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Abstract 

 

One of the emerging challenges in the scaling of MOSFETs is the reliability of ultra-thin 

gate dielectrics. Various sources can cause device aging, such as hot carrier aging (HCA), 

negative bias temperature instability (NBTI), positive bias temperature instability (PBTI), 

and time dependent device breakdown (TDDB). Among them, hot carrier aging (HCA) 

has attracted much attention recently, because it is limiting the device lifetime. As the 

channel length of MOSFETs becomes smaller, the lateral electrical field increases and 

charge carriers become sufficiently energetic (“hot”) to cause damage to the device when 

they travel through the space charge region near the drain.  

 

Unlike aging that causes device parameters, such as threshold voltage, to drift in one 

direction, nano-scale devices also suffer from Random Telegraph Noise (RTN), where 

the current can fluctuate under fixed biases. RTN is caused by capturing/emitting charge 

carriers from/to the conduction channel. As the device sizes are reduced to the nano-

meters, a single trap can cause substantial fluctuation in the current and threshold voltage.  

 

Although early works on HCA and RTN have improved the understanding, many issues 

remain unresolved and the aim of this project is to address these issues. The project is 

broadly divided into three parts: (i) an investigation on the HCA kinetics and how to 

predict HCA-induced device lifetime, (ii) a study of the interaction between HCA and 

RTN, and (iii) developing a new technique for directly measuring the RTN-induced jitter 

in the threshold voltage. 
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To predict the device lifetime, a reliable aging kinetics is indispensable. Although early 

works show that HCA follows a power law, there are uncertainties in the extraction of the 

time exponent, making the prediction doubtful. A systematic experimental investigation 

was carried out in Chapter 4 and both the stress conditions and measurement parameters 

were carefully selected. It was found that the forward saturation current, commonly used 

in early work for monitoring HCA, leads to an overestimation of time exponents, because 

part of the damaged region is screened off by the space charges near the drain. Another 

source of errors comes from the inclusion of as-grown defects in the aging kinetics, which 

is not caused by aging. This leads to an underestimation of the time exponent. After 

correcting these errors, a reliable HCA kinetics is established and its predictive capability 

is demonstrated.  

 

There is confusion on how HCA and RTN interact and this is researched into in Chapter 

5. The results show that for a device of average RTN, HCA only has a modest impact on 

RTN. RTN can either increase or decrease after HCA, depending on whether the local 

current under the RTN traps is rising or reducing. For a device of abnormally high RTN, 

RTN reduces substantially after HCA and the mechanism for this reduction is explored. 

 

The RTN-induced threshold voltage jitter, ∆Vth, is difficult to measure, as it is typically 

small and highly dynamic. Early works estimate this ∆Vth from the change in drain current 

and the accuracy of this estimation is not known. Chapter 6 focuses on developing a new 

‘Trigger-When-Charged’ technique for directly measuring the RTN-induced  ∆Vth. It will 

be shown that early works overestimate ∆Vth by a factor of two and the origin of this 

overestimation is investigated. 
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This thesis consists of seven chapters. Chapter 1 introduces the project and its objectives. 

A literature review is given in Chapter 2. Chapter 3 covers the test facilities, measurement 

techniques, and devices used in this project. The main experimental results and analysis 

are given in Chapters 4-6, as described above. Finally, Chapter 7 concludes the project 

and discusses future works.    
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1 Introduction  

 

1.1 Motivation 

Integrated circuits (ICs) were first invented by J. Kilby at Texas Instruments in 1958. 

According to the Moore’s Law, the transistor’s number per chip doubles every two years 

as shown in       Figure 1.1 [1]. This law has been the driving engine for innovation in 

semiconductor industries for more than five decades. At present, the rise in density of 

transistors is accomplished by constant-field scaling of complementary MOSFETs 

(CMOS) [2]. The constant-field scaling keeps the electric-field constant thus making it 

possible to reduce device dimensions and power-supply voltage. This has led to numerous 

advantages such as increased density of MOSFETs on ICs, better performance, and less 

power consumption. 

 

      Figure 1.1  Moore’s Law shows Doubling of Transistors vs Year [1].  
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On one hand, scaling of MOSFETs has played a major role in the expansion of the 

semiconductor industry for forty years [3],[2]. On the other hand, they also contribute to 

many reliability issues [4], [5]. In 1970s, reliability issues were concentrated on the 

contamination such as mobile ions and induced instability which were overcome with the 

introduction of cleanroom technology. As the down-scaling continued in the 1980s, the 

operation voltage of devices was reduced and maintained at 5 V. This resulted in a higher 

electrical field in the device. The lifetime of the nMOSFETs and pMOSFETs was limited 

by hot carriers and this became the main reliability issue [6].  

 

The phenomenon called hot carrier injection is the injection of energetic carriers into the 

gate oxide [7]. Hot carrier injection contributes to the damage of gate oxide permanently 

through carrier trapping and interface trap generation, resulting in a shift in device 

parameters such as threshold voltage, sub-threshold slope, and transconductance [8], [9]. 

This is called hot carrier induced aging (HCA) degradation in MOSFETs [10].  

 

The number of hot carriers created by impact ionization near the drain junction of 

pMOSFET’s compared with the nMOSFET’s of the same channel length, is 2-4 orders 

smaller because of the lower mobility of holes [11]. 

 

In year 2009 and 2011, International Technology Roadmap for Semiconductors (ITRS) 

identified Random Telegraph Noise (RTN) as a concern for static random access memory 

(SRAM) scaling. This is because the acceptable noise margins are becoming narrower 

due to increasing Vth variability [12]. In 2018,  IEEE International Roadmap for Devices 
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and Systems: More Moore again highlighted RTN as near-term (2017-2024) device 

reliability challenges [13]. 

 

RTN is caused by single trap at gate dielectric capturing and emitting a carrier [14]. Its 

impact increases with the down-scaling of MOSFETs. As flash memory and SRAM 

typically use the minimum sized devices to achieve high density, they are especially 

vulnerable to RTN.  

      

1.2 Research Concerns and Rationale 

 

One of the emerging challenges in the scaling of MOSFETs is the reliability of ultra-thin 

gate dielectrics. Various sources can cause instabilities to the device, such as hot carrier 

injection, negative bias temperature instability (NBTI), positive bias temperature 

instability (PBTI), and time dependent device breakdown (TDDB) etc. A lot of studies 

have concentrated on NBTI [15]–[20] because it was limiting the lifetime of pMOSFETs 

[21]–[23]. HCA has been studied for more than 20 years [10], [24]–[26]. For modern 

CMOS technologies, HCA limits the device lifetime. 

 

Another major challenge for sub-nanometre MOSFETs is statistical variability. It  

originates from the discreteness of charge and granularity of matter [27], [28].  Variability 

can be divided into device-to-device variability (DDV) and within-device-variability 

(WDF).  
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Sources of DDV in transistors can be categorized into time-zero variability (TZV) [27], 

[29]–[31], and time-dependent variability (TDV) [32]–[36]. TZV is directly related to the 

micro-fabrication process including random discrete dopants, line edge roughness, 

polysilicon granularity and oxide thickness fluctuations [37]. On other hand, TDV results 

from aging-induced defects. It is a product of a process of filling and generating new 

defects. TDV shows stochastic behaviour and varies with devices [38]. Researchers 

around the world have reported that both sources affect the reliability of MOSFETs.  

 

With the device progressively scaling down, the number of defects within the dielectric 

decrease, but the impact from each single defect increases. This results in a Within-

device-fluctuation (WDF) phenomenon.  

 

Table 1.1 The impact of the scaling down geometry of MOSFET on |ΔVth| [38] 
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1.3 Objectives of this project 

The objectives of this project are:  

i. To study HCA and develop models for predicting the device lifetime. 

ii. To investigate the relationship between RTN and HCA . 

iii. To develop a direct measurement technique for RTN-induced ΔVth. 

 

1.4 Structure of the thesis 

 

This thesis is organized as follows: 

In Chapter 1, a brief background of MOSFETs reliability has been given. Challenges for 

current and future MOSFETs are also mentioned, together with the project’s objectives. 

 

In Chapter 2, a literature review on the model and characterization techniques of bias 

temperature instability (BTI) and hot carrier injection (HCI) are presented. Defects 

responsible for random telegraph noise (RTN) and challenges are also reviewed. 

 

Chapter 3 comprises the experiment facilities and measurement techniques that have been 

used in this project. 

 

Chapter 4 studies hot carrier aging and variation under use-bias. 
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Chapter 5 investigates the impact of hot carrier aging on RTN. 

 

In Chapter 6, the Trigger-When-Charged method is proposed to directly measure RTN 

induced jitter on Vth of nano-devices. 

 

In Chapter 7, the project is summarised and future work is discussed. 
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2 Literature Review 

 

2.0 Introduction 

 

Integrated circuit (IC) technology has had a great impact on our daily life for the past 60 

years. The physical dimensions of MOSFETs have been successfully down-scaled to 

increase operation speed and density. This follows the Moore’s Law. As the result, the 

channel length now reaches the nanometre range while the effective oxide thickness 

(EOT) is below 1 nm. This makes reliability an increasing concern. Product failures due 

to electronics circuit malfunctions or them not operating as intended can contribute huge 

losses to a company. When the problem is not detected during functional testing, it can 

cause gradual performance reduction and even total failure of the products. This happened 

to Intel Corporation’s Cougar Point chipset in 2011. The chipset was utilized in Intel’s 

latest Sandy Bridge’s processor when they detected a potential reliability problem in the 

chipset’s serial-ATA channels in about 5% of integrated circuits [39].   

 

Instabilities can be caused by many sources, such as positive bias temperature instability 

(PBTI), negative bias temperature instability (NBTI), and hot carrier injection (HCI) etc. 

Among them, NBTI and HCI are becoming the harshest reliability issues because they 

are aggravated by the use of the nitrogen to prevent the boron penetration through the 

gate dielectric. 
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For nano-size MOSFETs, another major challenge is the fluctuations induced by random 

charge-discharge of traps in gate dielectric. Recently, fluctuations in nano-metre size has 

become a major concern for circuit design. Fluctuations are commonly observed as a jitter 

or random telegraph noise (RTN). 

 

With the migration of semiconductor manufacturing technology node, the complexity of 

the circuit increases. Reliability of the circuits needs to be checked at design optimization 

stage before the fabrication starts. As an example, the operating voltage, Vdd of a circuit 

must be properly selected. Increasing the value of Vdd provides better switching speed 

and improves MOSFET drive current. But unfortunately it will also increase the 

degradation. Thus, a lifetime prediction model is important to evaluate a trade-off 

between reliability and performance. 

 

2.1 Bias Temperature Instability  

 

Bias temperature instability (BTI) can be divided into Negative Bias Temperature 

Instability (NBTI) and Positive Bias Temperature Instability (PBTI). NBTI can lead to 

shorter lifetime of pMOSFETs and has attracted much attention. PBTI, on other hands, 

has a significant impact on nMOSFETs. 
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BTI is originated from the creation or filling of traps in the gate dielectric. These extra 

charges in the gate dielectric will increase |Vth| by imposing an inverted electric field in 

terms of gate voltage. |Ig| also increases due to created traps that assist carrier hopping.  

 

In 1980, B. E. Deal [40] suggested traps and charges can be classified into four categories. 

They are (1), Mobile ionic charges Qm, (e.g. sodium ions) which are mobile within the 

oxide when under BTI stress condition; (2) Oxide trapped charges QOT, which are 

distributed inside the oxide layer and can be created by X-ray radiation or hot-electron 

injection; (3) Fixed oxide charges Qf, located at or near the interface are immobile under 

an applied electric field; (4) Interface states NIT and trapped charges QIT are located at the 

Si-SiO2 interface with energy states within the silicon forbidden bandgap and able to 

exchange charges with silicon in a short time. 

 

Figure 2.1 Locations and names of charges associated with thermal oxidized silicon [40]. 
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Expected device lifetime is typically 10 years, which is too long to reach in a laboratory 

if using normal procedure. Thus, the accelerated BTI test is applied to shorten the time. 

The standard criterion of BTI lifetime is that |ΔVth| should not exceed a certain level 

(typically 100 mV) after the device reached its lifetime. An accelerated BTI test can be 

done by applying a much higher Vg (severer stress) than operating condition and within 

an acceptable testing time (usually < 106 seconds). Then, using the time-evolution model, 

the device lifetime under operating voltage can be projected. BTI kinetics typically follow 

a power law against both stress time and overdrive voltage |Vg-Vth|. Joint Electron Device 

Engineering Council (JEDEC) [41] suggested that BTI kinetics can be described in 

Equation (2.1): 

∆𝑉𝑡ℎ = 𝐴 ∙  (|𝑉𝑔 − 𝑉𝑡ℎ|)𝑚 ∙  𝑡𝑠𝑡𝑟
𝑛       (2.1) 

where tstr is BTI stress time, A, m, and n are fitting parameters from the accelerated test. 

However, when fast characterization was introduced, researchers realized that slow 

characterization failed to capture a small portion of BTI due to recovery. This makes the 

Equation (2.1) no longer relevant to predict BTI lifetime because the time exponent, n, is 

sensitive to the measurement condition. 

 

The degradation of BTI can recover once the stress voltage is removed. This fast recovery 

during the measurement resulted in an underestimation of the total BTI degradation. The 

typical time using slow measurement ranges from milli to tens of seconds to measure one 

IV curve. Due to this fast recovery, the measurement result is highly dependent on BTI 

characterization speed. Fast characterization was introduced to overcome this problem. 

Researchers can now measure BTI kinetics within several microseconds by using ultrafast 

measurement. 
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BTI is not a newly discovered problem. It is one of the earliest instabilities reported for 

metal-oxide-semiconductor field effect transistors (MOSFETs). BTI is caused by a 

temperature accelerated degradation under bias. It manifests itself as a decrease of drain 

current, Ids, and transconductance, gm, and an increase of off current, Ioff, and the 

magnitude of threshold voltage, Vth. Four possibilities that can happen during circuit 

operation are negative bias on pMOSFET, positive bias on pMOSFET, negative bias on 

nMOSFET, and positive bias on nMOSFET. Although there are four possibilities, most 

of the researchers focus on negative bias on pMOSFET because it is the most severe 

degradation condition.  

 

BTI was first reported by Miura and Matukura in the year 1966 [42]. Detailed 

characterization of BTI was first showed by Bell Telephone Laboratories’ researchers by 

using metal gate devices on 100 nm oxides and then stressed at 106 V/cm at 300 ºC [43]. 

They concluded that interface trap density, Dit, peaked in the lower half of the bandgap, 

increased with gate voltage and with time. Although equal amounts of interface state and 

positive charge generation occur for both n- and p-type silicon substrates, the net effect 

on threshold voltage, ∆Vt, is greater for p-FETs, because in this case the positive oxide 

charge and positive interface charge are additive [44]. This is the reason why NBTI is of 

more concern on p-MOSFET than n-MOSFET.  

 

Various BTI models have been proposed, including Holes Trapping, Reaction-Diffusion 

(R-D) Model, 2-Stage Model, and the As-grown-Generation (AG) model. 
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2.2 Modelling of Bias Temperature Instability 

2.2.1 Hole Trapping 

 

Hole trapping is one of the factors responsible for BTI [20]. Hole traps can be generated 

through the interaction of oxides with either free holes or hydrogen. Several models have 

been proposed for hole traps, including bond-strain gradient, oxygen vacancy, and self-

trapping of hydrogen on bridging oxygen [45], [46].  

 

The trapped hole can be neutralized once the gate bias has been removed, leading to a 

rapid recovery of BTI. Suppression of this recovery is important in measurement of NBTI. 

As such, techniques such as On-The-Fly (OTF) and Ultra-Fast Single Pulse 

Measurement (UFSP) were introduced to suppress recovery [18], [47]–[50]. The OTF 

technique measures the degradation at stress gate bias, while the UFSP probes the 

degradation at threshold voltage level [51]. 

 

2.2.2 Reaction-Diffusion Model 

 

Jeppson and Svensson first introduced the R-D model in the year 1977 [4] and it is the 

most popular model. This model explains the BTI effect in terms of electrochemical 

reaction at the SiO2/Si interface which converts the precursors into interface states and 

releases a hydrogenous species, as shown in equation (2.2) [4]: 
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                               ≡ Si-H + hole  →  ≡Si• + H                 (2.2) 

In their model, the assumption was that the silicon interface contains a large number of 

defects. These defects are electrically inactive and can be activated through chemical 

reaction. It can be described that Nit generation (recovery) occurs in two distinct phases: 

(i) Fast generation (recovery) ascribed to spontaneous de-passivation (re-passivation) of 

Si-H (Si-) bonds by holes (hydrogen) at the interface; (ii) slow generation (recovery) rate-

limited by hydrogen diffusion away from (towards) the interface[52]. 

