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Abstract

In this thesis, we explore three methods that are commonly used to describe the
movement of chemicals in-vivo. We employ a number of techniques to include pa-
rameters and features to account for the complex physiology of the system we model.
In Chapter 2, we investigate a micro-scale model, to describe the distribution of
chemicals applied to the skin topically using histology images. Due to the complex,
heterogeneous nature of the skin, the model which is dependent on both space and
time is solved using the finite element method. It is shown, that the model can pre-
dict the in-vitro distribution of chemicals with differing physico-chemical properties.
In Chapter 3, employ a physiologically-based-pharmacokinetic (PBPK) model, to ac-
count for the systemic delivery of the percutaneous absorption of compounds. The
output from the model described in Chapter 2 is then paired with this PBPK model
in order to describe the distribution of xenobiotics at all stages of percutaneous ab-
sorption. The model is then used to understand how properties such as skin thickness,
vehicle concentration, as well as the skin condition atopic dermatitis affect plasma
concentration.
Finally, Chapter 4 describes a model for the permeation and uptake of polymersomes
into spheroids. Model physiological parameters are derived from in-vitro data, which
is then used to understand which binding parameters have the greatest contribution
to the therapeutic efficacy of the treatment. Furthermore, optimal polymersome radii
are derived for a range intracellular pore sizes.
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Chapter 1

Introduction

1.1 Background

We live in an age where, for the most part, data is abundant. This holds true for the

biological sciences, whereby both academics and industry researchers are continually

contributing a wide variety of data, varying from simple rate reactions, to complex

systems [1]. This has led to the development of new areas of research, such as quan-

titative systems pharmacology (QSP), which aims to create multi-scale, mechanistic

models to bridge the gap between the biological knowledge of target scale effects,

and more tradition modelling approaches like pharmacokinetic/pharmacodynamic

(PKPD) models [2]. The creation of such systems requires that the modelling at

each scale be representative of the process, and can be validated against experimen-

tal data.

When developing any new molecule that humans may be exposed to, it is important

to understand how it may interact with the body. The development of in-silico mod-

1



CHAPTER 1. TRANSPORT THROUGH BIOTISSUES 2

els for this purpose is a key tool, which may be used at the early stages of development

as a method for screening potential candidate molecules, through to the later stages

where in-vivo data may be used to refine the models. The ability to understand how

a molecule may distribute and possible metabolism pathways is key in being able to

predict any adverse outcomes of a xenobiotic. This has led to the development of

databases of adverse outcome pathways (AOPs), which aim to describe a sequential

chain of causally linked events, which lead to an toxicological effect [3]. One example

of such a database is the AOPwiki [4], which is a cross-continent effort to centralize

all know AOPs. While a mechanistic understanding of what happens once the xeno-

biotic enters the body is key, there is also a need to understand how it may first enter

the body. Humans are constantly exposed to a variety of xenobiotics, whether it

be passive environmental exposure, application of cosmetics, or intake via nutrition

or prescribed pharmaceuticals. Modelling the uptake of these xenobiotics into the

body can be complex due to differences in molecule size, physicochemical properties,

dose, and route of uptake. This leads to a multivariate problem, whereby, movement

of xenobiotics through biotissues may vary hugely depending upon a combination of

aforementioned physico-chemical properties. Within the literature, methods for mod-

elling movement generally fall into two categories: spatially dependent models where

movement is governed by a diffusion coefficient, and mass balance derived models

where movement is generally a linear transfer or flow term linked to concentration

[5]. Both styles of modelling are used commonly within the literature. The choice

of which method to use is based upon the expertise of the user, the amount of data

available, and the complexity of the system.
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1.2 Physico-chemical properties

Throughout this thesis, we will make reference to a number of physico-chemical prop-

erties, which can be used to make predictions of the movement and distribution within

biotissues. It is therefore important to define each of these properties and describe

the capacity in which they may be used.

1.2.1 Partition coefficient, Log P

A partition coefficient, describes the ratio of concentrations of a given xenobiotic,

within two immiscible phases at equilibrium. As different biotissues have varying

levels of lipids, water, and proteins, it is essential to use partition coefficients to

account for the varying concentrations of the xenobiotic within the different tissues.

1.2.2 Octanol water partition coefficient, Ko/w

The partition coefficient above is used to describe the ratio of concentration between

any two phases. However, due to the vast number of phases for which we may wish to

describe distribution between, a common method is to instead describe the ratio of

concentration in two fixed phases. The octanol water partition coefficient describes

the ratio of concentrations in water and octanol, which is a fatty alcohol. The ratio

is described as follows,

logKo/w = log

(
[solute]un−ionizedoctanol

[solute]un−ionizedwater

)
.



CHAPTER 1. TRANSPORT THROUGH BIOTISSUES 4

We may therefore say, the larger the logKo/w value, the more lipophilic a compound

is.

1.2.3 Acid dissociation constant, pKa

The acid dissociation constant, Ka, is a quantitative measure of the strength of an

acid in solution. Suppose we have a chemical species HA which is an acid, that

dissociates into A−, the conjugate base of the acid, and a hydrogen ion, H+. At

equilibrium, the pKa is defined as follows,

pKa = log10

[HA]

[A−][H+]
.

This property is particularly important when modelling transport through biotissues,

as charged compounds maybe have an increased affinity to proteins such as albumim,

which may alter transport rates, elimination rates, and partition coefficients.

