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AbstractWhen multiphase drives are used for specific 

applications, the modular solutions are preferred as they use 

consolidated power electronics technologies. The literature reports 

two modeling approaches for multiphase machines having a 

modular configuration of the stator winding. The first approach is 

the vector space decomposition (VSD) that models the energy 

conversion like an equivalent three-phase machine. The main 

alternative to the VSD is the multi-stator (MS) modeling that 

emphasizes machine modularity in terms of torque production. 

Both approaches have advantages and disadvantages for 

multiphase machines with a modular structure. Therefore, this 

paper aims to combine the VSD and MS approaches, defining a 

new matrix transformation and hence developing a new modeling 

approach for multiphase machines with a modular structure. The 

proposed transformation allows a decoupled and independent 

torque control of the sets composing the machine, preserving the 

torque regulation's modularity. Together with a new vector 

control scheme, it has been applied to a modular permanent 

magnet synchronous machine (PMSM) with a non-standard 

spatial shift between windings. Experimental results are presented 

for a nine-phase PMSM prototype with a triple-three-phase stator 
winding configuration. 

Index TermsModular vector control, multiphase machines, 

multi-stator, permanent magnet synchronous motors, vector space 

decomposition. 

I.  INTRODUCTION 

Multiphase machines are today a competitive solution in the 

electrification processes of transport and energy production 
from renewables [1], [2]. Due to the significant cost reduction 

of the conventional power electronics technologies, an 

important development is reported for the multiphase drives 

using a modular configuration of the stator winding [3], [4]. A 

further reason for this trend is related to the remarkable know-

how that is nowadays available in the literature for the 

conventional drive topologies, i.e., three-phase [5], five-phase 

[6]–[8],  and six-phase configurations [9]–[11]. 

According to the literature [2], [12]–[14], most of the control 

algorithms for multiphase drives are based on the vector space 

decomposition (VSD) approach [15], [16]. The VSD 

decomposes the machine model into multiple orthogonal 

subspaces  using  a  dedicated VSD        matrix  transformation.  The  
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energy conversion is performed in a single subspace, having the 

meaning of the machine's time-fundamental model, 

characterized by electromagnetic equations similar to those of 

the three-phase motors. The other subspaces have the meaning 

of the machine's harmonic patterns, highlighting possible 

unbalance among the stator phases in terms of currents, fluxes, 

and torque [17], [18]. 

The VSD transformation matrix exists for multiphase 

machines with the stator winding in either symmetrical or 

asymmetrical configuration [16], [19], thus covering most 

practical cases. Besides, since the VSD modeling allows using 
all the control algorithms defined for three-phase motor drives, 

it results in the literature's most developed approach [13], [14]. 

Therefore, significant efforts have been made in the 

development of VSD-based pulse-width modulation (PWM) 

techniques [19], using both space-vector (SV) [20]–[22] and 

carrier-based (CB) methods [23], [24]. Lastly, almost all of the 

open-phase fault-tolerant strategies are based on the active 

control of the harmonic VSD subspaces [14], [25]–[28]. 

Nevertheless, the VSD approach exhibits several limitations 

in modeling multiphase machines having a modular 

configuration of the stator winding. The first is the lack of 
modularity [16], as the VSD does not emphasize the torque 

production of each winding set composing the stator. The 

second limitation is the applicability to only machines with 

conventional symmetrical/asymmetrical stator configurations  

[29]. Finally, the modular configurations are usually adopted 

when the number of phases is high (≥ 6), making the 

implementation of VSD-based PWM techniques more 

challenging [19]. This issue worsens if an open-phase fault 

occurs, as the post-fault operation often requires the whole 

redefinition of the PWM space-vector algorithms [30]. 

The drawbacks of the VSD in dealing with the modular 

configurations can be solved with the multi-stator (MS) 
modeling [1], [31]. This approach models the machine as 

multiple winding sets operating in parallel. Each of these must 

consist of an l-phase configuration (l ≥ 3), having an isolated 

neutral point treated with a dedicated VSD transformation [29]. 

In this way, the torque production of each set is highlighted 

through its own time-fundamental VSD subspace. An example 

is represented by the multi-three-phase machines [1], [3], [4], 

[32], where the stator consists of multiple three-phase winding 

sets, allowing the use of the three-phase Clarke transformation 

(the simplest VSD case for l  = 3). Therefore, if a machine having 

n winding sets is considered, n time-fundamental VSD 
subspaces are obtained [33]–[35]. Each of the latter highlights 

the torque produced by the windings set of which it is 

representative. 
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In summary, MS modeling can be considered as a modular 

application of the VSD approach to multiphase machines. In 

this way, the VSD constraints in terms of symmetrical and 

asymmetrical configurations are restricted to the single l-phase 

winding set. Besides, an MS-based control scheme allows 

implementing modular PWM algorithms, as the voltage control 
of each winding set is independent of that of the others [33]. 

However, MS modeling leads to strong magnetic coupling 

among the winding sets [33], [34], [36], [37]. As demonstrated 

in [38], this effect can cause the potential instability of the MS-

based control schemes, making necessary the implementation 

of complex decoupling algorithms [33], [34], [36], [37].  

In recent years, several attempts to combine the advantages 

of VSD and MS modeling approaches have been suggested 

[39], [40], and most of them are focused on removing the MS 

couplings among the winding sets. According to the literature, 

this goal has been successfully reached in [41], where a 

decoupling transformation for a dual-three-phase permanent 
magnet synchronous motor (PMSM) was introduced, leading to 

a decoupled MS-based current vector control (CVC) scheme. In 

[42], a decoupling transformation for multi-three-phase 

induction machines (IMs) has been presented, allowing the 

implementation of a modular torque control scheme. However, 

it appears that no solutions that can extend the results obtained 

in [41], [42] to a generic modular multiphase configuration for 

PMSMs are available in the literature. 

