow the cells to attach. After 24 h, the medium was dis-
carded and the wells treated with 100 μl of the different
concentrations of extracts prepared in growth medium.
A set of untreated (negative) control wells was included
in each plate as well as cells treated with doxorubicin
(positive control) at concentrations between 0.1 and 20
μM.
Following incubation for up to 48 hours, 10 μl of the

viability reagent MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; 5 mg/ml in Phosphate-
Buffered Saline (PBS)) was added to each well. After 2
hours of incubation with MTT at 37°C, the medium was
discarded and 100 μl of DMSO was added to each well

to dissolve the insoluble formazan formed. The absorb-
ance at 570 nm was then determined with a microplate
reader (CLARIO Star Microplate reader, BMG Labtech,
UK) [16]. Each experiment was run in triplicate and re-
peated three independent times.

Bright-field imaging to assess morphological damage
In order to assess treatment-induced changes to the
morphology of the cells, bright-field images were ac-
quired on an Olympus CKX41 microscope fitted with an
Olympus DP71 U-TVIX-2 camera, using the Olympus
cellSens entry software [16].

Reactive Oxygen Species (ROS) Assay (DCFDA Assay)
HeLa cells were seeded into dark, clear-bottom 96-well
microplates at 2.5 x 106 cells/ml (2.5x105 cells per well).
The cells were incubated at 37°C and allowed to adhere
overnight. The medium was thereafter aspirated from
each well, followed by rinsing with 1X buffer provided in
the assay kit (Abcam, Cat. No. ab113851). The buffer
was aspirated and the cells stained with 100 μl of diluted
2′,7′-dichlorofluorescein diacetate (DCFDA) solution
(25 μM). Stained cells were incubated for 45 min at 37°C
in the dark. After 45 min, DCFDA solution was re-
moved, cells were rinsed with 1x buffer, the rinse buffer
was removed and the cells were treated, in duplicate,
with 100 μl of Compound 1 (6.25 to 100 μg/ml). The
Fluorescence Intensity (FI) (Ex/Em = 485/535 nm) of
each well was then read (CLARIO Star Microplate
reader, BMG Labtech, UK) at 3 and 18 h following treat-
ment. Background wells (untreated or diluent-treated
stained cells), as well as blank wells (medium only), were
included in each experiment. Each experiment was re-
peated three times. Cellular ROS data were then ana-
lysed and presented as fold changes compared to the
negative control.

Data presentation and analyses
For the viability assay data, the average viability of the
negative control culture was taken as 100% and the aver-
age viability for every treatment was normalised to it.
Values are indicated as Mean ± SEM (standard error of
the mean). Statistical analyses were conducted with the
GraphPad Prism Software (Version 8.0.1) (GraphPad
Software Inc., CA, USA). To assess statistically signifi-
cant differences between means, analysis of variance
(ANOVA) was used, followed by a post-hoc test for mul-
tiple comparisons (Tukey test), with a p<0.05 considered
statistically significant.
The IC50 value for each compound was calculated

using GraphPad Prism (non-linear regression). Selectiv-
ity Index (SI) for Compound 1 or doxorubicin was cal-
culated by dividing the IC50 for its cytotoxic effect in the
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normal cell (MRC5) by the IC50 for its cytotoxic effect in
the cancer variant (MRC5-SV2).