1.2.4 Solubility

Solubility, S, is a measure of how much of a compound can dissolve in a reference

liquid at a given temperature. Given that the reference liquid is usually water, a

compounds solubility along with a partition coefficient (calculated as a ratio of con-

centrations in the phase and water) may be used to estimate an upper bound of the

concentration in the given phase. The solubility of a vast number of compounds can

be found in the literature, however, where not available, may be estimated using an

empirical formula as described in Chapter 2.
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1.3 Diffusion and Brownian motion

In its simplest form, diffusion describes the net movement of particulates from a region

of high concentration to a region of low concentration, for which, the difference in

concentrations is often referred to as a concentration gradient, which describes the

change over some unit of space [6]. In 3-dimensional space, Brownian motion can

be used to describe diffusion. Brownian motion describes the random movement

of particles suspended within a fluid, caused by their collision with faster moving

molecules within the fluid. It is assumed that in a closed system, at a constant

temperature after a given period of time, particles will be evenly distributed among

the volume it consumes due to there being no preferential direction of movement.

The kinetic energy of the particles, and therefore the speed at which they move may

be used to calculate a diffusion coefficient, D, by taking an average of the squared

velocity of diffusing particles [7]. This results in a constant with units of area per

unit time.

The use of diffusion coefficients is very common when modelling the movement of

particles using methods that solve for both time and space. These methods may

be computationally expensive, especially when solving two and three-dimensional

problems and often requires specialist software due to the complexity of calculations

involved. This specialist software generally carries a cost, and therefore different

methods of modelling movement may be more relevant in certain cases.
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1.3.1 Stoke’s law and the Einstein relation

Diffusion coefficients, as described in Section 1.3 are commonly used as a method for

describing the speed at which molecules will diffuse across some space. A molecule’s

diffusion coefficient may be estimated experimentally; however, this value can be

affected by the medium that the molecules is diffusing through and the temperature.

Stoke’s law was first derived by George Stokes in 1851 as a method for calculating

the drag force exerted on spherical objects with small Reynolds numbers in viscous

fluids [8]. The frictional force, Fd, is calculated as follows,

Fd = 6πµRv, (1.1)

where µ is the viscosity, R is the radius of the spherical object, and v is the flow

velocity relative to the object. The Einstein relation was derived in 1905 simulta-

neously by both Einstein [9], as part of his PhD thesis, and Sutherland [10], who

used the same method to derive the equation. The full derivation on the equation

is well documented within the literature, for example, see work by Kubo [11]. The

idea behind the relation is that after a given period of time, with random movement,

particles will be evenly distributed assuming a closed system. A particle’s kinetic

energy may be calculated using the Boltzman constant, kB, and its temperature in

kelvin, T . This may be related to the particles drift velocity, v, to give the following,

D = vkbT. (1.2)
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This predicts that particles with a higher temperature have increased kinetic energy,

and will therefore diffuse more quickly leading to a reduced time to reach an evenly

distributed state.

A special case of the Einstein relation may be calculated for spherical particles

through a liquid with low Reynolds number, known as the Stokes-Einstein equa-

tion [12]. This makes use of Stoke’s law, as well as the Einstein relation to take into

account the drag a particle may undergo while diffusing through a given liquid. The

equation is calculated as follows,

D =
kBT

6πµR
. (1.3)

The equation is regularly used within the literature for a variety of scenarios by

assuming that the particles modelled are spherical. One of the key benefits of the

Stokes-Einstein equation is the ability to predict a diffusion coefficient with very little

information required. However, due to the different ratios of the lipid and aqueous

phases in biotissues, calculating diffusion coefficients by fitting to experimental data

may be more accurate.

1.3.2 Fickian diffusion

Fick’s laws are used to describe diffusion; diffusion is the movement of molecules from

a region of high concentration, to an area of low concentration. Fick’s first law may

be derived by considering two regions, x on the left and x+ ∆x on the right, with a

crossing area A. In the left region, we have N(x) particles, while in the right region
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we have N(x + ∆x) particles. If we assume the probability of a particle moving left

or right is equal, then the net amount of particles crossing to the right region is,

−1

2
(N(x+ ∆x)−N(x)). (1.4)

Therefore, the flux of molecules over a small period of time τ through A is,

J =
−1

2
(N(x+ ∆x)−N(x))

Aτ
. (1.5)

Where concentation is given as,

C(x) =
N(x)

A∆x
, (1.6)

we may therefore instead write equation 1.5 in terms of concentration to give us Fick’s

first law given as,

J = −(∆x)2

2τ

(C(x+ ∆x)− C(x))

∆x
= −D∂C(x)

∂x
, (1.7)

where D is the diffusion coefficient. We are able to derive Fick’s second law from

the first law and an assumption of conservation of mass. If we instead imagine a

box, with volume A∆x, and we have a flux of material entering the box, J(x), and a

flux exiting the box, J(x + ∆x). Due to conservation of mass, the rate of change of
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particles within the box over some small time τ may be given as,

C(t+ τ)− C(t)

τ
=

1

τ

(J(x)− J(x+ ∆x))Aτ

A∆x
. (1.8)

If we then take the limit as τ → 0,∆x→ 0 we get Fick’s second law, given as,

∂C

∂t
= −∂J

∂x
= D

∂2C

∂x2
. (1.9)

We are able to extend this to the 3D case with spatial co-ordiantes (x, y, z), which

would instead lead to,

∂C

∂t
= −∂J(x)