 

M. A. Alam (2003) demonstrated that the numerical and analytical solution of the R-D 

model can provide an adequate framework to explain BTI [15]. This has brought the R-

D model into people’s attention again and has been a popular model for BTI in the past 

decade. The model can be described thus: the holes in the inversion layer interact with 

the Si-H bonds at Si-SiO2 interface at elevated temperature. This create interface traps, 

Si+ and hydrogen species, as shown in Figure 2.2. 

 

 

Figure 2.2 Schematic description of the R-D model used to describe the BTI phenomenon. 
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2.2.3 Two-stage Model 

 

The two-stage model  is based on the established properties of Eʹ centres, which is based 

on the combination of interface trap and hole trapping/de-trapping effect [53]. It was 

developed based on the Harry-Diamond-Laboratories (HDL) model by T. Grasser et al. 

[53], [54]. Creation of Eʹ centres from their oxygen vacancy precursors is suggested to 

occur via a multiphonon-field-assisted hole trapping mechanism. These models arose 

from the perceived failure of the pure R-D model (without hole trapping) in interpreting 

the ultra-fast recovery [55]. This model describes that the recoverable component is due 

to hole trapping in oxygen vacancies near the interface and the permanent component is 

due to the creation of interface traps (Pb-centres) [56]. It is suggested that this model is 

capable of explaining the hole trapping and de-trapping mechanism in NBTI degradation, 

particularly on the transformation of hole traps into a more permanent form [57]. 

 

Earlier works assumed that the degradation caused by NBTI is permanent. However, it 

was observed that NBTI degradation recovers considerably within 1 sec. Recovery or 

relaxation happens when the negative bias is removed from the gate [58]. Chen et al first 

referred to relaxation as dynamic NBTI in 2002. They concluded that the channel 

inversion layer disappeared when the gate bias polarity is reversed to positive or zero. 

This will interrupt the breaking of the Si–H bond due to a lack of holes, and at the same 

time, H moves back to the SiO2/Si interface under the influence of positive gate voltage 

and passivates the Si dangling bond [59].  
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Figure 2.3  Illustration of two-staged model, which is the HDL model for a switching oxide 

trap coupled to the creation of a dangling bond at the interface. Figure from [63]. 

 

Cyclability is the main factor in this model (Figure 2.3). When the bond between the two 

silicon atoms  captured an electron (emitted the hole), the bond does not fully created. 

This bond can easily lose an electron again. This act of switching traps by Eʹ centre has 

been suggested by Lelis et al [60]. As illustrated in Figure 2.3, at state 1, a neutral 

precursor exists. Upon hole capture, the Si-Si bond breaks and this results in a positively 

charged Eʹ centre in state 2. The positively charge Eʹ  center can attract the H. This resulted 

the hydrogen passivate a silicon dangling bond at the interface can move to the Eʹ  center. 

Thus can be locked in the positive charge as in state 4. In state 3, hole emission (electron 

capture) neutralizes the Eʹ centre. In this state, two options exist; a hole can be captured 

again causing a transition to state 2, or the structure can relax back to its equilibrium 

configuration as in state 1.  
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2.2.4 A-G Model 

 

In the A-G Model, NBTI originates from positive charge (PC) formation within the gate 

dielectric and interface states [51]. These positive-charges (PC) formation within the gate 

dielectric and the generation of interface states contribute to NBTI [49]. It is proposed by 

J. F. Zhang et al [18], [51], [61] that three types of PCs contribute to NBTI: As-grown 

Holes Traps (AHT), Cyclic Positive Charges (CPC) and Anti-Neutralization Positive 

Charges (ANPC). AHT is pre-existing defects in the device and has energy levels below 

the top edge of the silicon valence band, making it the easiest to neutralize, but hard to 

charge. CPC is energetically located within the band gap and can be repeatedly charged 

and discharged by alternating gate-bias polarity. ANPC has energy levels above the 

bottom edge of the silicon conduction band, so that they are easy to charge but hard to 

neutralize.  

 

2.3 Hot Carrier Model and Characterization 

 

For the last 20 years, BTI has been the most studied CMOS degradation mechanism. 

Recently, due to aggressive CMOS scaling, Hot Carrier aging (HCA) comes back to 

challenge device and circuit reliability [62]–[64]. Theories based on long channel devices 

are no longer enough to explain the device response due HCA. This is because the 

operation voltage can drastically change the energy of hot carriers. Different physical 

processes such as carrier injection into oxide, impact ionization, charge trapping and 

interface trap creation can be present and contribute differently to the degradation. 
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The injection of hot carriers from the channel to the gate oxide is the main cause for hot 

carrier degradation. The two factors that determine the carrier injection at any given 

location along the channel are, the electric field at the point of the injection and the 

concentration of the carriers in the channel. As the gate bias increases, the concentration 

of the carriers in the channel also increases. This results in electron and hole injection 

current increases. While in the sub-threshold region, the injection of the carriers into the 

gate oxide is negligible due to the concentration of carriers in the channel being low [65].  

 

  Figure 2.4  Effects of hot carrier injection. 

 

In the 1950s, theoretical work on hot carrier injection and its effects on the devices had 

already started but the modelling was not started until 1980 [63]. The reason is mainly 

because there was an ongoing debate regarding the different mechanisms involved in hot 

carrier injection. For examples, what charges get injected and whether charge injection is 

needed to cause degradation of a device [64], [65]. 



Chapter 2: Literature Review                                                                                                       18 

 

 

 

It has been recognized that hot-carrier induced aging (HCA) degradation can pose a major 

threat to the scaling of device [62]. HCA affects electrical characteristics of MOSFETs 

even under nominal operating conditions, resulting in enhanced circuit failure [42-43]. 

HCA models have developed from phenomenological or empirical approaches [8], [68] 

to more sophisticated models to explain the rich physics behind this effect [62], [69]–

[71], as detailed in the following.  

 

2.3.1 Lucky-Electron Model 

 

Early attempts linked the device life time to the electric field. Hot carrier can be 

demonstrated as in Figure 2.5. The large voltage drop across the pinch-off region results 

in a high lateral electric field close to the drain region. The carriers traversing this high 

field region accumulate considerably higher energies than the equilibrium thermal energy 

in the semiconductor lattice. These carriers with high energy are called ‘hot-carriers’. If 

the carriers gain enough energy, it can be injected into the gate oxide causing interfacial 

damage and will introduce instabilities in a MOSFET’s electrical characteristics. The 

damage rate is dependent on the lateral electric field. This phenomenon is explained by 

C. M. Hu et al [10] using the ‘Lucky Electron Model’. 
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Figure 2.5  Cross-section of nMOSFET during hot carrier injection process. The figure is 

from [72]. 

 

The Lucky Electron Model (LEM) has been used for decades as the guiding principle of 

most industry standard model and projection methodologies associated with hot carriers. 

In this model, the fundamental concept can be explained by interaction of free electrons 

accelerated by an electric field until they collide with an atom. The collision will ionize 

the atom resulting in two free electrons. This is where the term ‘impact ionization’ is 

coming from. 
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2.3.2 Energy Driven Model 

 

Another model for HCI is called the Energy Driven Model  [51-52]. It was proposed in 

2005 as a replacement for the Lucky Electron Model in a short channel regime. The 

driving force in this model is energy rather than peak lateral electric field as it is in LEM. 

 

Understanding the damage mechanism as well its related reliability problems is the main 

concern. HCA is caused by injection of energetic carriers into the gate dielectric near the 

drain side. This is the area where defects are generated. Charge pumping techniques have 

been used to characterize the location of trap generation for both border traps (Nb) and 

interface traps (Nit) to understand the damage mechanism [75] [76]. Chun-Chang Lu et 

al [77] showed a modified charge pumping technique to better understand HCA reliability 

problems. It was shown that HCA stress causes interface trap generation through the 

whole channel and substantial border trap generation at the edge of the gate region. 

 

2.4 Random Telegraph Noise 

Since the days of vacuum electronics, Random Telegraph Noise (RTN) was already 

observed. It was often referred to as burst of popcorn noise [78][79]. RTN in MOSFET 

was reported by Ralls et al [80] in 1985 and followed by Uren et al [81] in 1986. Since 

then, RTN has been found in many different semiconductor devices including MOSFETs, 

flash memories, RRAM and LEDs [82], [83].  
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In 2009, for the first time, the International Technology Roadmap for Semiconductors 

(ITRS) identified Random Telegraph Noise (RTN) as a concern for static random access 

memory (SRAM) scaling due to increasing Vth variability including RTN [12]. This 

makes the acceptable noise margin narrower. This issue is mentioned again by ITRS in 

2011 [84] and by IEEE International Roadmap for Devices and Systems: More Moore in 

2018 [13]. 

RTN in its primary form can be described as random switching of a current between a 

high and a low state in a semiconductor device [85]. This dual state can be schematically 

represented in Figure 2.6. We can notice that for randomly distributed up and down times, 

the amplitude is normally fixed and can be easily calculated from time trace. RTN is 

normally caused by the emission and capture of charge carrier to and from the conduction 

channel. RTN has become the harshest reliability issue in the aggressively scaled CMOS 

technology. It is because the device size is so small that the trapping/de-trapping of one 

individual defect has a greater impact on the device performance [79]. 

 

Figure 2.6  Random telegraph signals in a small MOSFET measured at the indicated gate 

voltages. Active device area is 0.4 μm2, Vds=4 mV, T=293 K [86]. 
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RTN can be studied either in the frequency domain by applying a Fourier Transform or 

in the time domain by investigating the time trace directly [80], [87], [88]. In frequency 

domain, the signal exist within a given frequency band concerning a range of frequencies. 

While in time domain, it shows the changes in of a signal over a period of time. Fourier 

transform can converts a time function into an integral sine-waves of multiple 

frequencies. Figure 2.7 shows the time trace of an RTN. 

 

Figure 2.7  Time trace of RTN for typical 2-level RTN despite slight fluctuation at the base 

current. 

 

2.4.1 Single Defect responsible for RTN 

 

As the scaling down of feature size, a single defect is sufficient to shift threshold voltage 

and driving current in nano-scaled MOSFETs. It was reported by IBM in 2011 that a 

single RTN can make the device reach lifetime criteria [89]. The impact of single trap on 

Id become larger as MOSFET’s scaled down. 
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We could observe the random step of threshold voltage, Vth or/and drain current, Id during 

charging and discharging of this single defect. RTN in its most basic form 

consists of the random switching of the current between a high and low 

state as depicted in  

Figure 2.8. For the two-level RTN, it can be characterized by up time (tu), down time (td) 

and amplitude of ∆ID. For an adequate amount of time, the probability distribution 

functions of the switching time follows an exponential distribution. 

 

Figure 2.8 Schematic representation of two-level RTN 

 

It was reported by Liu et al [90] that hot carrier stress has no impact on RTN. This is true 

for normal RTN. For abnormal/large RTN, we have observed that hot carrier stress has 

an impact on the magnitude of amplitude and also in some cases completely suppresses 

RTN. This interesting phenomenon will be investigated thoroughly in Chapter 5. 

 

We can express ΔVth due to RTN as  
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                                            ∆𝑉𝑡ℎ =  
𝑞

𝐿𝑒𝑓𝑓𝑊𝑒𝑓𝑓𝐶𝑜𝑥
                                                        (2.3) 

where q is the elementary charge, Leff is the effective channel length, Weff is the effective 

channel width and Cox is the gate capacitance per unit area [87]. 

 

 

   Figure 2.9 Single-level RTN (a) nMOSFFET (b) pMOSFET [91]. 

(a) 

(b) 
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Figure 2.10 Time trace of complex RTN. (a) Four states of RTN originated from two traps 

can be observed, (b) multiple states of RTN from multiple traps can be observed [91]. 

 

2.5 Variability  

 

It is well-known that variability in characteristics of devices is a major concern to down-

scaling the supply voltage of current and future complementary metal-oxide-

semiconductor (CMOS) technologies [41-42]. In sub-100 nm technologies, much 

attention has been given to solving and minimizing variability issues. As mentioned 

earlier, variability can be specified into two categories: Time-zero variability (TZV) and 

Time-dependent variability (TDV).  

(a) 

(b) 
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TZV is related to fabrication process variations, such as random discrete dopants (RDD), 

oxide thickness variation (OTV), and line edge roughness (LER) [94][95].  

 

TDV is linked directly to MOSFET reliability [96]. The aging-induced TDV arises from 

wear-out mechanisms such as Hot Carriers, Negative Bias Temperature Instability 

(NBTI), and Time-Dependent Dielectric Breakdown (TDDB) [7], [37], [55–58]. It has 

been reported that TDV originates from aging induced discrete changes in oxide or 

interface and is independent of AFV [19]. Investigation on BTI variability has been 

widely reported [21–23] and it can be accurately described by the number of Poisson-

distributed defects in the oxide layer and the distribution of each individual defect [19], 

[104]. The importance of TDV attracted the interest  of the researcher because one single 

defect can shift the threshold voltage over 30 mV, enough to cause failure on a device 

[19], [105]. 

 

In the last two decades, Bias Temperature Instability (BTI) and Time-Dependent 

Dielectric Variation (TDDB) have attracted the  attention of more researchers [6], [57], 

[60–62] than Hot Carrier Aging (HCA). This is because it was reported by N. Kimizuka 

[5] that HCA effects are smaller. This is not valid any more for the recent nano-scaled 

CMOS nodes [93], [63]. ITRS also mentioned in 2009, 2011 and IEEE in 2018 the 

importance of addressing the RTN issue. These show that HCA and RTN are important 

issues to be studied and researched into. 
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2.6 Challenges 

 

The rapid growth of the internet and telecommunications has been attributed to the 

aggressive down-scaling of the device dimensions [108], [109]. Current developments 

in the fabrication process has  made  i t  poss ib le  to  in t egra te  more than 1 billion 

transistors on one single processor die [110]. This high integration density has to be 

accompanied by stringent efforts to increase the reliability of each transistor. The 

failure of a single transistor can lead to complete failure of the whole system.  

 

Several studies on HCA variability have been done and it is proposed that the HCA 

variability could be explained by the BTI variability model [25-26]. Despite recent 

extensive research on HCA variability, a deeper understanding of the nature of HCA 

variability such as the connections with the fabrication process and technology, the 

physical origin, the possible scaling trend [113] on deeply scaled MOSFETs is still 

missing. 

 

RTN did not capture the attention of researchers until the 2000s. Previously, researchers 

were interested in RTN as a fundamental characteristic of trap at gate dielectric, and 

placed low priority on RTN as a reliability problem. In 2006, it was reported for the first 

time, RTN became a reliability issue in high capacity flash memory [14].
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3 Experimental Facilities and Measurement 

Techniques 

   

 

3.1 Introduction 

 

Recent developments in equipment and measurement techniques provide enormous 

opportunity in achieving a breakthrough in research. Advanced test facilities together 

with the right measurement skills and methods will generally produce outstanding 

outcomes. 

 

In order to achieve good results, one must know the fine details of the equipment set-up.  

Figure 3.1 illustrates a standard wafer level device characterization facility.  It consists of 

a Cascade probe station housed in a black box to minimize interference from the outside 

environment during the measurement. The Cascade probe station comprises of a thermal-

controlled stage and four micro-positioners. The device-under-test (DUT) is placed on 

the stage of the probe station. Connections to the device’s four terminals are made by 

using four micro-positioners where each positioner’s needle contacts one of the four DUT 

terminals. The connections from the micro-positioner to the pulse generator and to the 

semiconductor analyser are controlled by a personal computer.  
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Figure 3.1(b) presents a photo of the micro-positioners located in the probe station. As 

portrayed in the photograph, the SSMC-to-SMA cables are needed to connect the 

amplifier circuit to the micro-positioners. In order to avoid impedance mismatch, all 

system components must possess a 50 Ω impedance and the length of the SSMC-to-SMA 

cables is minimized. The BNC cables between the circuit and the oscilloscope are 

required to be of the same lengths in order to synchronise the multiple output channels. 

 
Figure 3.1 (a) Block diagram of the conventional measurement system.  (b) picture of the 

Cascade probe station cable to connect the testing device and circuit and (c) connection of 

pulse generator and oscilloscope. 

 

Pulse measurement system used in this work comprises of Arbitrary Waveform Generator 

Agilent HP81150A, an external circuit which includes amplifier to measure drain current, 

a Visual Basic programming code, a Cascade probe station and Oscilloscope. The 

 

   

  (b)   (c) 

  

Computer 
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programming code is to control the pulse generator and to automate measurements. This 

system is capable of delivering a minimum measurement time of 100 ns with a noise 

margin of 2 mV.  