Results
Spectroscopic data
Compound 1. IR (cm-1) 3324, 1698, 1608. 1H NMR
(400 MHz, CD3OD). δH: 7.14 (2H, s, H-2′″/6′″), 7.09
(2H, s, H-2′/6′), 7.01 (2H, s, H-2″″/6″″ ), 6.98 (2H, s, H-
2″″′/6′″″), 6.94 (2H, s, H-2′′/6′′), 6.26 (1H, d, J=8.0 Hz,
H-1 ), 5.90(1H, m, H-4), 5.65 (1H, m, H-5), 5.61 (1H, m, H-
2), 4.42 (1H, m, H-3), 4.39 (2H, m, H-6). 13C NMR (100
MHz, CD3OD). δc : 93.8 (CH, C-1), 74.1 (CH, C-3), 72.2
(CH, C-4), 70.8 (CH, C-2), 68.4 (CH, C-5), 62.2 (CH2, C-6).
Galloyl i: 119.7 (CH, C-1′), 110.3 (CH, C-2′/6′), 140.0 (CH,
C-4′), 146.2 (CH, C-3′/5′), 166.2 (C=O, C-7′), Galloyl ii:
120.2 (CH, C-1″), 110.3 (CH, C-2″/6″), 140.1 (CH, C-
4″)146.4 (CH, C-3″/5″), 166.9 (C=O, C-7″); Galloyl iii;
121.1 (CH, C-1″′), 110.7 (CH, C-2″′/6″′), 146.5 (CH, C-
3″′/5″′), 140.8 (CH, C-4″′), 167.9 (C=O, C-7″′); Galloyl
iv; 120.2 (CH, C-1″′′), 110.4 (CH, C-2″′′/6″′′), 146.4
(CH, C-3″′′/5″′′), 140.3 (CH, C-4″′′), 167.0 (C=O, C-7″′
′). Galloyl v: 120.2 (CH, C-1″′′′), 110.4 (CH, C-2″′′′/6″′′
′), 146.4 (CH, C-3″′′′/5″′′′), 140.3 (CH, C-4″′′′), 167.0
(C=O, C-7″′′′). TOF HRMS m/z 963.1135 [M+Na]+ (cal-
culated 963.1080).

Structural elucidation of the isolated compound
Compound 1 was isolated as a brown amorphous pow-
der. The compound gave a strong blue-black colour on
the thin layer chromatography when sprayed with ferric
chloride, indicating the presence of phenolic moiety. IR
spectrum displayed absorption at 3324, 1698, 1608, 1536
cm-1. Positive Time-of-Flight High Resolution Mass
Spectrometry (TOF HRMS) gave a signal at m/z
963.1135 [M+Na]+ (calculated 963.1080) for a molecular
mass C41H32O26. The proton NMR spectrum displayed
five singlets at δH 7.14, 7.09, 7.01, 6.98, and 6.94, charac-
teristic of multiply substituted gallotannins. The appear-
ance of a doublet at 6.26 ppm with a large coupling
constant (J= 8.4 Hz) indicates the presence of a β-
anomeric proton. The sugar protons were assigned
based on the COSY and HMBC spectra. In the COSY
spectrum, these pairs of correlating protons were ob-
served between the signals at δH 6.26 / 5.61; 5.61 /6.26,
4.42, 5.90 /5.65, while in the HMBC spectrum long
range correlations were observed between the protons at
δH 6.26 and δc 72.9, 164.7; δH 4.42 and δc 69.5, 166;
δH 5.90 and δc 62.1, 73.0, 92.6 and 166. Each galloyl
group was placed based on the correlation between the
sugar protons as well as the aryl singlet protons with the
galloyl carbonyl carbons. Compound 1 was identified as
β-penta-O-galloyl glucose (PGG) (molecular weight:
940.68) (Figure 1) by comparison of the spectroscopic
data with literature values [17].

Cytotoxicity of the isolated compound
Compound 1 showed concentration-dependent toxicity to
HeLa, MRC5 and MRC5-SV2 cells following 24 h exposure
to varying concentrations up to 100 μg/ml (Figure 2). The
IC50 obtained for Compound 1 was 71.45 μg/ml (76 μM),
52.24 μg/ml (56 μM) and 84.33 μg/ml (90 μM) in HeLa,
MRC5-SV2 and MRC5 cells respectively; the selectivity
index for Compound 1, which is the ratio of its IC50 in
MRC5 and MRC5-SV2 cells, was calculated as 1.61. Doxo-
rubicin, used as a standard anti-cancer drug, also demon-
strated concentration-dependent toxicity to HeLa, MRC5
and MRC5-SV2 cells following 24 h exposure to it (Figure
2), with IC50 of 4.65, 31.70 and 40.64 μM in HeLa, MRC5-
SV2 and MRC5 cells respectively. The selectivity index for
doxorubicin was 1.28.
The concentration-dependent toxicity of Compound