∂x
− ∂J(y)

∂y
− ∂J(z)

∂z
, (1.10)

and

∂C

∂t
= D

(∂2C
∂x2

+
∂2C

∂y2
+
∂2C

∂z2

)
= D∇2C. (1.11)

It is possible to represent the Laplacian (∇2) in terms of spherical coordinates, where

u is the radial distance, φ is the polar angle and θ is the azimuthal angle. This leads

to the following,

∇2 =
1

r

∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin θ

∂2

∂φ2
. (1.12)
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Substituting this into Equation 1.11 leads to,

∂C

∂t
= D

(
1

r

∂

∂r

(
r2
∂C

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)
+

1

r2 sin θ

∂2C

∂φ2

)
(1.13)

A number of mathematical models for tumours make the assumption of spherical

symmetry [13, 14, 15, 16], choosing to only describe what happens radially. This

will reduce the problem to a single spatial dimension (in r). If spherical symmetry is

assumed, it follows that both ∂
∂θ

= ∂
∂φ

= 0. This leads to a spherically symmetrical

form of Ficks second law, with spherical coordinates,

∂C

∂t
=
D

r2
∂

∂r

(
r2
∂C

∂r

)
. (1.14)

1.3.3 Mass action

Mass action methods lend themselves very well to modelling the movement of parti-

cles due to the ease of formulating a set of equations to model a system. Regions are

described as a single or set of well mixed, homogeneous compartments with varying

volumes. Examples of methods that can be derived using mass action include finite

differences and pharmacokinetic (PK) models. Both these methods may comprise of

a series of compartments for which the flow of the modelled molecules is governed by

a difference style, first-order transfer term. To represent a spatial dimension like in

the finite differences method, a series of compartments can be created, which phys-

iologically may represent a single feature in a system. The change in concentration

within these compartments is then calculated using a series of ordinary differential
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equations. A benefit of this type of modelling is the ease at which a system may be

created; the governing equations may be derived by simply referring to a schematic

of the system which the user wishes to model. Furthermore, relatively little expertise

is needed to solve the system, with the option of using software such as SimBiology

which can generate code for a given model. While this may be beneficial to users

with little expertise, caution must still be taken in formulating a system. Many of

the software packages do contain soft checks on systems such as unit checks, however,

users with little expertise should always consult someone with more modelling knowl-

edge when implementing something based upon a in-silico prediction. One benefit of

this method is that due to the low complexity of the system, the computational cost

is low.

1.4 Transport modelling in the skin

Transdermal drug delivery can be traced back to ancient times, where the Ebers

Papyrus, dating back to 1550 B.C. suggests various remedies for a variety of skin

conditions [17]. Historical reports also exist alluding to flying ointments, where hal-

lucinogenic substances were suspended in lipophilic bases. Preparations were then

applied to broomsticks, held in between the legs [18]. It is evident that, for a long

time, humans have understood the ability to deliver drugs transdermally. However, it

wasn’t until work by Rothman in the 1940s that we began to understand the role of

physico-chemical properties in a chemical’s ability the permeate the skin [19]. From

the 1940s through to the 1970s work by Higuchi [20, 21], Hadgraft & Somers [22],
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and Blank & Scheuplein [23, 24, 25, 26] described different aspects that were key to

a drug’s ability to permeate the skin. Since then, the models used to describe the

transdermal delivery processes have increased in sophistication, varying from simple

steady-state models, through to complex multi-phase spatial models.

A simple way to describe solutes passing across the skin is to assume steady-state

conditions, where the stratum corneum is the barrier and behaves as a pseudo-

homogeneous membrane, with properties not changing with time or space. We can

relate the amount of solute Q, that is crossing the skin with an area, A, over a time

period, T , with a constant concentration gradient between the two surfaces, ∆Cs,

with a diffusion coefficient within the skin D, with a path length h, to get,

Q =
DAT∆Cs

h
. (1.15)

Steady-state may only be reached after the lag time for solute diffusion across a

homogenous membrane, which is given as h2/6D. This may also be estimated, by

looking at the cumulative solute accumulation, where the lag time is given as the x-

axis intercept [27]. Due to the assumption of steady-state, and not mimicking real-life

situations, the models are of limited use. However, steady-state models are helpful

in estimating the partition coefficient, kp, between the solute and the skin as a ratio

of the concentrations at steady state. Where Jss is the flux at steady state, and the

partition coefficient is given as the ratio of the concentrations within the skin, Cs and
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vehicle Cv, Equation 1.15 may be re-written as,

Jss =
kpD∆Cv

h
. (1.16)

Estimating kp is the first step researchers should take when looking a the uptake

of solutes across the skin for a variety of research topics. When trying to identify

potential drugs for transdermal delivery, drugs need to be soluble to permeate to

lower layers and enter systemic circulation. When screening for potentially hazardous

chemicals for pesticides or household goods, solutes with lower skin permeability are

favorable to reduce the potential for entering the systemic circulation.