 

For the quasi-DC measurement, an industrial standard parameter analyser Agilent 

E5270A and the Keithley 42000-SCS were used. It generally takes about 20~150 ms for 

measuring one point and tens of points are needed in order to obtain a transfer 

characteristic. Total measurement time normally will be in the order of seconds. Most of 

the experiments conducted in this work characterizes thin (<3 nm) gate oxides, it becomes 

essential to increase the measurement speed by using the pulse measurements because 

both recovery and degradation can occur during the quasi-DC measurement. This 

phenomenon will be discussed later in this chapter. Although DC measurement is 

considered as slow measurement, it will still be carried out to compare the work 

conducted in this thesis to the standard slow measurement typically applied in the 

industry. 

 

One of the important parameters during the measurement is drain voltage, Vd. If Vd is too 

low, the signal is too weak when compared with the noise. If Vd is too high, the non-

uniformity of the channel can be substantial. It is found that a suitable Vd is 100 mV with 

a feedback resistance of 10 kΩ. 

 

In this chapter, the test systems for the conventional measurement techniques, including 

the transfer characteristics (I-V), threshold voltage and capacitance-voltage (C-V) will be 
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reviewed. Fast measurements, including the On-The-Fly (OTF), fast pulse Id-Vg and 

single point measurements are further described, due to their significance to this project. 

The devices used in the experiments will also be described. 

 

3.2 Facilities 

 

The test set-up for measurement includes a desktop computer, a Cascade probe station 

with micro-positioners, Agilent 81150A pulse generator, Keithley 4200 advanced 

parameter analyser, I-V converter with OPA657 amplifier made in-house and a 4-channel 

Agilent MSO8104A oscilloscope. Figure 3.2 presents the some of the equipment used for 

the measurement. 

 

Figure 3.2 Some of the equipment for the measurement consists of Pulse Generator, 

Oscilloscope and Voltage source. 

 

  Pulse Generator 

Oscilloscope 

Voltage source 
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During the measurement, the quasi-DC system is fully controlled by the desktop 

computer. Turbo C language is used to write the control program for the system. The 

pulse system comprises of a desktop computer, an in-house circuit with amplifier 

(OPA657) to convert current (Ids) to voltage and for amplification. The system is also 

connected to an Agilent MSO8104A oscilloscope for monitoring applied gate voltage and 

for circuit output voltage acquisition. The Agilent 81150A pulse generator supplies 

voltage to the gate of MOSFET. A Keithley 4200 advanced parameter analyser is used to 

integrate DC-IV, C-V and ultra-fast I-V functions as shown in Figure 3.3.  

 

Figure 3.3 Working screen of Keithley 4200 Advanced Parameter Analyser 

 

The annealing process is done using Carbolite CTF 12/100/900, it is a ceramic tube 

furnace with resistance wire as presented in Figure 3.4. It has the uniform zone length of 

375 mm and can withstand the maximum temperature of 1,200 °C. During the annealing 

process, the temperature ranges from 150 °C to 400 °C. High purity nitrogen or forming 
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gas (combination of 10% H2 and 90% N2) is used during the process. The flow rate is 2 

litres per minute and the upstream pressure is 1.2 ~ 1.4 bars. 

 

 

Figure 3.4 Carbolite CTF 12/100/900 Ceramic Tube Furnace 

 

3.3 Devices 

 

The devices used in Chapter 5 were fabricated at Interuniversity Microelectronics 

Research Centre (IMEC), Belgium. These samples were processed based on 45 nm 

technology and 22 nm technology. Samples used in Chapter 4 and Chapter 6 are 

manufactured at Taiwan Semiconductor Manufacturing Company (TSMC). It was 

fabricated using TSMC’s N28HPL high-k metal gate technology. A summary of the 

devices used in this thesis is shown in Table 3.1. 

  Picture of Carbolite Ceramic Furnace 
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 Table 3.1 List of the devices used in this thesis  

Process Gate material Dielectric material EOT Size (W x L, um) 

28 nm HKMG HfO2/SiON 1.2 nm 2.7x0.9, 

0.09x0.027 

45 nm HKMG HfO2/SiON 1.45 nm 0.09x0.07 

22 nm HKMG HfO2/SiON 1.0 nm 0.09x0.07 

 

The gate dielectric stack used in this project consists of HfO2 and interfacial SiON with 

an equivalent oxide thickness (EOT) between 1 nm and 1.45 nm.  

 

 

3.4 Conventional characterization and stress techniques 

 

In this section, the conventional characterization and stress techniques will be presented. 

It includes system and equipment set-up, samples used in the experiments, techniques for 

characterizing degradation, and techniques for stressing devices.  

 

3.4.1 Conventional Id-Vg technique 

 

The conventional technique for characterizing Id-Vg is also called slow measurement 

because the total time taken for one Id-Vg measurement is in the order of 1-10 seconds. It 

is measured by applying DC voltages using a DC parametric analyser.  The threshold 

voltage, abbreviated as Vth, of a MOSFET is usually defined as the gate voltage where a 
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strong inversion layer forms at the interface of the substrate. The formation of this strong 

inversion layer allows the flow of electrons/holes through the drain-source. There are 

several methods to extract the threshold voltage. Threshold voltage can be extracted from 

the Id-Vg curve by using the constant current method [114] or the maximum conduction, 

gm-max, method [115]. The measurement is generally carried out using low drain 

voltages, so that the device operates in the linear region. These two methods are 

demonstrated in Figure 3.5 and Figure 3.6. The gm-max method requires the 

transconductance which is calculated by differentiating the Id-Vg curve. Vth is extracted 

from the gate voltage axis intercept of the linear extrapolation of the Id-Vg curve at 

maximum transconductance. 

 

In the previous chapter, it is explained that negative bias temperature instability (NBTI) 

is a key reliability issue in MOSFETs. The conventional measurement method for 

negative bias temperature instability (NBTI) is carried out using the measure-stress-

measure (MSM) methodology. It starts by characterising the properties of a fresh device, 

such as measuring the threshold voltage. The fresh value is used as the reference for 

measuring the shift of parameters during the stress due to degradation. The stress biases 

applied are typically considerably higher than that used in the real operation to produce a 

measurable degradation within a practical test time. During the stress, measurement is 

interrupted at preset times to measure the Id-Vg transfer characteristics. For NBTI, 

stressed Id-Vg transfer characteristics are expected to be shifted in the negative direction, 

which signifies the formation of positive charges. It is worth mentioning that the device 

under test can be stressed either at the room temperature or a higher temperature, such as 

125oC, which is a typical temperature used in industry for device qualification. 
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Figure 3.5 The threshold voltage Vt is extracted by the gm-max extrapolation method.  

 

 

Figure 3.6  the threshold voltage Vt is extracted by the constant current method. 
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3.4.2 Conventional Capacitance-Voltage (C-V) technique 

 

One of the standard measurements to characterize gate-oxide quality is capacitance-

voltage (C-V) measurement. By using C-V measurement, various MOS devices 

parameters such as the oxide thickness, flatband voltage, threshold voltage, bulk and 

interface charges information can be extracted.  

 

Figure 3.7 shows the equivalent circuit of an MOS device. Capacitance of an MOS 

capacitor can be described by the change in the charge (Qg) of a device when varying 

voltage (Vg):  

 

         
dV

dQ
C

g

g
                                                  (3.1)  

 

The concept of charge neutrality is upheld whereby Qg = - (Qs + Qit) by assuming that 

there is no charge trapping in the dielectric. Qs is the substrate charge and Qit is the trapped 

interface charge. Gate voltage has a partial drop across the dielectric and the 

semiconductor substrate: , Soxfbg VVV   where Vfb is the flat-band voltage, Vox is 

the voltage drop across the oxide and the  s
 is the Si surface potential.  Using this 

assumption, the equation (3.1) is re-written as 

  

                            
ddV

dQdQ
C
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                                   (3.2) 
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Figure 3.7 Equivalent circuit of a MOS structure 

 

Depending on the Si surface potential, the involvement of the majority, minority and the 

depletion charge associated with the substrate varies. From the equivalent circuit, the total 

gate capacitance can also be written as: 
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The low-frequency substrate capacitance is given by [116]: 
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where the dimensionless surface electric field F(US, UF) is defined by: 

 



Chapter 3: Experimental Facilities and Measurement Techniques                                            39 

 

 

 

         )1()1(),( 


S

UU
S

UU

FS UeeUeeUUF SFSF         (3.5) 

 

US and UF are normalized potentials, defined as US = 
𝑞𝜑𝑠

𝑘𝑇⁄  and UF = 
𝑞𝜑𝐹

𝑘𝑇⁄ . The 

Fermi potential is calculated by 𝜑𝐹= (𝑘𝑇
𝑞⁄ )ln(

𝑁𝐴
𝑛𝑖

⁄  where NA is the acceptor 

concentration and ni the intrinsic carrier concentration in the Si substrate.  

 

The symbol 𝑈
𝛬

𝑆 stands for the sign of the surface potential and is given by 

                              𝑈
𝛬

𝑆 =
|𝑈𝑆|

𝑈𝑆
                                       (3.6) 

where 


U S  = 1 for U S  > 0 and 𝑈
𝛬

𝑆 = −1 for U S < 0. The extrinsic Debye length LD is: 
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                                               (3.7) 

 

Figure 3.8 illustrates the typical setup of the C-V measurement in this work. Figure 3.8(a) 

and (b) show where the gate-channel capacitance, Cgc and gate-bulk capacitance, Cgb is 

separately obtained through the split C-V technique [117]. Figure 3.9(a) and (b) 

respectively present the Cgc and the Cgb, and the combination of these two measurements. 

We can measure the total gate capacitance by combining the Cgc and the Cgb.  Parasitic 

capacitance will lead to an offset of the measurement and this has been considered by 

nulling back to zero. In our case, parasitic capacitance has been accounted for in the 

measurements.  
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Figure 3.8 Configuration of spilt C-V measurement technique to obtain (a) Cgate-channel against 

the Gate voltage and (b) Cgate-bulk against the Gate voltage. 

 

 

 

Figure 3.9 Measurement of spilt CV profiles (a) separate C-V measurement were measured 

and (b) the final profile acquired by the combination of the Cgc and Cgb measurement. 

 

Another technique to measure the total gate capacitance measurement is by  using a single 

C-V measurement, conducted in this work. This can be done by superimposing a small 

oscillating AC voltage on a DC voltage, which is applied to the gate. The resulting AC 

current through the source, drain or substrate is measured from which the capacitance, 

which is the change in charge in response to the AC voltage, is calculated.  

(a) (b) 

Vg Vg 

(a) (b) 
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Basically, the combined C-V can be categorized into three regions: accumulation, 

depletion, and inversion, as described below for a p-type substrate.  

 

Accumulation Region 

 

The accumulation region of the C-V curve can be observed when a negative voltage is 

applied to the gate of a p-type substrate MOS capacitor. The negative polarity will attract 

the holes, which are the majority carriers, towards the gate. These holes will accumulate 

at the oxide/substrate interface due to the oxide being a good insulator. The C-V 

measurement measures the oxide capacitance in the strong accumulation region at which 

the voltage is negative enough and the C-V curve is essentially flat. Hence, the oxide 

thickness can be extracted from the oxide capacitance.  

 

Depletion Region 

 

The holes are repelled from the substrate oxide interface as the gate voltage moves toward 

the positive. Subsequently, a carrier- depleted area forms beneath the oxide. As the gate 

voltage becomes more positive, the depletion zone becomes deeper. The depletion 

capacitance thus becomes smaller and the total measured capacitance becomes smaller 

consequently.  
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Inversion Region  

 

As the gate voltage increases, the mid-band energy level eventually falls below the Fermi-

level at the interface. In this case, the interfacial region is inverted from p-type into n-

type. The positive gate bias attracts the electrons, which are minority carriers, towards the 

gate. These minority carriers will pile up at the oxide/substrate interface and form an 

inversion layer due to the oxide being a good insulator. The consequence is that the 

positive charges on the gate are separated from the electrons in the substrate by the oxide 

and the total capacitance returns to the oxide capacitance. The electrons in the inversion 

layer screen the positive charges on the gate from the substrate, so that the depletion depth 

will not increase further with Vg.   

 

3.5 On-The-Fly (OTF) techniques 

 

The development of the OTF technique was primarily motivated to measure NBTI 

induced voltage shift without recovery. Numerous studies have found that the Vth 

degradation induced by NBTI recovers during the interruption of stress for the 

conventional method [6-10].  

 

The common characteristic of the OTF technique is the stress voltage always applied to 

the gate, and the degradation of the drain current is measured at stress voltage.  In order 

to maintain the stress is always applied to the gate, measurement of ∆Vth is done at the 

stress voltage. 
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The OTF technique monitors both Id and the transconductance, gm, at preset intervals 

under a low drain bias. To evaluate gm, the stress Vg is perturbed by a small amount of ± 

DV and the corresponding current variation is recorded. The gm  at a time “n” is estimated 

from the equation 3.9.  

 

Rangan et al [11] were the first to propose the OTF technique in the year 2003. The 

technique initially measured Id-Vg with the Vg ramped to the stress voltage, both the drain 

current Id0 at Vg = Vgst and the threshold voltage Vt0 are recorded. As the electrical stress 

is continuously applied, the drain current is sampled non-stop at Vg=Vgst. The threshold 

voltage shift is then calculated from the following equation 

                                             VV
I

I
V tg

d

d

t 0

0




                                        (3.8) 

where the change in the drain current is ∆Id = Id – Id0.  Due to the uncertainty in the 

extracted threshold voltage shift, introduced by ignoring the mobility variation with Vg 

in equation 3.8, this technique is not widely accepted.   

 

An improved OTF technique (2nd order) is then suggested by Denais et al [12] as shown 

in Figure 3.10(b). In this method, mobility degradation is taken into consideration by 

evaluating the transconductance, gm. Three points are measured at Vgst and Vgst± DV as 

shown if Figure 2.6(b). In order to estimate the transconductance, gm(n), Vg was perturbed 

by a small ±DV, where D signifies perturbation.   
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The degradation of drain current between two measurement points ‘n’ and ‘n-1’ is, 

                                                    1 nInInI ddd
                                    (3.10) 

The shift of threshold voltage between these two points can be evaluated by, 
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  The accumulative shift of threshold voltage is,  
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where M is the number of Id
 
measurements and gm(n) is the mean value of the trans-

conductance between the n
th 

and n-1
th 

Id
 
measurements, as shown in Figure 3.11. Hence, 

periodical three-point Id
 
measurements are enough to monitor ΔId, gm, ΔVt 

during stress. 
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Figure 3.10(a) Traditional NBTI test sequence (b) The 2nd order OTF measurement sequence 
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Figure 3.11 The measurements of nth and n-1th Id, combined with the transconductance gm(n), 

can provide the threshold voltage shift, ΔVt of nth and n-1th measurement points. 

 

3.6 Pulse Id-Vg techniques 

 

The Pulse Id-Vg technique becomes popular, since NBTI recovery can be substantial when 

using a conventional measurement technique. Pulse Id-Vg works by applying a pulse 

signal generated by the pulse generator to the gate of the transistor as presented in Figure 

3.12. A digital oscilloscope is used to record drain current during the pulse edges. The 

transfer characteristic Id~Vg can be determined from the gate voltage and the 

corresponding drain current. The benefit by using this technique is that the threshold 

voltage (Vt) can be determined after the application of a pulse by capturing the Id~Vg 

during the falling edge of the stress pulse. This can minimize the trapping/de-trapping 

during measurement.   
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Figure 3.12 A typical result measured with pulse technique. a) A screenshot of Vg and Vout 

acquired by the oscilloscope. Vg was supplied by pulse generator. b) The extracted TC curve 

with 5 μs pulse edge time under Vd=25 mV; both up and down edges can be used to obtain 

Id-Vg curve [13]. 

 

 

(b) 
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3.6.1 Experimental Set-up 

 

Pulse Id-Vg technique was first developed by Kerber et al [14] to investigate the large 

charge trapping occurring in high-k dielectric. In this technique, the MOSFET is 

connected to an inverter circuit with the load resistor, RL. The resistor and the MOSFET’s 

channel form a voltage divider. The schematic measurement set-up of this pulse 

measurement is illustrated in Figure 3.13. By applying a trapezoidal (triangular) pulse to 

the gate, the drain voltage, VD, is recorded using a digital oscilloscope.  

 

From the measured VD, the Id~Vg characteristic can be determined using   

                                       𝐼𝐷 =
100 𝑚𝑉

𝑉𝐷
(

100 𝑚𝑉−𝑉𝐷

𝑅𝐿
)                   (3.13) 

where RL is the resistive load of the inverter circuit. 

                                       

 

   Figure 3.13 Schematic set-up for the pulse Id-Vg technique proposed by [118].  