Therefore, the goal of this paper is to develop a novel matrix 

transformation for removing the MS couplings of a multiphase 

PMSM, allowing the implementation of a modular and 
decoupled CVC scheme. The proposed solution can be applied 

to any modular multiphase configuration, thus assuming 

general validity. The contributions of this paper are: 

1) a new modeling approach for multiphase PMSMs 
having a modular configuration of the stator winding; 

2) an original CVC scheme able to perform a decoupled 

regulation of the torque produced by each winding set. 

Compared to the existing VSD-based control schemes, the 

advantages of the devised control solution are: 

 direct regulation of the currents belonging to each 

winding set, thus keeping control modularity; 

 possibility of controlling any modular multiphase 

PMSM, including the machines with stator windings 

that are neither symmetrical nor asymmetrical [29]; 

 the torque-sharing strategies among the winding sets can 

be implemented using their time-fundamental models, 

avoiding the active control of the harmonic VSD 

subspaces [17]; 

 each winding set is fed by its l-phase voltage source 

inverter (VSI), controlled by any of the VSD-based 

PWM techniques reported in the literature [19]. 

The proposed CVC scheme, along with the novel 

transformation matrix, results in the following benefits: 

 the MS couplings among the winding sets are removed, 

avoiding the need to implement decoupling algorithms 

whose performance depends on the accuracy of the 

machine parameter estimation [33], [34]; 

 
Fig. 1.  Examples of multiphase windings with a modular configuration. 

 each winding set's torque is controlled using common- 

and differential-mode variables, leading to a decoupled 
regulation scheme, as for a VSD-based control 

algorithm. 

Finally, thanks to the combination of both VSD and MS 

modeling approaches, the introduced CVC scheme allows the 

implementation of two different fault-tolerant strategies: 

 fault ride-through capability of the winding sets, as for 

each of these the VSD-based fault strategies reported in 

the literature (open-phase-fault) can be applied [14]; 

 the machine's modular fault ride-through capability, 

since in the case of an open-phase fault, the affected 

winding set can be entirely turned off [1]. 

The experimental validation of the proposed modeling 

approach and related CVC scheme has been carried out on a  

9-phase PMSM prototype that uses a triple-three-phase 

configuration of the stator winding.  

The paper is organized as follows. Section II describes the 

modeling approach, introducing the new decoupling 

transformation. The modular and decoupled CVC scheme is 

presented in Section III, while the experimental validation is 
reported in Section IV. Lastly, Section V provides conclusions. 
 

II.  MODULAR AND DECOUPLED MODELING APPROACH 

In the following, a multiphase PMSM having a modular 

configuration of the stator winding is considered. The following 

conditions are assumed: 

- the stator consists of an arbitrary number n of l-phase 

winding sets (l ≥ 3), each of them having its own and 

isolated neutral point; 

- the winding sets are equal one to the other, thus having the 

same values of resistance Rs, leakage inductance Lσs, and 
number of winding turns; 

- the winding sets have a symmetrical or asymmetrical 

configuration, allowing the application of a dedicated 

VSD transformation to each of them [29]; 

- the windings are sinusoidally distributed, interacting with 

each other and the permanent magnets (PM) only through 

the spatial-fundamental component of the airgap field; 

- magnetic saturation, iron losses, and mutual leakage 

couplings among the phases are not considered. 

No constraints on the number of pole-pairs p and magnetic 

phase-shift among the first phases of two consecutive winding 
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sets are imposed. Therefore, the restriction in terms of 

symmetrical or asymmetrical configurations concerns the 

single winding set.  

Fig. 1 shows two configurations of multiphase windings, 

facilitating an understanding of the modularity concept. It is 

noted how a 15-phase symmetrical winding [29] can be 
configured as i) quintuple-three-phase, consisting of five three-

phase winding sets (ak-bk-ck, k = 1÷5) that operate in parallel. In 

this case, a so-called multi-three-phase machine is obtained [1], 

which is rather attractive to the industry since the conventional 

three-phase technologies can be used, reducing cost and design 

time [4]. However, a 15-phase symmetrical winding can also be 

configured as ii) triple-five-phase, changing the number of 

neutral points from five to three. In this case, the machine is 

configured as three five-phase winding sets (ak-bk-ck-dk-ek, k = 

1÷3) operating in parallel, allowing for each the use of all fault-

tolerant control algorithms developed in the literature [12]–

[14], [16], [25], [27]. 

A. MS Modeling - Modular Application of VSD Approach 

According to the MS modeling [1], [31], for each winding set 

k (k = 1÷n), a dedicated VSD transformation is applied [29], 
highlighting the k-set torque production. Based on the literature 

[16], the VSD approach performs a harmonic decoupling 

action, thus decomposing the k-set model (phase-coordinates) 

in (l-g)/2 orthogonal subspaces plus g zero-sequence 

components [29]. In detail, if the number of phases l of each 

winding set is odd, then g = 1. If l is even, and the winding sets 

have a symmetrical configuration, then g = 2. Finally, if l is 

even, and the winding sets have an asymmetrical configuration, 

then g = 0 since no zero-sequence components exist [29]. 

The energy conversion is performed in the main stationary 

subspace (αβ), parallel to those defined for the other sets. 