1.4.1 Pharmacokinetic models

Pharmacokinetic (PK) modelling is a commonly used method to study the temporal

dynamics of compounds within the body. An assumption is made, that the region

of interest (whole body or tissues within part of the body) may be split into several

well-mixed compartments, where transfer between given compartments may be cal-

culated by first-order rate equations [28]. This may be favourable for simplicity, as

these models only require ordinary differential equations (ODEs), that are only time

dependent. When applied to the skin, a PK model may take different layers skin

to constitute the compartments, where the first-order rates may be determined by

looking at the partition coefficient logP of the drug. A typical model intended to

represent an experimental set-up can be found in a paper by Davies et al. [29], which

was constructed as follows: a compartment for the application of the chemical, DP ; a
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compartment for the stratum corneum, SC; a compartment for the rest of the viable

skin, V S; and a compartment for the fluid below the skin, RF . Where M followed

by a subscript denotes amounts, C followed by a subscript denotes concentrations, K

followed by subscripts donates the first-order permeation rates from a compartment

to a neighbouring compartment, EDP is evaporation loss and Ev flow from the skin

to the space below, the model was constructed as follows:

dMDP

dt
= −EDPCDP −KDP :SCCDP +KSC:DPCSC , (1.17)

dMSC

dt
= KDP :SCCDP −KSC:DPCSC −KSC:VCSC +KV :SCCV , (1.18)

dMV S

dt
= KSC:VCSC −KV :SCCV − EVCV , (1.19)

dMRF

dt
= EVCV . (1.20)

It may be noted that the ratio of the two first-order rate terms between compart-

ments are proportional to the partition coefficients between the compartments. These

values are calculated by fitting to experimental data. A particular advantage of this

style of modelling is the ease of pairing with a whole-body physiologically based

pharmacokinetic (PBPK) model, in order to model systemic exposure. However, PK

modelling does not account for spatial differences in the skin [27], as compartments

are assumed to be homogeneous and well mixed. Furthermore, PK models cannot

account for membrane properties and multiphase transport that may be accounted

for in transient models. Attempts have been made by McCarley & Bunge [28, 30, 31]

and Reddy et al. [32] to mimic the membrane properties found in the skin. However,

as found with PK models, the parameters used do not relate to the physiology of the
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skin, and therefore the predictive power of the model is directly linked with the data

used to parametrise it.

1.4.2 Finite differences

An extension to the PK model described in Section 1.4.1 was published by Davies et

al. who made use of the finite difference method [29]. The finite differences approach

instead treats each compartment of a PK style model, as a series of compartments,

which when applied to modelling skin, allows the user to account for concentration

gradients across skin layers and time lags [33]. Transfer between layers within the

same compartment a function of the difference in concentrations, while movement

between compartments is modelled in the same way as PK models. Davies model

consisted of three skin compartments: stratum corneum; epidermis; and dermis; and

two compartments for the donor phase and receptor fluid. Each of the three skin

compartments, as well as the donor phase compartment, was then divided into a set

of ten sub-compartments. Like other PK models, movement between compartments

is a function of concentrations in each of the compartments and a first-order rate

term. Movement between the sub-compartments was governed by the concentrations

within each of the sub-compartments. The model was then fitted to experimental

data, where the concentration in each of the equivalent compartments was recorded

at 5 time points for 13 different chemicals.

To assess the effectiveness of the finite differences approach, the residual sum of

squares (RSS) was calculated for the finite differences model, as well as 1-2-and-3-

compartment models, as well as the Bayesian information criterion (BIC). A BIC
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value is used for model selection, where model accuracy is desirable, and model

complexity is penalised. The addition of the penalisation term reduces the chance

of selecting a model which over-fits the data. The authors found that the finite

differences model outperformed each of PK models for 6 of the 13 the chemicals

tested. For the chemicals where a PK model outperformed the finite difference model,

the difference in RSS was 1.2%, or less. However, the increase in the number of

parameters meant that the finite difference model had an inferior BIC score for all of

the chemicals. While it has been shown to outperform PK models, a finite difference

approach still lacks the use of physiologically relevant parameters.

1.4.3 Finite volumes

Similar to the finite difference method, the finite volume method is a method for

reducing partial differential equations down to algebraic equations. Volume integrals

that contain a divergence term, ∇, can be converted to surface integrals through the

use of the divergence theorem [34]. These terms can instead be evaluated as fluxes

along the surface of a given finite volume.

One example of the use of the finite volume method is by Naegel et al. [35]. The

authors created a 2-dimensional brick and motor style model, where the corneocytes

are embedded within the lipid phase [36]. The model is then treated as having three

phases: the corneocyte phase Ωcor; the lipid phase; Ωlip; and a deeper skin layer phase,

ΩDSL. Transport in each phase was modelled using Fick’s second law, with diffusion

coefficients for each phase being derived experimentally. To calculate the amount of

substance passing through an interface, a surface integral must be calculated. This



CHAPTER 1. TRANSPORT THROUGH BIOTISSUES 17

leads to the use of the finite-volume method, with the resulting linear system being

solved using an algebraic-multigrid method. The authors then compared the in-silico

depth profiles to those obtained experimentally and found that the model fit the data

well.