 

RL 



Chapter 3: Experimental Facilities and Measurement Techniques                                            49 

 

 

 

The voltage divider used in this circuit potentially caused changes of drain voltage during 

the measurement. However, this effect can be suppressed by normalizing the extracted 

drain current to a constant drain voltage, which is given by the term 100 mV/VD in 

equation (3.13).  

 

In order to suppress the noise and increase the accuracy of the measurement, impedance 

along the signal path of this circuit needs to be matched and hence the resistive load 

should be around 50 Ω. But this limits the gain of the circuit significantly. 

 

A better approach to increase the gain of the circuit is to use op-amp (operational 

amplifier). This at the same time maintains impedance matching along the signal path. 

The new circuit is presented in the Figure 3.14. In this schematic circuit, the MOSFET’s 

drain is connected to the negative input of the op-amp. Since the voltages at the two input 

terminals are approximately equal when negative feedback is present through R, the drain 

voltage of the MOSFET is fixed at Vd supplied by the voltage source.  
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                         Figure 3.14 Schematic of our modified pulse Id-Vg. 

 

In principle, the input bias current of the op-amp is very low, the drain current flows 

almost entirely through the gain resistor, R. Resistors ranging from 1 to 10 kΩ are used 

for different gain. The output voltage of the op-amp, in terms of the MOSFET drain 

current is given by the following equation: 

                                       VRIV ddout                                                      (3.14) 

 

3.6.2 Calibration of Pulse Measurement System 

 

 In order to ensure that our measurement system has an acceptable margin of noise level 

and performance, the details the various checks conducted on the pulse measurement 

system are described in this section. 
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Op-amp circuit calibration without connection to device under test  

 

Before start the measurement, a calibration exercise was first carried out. This was done 

by  connecting only the op-amp circuit without the device under test. The 10 kΩ resistor 

is grounded and the system noise is checked, without connecting the pulse generator. The 

system noise should be less than 0.1%.  Figure 3.15(a) shows the connection prepared. 

Figure 3.15(c) shows that the accuracy of 0.09% of the Id measurement using the similar 

system, so that the noise is negligible [119]. The pulse was connected to the input and the 

current at the edge of the pulse was measured as presented in Figure 3.15(b),. Different 

values of pulse edge time were applied and the comparison of the measured current with 

different pulse edge times is shown in Figure 3.15(d). The good agreement cemented that 

the respond of op-amp circuit in the range of a few micro-seconds. 

 

Op-amp circuit calibration with connection to device under test  

 

The op-amp circuit then connected to the device under test (transistor 90nm x 70 nm). the 

Vg waveform is applied to the circuit for calibration as shown in Figure 3.16(a). the Id-Vg 

was measured from the pulse edges of 5 µs. The Vg was applied for 50 times and each Id0 

is calculated at constant coltage as shown in Figure 3.16(b). Accuracy of 0.8 µs can be 

achieved when the same measurement was repeated many times, less than 0.2%. 
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Figure 3.15  The connection of op-amp circuit without connecting to a device for calibration. 

(a) the circuit when the 10 kΩ resistor is grounded. (b) the connection when the 10 kΩ 

resistor is connected to the pulse generator. (c) and (d) are the measured Id obtained from 

configuration (a) and (b) respectively [119]. 

(a) 

(b) 
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Figure 3.16 Result of pulse measurement calibration with DUT (90 nm x 70 nm) connected 

by repeating the same measurement many times. (a)waveform of  pulse Vg used and (b) 

shows the measurement variation at a constant voltage.  

 

3.7 Measurement Set-up for Nano-Devices 

 

Set-up for Discharge-based Multi-Pulsed Technique (DMP) 

 

In Chapter 6, discharge-based multi-pulsed technique (DMP) is applied on the nano-

devices for probing traps. In this measurement set-up, a desktop computer is used to 

(a) 

(b) 

5µs 

Vg 
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control the pulse signal generator and oscilloscope. A Cascade probe station with four 

micro-positioners is used to probe the nano-device. An in-house developed circuit is used 

as an amplifier.  On the oscilloscope, Channel 3 and Channel 4 are used to monitor and 

measure output current, Ids of the devices, as shown in Figure 3.17. 

 

Figure 3.17  Schematic diagram of measurement set-up for DMP technique. 

  

Measurement for a nano-device is very challenging due to its small signal and noise 

effects. The oscilloscope must be properly set up to be sensitive enough to measure the 

raw signal. Channel 2 and Channel 3 of the oscilloscope are used to monitor Vsd of the 

device. Basically, in this measurement set-up, Channel 3 is used to trigger the pulse 

generator when the signal reaches the Max value of the measured within-device-

fluctuation/random telegraph noise (WDF/RTN). While Channel 2 is used to capture I-V 

measurement when it is triggered.               Figure 3.18 presents the waveform of Channel 

3 and Channel 4. 

Workstation
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Power 

Supply

Device 
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              Figure 3.18  Trigger mechanism on Channel 2 and Channel 3 of oscilloscope. 

 

Figure 3.19 shows the steps involved during the measurement. The test starts from 

measuring spot-IV, from gate voltage of -0.45 V to -1.05 V with 25 mV interval. At each 

of the Vg intervals, +1 V is applied for 40 s to discharge all the traps if there are traps that 

have been charged. 

 

Figure 3.19 Steps involved in measurement. 

 

Triggered I-V 

Trigger Line 
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Figure 3.20 Flowchart of the process 
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Figure 3.21 Fresh IV plots from a device under test with Vg from +0.45 V to +1.05 V with 

25 mV between the each Vg. 

  

After that, the devices under test are subjected to NBTI stress at 1.05 V for 100 s. Then, 

measurement is started with the first level of Vg = 1.0 V. Gate voltage is applied for 40 s 

and then the raw WDF signal is captured for 800 ms using oscilloscope. Subsequently, 

the Max (maximum value of Vd) and Min (minimum value of Vd) measured by the 

oscilloscope are captured for 100 s.  Figure 3.22 presents the raw WDF signal and the 

max and min values measured during the time window (Tw) of 100 s time period. The 

reasons for only capturing Max and Min is to control the size of each data file and to 

reduce the time for saving each item of the raw signal data on the hard-disk.  
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Figure 3.22 Raw WDF signal captured as each level of DMP 

 

When the measurement of max and min comes to the end at 100 s, subsequently the Max 

value will be used as our trigger level as shown in Figure 3.23 . During this stage, IV will 

be triggered and captured when the WDF signal reaches the set trigger value. The average 

IV from 100 repeated measurements will be saved in the computer and the test procedure 

will move to the next Vg value of 0.95 V. These procedures will be repeated until Vg 

reaches 0.55 V or the lowest Vg value for the oscilloscope able to trigger Max set value. 
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Figure 3.23  Triggering level after raw WDF (a) shows correct trigger level setting while (b) 

show trigger levels were far from the Max value. 

 

To check that our trigger setting is triggered approximately at the Max level detected at 

the WDF-signal, we measure each of the trigger-levels set by the program. Figure 3.24 

presents the triggering method used and the accuracy comparison between these two 

triggering methods, using sampling rates of 10 MSa/s (Figure 3.24(a)) and 100 MSa/s 

Figure 3.24(b)). The results show that 100 MSa/s gives better accuracy and is faster to 

meet trigger conditions compared to 10 MSa/s sampling rate. Table 3.2 summarizes 
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settings of the oscilloscope and type of data measured during each step of the 

measurement. 

 

Figure 3.24 Trigger point selected at each Vg level. First point is maximum value from 

WDF/RTN signal and subsequent points is trigger level set. (a) Sampling rate = 10 MSa/s 

and (b) 100 MSa/s. 10 seconds interval is because the time allocated for the trigger settings 

comply with pre-set condition. 
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Table 3.2  Summary of the settings and type of data captured during the test. 

Step Sampling Rate Channel Data Captured 

Fresh-IV 100 MSa/s Ch1 & Ch. 3 I-V 

Charging 100 MSa/s Ch1 & Ch. 3 I-V 

DMP 100 MSa/s Ch1 & Ch. 3 I-V 

WDF/RTN 1 MSa/s Ch.1, Ch. 3 & Ch.4 Raw Signal 

UE-Trig 100 MSa/s Ch.1, Ch. 3 & Ch.4 I-V 

 

In this measurement method, fresh Id value and Vg value at each of the steps are measured 

at the flat region during the Fresh-IV measurement as illustrated in Figure 3.25. From the 

figure, each Id0 and Vg at each Vg-step is translated in one fresh I-V that will be used as 

our Id0. In this way, we recorded the Id0 at true Vg. 
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Figure 3.25 Id0 measurement at true Vg pre-set at pulse generator (a) shows gate voltage 

signal and ‘red box’ is where value of true Vg is measured and (b) shows drain current signal 

and ‘red box’ is where value of Id0 is measured. Inset is Vg signal (in (a)) and Id0 signal (in 

(b)). 

 

One of the ways to improve accuracy of the measurement is by making sure that the drain 

current, Id, during the UE-trigger is compared with the reference Id0 at the same Vg. In 

case the Id0 is not available at the Vg=UE-trigger, we use interpolation to obtain it. To 
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ensure the accuracy of the interpolated Id0, the reference Id0-Vg must have a sufficient 

number of points. For a pulse edge time of 3 µs, a 10 M/sec sampling rate gives 30 points. 

Figure 3.26 shows that this is inadequate. When a 100 M/sec sampling rate was used, 

there are 300 points, giving an acceptable accuracy. 

 

 

Figure 3.26 Comparison of the fresh IV with IV at discharge. 

 

3.8 Statistical Methods 

3.8.1 Standard Deviation  

 

To study device-to-device variations of nano-scaled devices, statistical properties of a 

device’s parameters such as drain current degradation need to be measured. The important 
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statistical properties for a parameter ‘X’ include its ‘mean (μ)’ and ‘standard deviation 

(σ)’. ‘μ’ is defined as the arithmetic average of the population (equation 3.9) and ‘σ’ is 

defined as the root-mean-square (RMS) deviation of the values from the mean (equation 

3.10). A low standard deviation indicates that the data points tend to be close to the mean, 

whilst a high standard deviation indicates that the data points are spread out over a large 

range of values.   

 

                                       𝜇(𝑋) =
∑ 𝑋𝑖

𝑁

𝑖=1

𝑁
                                                                    (3.15) 

 

                                       𝜎(𝑋) = √∑ (𝑋1− 𝜇(𝑋))2𝑁
𝑖=1

𝑁
                                                     (3.16) 

 

In this application, X can be an electric parameter such as Vth, Ids, ΔIds/Ids0, ΔVth, etc. N 

is the number of tested samples. In chapter 6, the mean and sigma value against NBTI 

stress time will be investigated.  

 

3.9 Conclusions 

 

In this chapter, the principles of various techniques for characterising the gate dielectrics 

in MOS devices are described and corresponding working principles are briefly reviewed. 

The different methods for extracting the threshold voltage have been demonstrated. The 

C-V, the OTF technique, and the pulse I-V measurement system have been presented and 
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the mechanism behind the measurements has been discussed. In addition, some 

techniques specifically for deeply scaled devices is also discussed, such as RTN. The 

accuracy of the pulse I-V measurement is calibrated. 
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4 Hot Carrier Aging and its Variation under 

Use-bias on Large and Small Devices 

 

 

4.1 Introduction     

Variability in the characteristics of a device is the major obstacle to the down-scaling of 

the supply voltage of current and future generations of CMOS technologies [63], [71], 

[90], [92], [120]–[123]. This issue may exacerbate reliability problems. HCA, NBTI and 

RTN introduce additional sources on a device’s variability. 

 

HCA is a well-known detrimental phenomenon where it impacts the performance of MOS 

transistors, the fundamental building block of modern microelectronics.  According to the 

Lucky Electron Model proposed by Hu [8], an electron gains enough energy without 

suffering an energy stripping collision in the channel is emitted into oxide by overcoming 

the local energy barrier at the Si-SiO2 interface.  

 

Recent results in Figure 4.1 show that HCA can be a severe factor for current and future 

CMOS nodes [62], [63], [124][120]. Figure 4.1(a) shows HCA gives lower device 

lifetime compared to BTIs and Figure 4.1(b) shows higher degradation for a device under 

HCA.  
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Figure 4.1 A comparison of Hot Carrier Aging (HCA) with BTIs reported by early works. 

(a) and (b) are re-plots of data from refs. [63] and [125], respectively.  

 

HCA can cause damage due to:  

(i) Channel length down-scaling enhances HCA as shown in Figure 4.2(a). With 

the reduced gate length, effect of HCA is increased. For some sub-30 nm 

processes, HCA degradation can be higher than BTI as in Figure 4.1(b) and 

Figure 4.2(b). 

(ii) HCA can have larger time exponents (Figure 4.1(b) and Figure 4.2(b)) [120], 

[124], [126]–[128] and its importance increases with aging.  

(iii) NBTI recovery [129] is higher than HCA as shown in Figure 4.2(c). This 

makes HCA more important for AC operation, where NBTI recovers.  

(iv) Conventionally, the worst HCA occurs during switch near Vg~Vd/2 and duty 

factor (DF) is typically low (1~2%) [129][130]. For modern CMOS, however, 

more damage occurs under Vg=Vd (Figure 4.3) [120], [126], [128] and DF can 

be high. For example, during ‘read 0’ in an SRAM cell, one access nMOSFET. 
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 can suffer HCA for ~50% of time (Figure 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 (a) Downscaling L increases HCA. The stress was at 125 oC for 1000 sec. (b) 

comparison of HCA and BTIs for L=27 nm used in this work. Stresses were under the same 

|Vg|, with Vd=Vg for HCA and Vd=0 for PBTI and NBTI.  (c) A comparison of their recovery 

under Vg=Vd=0.  
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Figure 4.3 HCA under Vg=Vd is more than HCA under Vg=Vd/2 for L=27 nm. 

 

Figure 4.4  The access nMOS in a SRAM during read-0 has a HCA duty factor of ~50%. 

When transistor flips from OFF to ON, or vice versa, HCA happens. 

 

Static random access memory (SRAM) is the majority of transistor in modern 

microprocessor. The most dominating wearout mechanism that resulted in increase of 

threshold voltage of a transistor is BTI and HCA. HCA would affect transistor when it 
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flips from being OFF to ON or vice versa. While NBTI affects pMOS transistor when 

gate is applied LOW and PBTI affects nMOS when the gate is applied HIGH [131]. This 

make HCA is more important to study in SRAM.  

 

The renewed HCA-threat has motivated its re-visit [63], [64], [124]–[128][132]. It is 

that reported aging mechanisms and time exponent, ‘n’ (Eq. 4.3), are different under 

different stress biases [64], [125], [128]. ‘n’ can also vary with time (e.g Figure 4.5) [63], 

[64], [124], [127], challenging the lifetime prediction based on extrapolation that requires 

a constant ‘n’ [130], [133], [134]. The recent works have focused on bias-accelerated 

HCA [63], [64], [124]–[128][132] and there is little data on HCA under use-bias. For test 

engineers, two pressing questions are: can lifetime under use-bias still be predicted by the 

established JEDEC method based on extrapolation and how to evaluate ‘n’ correctly for 

HCA?  

 

Figure 4.5 Variation of time exponent, ‘n’ (the line slope), with HCA time. A re-plot of data 

from ref. [63]. 

 

I
dsat 

% 



 

Chapter 4: Hot Carrier Aging and its Variation under Use-bias on Large and Small Devices                                                                            

   71 

 

 

 

 

A key advance of this chapter is answering them and finding the pitfalls for extracting 

‘n’. For the first time, the capability of predicting HCA under use-bias is experimentally 

verified (Figure 4.6). 

 

Figure 4.6  Verification of predicting HCA under use-Vdd. The model was extracted from 

accelerated VSS test data given in (a) with Vg=Vd rising from 1.3 to 1.7 V (For details, see 

Figure 4.14). The symbols in (b)-(e) were measured from 4 devices and not used for fitting. 

The lines in (b)-(e) are the predicted HCA. The lines in (f) and (g) were obtained from Figure 

4.10 by converting ΔVth to ΔId/Id(Vg=Vd=0.9 V). 

 

4.2 Devices and Experiments 

 

Devices used in this investigation are supplied by CSR plc. It was fabricated using 28 nm 

high-k metal gate technology at Taiwan Semiconductor Manufacturing Company 

(TSMC). The 12-inch wafer consists of nMOS and pMOS devices with various gate 
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length and width. For this investigation, the devices used have gate size of 900 nm (W) x 

27 nm (L) and 90 nm (W) x 27 nm (L). A device with a gate width of 900  nm is considered 

a large device while a device with a gate width of 97 nm is considered a small device.  