Therefore, the (αβ) model of each winding set can be computed 
in the rotating (dq) coordinates, using the well-known rotational 

transformation [5]. Like the three-phase machines, the d-axis 

position ϑr is assumed to coincide with the PM flux linkage 

vector. In summary, for each winding set k (k = 1÷n), the 

application of the VSD- and rotational- transformations leads to 

the following (dq) model: 
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 (1) 

where 𝑐̅sk,dq =[csk,d csk,q]t is a generic (dq) vector that can have 

the meaning of k-set voltage v, k-set current i, or k-set flux 

linkage λ. The synchronous speed ωr is computed as ωr = p·ωm, 
where ωm is the rotor mechanical speed, and p is the pole pair 

number. The magnetizing inductances along with the d- and q- 

axes are denoted with Md and Mq, respectively, while the 

amplitude of the PM flux linkage vector is denoted with λm. 

Finally, the variable J represents the matrix definition of the 

complex vector operator. 

It is noted how the modular application of the VSD approach 

leads to the well-known MS magnetic couplings among the sets 

[1], [33]–[35], [38]. However, the modular approach 

emphasizes the k-set torque contribution Tk as: 

    , ,2k sk dq sk dqT l p i      (2) 

where ∧ stands for the operator of exterior product. According 
to [16], the electromagnetic model of each k-set harmonic 

subspace h (h=1÷(l-g)/2-1), defined in its own stationary 

coordinates (xy-h), is computed as: 

 , , ,sk xy h s sk xy h s sk xy h

d
v R i L i

dt
        (3) 

where 𝑐̅sk,xy-h = [csk,x-h csk,y-h]t is a generic (xy-h) vector that can 
have the meaning of k-set voltage v and k-set current i. The 

harmonic currents do not contribute to energy production. 

Indeed, based on the literature, their active control is 

implemented if power-sharing [17], [18], or fault-tolerant- 

strategies among the k-set phases are in use [25]–[28], [30]. 

Finally, if the zero-sequence components 0-o exist (o =1÷g), the 

related electromagnetic equation is computed as: 

 ,0 ,0 ,0sk o s sk o s sk o

d
v R i L i

dt
        (4) 

where vsk,0-o and isk,0-o are the 0-o components of voltage and 

current, respectively. However, since each winding set has an 

isolated neutral point, the zero-sequence currents are null. 

The equivalent steady-state circuit of the machine using the 

MS approach is shown in Fig. 2. It is noted how the modular 

application of the VSD transformation leads to a single (dq) 

circuit, coupling all winding sets of the machine. Conversely, 

each harmonic subspace, as well as zero-sequence component, 

has its own and decoupled circuit. Therefore, the MS model 
allows a double decoupling action of the machine's time-

harmonic models: i) decoupling among the phases belonging to 

the same winding set, and ii) decoupling among the harmonic 

subspaces belonging to different winding sets. This feature is 

proof of how the MS approach allows the implementation of the 

well-known fault-tolerant strategies reported in the literature 

[25]–[28],  [30].   The         only  difference  is  related  to  how  such 

 

Fig. 2.  Steady-state equivalent MS circuit of a multi-l-phase PMSM. 
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strategies are implemented. They are applied globally to the 

machine in the VSD-based control schemes, while they are 

applied to each winding set modularly in the MS-based ones, 

reducing the complexity. 

B. Global Application of the VSD Approach 

The VSD model of a PMSM machine is available in the 

literature [6], [38]. In the following, the main results of such an 

approach are reported, showing the differences with respect to 

MS modeling.  

It is highlighted again that the VSD approach can be applied 

globally to the machine only if the stator winding has a 

symmetrical or asymmetrical configuration [29]. In this case, 
the torque production is performed in a single (dq) subspace, 

representing the time-fundamental model of the machine, 

whose electromagnetic equations are: 
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s dq s s dq s dq r s dq

d m
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 (5) 

It is noted how (5) is similar to the k-set MS model (1). 

However, in this case, the (dq) vectors are representative of all 

stator phases, leading to an average machine model. It is noted 
how the couplings among the sets have been removed. 

However, the modularity is lost. Indeed, (5) is associated with 

the total machine torque T, since this is computed as: 

  , ,

1 2

n

k s dq s dq

k

n l
T T p i



 
      

 
  (6) 

The application of the VSD transformation to the whole 

machine model leads to (n·(l-g)/2-1) harmonic subspaces and 

(n·g) zero-sequence components, where g is defined as for the 

MS modeling [29]. Both the harmonic and zero-sequence 

components are representative of all phases because: 
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where h = 1÷(n·(l-g)/2-1) and o =1÷(n·g). Therefore, the global 
application of the VSD transformation leads to the steady-state 

circuit of the machine shown in Fig. 3. It is noted how the (dq) 

circuit corresponds to that defined for the three-phase PMSMs, 

making the VSD modeling the simplest approach to describe 

the overall torque production. Finally, the equivalent circuits of 

the harmonic and zero-sequence components are formally 

identical to those defined for the MS modeling (Fig. 2), leading 

to similar considerations. 

C. Decoupled MS Modeling 

The proposed modeling approach aims to remove the MS 

couplings among the sets, thus introducing a new reference 

transformation. In detail, the devised method consists of 

decomposing the (dq) models of the sets (1) in multiple 

decoupled subspaces, having the meaning of common and 

differential  modes  of  the  machine.  The torque  production  is  

 

Fig. 3.  Steady-state equivalent VSD circuit of a multi-l-phase PMSM.  

performed in the common-mode subspace, whose equations are 

identical to those of the VSD modeling (5)-(6), while the 

unbalances among the sets in terms of flux linkage and torque 
production are mapped in the differential-mode subspaces. 