1.4.4 Random walk

The very essence of diffusion is the random movement of particles, and as a result,

several investigators have spent time modelling diffusion using random walk meth-

ods. By pairing a random number generator with some governing rules of diffusion,

particles movement may be simulated. Frasch [37] published a model using a real-

istic stratum corneum geometry from mouse skin. For any given time step, n, the

location of the particle is given as (x(n), y(n)), which is determined from its previous

position (x(n − 1) + ∆x(n), y(n − 1) + ∆y(n)), as well as its squared displacement

r2(n) = ∆x2(n) + ∆y2(n). The mean squared displacement was related to the diffu-

sivity through the following,

< r2 >= 4Dt (1.21)

where D is the diffusion coefficient and t is time. Random walk models are a powerful

tool, and have been shown to be more effective then quantitative structure-permeation

relationship (QSPR) models at predicting diffusion coefficients from physico-chcemical

properties.
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1.5 Transport modelling in tumours

While many mathematical models exist that describe the uptake and delivery of

nanoparticles to tumours, the lack of treatments that make use of the technology

shows that there is still a gap between theoretical knowledge and implementation. A

large portion of the research within the field has focused on the delivery across the

vascular network of the tumour, as this is the main barrier when trying to deliver

large objects such as nanoparticles in-vivo [38, 39]. However, there are a number of

papers on the diffusion and binding of molecules in both tumors and spheroids of

tumor cells. A measure of an anti-cancer molecule’s effectiveness, is the fraction of

cells that are killed after treatment. Therefore, the goal is to create a treatment that

may permeate well, and only kill the targeted cancer cells.

A theoretical paper by Graff et al. [13] looked at the diffusion and binding kinet-

ics of antibodies with antigens within tumour spheroids. The model consisted of

3 partial differential equations (PDEs), which modelled the temporal distribution

of antigens, antibodies, and the antibody-antigen complex. Both the antigen and

antibody-antigen complex was assumed to be fixed in space, while antibody move-

ment was modelled using Fick’s second law, with an assumption of spherical symme-

try. Antibody-antigen complex formation, disassociation, and metabolism followed

first-order kinetics. The authors found that the time taken to reach equilibrium for

binding was much quicker than that of the diffusive time-scale, which suggests that

the rate of diffusion was the limiting factor for antibody treatment.

A paper by Ghaghada et al. [40] chose to account for a non-homogeneous distribu-
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tion of cell surface receptors. The authors argued that once the initial complex has

formed, only a fraction of the surface receptors on the cell may then bind, which they

named a cells area of influence (AOI). Related, they also include a term for the active

fraction area of the carrier (AFAC), i.e. the fraction of the nanoparticle available for

binding, as a function of tether, ligand and nanoparticle size. The authors found that

binding and the receptor-mediated endocytosis took place on different time scales,

and therefore, a kinetic model was created to include both phenomena.

Baish et al. [41] argued that the vast difference in vascularity between tumour and

regular tissues may be quantified with two measures: δmax, the maximum distance in

the tissue from the nearest blood vessel; and λ, a measure for the shape of the space

between vessels, which may be used to determine the rate of delivery into tissue. It

was found that the maximum time to deliver the nanoparticles to any point within

the tumour scales with the square of δmax. The use of these metrics also allowed

the authors to show that emerging therapeutic agents that inhibit or increase the

vascularity of the tumour have potential for treatment in-vivo.

Stylianopoulos et al. [42] created a model, which looked at the electrostatic inter-

actions between the delivered nanoparticles and the charged vessel walls of vascular

tumours. They found that a small increase in electrostatic attraction doubled the

flux of the nanoparticles. Furthermore, they found that for a given nanoparticle

radius, there exists a surface charge density threshold, for which a large increase in

transvascular transport is predicted. The vascular domain of the tumour in the math-

ematical model was created using gradients of vascular endothelial growth factors and

fibronectin. Blood flow through the tumour was assumed to follow Poiseuille’s law,
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which relates flow to the blood’s viscosity, pressure gradient and length and diameter

of the vascular network. Flow across the vascular network wall follows Starling’s law,

which accounts for varying force on the vascular wall depending on heart rate and

stroke volume. Interstitial flow was governed by Darcy’s law, which describes the

flow through a porous medium. A model for the uptake of the nanoparticles was not

included. Instead, Stylianopoulos et al. focused on the transvascular flux; a measure

of nanoparticle delivery to intracellular space rather than the uptake, as it was shown

by both Graff and Ghaghaha [13, 40] that the permeation was the rate limiting factor

in uptake.

A model by Van de Ven et al. [43] looked at the effect of nanoparticle delivery on

the growth of avascular tumours, which was paired with a model by McDougall et

al. [44] to account for angiogenesis. A key feature of the model is allowing tumour

growth, which is dependent on oxygen and nutrient gradients, as well as whether the

drug concentration, Tdrug is above some threshold in proliferating cells. They were

able to achieve this by splitting the tumour into three regions: a proliferating region,

where the cells have sufficient levels of nutrients and oxygen; a hypoxic region, where

cells have sufficient levels of nutrient and oxygen to survive, but not enough to pro-

liferate; and finally, a necrotic region, where the nutrient and oxygen levels are too

low. Growth was then modelled using a generalized form of Darcy’s law. Transport

of both the nanoparticles and oxygen made use of reaction-diffusion equations for

each of the regions. The effect of the drug on the tumour cells was assumed to only

take place within the proliferating region, effective when drug concentration is above

a given threshold. This led to the authors being able to predict what dose is required
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to reduce the tumour volume by 50%.

Frieboes et al. [45] created a model for the accumulation of nanoparticles within

tumours. Like in Van de Ven et al. [43], tumour growth is modelled by splitting

the mass into proliferating, hypoxic and necrotic regions, with tumour growth veloc-

ity being governed by Darcy’s law. The authors looked at optimising nanoparticle

properties such as size, ligand density, and receptor-ligand density to maximize the

number of nanoparticles adhering to the vascular walls of the tumour, therefore in-

creasing the delivery of the nanoparticles to the target cells, and reducing off-target

toxicity.