Figures 4.7(a) and (b) show the CSR wafer and its use-Vdd is 0.9 V. Vd=Vg is chosen for 

the hot carrier stress, as Isub/Id has a device-to-device variation (DDV) at stress-0 for nm-

devices as shown in Figure 4.12(a). DDV also does not correlate with that of HCA-

induced ΔId/Id as depicted in Figure 4.12(b).  In this chapter, all tests were done at a 

temperature of 125oC unless stated otherwise. The structure and layout of devices were 

not shown due to confidentiality. 
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Figure 4.7 (a) CSR wafer used in our investigation. The shiny parts are the devices. Devices 

with gate width of 900 nm and 90 nm are selected. (b) Location of device that has been 

tested. 

 

In order to confirm slow measurement (SMU) can be used to measure HCA degradation, 

a device of similar size (900 nm x 27 nm) is stressed with HCA (Vg=Vd=2 V) on nMOS, 

PBTI (Vg = 2 V) on nMOS and NBTI (Vg=-2 V) on pMOS for 1000 s. Then, the recovery 
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of the device is measured. The result in Figure 4.8 showed that after HCA stress, there is 

no significant recovery. For PBTI and NBTI, there is recovery as we expected. Based on 

the results, slow measurement using SMU can be used to measure HCA on a large device. 

 

     

 

Figure 4.8 Recovery of large device after HCA, NBTI and PBTI 
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Figure 4.9 shows the variations of 50 of 27 nm (length) x 90 nm (width) devices before 

stress. It can be seen that the as-fabricated threshold voltage can fluctuate by ~ 100 mV 

between 0.35 and 0.45 V.  

 

          

                

Figure 4.9 (a) I-V curve for 50 DUTs. (b) Variation of Vth0 for 50 DUTs 
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4.3 Prediction of HCA Lifetime on Large Device 

Wide devices with size of 900nm (width) x 27 nm (length) are used in this test. 

 

4.3.1 Select the parameter representing stresses 

Lucky Electron Model in the form of equations (4.1) and (4.2) by C. M. Hu proposed that 

HCA stress can be represented by the ratio of substrate to drain current Isub/Id [8]. Hot 

carriers break the Si-H bond at the interface, as illustrated in Figure 4.10. 

𝐼𝑠𝑢𝑏

𝐼𝑑
= 𝐶1 ∙ exp (−𝜑𝑖 𝑞𝜆𝐸𝑚⁄ )                                         (4.1) 

                                         ∆𝑁𝐷 = 𝐶3 ∙ 𝑡𝑛 ∙ (
𝐼𝑑

𝑊
)𝑛 ∙ (

𝐼𝑠𝑢𝑏

𝐼𝑑
)𝑛∙𝜑𝑖𝑡 𝜑𝑖⁄                                   (4.2) 

                                       

 

                Figure 4.10 A physical model for interface-traps generation [8]. 

 

Figure 4.11(a) shows that, for a wide device of 900 nm x 27 nm, there is a good correlation 

between HCA and Isub/Id, justifying its use for representing the stress. For smaller devices, 

Figure 4.11(b) shows that their average Isub/Id agrees well with the wide device and their 

average HCA also correlates well with the mean Isub/Id. This may indicate that Isub/Id can 
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be used as a parameter for representing HCA stress of small devices, but its problem will 

be shown in the following.                           

           

 

Figure 4.11 Good agreement of Isub/Id for large and small device 

 

Figure 4.12 clearly shows there is a device-to-device variation in the as-fabricated Isub/Id 

for small devices, but there is no correlation between it and the HCA.  Thus, Isub/Id cannot 

be directly used to characterize small device HCI degradation.  
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Figure 4.12 Isub/Id does not represent HCA-stress well for nm-devices, as it has a device-to-

device variation (DDV) at stress=0 (a) and its DDV does not correlate with that of HCA-

induced ΔId/Id. 

 

4.3.2    Select HCA acceleration 

 

Figure 4.13 shows that HCA under the used Vdd=0.9 V is too low for establishing a 

reliable aging kinetics within a practical test time, so that acceleration is needed. HCA 

can be accelerated in two ways: by raising Vd under a constant Vg and by raising both Vg 

and Vd with Vg=Vd. The problem is that the time exponents obtained by these two 

methods is different, as shown in Figure 4.14 and which acceleration method should be 

used.     
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Figure 4.13 HCA is too low to establish kinetics reliably under use-Vdd=0.9 V and 

acceleration (e.g. 1.3 V) is needed. 

 

 

SRAM often is used for qualifying new processes [132], where the access nMOSFETs 

suffer the worst HCA under Vg≈Vd (Figure 4.4). As a result, HCA under use-Vg=Vd must 

be predicted, so that the acceleration should be carried out under Vg=Vd. Figure 4.14(b) 

confirms ‘n’ is bias-independent under Vg=Vd, meeting the requirement for prediction 

from accelerated tests [18].  
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Figure 4.14 (a) The time exponents under Vg=Vd is smaller than under Vg=Vd/2. (b) The time 

exponent is insensitive to stress biases under Vg=Vd 

 

4.3.3 DC versus AC  

 

Unlike NBTI (AC) < NBTI (DC), the AC and DC HCAs agree well, regardless of 

frequency and duty-factor (DF) for the same equivalent stress time, i.e. DF × time as 

shown in Figure 4.15, confirming the frequency-independence [3]. As a result, DC will 

be selected for convenience. 
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Figure 4.15 The AC and DC HCAs agree well when using equivalent stress time, i.e. 

time×Duty Factor (DF). The AC stress conditions are given in the format of 

‘AC_DF_Frequency’ and Vg=Vd=2 V. 

         

4.3.4 Application of VSST technique   

 

BTI is a major source of degradation. Rapid recovery of BTI happens when stress voltage 

is removed. In industrial practice for qualification screening, attention is focused on 

degradation after recovery. BTI degradation can be expressed by a power law against 

time and voltage in equation (4.3) [135]: 

 

                                                 ΔVt = A  Vg
m  tn                                         (4.3) 

where A is a pre-factor, n is the time exponent and m is the voltage exponent. Lifetime 

under nominal operation can be predicted if these parameters are known. Conventionally, 

they are extracted from accelerated tests under constant voltage stress (CVS). 

ΔV
th 

(V) 
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Characterization of HCA degradation is also done by the constant voltage stress (CVS) 

method [JEDEC 2011]. However, the disadvantages of the CVS method are that it 

requires multiple identical devices and will take days to complete a single set of tests.  

 

Voltage Step Stress Technique (VSST) was introduced by Z. Ji et al [133]. This method 

was developed to predict the lifetime of a device under nominal operation. It is initially 

developed for NBTI. The technique improves the CVS method by significantly 

shortening the time taken to complete a test and reducing numbers of devices needed to 

only one device.  

 

Stressing the device at higher stress gate voltage, Vgst for the same time, ∆T, is more 

effective to generate defects compared with only stress at V1 in Figure 4.16. For stress 

time of ∆T under high Vgst, degradation can be equivalent to that under a V1 for an 

effective longer stress time, ∆Teff [133], [136]. ∆Teff can be evaluated by equations (4.4) 

and (4.5),  

∆𝑇𝑒𝑓𝑓 = ∆𝑇 ∙ ( 
𝑉2

𝑣1
) m/n

                                                       (4.4) 

 

A∙ ∆𝑇𝑛 ∙ 𝑉2
𝑚 =  𝐴 ∙ ∆𝑇𝑒𝑓𝑓

𝑛 ∙ (𝑉1)𝑚    (V2>V1)                                            (4.5) 

For an L × W=27 nm × 900 nm (large device), stress under each Vg=Vd lasted for T=1ks 

and biases then stepped up as in Figure 4.16, lifting HCA up from the power law as shown 

in Figure 4.16(c).  
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Figure 4.16 Voltage-Step-Stress (VSS) technique for HCA. (a) One device was stressed for 

a time T and the stress Vg=Vd was then stepped up. ΔVth is plotted against linear (b) and log 

(c) stress time. The stress time under high bias is converted to an equivalent longer time at 

low bias by fitting the voltage exponent ‘m’ (inset of (c)) through Eqs. 4.3-4.5. The dashed 

line has n=0.29 and m=9. 
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Based on equations (4.3)-(4.4), HCA under a high Vg=Vd was converted into a longer 

equivalent stress time under a low Vg=Vd as shown in Fig. 4.16(c) and ΔVth follows a 

power law well beyond the 10% HCA lifetime criterion and allowing reliable extraction 

of ‘n’ and ‘m’. 

 

A typical result of a device measured with VSST is shown in Figure 4.16(c). The device 

is stressed with V1 at 1.3 V (Vg=Vd=1.3 V) for 1,000 s and continuously stressed with V2, 

V3…VN of 1.4 V, 1.5 V, 1.6 V and 1.7 V. The time period for each voltage is 1,000 s. 

During the HCA stresses, IV measurements are taken periodically.   

                  

The value of voltage exponent, m, is fitted by converting the VSS data in Figure 4.16(c) 

to a power law with the least square error, as shown by the inset of Figure 4.16(c). 

 

4.3.5 Selecting parameter for extracting ‘n’ 

 

HCA was widely monitored by the shift in forward saturation current ΔId/Id_F, although 

reverse ΔId/Id_R and ΔVth(Vd≤0.1 V) also were used [50], [63], [64], [71], [124]–[128]. 

The issue is ‘n’ for ΔId/Id_F is larger than ‘n’ for ΔId/Id_R, leading to their incorrect cross-

over and errors in prediction at 10 years (Figure 4.17), highlighting the importance of ‘n’-

accuracy. Under Vg=Vd, ΔId/Id_F does not sense the HCA-defects above the space charge 

region (Figure 4.17), resulting in an apparent larger ‘n’, as simulated by subtracting a 

constant from real power law (inset of Figure 4.17). The ‘n’ extracted from forward ΔId/Id 
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is erroneous, therefore. To capture all defects, ΔVth(Vd=0.1V) should be used for 

extracting ‘n’, as ΔVth_F=ΔVth_R  as shown in Figure 4.18. Once ΔVth is predicted, 

ΔId/Id_F and ΔId/Id_R can be evaluated from their measured relation with ΔVth  as referred 

to in Figure 4.19. 

 

Figure 4.17 Although test data (o and □) show (ΔId/Id_F)<(ΔId/Id_R), higher ‘n’ for ΔId/Id_F 

leads to incorrect (ΔId/Id_F)>(ΔId/Id_R) when extrapolating. ΔId/Id_F does not sense the 

defects above space charges. The ‘Δ’ in inset is calculated from (At0.29-Constant), which fits 

well with Bt0.34 (black line). Subtracting a constant from a real power law can give an 

‘apparent’ higher ‘n’.  Id was measured under Vg=Vd=0.9 V. 
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Figure 4.18 The forward and reverse ΔVth measured under Vd=0.1 V agrees well.    

 

Figure 4.19 Relation of HCA-induced ΔVth under Vd=0.1 V with ΔId/Id under Vg=Vd=0.9 V. 

The open symbols are the mean of 50 small devices (90 × 27nm) and the filled symbols are 

the mean of 50 large devices (900 nm×27 nm). 
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4.3.6 Prediction 

  

The data obtained from the experiment in Figure 4.16 is used to verify our prediction 

based on the VSS technique. It agrees well with the test data in Figure 4.6(b)-(g). Both 

figures show the highest ΔVth is ~2-orders above ΔVth under 0.9 V (Figure 4.6(b) and this 

verify its prediction capability. Test data from Figure 4.6(b)-(g) were not used for fitting 

and the model was extracted only from Figure 4.6(a). The extracted model from Eq. 4.3 

can be used for evaluating HCA under any bias and time. It can also be used for predicting 

lifetime and operation Vdd. The device lifetime is the time for ΔVth reaching 20-50 mV 

[137], [138], under operation voltage the required lifetime is 10 years [18]. Figure 4.20 

shows evaluation of lifetime for forward and reverse mode. Based on the result plotted 

for lifetime in Figure 4.20, it can be concluded to achieve 10 years lifetime, the operation 

voltages are 0.9V for the reverse mode and 1.0V for the forward mode. 

 

                                       

Figure 4.20 Evaluation of lifetime vs. Vdd based on the model extracted from VSS technique 

as in Figure 4.16. 
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4.4  Prediction of HCA for small devices 

4.4.1 Characterizing HCA in nm-width devices 

 

A Scaling device provides a handful of advantages but it also introduces a few reliability 

problems such as random telegraph noise (RTN). In scaled devices also we can observe 

large device-to-device variation as shown in Figure 4.9. Unlike L×W=27 × 900 nm 

devices, 27 × 90 nm devices suffer from RTN-like within-a-device fluctuation (WDF) 

and large DDV as shown in Figure 4.21.  

 

Figure 4.21   HCA of two W=90 nm devices shows large DDV. WDF, UE, and LE is ‘within-

a-device-fluctuation’, the upper- and the lower- envelope. 

 

To extract HCA kinetics, one has to use the smooth mean of 50 devices, but ‘n’ depends 

on how data is taken (Figure 4.22(a)). After a stress, ΔVth fluctuates and one can use its 

up-envelope (UE), lower-envelope (LE) [134], or average over a period of time, e.g. 

~10ms (Figure 4.22(b)), as a typical quasi-DC Source-Measure-Unit (SMU) does. The 
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‘n’ from UE and DC (inset of Figure 4.22(a)) is smaller than the ‘n=0.29’ from W=900 

nm (Figure 4.16(c), but the ‘n’ from LE agrees well with it. The smaller ‘n’ for UE 

incorrectly takes it below LE when extrapolating (see ‘cross-over’, Figure 4.22(a)).  

 

Figure 4.22  (a) HCA kinetics for the mean of 50 of W=90 nm devices. UE, DC, and LE 

have different ‘n’ (inset). Incorrect inclusion of an as-grown component, ‘C’, gives an 

apparent lower ‘n’ at short time. (b) The definition of UE, DC, and LE. DC is the average 

over 10ms.   
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To explain the whether UE or LE should be used  in extracting ‘n’, Figure 4.23(a) shows 

that LE increases with HCA time, but the WDF=(UE-LE) does not increase with aging. 

This explain that LE is caused by HCA, while WDF is not. WDF must originate from as-

grown defects and should be excluded from aging kinetics, so that LE must be used for 

extracting ‘n’. Figure 4.23(b) supports earlier statement by showing that the WDF mean 

for 40 devices is constant over HCA time.   

 

Figure 4.23 (a) For L×W=27 nm × 90 nm, LE increases with HCA, but WDF does not. (b) 

The WDF_mean of 50 devices and its sigma do not increase with stresses.  
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To further support that LE and WDF are originates from different sources, Figure 4.24(a) 

shows LE_F and LE_R correlates, but WDF_F and WDF_R does not as shown in Figure 

4.24(b), supporting their different origins. 

 

Figure 4.24 (a) LE_F correlates with LE_R. (b) WDF_F does not correlate with WDF_R.   

 

Since HCA-recovery is insignificant as shown in Figure 4.2(c), one may think it can be 

measured by a quasi-DC SMU [120][122]. This, however, gives an erroneous lower ‘n’ 

(Figure 4.22(a)) by including some as-grown WDF. Adding a constant to a power law 
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leads to an apparent lower ‘n’ at short time and a variation of ‘n’ with time (inset, Figure 

4.22(a)) [130].   

 

4.4.2 Statistic HCA 

 

50 small devices were tested and Figure 4.25 shows variation of ∆Id/Id0 at different stress 

times.

 

Figure 4.25 Normal probability plot for ∆Id/Id0 for different stress times 

 

HCA under different HCI stress voltage also showed large variations, as shown in Figure 

4.26. Based on these results, it can be concluded that HCA induces a time-dependent 

device-to-device variation.  



 

Chapter 4: Hot Carrier Aging and its Variation under Use-bias on Large and Small Devices                                                                            

   93 

 

 

 

 

 

              Figure 4.26   Different Vg=Vd  of 1,000s stress time. 

 

Defect-Centric distribution, developed to explain variability in BTI, has been reported 

to be able to describe HCA degradation in nMOSFETs [139][140][141]. The Defect-

Centric distribution is based on two assumptions: the threshold voltage, Vth produced by 

a single charged trap has an exponential distribution (with mean value η), while the total 

number of charged traps per device is Poisson-distributed [142]. The basic equations 

describing the Defect-Centric distribution are:  

 

𝐹N(∆𝑉𝑡ℎ, 𝜂) = 𝑎0 + ∑
𝑒−𝑁 𝑁𝑘

𝑘!
 𝐹𝑘 (∆𝑉𝑡ℎ, 𝜂)

∞

𝑘=0
                                             (4.6) 

 

𝑁 =
2𝜇2

𝜎2          𝜂 =
𝜎2

2𝜇                                                                         (4.7) 
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where 𝐹N is the cumulative Defect-Centric distribution, η is the mean value of ∆Vth 

produced by a single charge (exponential distribution), N is the dimensionless mean value 

of the total number of charged traps per device (Poisson distribution), ∆𝑉𝑡ℎ, 𝜂 is the 

expected value of 𝐹N and 𝐹𝑘 (∆𝑉𝑡ℎ, 𝜂) is cumulative distribution function [19], [139].  