All the current-to-flux relationships of the MS modeling are 

considered (1), thus merging the (dq) components of the sets in 

a single vector: 
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where λ̅m,dq = [λm 0]t while [Mdq] is a (2n×2n) matrix defined as: 
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The removal of the MS couplings consists of diagonalizing 

the magnetizing inductance matrix (9).  

In this paper, the following decoupling transformation is 

proposed: 
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It is noted how the generic MS variable 𝑐̅ sk,dq (v,i,λ) is 

expressed as a linear combination of one common-mode vector 

𝑐̅scm,dq and (n-1) differential-mode vectors 𝑐̅sdm-u,dq (u=1÷(n-1)), 

using the following (2n×2n) decoupling matrix: 
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where I2×2 is a (2×2) identity matrix, 02×2 is a (2×2) zero matrix, 

while the submatrices Xu and Yu (u=1÷(n-1)) are defined as: 

 2 2( ) ,u u u uY n u X X x I       (12) 

The decoupling coefficient xu (u =1÷(n-1)) must guarantee 

the removal of the MS couplings, leading to the following 

definition: 

    
2

ux n n u n u    
 

 (13) 

The decoupling transformation has the amplitude-invariant 

propriety, and it can be inverted easily since [D]-1
 = n · [D]t. The 

matrix coefficients depend only on the number of winding sets 

n, regardless of the number of phases l composing them. Indeed, 

by considering three winding sets (n = 3), the decoupling matrix 

is computed as: 
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Such a matrix (14) can be used to decouple any triple-l-phase 

configuration, e.g., a triple-three-phase (9-phase) or a triple-
five-phase (15-phase, Fig. 1), thus showing a high level of 

versatility. Finally, it is noted how the proposed decoupling 

matrix is sparse, facilitating its implementation in commercial 

microcontrollers. By applying (10), (11) to (8), the magnetic 

(dq) model is computed as: 
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where (u =1÷(n-1)). Therefore, all the MS couplings have been 

removed, leading to a magnetic model that is formally identical 

to that obtained with the VSD approach (5). However, by 

applying the decoupling transformation to the voltage (dq) 

equations of the MS modeling (1), the following is obtained:  

, , , ,
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 (16) 

It is noted how, compared to the VSD harmonic subspaces 

(7), those of differential modes are characterized by the 

motional voltage terms. Finally, the torque-production is 

performed in the common-mode subspace, whose physical 

meaning is identical to that of the (dq) VSD subspace. Indeed, 

the machine's torque is computed as: 

  , ,

1 2

n

k scm dq scm dq

k

n l
T T p i



 
      

 
  (17) 

Therefore, the steady-state equivalent circuit of the machine 

using the new modeling approach is the same as that depicted 

in Fig. 2. However, the (dq) circuit containing all MS couplings 

is replaced with that shown in Fig. 4.  

In summary, the proposed decoupling transformation allows 

getting a decoupled multi-stator (DMS) modeling, extending 

the results obtained in [40], [41]. In those works, the decoupling 

transformation can decouple a dual-three-phase PMSM, giving 

results similar to those obtained in this paper using (11) by 
considering two l-phase winding sets (n = 2). 

D. Comparison between DMS and VSD Approaches 

DMS modeling leads to a machine model (15)-(17) similar 

to that obtained with the VSD approach (5)-(7). However, the 

meaning of such models is different from each other. The VSD 

modeling subspaces represent all machine phases, and they are 
computed using a harmonic decoupling approach [15], [29]. A  

generic time-harmonic variable (v,i,λ) is mapped only in a 

single subspace, allowing its control using a pair of regulators 

(e.g., resonant controllers [17], [43]). The power-sharing 

strategies among the phases, including the fault-tolerant 

operation, are performed through the active control of the 

harmonic subspaces [17], [25], [27]. Therefore, for each 

winding configuration, it is necessary to identify the harmonic 

subspaces that perform the desired action. As an example, a 9-

phase machine (symmetrical or asymmetrical) using a triple-

three-phase configuration is considered. 

 

 
Fig. 4.  Steady-state equivalent DMS circuit of a multi-l-phase PMSM. 
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Based on [17], starting from the (dq) currents of the winding 

sets (MS modeling), the currents of VSD subspaces are 

computed as: 
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 (18) 

where it is noted how the harmonic variables (7) are expressed 

in (dq) coordinates, thus applying the rotational transformation 

on the direct-sequence harmonic subspaces and the inverse 

rotational transformation on the inverse-sequence ones. In this 
way, in steady-state conditions, the harmonic variables become 

dc quantities, allowing their control with conventional 

proportional-integral (PI) regulators. It can be noted how the 

(dq) currents of the harmonic subspaces are computed as linear 

combinations of the (dq) currents of the winding sets, although 

there is cross-coupling among the (dq) axes. 

Compared to the VSD approach, the DMS modeling 

performs the power-sharing among the phases of each winding 

set using the harmonic subspaces related to it (3), while the 

power-sharing among the winding sets is performed using the 

common- and differential-mode subspaces (10). Indeed, 
considering the previous example, the currents of such 

subspaces are computed as: 
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 (19) 

It can be seen how no cross-coupling among the (dq) axes 

exists, allowing the vector notation also for the differential-

mode subspaces. Besides, such equations are valid for all triple-

l-phase configurations, regardless of the phases number l of 

each winding set (l ≥ 3), thus providing general validity. 