A paper by Namazi et al. [46] incorporates a phase lagging model of drug diffusion.

The purpose of the lag time is to quantify the time difference between the delivery

of the drug and increase in concentration within the tumour. The authors were able

to solve a standard diffusion equation via the use of substitutions and a Laplace

transformation in order to find the concentration profiles for three different diffusion

coefficients. Using this, they were able to create an effective diffusion coefficient for

a drug, which could predict the depth to which the drug penetrates with strong ac-

curacy when compared to experimental results (R2 = 0.99).

In order to compare the effectiveness of encapsulated treatments, Wang et al. [47]

compared free and encapsulated forms of the same drug in tumours. A spatio-

temporal model was created comprised of two PDEs representing the dynamics of

drug concentration and volume fraction of cancer cells. Uptake is modelled with

first-order kinetics, which is related to a reduction in the number of cancer cells.

This then allowed the authors to model variable tumour volume. Experimental data,
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paired with the model showed that the use of encapsulated drug leads to a three-fold

increase in the death of tumour cells when compared with the free-drug equivalent.

Scapra et al. [48] looked at quantifying the release of the therapeutic agent re-

leased from nanoparticles inter-cellularly. They developed an assay based upon the

hydrophilic dye, fluorescein. Due to the large aqueous component of the cells, fluo-

rescence could be detected once the nanoparticles were internalised and the payload

released. The number of internalised nanoparticles per cell was estimated based on

the intensity of the fluorescence. It was found that after one hour, the average num-

ber of nanoparticles per cell was 209. After three hours, the average was 238 per

cell, and after twenty-four hours, the average was 286 per cell. This non-linear re-

lationship between time and the number of internalised nanoparticles suggests that

extracellular concentration may not be the only driving factor in the internalisation

of the nanoparticles. It may also suggest that cell surface-receptors are not always

returned to the cell surface, as previously thought.

To get a complete understanding, drug pharmacokinetics (PK), and effects within the

tumour must also be predicted. Work by Sinek et al. [49] modelled the PK of dox-

orubicin and cisplatin; two commonly used tumour treatments. Sinek et al. made use

of a finite-element model developed by Zheng et al. [50], which simulates multi-scale

tumour growth and angiogenesis. Three ordinary differential equations were used to

represent compartments within the model, with an extra compartment added when

modelling doxorubicin. These compartments represent; extracellular, cytosolic, and

DNA-bound drug, with the extra compartment representing intracellular organelles.

Model parameters were obtained by fitting data, while initial volumes and concentra-
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tions within compartments were estimated. The study shows that the effectiveness

of therapy relies heavily upon the cellular environment.

1.6 Research novelty

This thesis describes the development of three in-silico models, which describe the

movement of xenobiotics through biotissues. In Chapter 2, we describe a novel

method for predicting the movement of solutes and their metabolites through hu-

man skin. Section 1.4 outlines both empirical and mechanistic approaches to mod-

elling transdermal drug delivery. However, these approaches tend to ignore the com-

plex physiology of the skin and instead describe the skin as a collection of approx-

imated layers. Such layers are then treated as homogeneous media with typically

no intra/extracellular distinction. Another key issue in many models is that barrier

properties neither change with time, nor position and therefore diffusion is strictly

governed by the concentration at that point in space. Furthermore, many models as-

sume a reservoir-like, topical, infinite doses which allows the underlying equations to

then be solved by making use of steady state-kinetics. However, this is very difficult

to mimic in-vivo and has little application in real-world situations. Parametrising

traditional models is also an issue as values are calculated as averages rather than

capturing the actual microscale details. This leads to issues when the physiology of

the skin may vary (e.g. comparing drug delivery and enzyme kinetics in the skin from

different areas of the body).

Several bodies of work exist which aim to overcome some of these shortfalls, by look-
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ing in detail at specific layers of the skin [51, 52, 53]. However, they fail to combine

this level of detail to create a complete model of transdermal drug delivery. To date,

perhaps the best attempts at overcoming the aforementioned issues was published by

Kattou et al. [54], and Chen et al. [55], who both created a finite element model

of the skin. The models included layer-specific partition and diffusion properties,

and a brick and mortar style stratum corneum. However, unlike the model described

in Chapter 2, it does not include geometrically correct discrete cells, and does not

account for the barrier properties of the stratum corneum caused partially by the

presence of proteins such as keratin and filaggrin [56].

Within Chapter 3, we develop a PBPK model, which when paired with the model

in Chapter 2, can predict the temporal distribution of chemicals entering the body

transdermally. Several PBPK models exist which allow for chemicals to enter the

body via the skin [57, 58, 59, 60, 61, 62]. However, these models are all designed to

predict the uptake and distribution of a single stated chemical. Furthermore, in all

of these models, the skin is treated as a single compartment. It was shown by Davies

et al. [29], that when using compartmental models for the skin, an increase in the

number of compartments allowed the model to better fit the data. Therefore, to the

best of our knowledge, there are no examples of models within the literature that

accounts for the complex physiology of the skin, combined with the ability to predict

drug distribution based upon physico-chemical properties.