 

The DDV of LE at different times (Figure 4.27(a) and Figure 4.27(b)) and voltage (Figure 

4.27(c) and Figure 4.27(d)) follows the defect-centric distribution (Eqs.4.6 and 4.7) well 

[139]. LE_mean of 50 W=90 nm agrees well with ΔVth of one W=900 nm (Figure 4.28(a)) 

and can be predicted by the same method (Figure 4.6 and Figure 4.16). After knowing 

LE_mean, the standard deviation, σ, can be evaluated from its power law relation with 

the mean as shown in Figure 4.28(b).  
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Figure 4.27 Statistics of LE DDV after different stress time (a & b) and voltage (c & d). The 

lines are fitted with the defect-centric distribution WDF (Eqs. 4.6 & 4.7).   
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Figure 4.28 (a) The mean of 50 90×27nm agrees well with one 900nm ×27 nm for VSS 

stresses. (b) Sigma versus mean. The fitted exponent is 0.55, agreeing well with Eq. 4.7. 

 

 

4.4.3 Impact on use-Vdd 

 

To have a yield corresponding to i×σ, ΔId/Id=10% is required at i×σ, resulting in smaller 

mean value (Figure 4.29(a)) and in turn lower use-Vdd (Figure 4.29(b)) for higher i. For a 

yield of 3×σ (99.7%), HCA-only and HCA+WDF reduces Vdd from its zero-spread value 

by 75 mV and 100 mV, respectively.  
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Figure 4.29 Impact of DDV on use-Vdd. When ΔId/Id reaches 10% at i×σ, the mean ΔId/Id, µ, 

of defect-centric distributions reduces for higher i (a). This in turn requires a lower use-Vdd 

(b). For the reverse: ‘■’--- HCA only and ‘●’ --- HCA and RTN/WDF.  

 

4.5 Conclusions 

 

As CMOS scales down, HCA scales up. For the first time, this chapter experimentally 

verifies that the HCA under use-Vdd can be predicted by the power law extracted from 

the VSST-method, provided that correct acceleration and ‘n’-evaluation are made. It 

points out the forward saturation ΔId/Id and HCA measured by SMU gives erroneous ‘n’ 

for nm-width devices. The model requires only 3 fitting parameters (Eq.4.3), making it 

readily implementable.
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5 Impact of Hot Carrier Aging on the 

Random Telegraph Noise and Within-

Device-Fluctuation 

              

5.1 Introduction 

 

One of the most popular topics on small devices is Random Telegraph Noise (RTN). RTN 

behaviour was first studied by Kandiah and co-workers in 1978 [143]. As a device’s area 

is scaled down, the impact of a single charge in the gate dielectric scales up [19], [87], 

[134], [144]–[146]. Only a handful of defects exist in small area devices and the emission 

and capture of a single hole and electron will cause a discrete measurable step-like change 

in source-drain current.  For current and future CMOS nodes, charging and discharging a 

single trap induces a random telegraph noise in Id under a given Vg. When there are more 

than a few (e.g. 4) traps, it becomes difficult to separate them and the complex RTN 

signals appear in the form of within-a-device-fluctuation (WDF) [134], [147]. This may 

also exacerbate by white and 1 𝑓⁄ -noises present in the output signal [148]. 

 

RTN/WDF is usually observed at time-zero, i.e. in fresh devices[134][106]. It is 

becoming a major challenge for low power circuits.  The low (Vg-Vth) used in low power 

circuits has less headroom to tolerate a given Vth shift, ΔVth, since ΔVth/(Vg-Vth) is higher 

and the impact of ΔVth on the driving current is relatively stronger. For instance, it has 
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been reported that a single charge can cause a Vth shift of ~30 mV [19], while a shift of 

only several mV can cause errors in circuits like successive approximation analogue-to-

digital converters. 

 

In addition to RTN/WDF, aging also occurs through either bias temperature instabilities 

[19][149]–[151] or hot carrier stresses [63], [90]. Unlike RTN/WDF, aging causes a 

gradual shift of device parameters in one direction. The interaction between RTN/WDF 

and aging is not fully understood and is of importance to optimize circuit performance. It 

has been reported that aging can either increase RTN/WDF or has little contribution to it 

[106].  

 

This chapter is dedicated to investigating the relation between the amplitude of 

RTN/WDF and hot carrier aging (HCA) for nMOSFETs. The outputs show that the 

impact of HCA on devices of average RTN/WDF is typically modest, but can be 

substantial on devices of abnormally high RTN/WDF. The mechanism will be explored. 

 

5.2 Device and Experiments 

 

nMOSFETs were used in this experiment.  Devices were fabricated by a 45 nm HK/MG 

process, having a typical channel length/width of 50/90 nm and an equivalent oxide 

thickness (EoT) of 1.45 nm. To ensure that the findings are not process specific, tests 

were also carried out on nMOSFETs fabricated by a 22 nm process. These devices were 
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fabricated with a typical channel length of 90 nm and channel width of 70 nm and an EoT 

of 1 nm.   

 

The implementation of the RTN/WDF measurement is relatively easy. A Vg is applied 

generally above the threshold voltage and Vd is kept at a constant value of 10-200mV 

[87]. In this chapter, we run the test by capturing Id at Vg=0.85~1.0 V and Vd=0.1 V. This 

Vg are selected to be near to the operational gate voltage, Vgop, of the device. The time 

window for the measurement is set to 60 s. This is long enough to capture the typical 

RTN/WDF in devices. After measuring RTN on fresh a device, Hot Carrier Aging (HCA) 

was applied to the device for 1,000s under Vg =Vd = 2.2 V. After that, we measured RTN 

in Id at Vg = 0.85~1.0V and Vd = 0.1V again, to compare it with that in the fresh device.  

     

 

Figure 5.1  A comparison of RTN/WDF in a fresh device with that after stressing for 10 s 

and 1000 s (a) at constant Vg = 0.85 V and (b) at constant Vg = 0.9 V 

(a) (b) 
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The RTN/WDF signals before and after stress are compared in Figure 5.1. HCA stresses 

on the device can change the amplitude of RTN/WDF and this will be investigated in this 

chapter. 

 

For a 45 nm process, measurements of RTN/WDF were carried out on 50 devices to 

demonstrate the device-to-device variation in Figure 5.2. Based on the measurement, Vg 

= 1.0 V is selected because more devices have abnormally large RTN/WDF at this Vg. 

 

 

Figure 5.2 Amplitude of RTN/WDF at two Vg level; at Vg = 1.0 V (symbol ■) and at Vg = 

0.9 V (symbol ●). (45 nm process) 

 

Tests start by measuring RTN/WDF of Id under Vg=1.0 V and Vd=0.1 V, and typical 

results are given in Figures 5.3(a) and 5.3(b). It can be seen that RTN has two clear states 
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due to trapping and de-trapping of a carrier at a single trap in the gate dielectric. We have 

tested 50 devices from 45nm process and 24 devices from 22nm process to measure 

amplitude of RTN/WDF in each of the devices.  Figure 5.4 shows the device-to-device 

variation of RTN/WDF amplitude for 50 devices (45nm) and 24 devices (22nm). We can 

see that amplitude of RTN/WDF of the devices from 45nm process varies from as high 

as 558nA to as low as 88nA. For 22nm technology, the amplitude of RTN/WDF changes 

from a minimum of 96 nA to a maximum of 478 nA.  

 

The ∆Id and Amplitude in the figures are calculated as below:  

           ΔId = Id (measured) – Id (minimum)                                                        (5.1) 

         Amplitude = Id (maximum) – Id (minimum)                                              (5.2) 
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Figure 5.3 Typical fresh devices with (a) and without (b) clear RTN.  
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Figure 5.4 The device-to-device variation of RTN/WDF amplitude.  The devices were 

fabricated by (a) 45 nm and (b) 22 nm processes. The dashed line is the average RTN/WDF 

for 50 devices (45nm) and 24 devices (22nm). In (a), the ‘A1’ and ‘A2’ mark two devices of 

RTN/WDF close to the average and ‘O1’ and ‘O2’ mark two outliers. In (b), ‘O3’ and ‘O4’ 

mark two outliers. The results for these six devices are given as representatives and their 

fresh RTN/WDF are marked out by the red ‘●’. 

 

Two types of devices were selected for both 45 nm process and 22 nm process: one with 

average and one with abnormally high RTN/WDF. Table 5.1 shows details of the samples 

selected. 
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      Table 5.1 Details of the sample of devices used 

DEVICE PROCESS AMPLITUDE 

(RTN/WDF) 

SIZE (RTN/WDF) 

O1 45 nm 501 nA Abnormal 

O2 45 nm 558 nA Abnormal 

A1 45 nm 219 nA Average 

A2 45 nm 222 nA Average 

O3 22 nm 478 nA Abnormal 

O4 22 nm 388 nA Abnormal 

 

 

After HCA was applied under Vg=Vd=2.2 V for 1 ks, RTN/WDF was measured at the 

same Id as that for a fresh device. This is to ensure that the Si surface potential is kept 

approximately the same. After the HCA, some of the devices then were selected to 

undergo the annealing process in forming gas (10% H2) for 45 min at 400 oC.  

 

Hydrogen or forming gas annealing is often used at the end of the CMOS process to 

passivate the defects [24]. In our case, annealing is used to return the HCA stressed device 

to fresh condition.  It is assumed that the defect returned to its original precursor status 

after annealing [23].  
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5.3 Results and Discussion 

 

For a selected device of average RTN/WDF, Figures 5.5(a)-(d) show that HCA can either 

increase or decrease RTN/WDF modestly and the typical variation range is ±25%, which 

is smaller than the 6× device-to-device variation in Figure 5.4(a). This agrees with the 

early works [90], [106] and the verdict that RTN/WDF is dominated by as-grown defects 

[19][152]. One may argue that fresh devices shown in Figure 5.5(a) and Fig 5.5(c) do not 

represent RTN-like behaviour. This is because there are multiple (typically >3) traps and 

they will be referred to as “within a device fluctuation” (WDF). It is difficult to determine 

numbers of RTN-levels and the capture-emission times for each trap from such a complex 

signal. This Chapter focuses on the total RTN/WDF total amplitude, as defined in Fig. 

5.4(b). Figure 5.6 shows the Id versus Vg for the device ‘A2’ before and after HCA. HCA 

causes a clear reduction of Id through aging. 
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Figure 5.5 Typical impact of HCA on the devices of RTN/WDF close to average, marked as 

‘A1’ and ‘A2’ in Figure 5.4(a). RTN/WDF can either increase by 24% (a)&(b) or decrease 

(c)&(d) after HCA. 
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Figure 5.6  I-V measurement for device marked ‘A2’ before and after HCA stress. 

 

Figure 5.7  Typical impact of HCA on an outlier, marked as ‘O1’ in Figure 5.4(a). (a) is fresh 

and RTN/WDF reduces by 66% after HCA (b). (c) shows that RTN/WDF amplitude returns 

to its fresh level after an anneal at 400 oC.  
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The HCA-defects can affect RTN/WDF in two possible ways. On one hand, they may 

directly contribute to RTN/WDF by their charging/discharging. On the other hand, even 

if their charges do not alternate, they still can affect RTN/WDF by changing the current 

distribution within a device [153]. For the same as-grown defects, their effects on 

RTN/WDF will be different when the current density beneath it changes [19], [153]. If 

the HCA defects contribute directly to RTN/WDF by alternating their 

charging/discharging, an increase of defects by HCA should lead to a higher RTN/WDF. 

This is, however, against the reduction in Figure 5.5(c) and (d). As a result, it appears that 

HCA affects RTN/WDF through changing the current distribution, which will be further 

explored. This also agrees with early reports [154] that HCA defects recover little, so that 

they will not contribute to RTN/WDF by not discharging. 

 

 

Figure 5.8 The tests were similar to those in Figure 5.7, but the device ‘O4’ was fabricated 

by a 22 nm processes and stressed under Vg=Vd=2 V for 1 ks. 
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Figure 5.9   A schematic illustration of HCA-induced de-sensitization of a critical trap. (a) 

shows that a critical trap is at the location where the current density peaks, causing abnormal 

high RTN/WDF before HCA. (b) shows how a change of current distribution after HCA can 

reduce the current density under this trap, de-sensitizing it. This diagram is used to highlight 

the possible change of current distribution before and after HCA. It does not mean that 

current path is always strongly localized.   

 

The impact of HCA on RTN/WDF through changing the current distribution will be 

further explored. For a device of abnormally high RTN/WDF, Figure 5.7(a) and (b) 

shows, for the first time, that RTN/WDF actually can be substantially (66%) reduced post 

(b) 

(a) 
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HCA. After the reduction, the RTN/WDF is around the average level shown in Figure 

5.4(a).  

 

To confirm that this reduction is not process-specific, Figure 5.8(a) and (b) show a 

substantial reduction again for a device of abnormally high RTN/WDF, fabricated by a 

22 nm process. There are two possible explanations for the HCA-induced RTN/WDF 

reduction: a loss of defects [155][137] or a change of current distribution [153]. 

  

It has been reported that RTN/WDF in pMOSFETs can be unstable during measurements 

and some defects can disappear and then reappear [144]. The reduction in Figure 5.7(b), 

however, is a different phenomenon, since the RTN/WDF in nMOSFETs observed here 

is stable and does not disappear both before and after HCA during measurements.  

 

The impact of a charged defect on the current will depend on its relative position against 

the current flow. On one hand, if there is a strong current flow directly beneath a charged 

defect, the impact of this defect on the current will be large. On the other hand, if there is 

little current flowing below a charged defect, its impact on the current will be weak. 
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Figure 5.10  The impact of HCA on a device of outlier RTN/WDF, marked as ‘O2’ in Figure 

5.4(a). (a) & (b) shows that RTN/WDF reduces by 65% after HCA. (c) shows that RTN/WDF 

remains low after an anneal at 400 oC, supporting defect loss.  

 

           

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

Δ
I d

(u
A

)

Vg (V)

Fresh

After HCA

(a)

0 5 10 15 20 25 30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 5 10 15 20 25 300 5 10 15 20 25 30


Id

 (
A

)

Measure Time (s)

 Fresh

Measure Time (s)

 After Anneal

Measure Time (s)

 After HCA

65%

(a) (b) (c) 

 

ΔI
d
 (µA) 



Chapter 5: Impact of Hot Carrier Aging on the Random Telegraph Noise and Within-Device-

Fluctuation                         113 

 

 

 

 

           

Figure 5.11   I-V measurement for device marked as ‘O2’ for (a) Fresh measurement 

compared to after HCA (Vg=Vd=2.2 V) and (b) comparison between fresh measurement and 

after annealing process. 

 

 

Figure 5.12  The tests were similar to that in Figure 5.10 but the device ‘O3’ was fabricated 

by a 22 nm processes. 
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The abnormally high RTN/WDF can originate from the presence of a critical trap: the 

current density peaks just beneath it, so that its charging/discharging has an abnormally 

large impact on Id, as illustrated in Figure 5.9(a) [153].Large number of traps can 

contribute to multi-level of RTN states [156]. Figure 5.9(b) shows that HCA can modify 

the current distribution, reducing the density beneath this trap and de-sensitizing Id to it. 

For a device of average RTN/WDF, the current distribution can be less localized and there 

is no critical trap where the current density peaks. Since the impact of each trap in these 

devices is close to average, current density beneath it changes typically modestly. On one 

hand, if the density increases, RTN/WDF will rise. On the other hand, if the density 

reduces, RTN/WDF will decrease. As a result, the HCA has a relatively modest impact 

on the RTN/WDF in both directions, as shown in Fig. 5.5.  

 

To further investigate the origin of the HCA-induced reduction, the devices were annealed 

at 400oC for 45 min in H2 as the ambient gas, which removed the HCA-generated defects 

and restored Id to its fresh level [137], [155], as confirmed in Fig. 5.11. When measured 

again post-anneal, Figure 5.7(c) and 5.8(c) shows that the amplitude of RTN/WDF nearly 

returns to its pre-stress abnormal high level for most devices (~75%). The anneal restores 

the original current distribution and, in turn, the abnormal RTN/WDF. This supports an 

HCA-induced change of current distribution as the origin of abnormal RTN/WDF 

reduction.  

 

It is noted that the RTN/WDF, after the stress then anneal, behaves differently from that 

in fresh devices, although their magnitudes before and after the anneal are similar in 

Figure 5.7 and 5.8. It is not known what causes these differences at present. One may 

speculate that the as-grown traps in the fresh devices were also affected by the stress and 



Chapter 5: Impact of Hot Carrier Aging on the Random Telegraph Noise and Within-Device-

Fluctuation                         115 

 

 

 

 

the subsequent anneal, leading to the changes in their RTN/WDF behaviour.  Since most 

of the devices tested in this work have a complex WDF, rather than a clear RTN, it is 

difficult to extract the capture and emission time reliably.  