Conversely, (18) is valid only for the 9-phase machine using a 
triple-three-phase configuration and only if the stator winding 

is symmetrical or asymmetrical. Otherwise, the VSD approach 

would not even be applicable.  

Therefore, the VSD solutions require the computation of the 

relationships between the harmonic subspaces representing all 

phases (n ∙ l) and the (dq) currents belonging to each specific 

winding set (l-phases). For l = 3, corresponding to the multi-

three-phase configurations [1], [4] the general VSD solutions 

are provided in [17]. However, in that work, the currents of the 

harmonic subspaces are computed in stationary coordinates. 

Indeed, the computation of the (dq) VSD solutions requires the 
knowledge of each harmonic subspace sequence, making a 

detailed analysis of each multiphase winding configuration 

necessary. Conversely, the DMS modeling is highly general 

since the common- and differential-mode variables are defined 

directly as linear combinations of the winding sets’ (dq) 

currents (10)-(11). For this reason, the modularity is fully 

preserved, and the obtained solutions are not dependent on the 

phase number l of the winding sets.  

Regardless of the considered control approach (VSD, MS, or 

DMS), the power-sharing strategies lead to a drop in machine 

efficiency. Indeed, only the winding sets' balanced operation 

can minimize the overall Joule losses [17]. However, with the 
development of the “series/parallel configurations” [17], [44], 

[45], the control solutions able to perform the power-sharing 

among the winding sets have gained more attention, leading to 

several technical contributions [17], [18], [32], [36], [37]. Also, 

for testing high-power machines, the power-sharing strategies 

are a viable solution for performing back-to-back regenerative 

tests [37], [46], [47], thus avoiding the need for expensive high-

power prime movers.   

Finally, it should be emphasized that the DMS approach does 

not guarantee the same proprieties as the VSD in terms of 

harmonic decoupling. Harmonic mapping (as harmonic order, 

all shown with unity amplitudes) in stationary coordinates, for 
an asymmetrical 9-phase machine, configured as a triple-three-

phase one, is shown in Figs. 5 and 6, to facilitate the 

understanding. Time-harmonics up to the 31st order have been 

considered, as after the 17th harmonic and its multiples, the 

pattern is repeated [29]. Since the VSD main subspace (αβ) and 

DMS common-mode one have the same meaning, the same 

time-harmonics map into them. Similarly, identical mapping 

results are obtained for the zero-sequence components.  

However, different mapping results are obtained if one 

compares the VSD harmonic subspaces with the DMS 

differential ones. The VSD modeling maps each time-harmonic 
in a single subspace (see Fig. 5), allowing its control using only 

a pair of resonant regulators [17], [43]. Therefore, in a non-

sinusoidal PMSM, this approach is the most suitable one for 

performing the torque enhancement using the harmonics above 

the time-fundamental [48]. With regard to the DMS 

differential-mode subspaces, it is noted how the same time-

harmonics map into them (see Fig. 6), making necessary use of 

two pairs of resonant regulators in the considered case and n-1 

in a generic one to perform the control of each time-harmonic. 

 
Fig. 5.  Harmonic mapping of an asymmetrical 9-phase machine using VSD. 
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Fig. 6.  Harmonic mapping of an asymmetrical 9-phase machine using DMS. 

As a summary, for the cases in which the VSD modeling can 

be applied (symmetrical or asymmetrical windings), the DMS 

approach represents a competitive alternative for performing 

the time-fundamental torque control of the PMSM, thus 

providing the advantages stated in Section I.   

III.  MODULAR AND DECOUPLED CVC SCHEME 

The proposed control solution allows CVC implementation 

for a generic PMSM with a modular configuration of the stator 

winding, thus presenting general validity. In detail, the new 

decoupling transformation (11) is implemented to the basic 

structure of an MS-based CVC scheme [32], [34], [36]. 

Therefore, for each generic winding set k (k = 1÷n), a dedicated 

CVC is implemented, thus confirming the proposed control 

solution's modularity. In the following, the superscripts * and ~ 

denote a reference and an estimated variable, respectively. 

A. Modular CVC 

The (dq) current references 𝑖�̅�𝑘,𝑑𝑞
∗  of the generic set k (k =1÷n) 

are computed using the torque-to-currents relationships of the 

machine, as shown in Fig. 7. Therefore, an optimal control 

strategy can consist of using the maximum-torque per ampere 

(MTPA) profiles [49], minimizing the k-set phase-currents' 
amplitude for each k-set reference torque Tk

* value. Although 

the evaluation of the MTPA profiles usually requires accurate 

machine mapping [50], the optimal (dq) reference currents can 

be computed easily if a non-saturated surface-mount PMSM is 

considered: 

    * * *
, ,0 , 2 1sk d sk q k mi i l T p k n        (20) 

The computation of the (dq) reference currents for other 

PMSM typologies, as well as the evaluation of the torque-to-

currents relationships in flux-weakening operation, are not 

considered here since they are beyond the scope of this paper.  

The references of the k-set (xy-h) currents 𝑖�̅�𝑘,𝑥𝑦−ℎ
∗  (h=1÷ 

(l-g)/2-1) are usually set to zero if the winding set k operates in 

normal conditions. However, if an open-phase fault occurs, all 

the fault-tolerant algorithms developed in the literature can be 
implemented [14], [25]–[28]. 