1 and that of the positive control doxorubicin were
correlated with morphological damage that worsened as
the concentration of each compound increased. As
shown in Figure 3 for the HeLa, MRC5-SV2 and MRC5
cells, a higher concentration of Compound 1 or doxo-
rubicin caused loss of cells and rounding up of several
or nearly all remaining cells, while control cells not ex-
posed to either compound were confluent and their con-
nections were intact.
While the MRC5-SV2 cell was more sensitive to

Compound 1 than the HeLa cell, it was nearly seven
times less sensitive to doxorubicin than the HeLa cell.
Compound 1 also showed better selectivity for cancer
cells (as against normal cells) than doxorubicin. We thus
decided to explore in a cancer cell aspects of the time
course of its induction of cytotoxicity by comparing its
effects with those of doxorubicin, following treatment

Fig. 1 Structure of isolated Compound 1
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with each compound at the same range of concentra-
tions as was tested before but for much shorter dura-
tions of 3 h and 6 h. This was assessed using the HeLa
cell that was less sensitive to Compound 1 than
doxorubicin.
As shown in Figure 4, following 3 h and 6 h exposure of

HeLa to Compound 1 and doxorubicin, Compound 1
demonstrated concentration- and time-dependent toxicity,
which was significant at 50 and 100 μg/ml, while
doxorubicin showed no toxicity at the two time points. This
observation establishes a key difference in the cytotoxicity
time-course profiles of Compound 1 and doxorubicin.
While Compound 1 rapidly induced cytotoxicity, initiated
from as early as 3 h following exposure of cells to it and
progressively increasing up to 24 h, doxorubicin’s toxicity
revealed a much-slower time-course, with significant,

concentration-dependent toxicity only observed after 24 h
exposure to it. For drug discovery and development pur-
poses, this property of Compound 1 could make it
uniquely promising, as a shorter time of exposure to an
anti-cancer agent could ensure less damage to normal cells
and less side effects.

Induction of reactive oxygen species (ROS) as a potential
mechanism by which compound elicits cytotoxicity
As we established Compound 1 as rapidly and select-
ively cytotoxic to cancer cells, we assessed whether
the generation of ROS was a mechanism by which it
induced its toxicity in cancer cells, at least, in part.
Figure 5 reveals that, at 3 h post-treatment in HeLa
cells, Compound 1 up to 25 μg/ml did not induce
significant ROS but at 100 μg/ml caused a significant

Fig. 2 Cell viability (%) of HeLa, MRC5-SV2 and MRC5 cells following 24 h exposure to Compound 1 (Cpd 1) and doxorubicin. Each bar
represents mean ± SEM (n=3); *p<0.05, αp<0.01, βp<0.001, γp<0.0001 vs. negative control using one-way ANOVA followed by Dunnett’s post hoc
multiple-comparison test. SI is Selectivity Index.
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increase in ROS levels. This almost 3-fold increase in
ROS could be correlated with an almost 50% decrease
in viability at the 3 h time point (cf. Figure 4, top
panel, left hand side - for 3 h).

Discussion
We have previously reported the cytotoxicity of the
crude extract of the leaf of Anacardium occidentale
[18]. The results from the current study demonstrate the
cancer cell-selective cytotoxicity of pentagalloylglucose
obtained from the leaf extract. At high concentrations,
the observed cytotoxicity of pentagalloylglucose is partly
as a result of, or causal to, the induction of oxidative
stress. Reactive oxygen species (ROS) have been impli-
cated in DNA mutations, aging, and cell death [19].
While low-to-moderate ROS levels can be beneficial to
normal cells by promoting proliferation pathways, high
ROS levels can be detrimental to normal and tumour
cells and induce cell death [20]. Some antineoplastic
drugs that are currently used for cancer chemotherapy
(e.g., doxorubicin, taxanes, vinca alkaloids, and antime-
tabolites) induce high levels of oxidative stress [21, 22],
by which they kill cancer cells.
It should be noted that pentagalloylglucose has been gen-