 

5.4 Conclusion 

 

In this Chapter, the impact of HCA on the magnitude of RTN/WDF of nMOSFETs is 

investigated. For the devices of average RTN/WDF, HCA typically can either increase or 

reduce it modestly (±25%). For the devices of abnormally high RTN/WDF, however, the 

HCA generally can reduce it substantially. After an anneal at 400 oC, RTN/WDF returns 

to the abnormal level for most devices, supporting an HCA-induced change of current 

distribution as the origin of the reduction. There are cases, however, where RTN/WDF 

does not return to its pre-stress level after the annealing process, suggesting defect losses.  
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6 Development of a Technique for Directly 

Measuring RTN and BTI-Induced Vth 

Fluctuation under Use-Vdd 

 

6.1 Introduction 

 

As CMOS nodes scale down, the fluctuations induced by random charge-discharge of 

traps in the gate dielectric scale up. Smaller devices have larger statistical spreading 

because of fewer traps per device and the larger impact of a single charge [19], [157] on 

them. The increased number of devices per chip also leads to a larger statistical spread  

[19], [157] and the higher data transmission rate requires tighter control of jitters [158]. 

Fluctuations have become a major concern for circuit design and have attracted much 

attention recently [19], [32], [48], [89], [146], [147], [157]–[165]. It has been reported 

that current fluctuation in some fresh devices can be over the typical device lifetime 

criterion of 10% [89], reducing the yield. 

 

Fluctuations are commonly observed as the random telegraph noises (RTN) in the drain 

current, ΔId, under a given gate bias, Vg, and early works [32], [48], [154], [160]–[162], 

[165]–[167] have focused on them. ΔId_RTN allows probing individual traps and an 

analysis of their mean capture and emission time dependence on Vg gives the trap energy 

and spatial locations [89], [160], [165], [167]. This has improved the understanding 
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substantially. There are, however, few direct measurements of the RTN-induced jitter in 

threshold voltage, ΔVth. This is because the measurement is difficult; the charge-

discharge of traps for RTN is highly dynamic and the average ΔVth is typically low. As a 

result, the RTN-induced ΔVth often was either not given [89], [161] or estimated from 

dividing ΔId by trans-conductance, i.e. ΔVth≈ΔId/gm(Vdd) [32], [146], [154], [160], [165]. 

The accuracy of the ΔVth evaluated in this way was not given in these works [32], [146], 

[154], [160], [165].  

 

Figure 6.1(a) and Figure 6.1(b) shows that the ΔVth evaluated in this way (marked as ‘A’) 

is substantially different from that directly measured with sensing-Vg near to Vth (Marked 

as ‘B’). The data shown is measured from 28 nm device. 
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Figure 6.1 (a-b) A comparison of ΔVth evaluated by ΔId/gm (□) with ΔVth directly 

measured at Vg~Vth (dashed line). The ΔVth=ΔId/gm with Vg~Vdd (region A) 

is ×2 of the real ΔVth. (c) Ido measurement captured the impact of RTN on 

device 90 nm x 27 nm 
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There are devices that do not give analysable RTN signals in terms of extracting mean 

capture/emission time [161] and ΔId can appear as a complex within-a-device-fluctuation 

(WDF) [48], as shown in Figure 6.2. The charge-discharge of traps for RTN is highly 

dynamic and the average ΔVth is typically low. These devices were simply deselected in 

some early works [160], [162], making the real device-to-device variations (DDV) of 

fluctuation unobtainable.  

 

      

Figure 6.2  Example of RTN/WDF signals. (a) not analysable RTN signals and (b) shows 

complex WDF. 
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 To model the impact of RTN on the margin of SRAM [147] and the timing error [163], 

one needs both ΔId and ΔVth. For example, RTN in the pass transistor 1 in Figure 6.3(a) 

can reduce the driving current by ΔId and slow down the Vg rise of transistor 2 in reaching 

its threshold voltage, Vth0, by Δt(ΔId). RTN in the transistor 2 can increase its Vth by ΔVth 

and results in a further delay, Δt(ΔVth). Therefore, there is a need to obtain both accurate 

ΔId and ΔVth. 

    

 

Figure 6.3  A schematic illustration of the impact of ΔId and ΔVth on timing: (a) circuits and 

(b) waveform. Vout switches when Vg≈Vth, which is delayed by a lower charging current, Id-

ΔId, supplied through the transistor 1 and a higher Vth=Vth0+ΔVth of the transistor 2. 

 

The objective of this chapter is to develop a Trigger-When-Charged (TWC) technique for 

directly measuring the RTN-induced ΔVth. By ensuring that the measurement is taken 

when a trap is charged, the accuracy is substantially improved. It is found that the 

ΔId/gm(Vdd) correlates poorly with the directly measured ΔVth and the former doubles the 

latter on average. The discrepancy originates partly from the device-to-device variation 
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of relative local current density beneath a trap at Vg=Vth [105], [168], [169][170] and 

partly from the charge-induced mobility degradation. The TWC developed in this work 

is applicable to devices with or without analysable RTN signals and it will be used to 

evaluate the device-to-device variation.        

 

6.2 Devices and measurement technique 

6.2.1 Devices  

 

The pMOSFETs used in this work were fabricated by a 28 nm commercial CMOS process 

with a use Vdd of 0.9 V. They have a metal gate and a high-k dielectric stack with an 

equivalent thickness of 1.2 nm.  The channel length and width are 27 nm and 135 nm, 

respectively. For comparison purposes, big devices of 3 µm (W) x 1 µm (L) were also 

used, which has insignificant device-to-device variation. All tests were performed at 125 

ºC. 

   

Noise from the measurement system is one of common problems encountered during the 

experiment. In order to assess the effect of system noise on the RTN/WDF  measurement, 

a comparison of system noise and with typical RTN/WDF is shown in Figure 6.4. From 

the figure, system noise is < 12% of the RTN/WDF at Vg=0.6 V 
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Figure 6.4 Comparison between system noise and true signal measured at Vg=-0.60 V.  
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less than 5 us [22]. In principle, discharging can occur under a given Vdischarge and during 

the measurement itself. Hence, it is required to freeze the discharge during the 
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measurement under a given Vdischarge. If the DC measurement is used under a given 

Vdischarge, discharging induced by the measurement itself reduces the measurement 

accuracy. 

 

6.2.2 Selection of test conditions  

The Vg range for measuring ΔId on-the-fly:  

 

For negative bias temperature instability (NBTI) tests, Vg-acceleration is generally used 

[171] to give a measurable ΔVth within an acceptable time. Although Figure 6.5(a) shows 

that there are more ‘as-grown’ traps [130] for higher |Vg|, this Vg-acceleration is, however, 

not suitable for characterizing WDF in nano-scaled devices. Fig. 6.5(b) shows that WDF 

is dominated by traps close to Ef, where occupancy changes rapidly. An increase of |Vg| 

lowers Ef and the WDF would be dominated by a different group of traps from those under 

use Vgop. Early works report that different traps have different impacts on a device [19], 

so that ΔId should be measured on-the-fly under the use Vgop, rather than a raised |Vg|.  

 

This chapter focuses on the Vg range of practical use:  0.6 V to 1.0 V. For a large device, 

Figure 6.1(a) shows that the ΔVth is insignificant in this range, making its measurement a 

challenge.   
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Figure 6.5 (a) As-grown hole traps reduces for lower |Vg| and (b) WDF probes traps near Ef. 
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The measurement delay for ΔVth and the sensing Vg:  

 

In addition to ΔId, ΔVth is needed. As mentioned earlier, a fluctuation in Vth causes timing 

errors in switching-on of a device (Figure 6.3). For an SRAM cell, although a pMOSFET 

can be biased under Vgop in ‘hold’ mode, Vg can be close to Vth during read/write. It is 

well known that ΔVth reduces with longer measurement delay due to de-trapping 

[172][173] and the question is what is the ‘right delay’. On one hand, for modern digital 

circuits, the transition time from Vgop to Vth can be in the order of tens of pico-seconds. 

On the other hand, the discharge or emission time typically is reported being micro-

seconds or longer when Vg is above or close to Vth [134], [173]. The discharge during the 

transition between Vgop and Vth should be frozen, therefore. 

 

There are two ways of freezing the discharge during Vth measurement. One is measuring 

ΔId ‘on-the-fly’ without reducing Vg to Vth and then evaluating ΔVth from ΔId/gm [15], 

[112], [128], [133], [134 . Figure 6.6, however, shows that ΔVth=ΔId/gm is different from 

the real ΔVth, when the sensing Vg is reduced to ~Vth. As a result, the correct sensing Vg 

should be ~Vth, rather than Vgop.  

 

The other is to apply a Vg pulse sufficiently fast (e.g. <5 µs) to freeze the discharge during 

the transition from Vgop to Vth [134], [173] . In this work, a 3 µs pulsed Id-Vg was used 

and ΔVth will be measured from the Vg shift at Vth.     
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6.2.3 Test procedures  

Figure 6.6 gives the Vg waveform and measurement steps. After recording the reference 

Id-Vg on a fresh device, the test starts by filling the traps under Vgop=-1 V for 40 seconds, 

as early work [130] shows that charging traps below Ef completes within tens of seconds.  
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Figure 6.6 The ‘Trigger-When-Charged (TWC)’ technique. (a) Test procedure: 

After a stabilization period, the RTN-induced ΔId is monitored under 

Vg=Vdd and the upper envelope (UE) is determined. The trigger-level 

for subsequent pulse (3 µs) Id-Vg (p-IV) is then set just below UE to 

measure ΔVth. 50 p-IVs were measured in (b) and their average is given 

in (c). The TWC p-IV captures the RTN-induced ΔVth, while the 

Traditional p-IV at pre-set time often misses the charge and is 

inapplicable. 

 

 

Difficulties with standard measure-stress-measure methods:  

 

For aging-induced ΔVth under stresses such as negative bias temperature instability 

(NBTI) [174][175] and hot carriers [176], [177], the degradation is commonly measured 

at preset time. This is acceptable, as the Vg-acceleration used in the stress generally leads 

to a large-enough ΔVth that is measurable and deterministic at a preset time. There are, 

however, two difficulties in applying this method to deeply scaled devices under use-Vdd, 

where ΔVth mainly exhibits as Random Telegraph Noise (RTN). First, there are only a 

few active traps and the average ΔVth is typically low. Second, charge-discharge of these 

traps is highly dynamic: they are often neutral at the preset time for measurement, as 

shown by the red circle symbols in Figure 6.6, and would be missed by the measurement.  

 

One way to avoid these difficulties is selecting devices that only have one trap, which 

induces a high enough ΔVth (e.g. 30 mV) and its emission time is long enough for 

completing the measurement [105], [168]. This has improved our understanding of the 

interaction between a trap and the current. Such devices, however, are rare and the 

required device selection precludes obtaining real device-to-device variations. A 



Chapter 6: Development of a Technique for Directly Measuring RTN and BTI-Induced Vth 

Fluctuation Under Use-Vdd                                  128 

 

 

 

 

measurement technique is needed for measuring ΔVth at Vg=Vth without such device 

selection, therefore.  

 

Test procedure of Trigger-When-Charged technique:   

 

Figure 6.6(a) gives the Vg waveform. After recording the reference Id-Vg on a fresh 

device, the test starts by a ‘stabilization’ period of 40 sec under Vg=Vdd=-0.9 V. If there 

are any traps at deep energy level in a device, they will be filled during this period [178]. 

ΔId under Vg=-0.9 V is then monitored for a period, e.g. 100 sec, as marked by ‘Id monitor’ 

in Fig. 6.6(a). A sampling rate of 1 M/sec was used [134]. The trapping-induced upper 

envelope (UE) of ΔId is obtained.  

 

To measure the trapping-induced ΔVth, one must ensure that the measurement was taken 

when the traps are charged. This is achieved by setting the trigger level of the oscilloscope 

and the pulse generator for Vg just below the UE, as shown in Figure 6.6(b). Once 

triggered, the pulse Id-Vg (p-IV) is recorded in 3 µs to minimize the discharge [134], 

[178].  

 

Although a sampling rate of 1 M/sec can be used to monitor ΔId under a fixed Vg=-0.9 V, 

it only gives 3 points in 3 µs and is too slow for the p-IV. To have a sufficient number of 

points for p-IV, a higher rate of 100 M/sec is used. The p-IV was repeatedly measured 

for 50 times and their average is used to reduce the system noise to ~1 mV.  
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ΔVth is evaluated from the difference between the Trigger-When-Charged (TWC) p-IV 

and the reference p-IV. The reference p-IV was obtained also from the average of 50 p-

IV with the same sweep rate, performed on fresh devices before filling the deep traps by 

applying the waveform in Figure 6.6(a). When measuring these 50 p-IV, it is possible that 

a trap can be filled during the measurement. These outlier p-IVs were excluded from the 

reference p-IV. This ensures capturing the ΔVth induced by both RTN and deep traps, if 

they are present. In case one is interested in capturing RTN-induced ΔVth only, the 

reference p-IV should be taken after filling the deep traps. 

 

Figure 6.6(c) demonstrates that a single trap induced ΔVth of ~2 mV is successfully 

captured by the TWC technique, which often would be missed by the traditional p-IV 

recorded at a preset time, as illustrated by the red circles in Figure 6.6(b). The measured 

ΔVth/ΔId ratio is used to convert ΔId to ΔVth.  

 

Measurement set-up:  

 

As the main objective of this chapter is to develop a technique for measuring the RTN-

induced ΔVth under use Vdd, the detailed measurement set-up is given in Figure 6.7. Id 

under Vd=0.1 V was converted to a voltage, Vout, by a home-made operational amplifier 

circuit. During the ‘Id monitor’ phase in Figure 6.6(a), Vout was monitored by both 

channels 2 and 3 of an oscilloscope and one example is given in Figure 6.7(b). 
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In the following ‘p-IV’ phase of Figure 6.6(a), when Vout is above the ‘trigger level’ in 

Figure 6.7(c), the oscilloscope triggers and simultaneously sends out a signal to trigger 

the pulse generator for Vg. Both the pulse applied to the gate and the corresponding Vout 

are captured, as shown in Figure 6.7c. Two channels are needed here: channel 2 is at a 

fine scale to ensure capturing the small Vout fluctuation with good accuracy and channel 

3 is switched to a coarse scale to capture the whole p-IV. As a comparison, Figure 6.7(d) 

shows an example triggered at a preset time that missed the trapped charge. 

 

The UE in Figure 6.6(a) can be caused by either a single trap or multiple traps. In the 

latter case, the UE results from the combined charges of multiple traps. This removes the 

need for selecting devices of a single trap and makes the method applicable to all devices.  
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Figure 6.7(a) Test configuration for “Trigger-When-Charged (TWC)” measurement 

technique. A high-speed operational amplifier based circuit is used to convert Id to Vout that 

is connected to both channels 2 and 3. The “Trigger out” of the oscilloscope is connected to 

the “External trigger in” of the pulse generator. (b) The Vout fluctuation is captured by both 

channels 2 and 3, as they are physically connected. (c) A screen-shot of the TWC p-IV 

measurement waveform. Channel 2 keeps its fine scale for accurate triggering, while channel 

3 is switched to a coarse scale to capture the whole “TWC” p-IV. (d) A screen-shot of the 

traditional p-IV measurement at a preset time, where the trapped charge is missed. 

 

6.3   Results and discussions 

A. Comparison between ΔId/gm(Vdd) and ΔVth(Vth) 

  

As mentioned in the introduction, early works  [32], [146], [154], [160], [165] often 

estimated ΔVth by ΔId/gm(Vdd), where both ΔId and gm were obtained under Vg=Vdd. This 

is effectively measuring the shift of IV at Vg=Vdd, as marked by the point ‘B’ in Figure 

6.8(a) and the corresponding inset. The real ΔVth, however, should be evaluated from 

Vg=Vth at the point ‘A’ in Figure 6.8(a). In this work, Vth is extracted by extrapolating 

from the maximum gm point and Vth=-0.45 V in Figure 6.8(a). The shift in Vth, ΔVth, at a 

given sensing Vg is evaluated from ΔId/gm(Vgsense). We now compare the ΔVth evaluated 

at Vgsense=Vth (‘A’ in Figure 6.8(a)) with that at Vgsense=Vdd (‘B’ in Figure 6.8(a)).  

 

Figure 6.8(b) plots ΔVth(Vth) against ΔVth(Vdd)=ΔId/gm(Vdd) measured on 63 devices. 