Indeed, the harmonic VSD subspaces of each winding set are 

fully decoupled from those of the others (3). For example, a 

triple-five-phase PMSM is considered (Fig. 1). In this case (n=3, 

l=5), for each winding set, the fault-tolerant strategies that have 

been defined for the five-phase machine [25], [27], [28] can be 

implemented, thus demonstrating how the proposed solution 
allows using most of the remarkable know-how reported in the 

literature. 

Finally, the k-set (αβ) and (xy-h) feedback currents are 

computed by applying the VSD transformation [29] to the 

measured k-set phase-currents [isk,a÷…]; while the k-set (dq) 

currents are obtained by applying the rotational transformation 

[5] to the stationary (αβ) components. 

B. Decoupled CVC using the DMS-approach 

The control of the winding sets’ (dq) currents is performed 

using the DMS approach, thus removing all the couplings 

related to the modular application of the VSD transformation. 

Therefore, using the new decoupling transformation (11), both 

the reference and feedback (dq) currents are computed into their 

equivalent common- and differential-mode variables, as shown 
in Fig. 8. In this way, the machine torque is regulated through 

the CVC of the common-mode subspace. In parallel, the torque 

unbalances among the winding sets are managed through the 

CVC of the (n-1) differential-mode subspaces. 

In steady-state conditions, common- and differential-mode 

variables are dc quantities (10), allowing their control using 

conventional  PI  controllers.  Such  regulator’s  design     is simple 

 
Fig. 7.  Modular CVC scheme for a generic multiple-l-phase PMSM. 

 
Fig. 8.  DMS-based CVC scheme of a generic multiple-l-phase PMSM. 
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Fig. 9.  Modular voltage control of a generic multiple-l-phase PMSM. 

since the (dq) equations of the common-mode subspace (15)-

(16) are formally identical to those of a three-phase PMSM, 
allowing the adoption of the well-known tuning procedures. 

Besides, the PI controllers dealing with the differential-mode 

variables are even easier to design since the related equations 

(15)-(16) correspond to those of a resistor-inductor circuit (Rs-

Lσs) with simple back-emf voltages. 

The PI controllers’ outputs correspond to the common- and 

differential-mode reference voltages. Therefore, by applying 

the inverse of the decoupling transformation (11), the (dq) 

reference voltages of the sets are computed (Fig. 8). 

C. Modular Voltage Control 

The k-set reference voltages in stationary coordinates (αβ) 

are computed by applying the inverse rotational transformation 

on the k-set (dq) reference voltages, as shown in Fig. 9.  The 

(αβ) components are thus merged with the k-set reference 

voltages of the VSD harmonic subspaces �̅�𝑠𝑘,𝑥𝑦−ℎ
∗  (h=1÷ 

(l-g)/2-1). In this way, the inverse VSD transformation to 

compute the k-set reference phase-voltages [𝑣𝑠𝑘,𝑎÷…
∗ ] is applied. 

Finally, based on the dc-link voltage vdc,k of the l-phase VSI 
feeding the winding set k, the latter’s PWM voltage control is 

performed.  

It is noted that the PWM voltage control of each winding set 

is decoupled from those of the others due to modularity. 

Therefore, the voltage control of each l-phase winding set can 

be performed using the PWM algorithms reported in the 

literature [19], regardless of whether SV [20]–[22] or CB [23], 

[24] approaches are implemented. In summary, as for the fault-

tolerant control strategies, the proposed control solution allows 

using most of the know-how reported in the literature for the 

standard multiphase configurations. 

IV.  EXPERIMENTAL VALIDATION 

The validation of the DMS approach and the developed CVC 

scheme has been carried out on a 9-phase surface-mount PMSM 

using a triple-three-phase configuration (n=3, l=3). The 

machine has been obtained from a 3-phase PMSM with 6 poles 

and 36 slots, allowing the use of the off-the-shelf stator cores to 
reduce cost and design time [51]. 

However, due to the high number of rotor poles and stator 

phases, the overall number of slots has not been sufficient to 

make a symmetrical or asymmetrical winding configuration 

[29]. As a result, the spatial displacement between the first 

phases of two consecutive sets is 15 electrical degrees instead 

of the conventional values of either 20° or 40° electrical [29], 

as shown in Fig. 10. Therefore, the global application of the 

VSD modeling has not been possible, making the DMS 

approach a viable control solution together with the 

conventional MS-based CVC scheme [32], [34], [36]. 

Besides, due to several asymmetries of the stator winding, set 

2 is characterized by different resistance and leakage 

inductance values. However, such imbalances among the sets’ 

parameters have allowed the validation of the proposed control 

solution as the torque regulation is not affected by them. Indeed, 

just a negligible coupling among the common- and differential- 
modes subspaces arises, thus further demonstrating the 

proposed control solution's robustness. In Table I, the machine's 

primary parameters are listed [34], [36].  

A. Test Rig 

The PMSM under test has been mounted on a test rig for 

validation purposes. The rotor shaft has been coupled to a dc 
machine acting as a prime mover (Fig. 11). The rotor 

mechanical position has been measured with an incremental 

encoder with a resolution of 1000 pulses/r. Due to the test rig's 

mechanical limitations, the machine speed has been limited at 

±1500 r/min. 