When modelling nanoparticle delivery, there are two common approaches: a complex

binding model with no spatial component such as those found in work by Sorrell

et al. [63], and Ghaghada et al. [40]; or a simple binding model where a spatial
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component is included [13, 47, 64]. The choice to either model binding complexity

or a spatial component may be due to the added computational complexity required

when numerically solving partial differential equations when compared to ordinary

differential equations. The complex binding models have a far greater number of

equations when compared to the spatial models, which only account for unbound,

bound, and internalised nanoparticles. In Chapter 4, we combine the complex bind-

ing model by Sorrell et al. [63] with a spatial framework, while greatly reducing the

number of equations required using statistical moment closure. This model reduction

allows for a greater in-depth analysis of the system, allowing us to understand what

the key parameters are which affect the delivery of these polymersomes, and what

physiological parameters affect their permeation.

1.7 Thesis overview

This thesis details the development of three models which describe multi-scale trans-

port of xenobiotics in both in-vivo and in-vitro settings in order to better understand

how physiological parameters effect absorption, distribution, metabolism and excre-

tion. A number of mathematical techniques are utilised to ensure that the model

closely mimics the experimental set up. Where space isn’t an important factor, a

system of ODEs are used to describe the rate of change of the xenobiotics with re-

spect to time. When space is a factor, a system of PDEs are instead used to predict

the dynamics of various variables. This thesis consists of three research chapters and

one discussion chapter.
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Chapter 2 describes the development of a novel numerical, continuous-discrete hy-

brid partial differential equation approach to describe the time dependent spatial

distribution of a given compound and its metabolites. Model parameters are de-

rived from a number of different literature sources, based on the physico-chemical

properties of the compound modelled. The model is then validated against pub-

lished in-vitro data, for a number of compounds with different initial concentrations

and physico-chemical properties. The model is highly adaptable and can be used to

model skin from different parts of the body, different exposure scenarios, and different

metabolism pathways.

In Chapter 3, we describe a multi-purpose whole-body PBPK model. The model is

adapted to account for a percutaneous absorption through inclusion of a first-order

kinetic term in the skin compartment. We derive unknown PBPK parameters for

lidocaine by fitting the model to published IV data. The model is then used to un-

derstand how various parameters, such as skin thickness, initial concentration and

size of area of application effect the temporal dynamics of plasma concentration. We

also investigate how a reduction in skin-barrier properties found with diseases such

as atopic dermatitis, effects plasma concentration when paired with a varied skin

thickness, initial concentration, or size of area of application.

Within Chapter 4, we take a previously published model of polymersome uptake

by cancer cells, and reduce the number of equations required through the use of a

statistical moment closure. The model is then adapted to describe the permeation,

and uptake of polymersomes in a spheroid with the addition of a spatial dimen-

sion. Spheroid physiological parameters are initially estimated by fitting the model
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to experimental data of polymersome uptake provided by collaborators. Optimal

polymersome properties were then calculated to ensure the maximal volume of ther-

apeutic dose is delivered to cells across the spheroid. Global sensitivity analysis was

then performed to understand what the key binding parameters are, and how they

affect the uptake of polymersomes within the spheroids.



Chapter 2

Modelling the transport of xenobiotics

through human skin

2.1 Background

The skin can be described as three layers: the epidermis, the dermis and the subcu-

taneous tissue, which all have differing structural and physiological properties. The

innermost layer is the subcutaneous tissue: it consists of fibroblasts, which attach the

upper layers of the skin to skin and bones; adipocytes, which contain much of the

body’s fat stores for insulation and energy; and macrophages for clearance of cellular

debris and pathogens [65]. The middle layer of the skin is the dermis: it also consists

of fibroblasts, adipocytes and macrophages, as well as the dermal matrix containing

collagen for strength and elastin which provides elasticity [66]. The dermis connects

to the epidermis via the basement membrane.

The outermost layer of the skin is the epidermis, consisting of 90% increasingly flat-

28
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tening keratinocytes suspended within a lipid matrix [51]. The epidermis may be

further divided into four strata, from the inner to the outer they are: the stratum

basale; stratum spinous; stratum granulosum; and the stratum corneum. The basale

layer consists of mainly keratinocytes, with some merkel cells present, which are re-

sponsible for light touch sensation [67]. Within the spinous layer, keratinocytes start

to connect via desmosomes and start to produce lamellar bodies, which contain lipids

and catabolizing enzymes, both of which are essential chemical/biochemical barriers

[68]. Within the granular layer, further secretion of lamellar bodies take place, and

cells start to lose organelles and nuclei. At their final stage of differentiation, ker-

atinocytes become known as corneocytes, which make up the outermost layer of the

epidermis, the stratum corneum. One characteristic the keratinocytes posses is that

they become flatter as they progress from the basale layer to stratum corneum.

The stratum corneum is the primary resistance layer of the skin, greatly reducing

the ability for hydrophilic compounds to permeate. Compounds that can permeate

generally do so via the intracellular lipid layer [69]. The structure is akin to a bricks

and mortar, where the bricks represent the non-living corneocytes and the lipids,

organised into bilayers, may be thought of as the mortar. Due to this structure, the

route for a diffusing compound is tortuous, causing hydrophilic compounds to travel

via lipid head group regions, and lipophilic compounds to travel through lipid tails.