erally reported to be an antioxidant, with some reports es-
tablishing it as a potent antioxidant [23–26] and potentially

useful in chemoprevention [27], thus suggesting it should
be relatively non-cytotoxic, which might appear to contrast
with observations of its cytotoxicity and, at high concentra-
tions, its pro-oxidant effect (induction of oxidative stress) in
cancer cells reported in this paper. However, consistent
with our findings, previous studies undertaken using cell
cultures, as we did, have shown that pentagalloylglucose
could be involved in eliciting anti-cancer effects through
mechanisms including pro-apoptosis, anti-proliferation,
anti-angiogenesis, anti-metastasis and inhibition of glyco-
protein [28]. Besides, Kantapan et al. [29] recently reported
that extracts containing pentagalloylglucose could promote
intracellular ROS production and induce apoptosis in can-
cer cells, although it was not demonstrated whether those
effects could be solely or partly attributed to the presence
of pentagalloylglucose, as two other constituents were
found to be present in the extract. Lin et al. [30], who used
cultured cells (HepG2, 293T, HEp-2, MRC-5) grown and
treated in conditions very similar to ours (DMEM supple-
mented with 10% fetal calf serum, 24 h treatment, MTT
assay), showed pentagalloylglucose lacked toxicity to the
cells up to 50 μM but did not investigate higher
concentrations.
It is generally recognised that some antioxidant mole-

cules are capable of exhibiting an antioxidant-pro-oxidant
switch, depending on a number of factors, including the

Fig. 3 Concentration-dependent damaging effects of Compound 1 (Cpd 1) and doxorubicin (doxo) on the morphology of HeLa, MRC5-SV2 and
MRC5 cells following exposure of the cells to either compound for 24 h. Scale bar = 100 μm.

Taiwo et al. BMC Complementary Medicine and Therapies          (2020) 20:287 Page 6 of 9



redox state of the cellular environment or the nature of
the pathology in question. We reckon that, while pentagal-
loylglucose is generally antioxidant in nature, it could,
under certain conditions, especially in cancer cells and at
high concentrations, generate ROS, consistent with a pro-
oxidant effect, and induce cytotoxicity. While our work
showed that pentagalloylglucose concentrations above 25
μM but below 100 μM could induce rapid cytotoxicity in
cancer cells, there was no evidence that the cytotoxicity
involved significant ROS, and it is thus reasonable to con-
sider it to be independent of ROS, meaning other toxic
mechanisms were involved. However, at high concentra-
tions (100 μM and above), the toxicity is suggested to re-
sult from, or cause, substantial ROS. Overall, we suggest a

dynamic and complex scenario in which cell toxicity,
where it occurs, is independent of, results from, causes, or
is synergistic with, elevated ROS levels.
Taken together, the data show that Compound 1, iden-

tified as β-penta-O-galloyl glucose, could induce rapid and
selective cytotoxicity in cancer cells, which at high con-
centrations could be linked to oxidative stress. Further
studies will identify the molecular mechanisms and
players responsible for the anti-oxidant and pro-oxidant
effects of pentagalloylglucose in normal and cancer cells.

Conclusions
This study isolated pentagalloyl glucose, a functionally
valuable gallotannin from the leaf extract of Anacardium

Fig. 4 Cell viability (%) of HeLa cells following 3 h and 6 h exposures to Compound 1 (Cpd 1) and doxorubicin. Each bar represents mean ±
SEM (n=3); βp<0.001, γp<0.0001 vs control, δp<0.01 vs corresponding 3 h observation using one-way ANOVA followed by Dunnett’s post hoc
multiple-comparison test.
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occidentale for the first time. Our results show that pen-
tagalloylglucose is more toxic to cancer cells than to
normal cells, produces rapid decreases in tumour cell
populations, and at higher concentrations generates
ROS, leading to oxidative stress in cancer cells. The
presence of the compound pentagalloylglucose in the
plant species is of chemotaxonomic significance and
partly validates the use of the leaf extract of Anacardium
occidentale in ethno-medicine for treating cancers and
related pathologies.
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