The power converter consists of three custom-made VSIs, 

based on the insulated-gate bipolar transistor modules (Infineon 

FS50R12KE3, 50 A, 1200 V). The VSIs are fed by a 

bidirectional dc power source at 450 V. The switching 

frequency has been set at 5 kHz, with a hardware-implemented 

dead-time  of  6 μs.  The  PWM       voltage control of each VSI has  
 

 
Fig. 10. Nine-phase surface-mount PMSM using a triple three-phase 

configuration of the stator winding (6 poles). 
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TABLE I 

PARAMETERS OF THE PMSM UNDER TEST 

Symbol Parameter Unit Value 

n·l number of phases - 9 (n=3, l=3) 

p pole pairs - 3 

Trated rated torque N·m 7.1 

Prated rated power kW 1.1 

Rs 
stator 

resistance 
Ω 8.2 (Set 1 & Set 3) 

7.9 (Set 2) 

Lσs 
stator leakage 

inductance 
mH 

18.5 (Set 1 & Set 3) 

10.3 (Set 2) 

Md, Mq magnetizing inductances mH 10.5 

λm PM flux linkage V·s 0.265 

Irated rated RMS current A 1.4 

Jeq mechanical inertia kg·m2 0.0133 
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Fig. 11.  View of the PMSM under test (left) and driving machine (right). 

been performed using the 'MinMax’ modulation [52], thus 

using a CB approach. Finally, the digital controller consists of 

the dSPACE DS1006 Processor Board, using 10 kHz of 

sampling frequency (double-edge PWM modulation). 

B. Experimental Results 

The experimental results are provided for torque control 

mode. Since the machine under test is a surface-mount PMSM, 

the reference (dq) currents of the winding sets have been 

computed using the torque-to-current relationships reported in 

(20). Besides, since the machine stator consists of three winding 

sets, the decoupling transformation has been computed by 

setting n =3, as shown in (14). The torque produced by each 

winding set k (k = 1,2,3) has been estimated using (20) as: 

   ,3 2k m sk qT p i     (21) 

Finally, according to (6), the overall machine torque T has been 

estimated as the sum of the winding sets’ torque contributions. 

Experimental results are provided for the following tests: 

1) Torque step response with three active sets; 
2) Torque step response with two active sets; 

3) Torque-sharing capability; 

4) Fault ride-through capability. 

The amplitude limit of the phase-currents has been set at 3.5 A 

for all winding sets, allowing an overload torque of 175 % (12.4 

Nm) of the rated value Trated (7.1 Nm). 

1) Torque step response with three active sets: the dc 

machine has been turned off, emulating an inertial load. The 

balanced operation of the winding sets has been imposed. The 

torque has been controlled using a 2-level hysteresis 

mechanism (±12.4 Nm), keeping the machine speed within the 
test rig limits (±1500 r/min). After having crossed the zero-

speed threshold three times, the VSIs have been turned OFF. 

The obtained test results are shown in Figs. 12 – 14. Since the 

PMSM under test has been operated in healthy conditions 

keeping the winding sets’ torque contributions identical, only 

the common-mode subspace has been actively controlled (see 

Fig. 12). Therefore, such results are similar to those obtained 

with a VSD-based control scheme operating in the same 

conditions. The only difference is related to the VSD harmonic 

subspaces that are replaced with the differential-mode ones. 
Concerning the differential-mode (dq) currents, a small 

interaction between the subspaces is noted due to the imbalance 
of the winding sets’ stator parameters. However, neither 

uncontrolled overshoots nor steady-state error of the torque 

regulation has been reported. 

The torque regulation modularity is shown in Fig. 13, 

providing the time-evolution of the winding set torque 

contributions and (dq) currents during the test. Although such 

variables have not been directly controlled, it is noted how their 

responses are typical of the MS-based CVC scheme [32], [36], 

proving how the proposed solution can combine the advantages 
of both VSD and MS modeling approaches. 

To summarise, through this test, the torque regulation's high 

dynamic performance in healthy conditions has been 

demonstrated, as further proved in Fig. 14, showing how the 

machine phase-currents are controlled to their maximum 

amplitude limit (3.5 A) without any problems. 

 
Fig. 12.  Torque steps response with three active sets: DMS-based CVC.  

 
Fig. 13.  Torque steps response with three active sets: MS variables.  
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Fig. 14.  Torque steps response with three active sets: phase-currents. Ch1: is1,a 

(3A/div), Ch2: is2,a (3A/div), Ch3: is3,a (3A/div). Time scale: 200 ms/div. 

2) Torque step response with two active sets: the previous 

test has been repeated by controlling the torque of the set 3 to 
zero. In this case, the machine’s torque limit corresponds to 

two-thirds of the maximum value (8.27 Nm). The obtained test 

results are shown in Figs. 15–17. It is noted how this test has 

required more time to be performed (about 0.5 s more), as the 

maximum acceleration has decreased from 9000 to 6000 

r/min/s due to the reduction of the maximum torque limit.  

Compared to the previous test, Fig. 15 shows how the 

differential-modes (dq) currents have been actively controlled. 

Indeed, since the torque contribution of the set 3 is missing, an 

imbalance among the sets has occurred. Most of the 

considerations made for the previous test are still valid. Indeed, 

it is noted how the torque contributions of the active sets and 
the related q-axis current components have a time-evolution 

that is typical of an MS-based CVC scheme (Fig. 16). However, 

no complex decoupling algorithms have been implemented, in 

contrast to [34], [36], as the new transformation (14) allows 

performing a torque regulation similar to that of a VSD-based 

CVC  scheme.  The main  difference  is  related  to  the    fact that,  

 
Fig. 15.  Torque steps response with two active sets: DMS-based CVC.  

 
Fig. 16.  Torque steps response with two active sets: MS variables. 