Both of them have a large DDV, but the correlation between them is poor. For similar 

ΔId/gm(Vdd), ΔVth can spread from its minimum to its maximum approximately. As a 

result, errors are large if ΔId/gm(Vdd) is used as ΔVth, so that it is essential to measure ΔVth 

directly at Vg=Vth. Although both of them have a maximum close to the typical device 
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lifetime definition of 30~50 mV, the average ΔId/gm(Vdd) doubles that of ΔVth, as shown 

by the two dashed lines in Figure 6.8(b). This is because many devices have ΔVth(Vth) 

close to zero, but ΔId/gm(Vdd) are above 10 mV. The origin of the differences between 

these two will be analysed next. 

 

 

Figure 6.8(a) Early works estimated RTN-induced ΔVth from ΔId/gm at Vdd=0.9 V (Point 

‘B’), rather than directly measuring it at Vg=Vth (Point ‘A’). The two insets are enlarged p-

IV at the two points. The black p-IV is reference and the blue p-IV is the TWC p-IV. (b) The 

poor correlation between ΔId/gm at Vdd and ΔVth at Vg=Vth. Each point was taken from a 

different device. The dotted lines mark the mean values. 
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B.Effects of sensing Vg on ΔVth 

 

In Figure 6.8(a), the sensing Vg for ΔVth is -0.9 V for the point B and Vth=-0.45 V for the 

point A. Since the whole Id~Vg was measured, one can also extract the “apparent ΔVth” 

at other sensing Vg by using ΔId/gm(Vgsense). The “apparent ΔVth” here refers to the ΔVth 

evaluated in this way under Vgsense≠Vth. Typical examples obtained from different 

devices are given in Figure 6.9(a-e). 

 

The dependence of the apparent ΔVth on the sensing Vg has strong device-to-device 

variations (DDV), agreeing with that observed for single traps [105], [168]. On one hand, 

Figure 6.9(a) corresponds to Figure 6.8(a), where ΔVth increases monotonically with |Vg| 

and ΔVth at |Vg|=0.9 V is 6 times of the real ΔVth(Vth). On the other hand, ΔVth can also 

reduce by almost half over the same voltage range, as shown in Figure 6.9(b). There are 

also cases where (i) ΔVth is almost a constant (Figure 6.9(c)); (ii) ΔVth increases initially 

and then reduces (Figure 6.9(d)); and (iii) ΔVth decreases initially and then increases 

(Figure 6.9(e)). 

 

It is known that channel current can have a narrow percolation path near Vth and the 

impact of a charged trap on a deeply scaled device depends on the relative local current 

density beneath the trap [105], [168]–[170]. This can explain the device specific 

dependence observed in Figure 6.9. As schematically illustrated in Figure 6.10, for the 

device in Figure 6.9(a), the trap is located far away from the current percolation path at 

Vth, so that it has little impact and ΔVth(Vth) is low. The many close-to-zero ΔVth(Vth) 
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points in Figure 6.8(b) indicates that this is often the case. As Vg increases, the current 

becomes more evenly spread and its relative density under this trap rises, leading to the 

increase of ΔVth with Vg. As there is current flowing beneath each trap at Vdd, there is no 

close-to-zero apparent ΔVth in Figure 6.8b, when evaluated by ΔId/gm(Vdd).  

 

For the device in Figure 6.9(b), however, the trapped charge is on top of the current 

percolation path at Vth, resulting in a large ΔVth at Vth. As Vg increases, the current path 

is widened, so that the impact of the same charge on the device reduces and the ΔVth 

decreases with |Vg| in Figure 6.9(b). Similarly, the relative current density under the trap 

in Figure 6.9(c) changes little with Vg and ΔVth is insensitive to Vg. The dependence of 

relative current density under a trap on Vg may not be monotonic, which can explain the 

behaviour in Figure 6.9(d&e). For instance, in Figure 6.9(d), it may increase initially and 

then decrease. When there are multiple traps, some can behave like Figure 6.9(a) and 

some like Figure 6.9(b). A combination of them can give the complex dependence in 

Figure 6.9(d&e). 
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Figure 6.9 Examples of the device specific dependence of the apparent ΔVth on the sensing 

Vg, Vgsense. (a)-(e) were obtained from five different devices. The apparent ΔVth at a 

Vgsense was obtained from the shift of TWC p-IV from the reference at Vgsense. The ΔVth 

is normalized against its value at Vgsense=Vth. As the lowest |Vgsense| is close to Vth, the 

data starts from ~1 in all devices. 

 

 

Figure 6.10 A schematic illustration of different impacts of traps at different locations on a 

device at threshold condition. The current can follow a percolation path under Vg=Vth. The 

trap in green corresponds to the device in Figure 6.9a: it is away from the critical current 

path, so that it only has a small effect on the device at Vth. The trap in red corresponds to the 

ΔVth@Vgsense / ΔVth@Vth 
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device in Figure 6.9b: it is on top of the current critical path and has a large effect on the 

device at Vth. 

 

Although the deeply scaled device-specific dependence of ΔVth on sensing Vg can be 

explained by the interaction between the trap and the relative local current density beneath 

it, there is also a device independent ΔVth dependence on the sensing Vg. For a large 3×1 

μm device where DDV is insignificant, Figure 6.11(a) shows that ΔVth also increases with 

|Vgsense|. On one hand, a more evenly distributed Id at higher |Vgsense| allows more traps 

making an effective impact. On the other hand, the charge induced columbic scattering 

causes mobility degradation [179], [180], which leads to ΔId(mobility). When the 

apparent ΔVth is evaluated from ΔId(measured)/gm, the ΔId(mobility) is treated as if it was 

caused by ΔVth. In other words, the apparent ΔVth= ΔId(measured)/gm includes the 

contribution from mobility degradation to ΔId. As the effect of mobility degradation 

increases with |Vgsense|, it contributes to the increase in the apparent ΔVth for higher 

|Vgsense|.   

 

C. Statistics  

 

As there is hardly any information on the statistical properties of the directly measured 

RTN-induced ΔVth, especially in terms of its dependence on Vgsense, we report the DDV 

of this dependence here. Each line in Figure 6.11(b) represents one device and the first 

impression is that the apparent ΔVth broadly increases for higher |Vgsense|. Although the 

ΔVth for some devices can reduce for higher |Vgsense| as shown in Figure 6.9(b), it is rare 

for a trap to be above a localized percolation path. As a result, the average (symbols in 
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Figure 6.11(b) increases monotonically for higher |Vgsense|, which is partly driven by the 

mobility degradation. 
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Figure 6.11 (a) The impact of sensing Vg on the apparent ΔVth of a large device of 3×1 μm. 

The deep level traps were filled under Vg=-0.9 V for 100 sec before the measurement. ΔVth 

is normalized against its value at Vg=Vth. (b) The stochastic variation of 135x27 nm devices. 

Each line is from one device. The symbols are the average. (c) Dependence of σ and σ /μ on 

the sensing Vg. 

 

The standard deviation, σ, is plotted against Vgsense in Figure 6.11(c). It can be divided 

into two regions: as |Vgsense| increases, σ decreases first and then increases. The 

minimum point is around 0.65 V. To explore this further, the relative variation, σ/μ, is 

also plotted in Figure 6.11(c). When |Vgsense|>0.65 V, σ/μ only rises modestly, so that 

the higher σ is mainly caused by the higher μ, as shown by the symbols in Figure 6.11(b). 

Below 0.65 V, however, σ increases and μ decreases for lower |Vgsense|, resulting in a 

rising σ/μ. When |Vgsense| lowers towards |Vth|, the current path becomes increasingly 

localized, leading to higher statistical variations, even though the trapped charges remain 

the same.  

 

The cumulative distribution probability of ΔVth is given in Figure 6.12(a) and σ is plotted 

against μ in Figure 6.12(b) for Vgsense=Vth. The RTN of nMOSFETs is smaller than that 
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of pMOSFETs. σ follows μ by a power law with an exponent of ~0.5, agreeing with the 

prediction of the Defect-Centric model [19], [105], [139]. According to this model, the 

average ΔVth induced by a trap, η, is, 

𝜂 =
𝜎2

2µ
.                                                      (6.1) 

 

Using the fitted line in Figure 6.12(b), η ~ 3.2 mV is obtained. This η is ~2×q/Cox 

approximately, where q is one electron charge and Cox the gate oxide capacitance. This 

agrees well with the value reported for the recoverable component of NBTI of pFinFETs 

[180], although the test samples used here are planar pMOSFETs from a different 

supplier.  The average number of traps, N, per device is, 

 

𝑁 =
µ

𝜂
.                                 (6.2) 

A µ~12 mV in Fig. 6.8(b) gives N~4. 
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Figure 6.12(a) The cumulative distribution of ΔVth. The symbols are test data and the lines 

are fitted with the Defect-Centric model that assumes the number of traps per device 

following the Poisson’s distribution and the ΔVth induced by a trap following exponential 

distribution. (b) Standard deviation versus mean. Lines show that the data follow the 

prediction of Defect-Centric model well with a power exponent of 0.5. The different pairs of 

(μ,σ) are obtained by varying the time window of “Id monitor” from 10 μs to 100 sec in 

Figure 6.6a. 

 

For nMOSFETs, the corresponding values are μ ~ 6.5 mV, η ~ 1.1 mV, and N ~ 6. When 

compared with pMOSFETs, the lower RTN in nMOSFETs is caused by smaller η. 

Although there are more traps in nMOSFETs, they are in the high-k layer and further 

away from the conduction channel and induce a smaller ΔVth [181]. 
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6.4 . Conclusions 

 

The conventional method of ‘Measure-Stress-Measure’ at preset times is inapplicable for 

the RTN-induced ΔVth, since the trap can be neutral when pulse IVs are taken. Early 

works estimate the RTN-induced ΔVth by ΔId/gm at Vg=Vdd and its accuracy is not known. 

In this chapter, a ‘Trigger-When-Charged (TWC)’ method is proposed for directly 

measuring the real ΔVth at Vg=Vth. By setting the trigger level close to the upper envelope 

of trapping-induced ΔId, it ensures that the pulse IV is taken when traps are charged.  

 

Results show that there is no unique relationship between ΔId/gm at Vg=Vdd and the 

directly measured ΔVth and their correlation is poor. The device-specific dependence of 

the apparent ΔVth on the sensing Vg originates from the device-to-device variation (DDV) 

of relative local current density under a trap at Vth. Moreover, on average, ΔId/gm(Vdd) 

doubles ΔVth(Vth) and the charge-induced mobility degradation through columbic 

scattering plays a role. 

 

The TWC is applicable to devices with or without analysable RTN signals. For the first 

time, it is used for assessing the statistical properties of RTN-induced ΔVth, especially in 

terms of its dependence on Vgsense. For the same trapped charges, it is found that σ has 

a minimum around |Vgsense|=0.65 V. The increase in σ when |Vg| lowers toward |Vth| is 

explained by an increased localization of current path. The DDV follows the Defect-

Centric model. For the 135 × 27 nm pMOSFETs used in this work, the average ΔVth 
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induced per trap is ~3.2 mV and not far compared to ~3.4 mV for device of 90 x 27 nm 

as reported  in [177] .
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7 Conclusion and Future Works 

 

 

7.1 Conclusions 

 

This project studies the hot carrier aging (HCA), random telegraph noise (RTN), and their 

interactions. As down-scaling of device sizes continues, HCA become increasingly 

important. The HCA kinetics is established through detailed measurements and its 

capability in predicting the device lifetime is demonstrated. The attentions were then 

turned to the interaction between HCA and RTN. Finally, a new Trigger-When-Charged 

(TWC) technique is developed to enable direct measurement of RTN-induced jitter in the 

threshold voltage. 

  

7.1.1 Conclusions on the kinetics and prediction of HCA 

 

Hot carrier aging can be a critical factor for current and future CMOS. HCA can cause 

higher degradation to the device due to channel length down-scaling and larger time 

exponents. HCA also has low recovery compared to NBTI as shown in Figure 4.2(c). This 

new threat makes it worthwhile to re-visit HCA. Lifetime prediction requires constant 

time exponent ‘n’. However, it is reported that the aging mechanism and time exponent 

‘n’ are changed under different bias. Two pressing questions are:  Can the JEDEC method 

predict lifetime under use-bias? and how can we correctly evaluate ‘n’ for HCA? 
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The results show that there are two sources of errors for extracting ‘n’. One of them is 

from using the forward saturation current to monitor the HCA. HCA above the space 

charge near the drain is screened off and this leads to an increase of ‘n’. To correct this 

error, ‘n’ should be extracted from the linear threshold voltage shift. The other source of 

error is the inclusion of as-grown defects that were not caused by HCA. This error can be 

removed by using the lower envelope of the fluctuation. 

 

In this study, the Voltage Step Stress Technique (VSST) method is used to stress the 

device at Vg=Vd from 1.3 V to 1.7 V. During each stress, IV measurements are taken 

periodically. Based on the results obtained for large devices, it shows good agreement 

between prediction and experiment data. For small devices, HCA induces a time-

dependent device-to-device variation (TDDDV). This study verifies that the HCA under 

use-Vdd can be predicted by the power law extracted from VSST method. 

 

7.1.2 Conclusion on impact of hot carrier aging (HCA) on random 

telegraph noise (RTN) 

 

Random telegraph noise (RTN) is becoming a major challenge for low power circuits. 

HCA, as has been reported, either can increase the RTN or has little effect on it. RTN is 

caused by a single trap at the gate dielectric capturing and emitting a carrier. When there 

are more than a few traps, it become complex RTN signals in the form of within-device-

fluctuation (WDF). 
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For scaling devices, aging also occurs in the form of bias temperature instabilities (BTI) 

or hot carrier stresses. It has been reported that aging can either increase the RTN/WDF 

or makes little contribution to it. The interaction between RTN/WDF and hot carrier aging 

(HCA) is not fully understood. 

 

Based on the study in this project, it is found that HCA can either increase or reduce the 

average RTN modestly. The HCA influences RTN mainly through changing the density 

of current flow under a trap. When the local current increases, RTN rises. For devices 

with abnormally large RTN, RTN reduces substantially after HCA. The abnormally large 

RTN is caused by traps above the percolation path of current. HCA changes the current 

path, so that the percolation path of the current is moved away from these traps, resulting 

in the reduction of RTN.   

 

7.1.3 Conclusion on Trigger-When-Charged technique 

 

Although RTN has become a major concern for the circuit design and has attracted much 

attention, there are no direct measurements of the RTN-induced jitter in Vth. This is 

because, the charge-discharge of traps is highly dynamic and the ΔVth is low. There are 

also devices that show complex RTN. These devices were simply deselected in some 

early works.  
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The Trigger-When-Charged (TWC) method is introduced for directly measuring the real 

ΔVth at Vg=Vth. This was done by setting the trigger level close to the upper envelope of 

trapping-induced ΔId. Thus, it ensures that the pulse IV is taken when traps are charged.  

 

The experimental results show that there is no unique relationship between ΔId/gm at 

Vg=Vdd and the directly measured ΔVth and their correlation is poor. The device-specific 

dependence of the apparent ΔVth on the sensing Vg originates from the device-to-device 

variation (DDV) of relative local current density under a trap at Vth.  

 

7.2 Future Works 

 

Hot carrier aging (HCA) and random telegraph noise (RTN) are becoming important to 

understand as the device scaling. Although progress has been made in this project, there 

are a lot of interesting topics awaiting further investigations, including but not limited to 

the following: 

 

7.2.1 HCA and BTI Coupling 

 

Bias temperature instability is another important degradation mechanism in nano-scale 

devices. Devices such as SRAM also experience BTI while the circuit is in operation. 

HCA is caused by hot carrier injection on the drain side while BTI is caused by the filling 
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and generation of defects across the gate dielectrics. It is worthwhile investigating the 

coupling of these two degradation mechanisms. 

 

Under both BTI and HCA, it is reported that the aging kinetics follows a power law. In 

real circuits, devices can suffer both BTI and HCA and the there is little information on 

the kinetics combining these two mechanisms and on how to predict the device lifetime. 

Further works should investigate the similarity and differences in defects created by these 

two mechanisms. If they originate from the same precursors, the consumption of these 

precursors by one mechanism will make them unavailable to the other mechanism, so that 

one will affect the other.  

 

7.2.2 Defect losses 

 

Defect losses were observed in this project. After stress and then anneal, there are cases 

where RTN/WDF did not return to its pre-stress high level and an example is given in 

Figure 5.10. This agrees with the defect loss reported in early works [137], [155]. If the 

critical trap is lost after the stress and annealing process, the RTN/WDF cannot return to 

its fresh abnormally high level, even though the original current distribution is restored. 

Figure 5.12 confirms that similar loss also occurs for a device fabricated by the 22 nm 

process. There is little information available on defect losses at present and the underlying 

mechanism is not clear. Further work is needed in this area. 
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