 

Fig. 17.  Torque steps response with two active sets: phase-currents. Ch1: is1,a 

(3A/div), Ch2: is2,a (3A/div), Ch3: is3,a (3A/div). Time scale: 200 ms/div. 

usually, the VSD harmonic subspaces are controlled in 

stationary coordinates, leading to the control of time-

fundamental current components. Conversely, the differential 

mode variables are dc quantities in steady-state conditions, and, 

as such, they can be controlled using standard PI regulators.      

3) Torque-sharing capability: the torque-sharing operation 

has been tested at 1500 r/min imposed by the dc machine 
(speed-controlled) and with a constant PMSM torque of 6 Nm. 

Initially, such a condition has been performed by imposing the 

winding sets' balanced operation, corresponding to setting of a 

reference torque of 2 Nm for each of them. After 0.2 s, the 

overall torque of 6 Nm has been obtained by setting the 

reference torque of two winding sets at 4 Nm each, with -2 Nm 

setting (generation mode) for the third one. The winding set 

operating in the generation mode has been changed cyclically 

every 0.4 s as follows: set 1 from 0.2 to 0.6 s, set 2 from 0.6 to 

1 s, and set 3 from 1 to 1.4 s. After 1.4 s, the balanced operation 

of the winding sets has been restored. The obtained results are 
shown in Figs. 18 – 21. 

It is noted how only the differential-mode subspaces have 

been actively regulated (see Fig. 18), as the q-axis common-

mode current has been controlled at a constant value of about 

1.5 A. Therefore, it is demonstrated how the differential-mode 

subspaces  only  aim  at  managing  the  imbalance  between  the 



IEEE POWER ELECTRONICS REGULAR PAPER 

 
Fig. 18.  Torque-sharing capability: DMS-based CVC. 

 
Fig. 19.  Torque-sharing capability: MS variables. 

 
Fig. 20.  Torque-sharing capability: phase-currents. Ch1: is1,a (3A/div), Ch2: is2,a 

(3A/div), Ch3: is3,a (3A/div). Time scale: 200 ms/div. 

winding sets in terms of torque, fluxes, or currents. Although 

this test does not directly relate to any potential practical 

application, it has fully demonstrated the proposed control 

solution's torque-sharing capability (see Figs. 19 and 20). 

Finally, Fig. 21 shows how the phase-currents of the winding 

set operating in the generation mode are practically out of phase 

 
Fig. 21.  Torque-sharing capability: zoomed extract from Fig. 20. 

with those belonging to the other sets (taking into account the 

phase shift related to the winding sets’ propagation angle, i.e., 

15 electrical degrees).  

4) Fault ride-through capability: the mechanical speed has 

been kept at 1500 r/min using the dc machine as a prime mover 

and with a constant PMSM torque of 8 Nm. The winding sets' 

balanced operation has been initially imposed, corresponding to 

set a reference torque of about 2.66 Nm for each of them. After 

0.2 s, one of the three VSI units has been turned off cyclically, 

thus concentrating the overall torque production on two 

winding sets. The VSI in OFF has been changed cyclically 

every 0.4 s using the previous test sequence. After 1.4 s, the 

balanced operation of the winding sets has been restored. The 
results are shown in Figs. 22–24.  

This test shows two simultaneous operating conditions: i) 

torque capability in faulty condition, demonstrating the fault 

ride-through capability, and ii) overload operation since each 

winding set has been overloaded by a factor close to 168 % 

(2.35 Arms) to produce the total torque of 8 Nm (see Fig. 23). 

Like in the previous test, only the differential-mode (d,q) 

currents have been actively controlled (see Fig. 22). Indeed, the 

concentration of the torque production on a single winding set 

can be considered a specific torque-sharing condition. From 

Fig. 23, it is noted how each winding set has been able to satisfy 
the torque request without issues, demonstrating the 

effectiveness of the proposed control solution in open-winding 

faulty conditions. Finally, it is pointed out how the machine 

phase-currents have always been kept within the maximum 

limit (3.5 A) duringthe transients in which the VSI in OFF has 

been changed, as confirmed in Fig. 24. 

 
Fig. 22.  Fault ride-through capability: DMS-based CVC. 
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Fig. 23.  Fault ride-through capability: MS variables. 

 
Fig. 24.  Fault ride-through capability: phase-currents. Ch1: is1,a (3A/div), Ch2: 

is2,a (3A/div), Ch3: is3,a (3A/div). Time scale: 200 ms/div. 

IV.  CONCLUSION 

The paper proposed a new modeling approach for multiphase 

permanent magnet machines (PMSMs) having a modular 

configuration of the stator winding. The solution combines the 

advantages of the vector space decomposition (VSD) and multi-

stator (MS) modeling approaches, leading to a modular and 

decoupled machine model.  
The devised modeling approach uses a new decoupling 

transformation to remove the MS couplings of a generic 

modular configuration. It is well suited to control of a machine 

in which unequal power/torque sharing is desirable (as the case 

may be in future electric vehicles with multiple electric energy 

sources or microgrids with interconnection through a wind 

generator), as well as to the control of machines with the non-

standard stator winding structure, which is neither symmetrical 

nor asymmetrical. The novel decoupling transformation has 

been implemented on the basic structure of the MS-based 

current vector control (CVC) scheme, leading to a modular and 

decoupled torque control of a modular multiphase PMSM.  
The validation of the developed solution has been carried out 

with a nine-phase prototype using a triple-three-phase 

configuration of the stator winding. The experimental results 

demonstrate the feasibility of the proposed CVC scheme both 

in regular and faulty operation (modular open-winding faults), 

as well as the power-sharing capability among the machine's 

winding sets. 
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