Once a compound has permeated the stratum corneum, it may diffuse through the

further levels of the epidermis, where it may be subject to various phase II metabolis-

ing enzymes, which have been shown to be expressed within the lower layers of the

epidermis [70, 71].
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For the most part, drugs are delivered in two ways: intravenously (IV) or orally. How-

ever, both methods of administration have drawbacks. Drugs delivered intravenously

generally require a trained healthcare professional, run the risk of infection and may

compromise the structure of the veins at the delivery site. Drugs administered orally

may have their structure altered within the gastrointestinal (GI) tract, generating

a certain level of uncertainty on the degree and speed of uptake between patients

[72]. This leads to a need to develop new methods of administration to bypass the

drawbacks of IV and oral administration. Transdermal drug delivery is one possible

alternative method of delivery, which is being utilised more by pharmaceutical com-

panies due to a number of advantages such as ease of administration, bypassing the

GI tract, lower enzyme activity, localised delivery, and it is particularly useful for

drugs where there is a significant first pass effect by the liver.

Due to the complex structure and physiology of the skin, the number of drugs de-

signed to be delivered transdermally is still low; although, the number of drugs being

approved for delivery transdermally has increased year by year since the 1980’s [69].

It is therefore necessary to develop a microscale knowledge of the mechanisms that

govern transdermal drug delivery to develop a predictive tool to screen potential can-

didates. There are currently very few drugs that are delivered via the skin (e.g. nico-

tine patches, fentanyl spray and patches) but with advancements in technology such

as permeability enhancers and hypodermic needles the future potential is promising.

Development of physiologically relevant in-silico models will aid in the optimisation

of the use of permeability enhancers due to the understanding of drug delivery and

the ease and speed of simulations.
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The mathematical modelling of transdermal drug delivery is a growing area of re-

search which has received much more interest in recent years, including a task force

set up by Cosmetics Europe [73]. Cosmetics Europe represent a consortium of Eu-

rope’s largest cosmetic and personal care companies, who were particularly interested

in an in-silico approach to defining bioavailability and metabolism of xenobiotics in

the skin. This aligned with a wider desire across multiple scientific disciplines to

greatly reduce animal testing through the use of initial screening processes for po-

tential candidate chemicals. Many papers have been written attempting to describe

aspects of drug delivery via the skin using both mechanistic and empirical approaches

which have been summarised by both Mitragotri et al. and Russel & Guy [27, 74].

However, the publications summarised in these bodies of work tend to ignore the

complex physiology of the skin, and instead try to describe it as a collection of ap-

proximated layers. Such layers are then treated as homogeneous media with typically

no intra/extracellular distinction. Another key issue in many models is that barrier

properties neither change with time nor position and therefore diffusion is strictly

governed by the concentration at that point in space. Furthermore, many models

assume a reservoir-like, topical, infinite dose which can then be solved using steady

state kinetics. However, this is difficult to mimic in-vivo and has little application in

real world situations. Parametrising traditional models is also an issue as values are

calculated as averages rather than capturing the actual microscale details. This leads

to issues when the physiology of the skin may vary (e.g. comparing drug delivery and

enzyme kinetics in the skin from different areas of the body). There are examples

of work which have attempted to account for some of these shortcomings. However,
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they still fall short by simplifying large parts of the complex physiology of the skin.

Within this chapter, we describe the development and implementation of a novel

technique for predicting the delivery and metabolism of xenobiotics transdermally.

Our model uses a numerical, continuous-discrete hybrid, partial differential equation

approach to describe both the steady-state and time-dependent spatial distributions

of a given compound and its metabolites. This method captures the complexity of

transdermal delivery, by incorporating discrete cell geometries gathered from histol-

ogy sections of native human skin, and allows for multiphase transport.

2.2 Methods

2.2.1 COMSOL

COMSOL Multiphysics is a finite element simulation software for the modelling of

numerous processes covering a vast array of scientific disciplines. The software allows

the user to utilise a range of packages which may be used to model a variety of

physical phenomena. The type of problems solved in COMSOL are generally both

spatially and temporally dependent, and are therefore solved using partial differential

equations (PDEs). COMSOL utilises a powerful numerical technique, named finite

the element method. This method can be used to solved PDE’s in the weak form,

which will be discussed in more detail in Section 2.2.2. Of particular use to us is the

transport of dilute species module, which may be used to model both diffusion and

convection of multiple chemicals in up to three dimensions.
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2.2.2 Finite element modelling in COMSOL

A dynamic, mathematical problem which is time and space dependent is generally

expressed in terms of partial differential equations. However, for complex geometries,

like the discrete cells found in our skin model, analytical methods cannot be used,

due to the difficulty in constructing a set of functions which satisfy the boundary

conditions. However, for models with less complexity, analytical solutions to diffu-

sion equations exist. Instead, we rely upon numerical techniques, developed over the

last few decades to approximate the solutions to these problems. The finite element

method relies upon discretising the domain into a set of smaller domains named el-

ements. Calculations are then made for each element, which can then be used to

calculate a solution for the entire domain. An example of a small amount of our

model domain, reduced into elements, is shown in Figure 2.1.

Figure 2.1: An example of a geometry discretised into elements. Solutions are gener-
ated for each of these elements, and are paired together in order to generate a result
for the entire domain.

The mathematical model for diffusion, Fick’s Second Law, is generally given in its
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strong form: a governing equation, with accompanying boundary conditions, which

gives the concentration at every point within a domain a solution must satisfy. In-

stead, to numerically approximate a solution, the finite element relies on the weak

form of an equation. The weak form is obtained by multiplying the governing equa-

tion by some test function, then integrating over the domain. The test function, and

solution, are assumed to belong to Hilbert spaces. A Hilbert space is an infinite-

dimensional function space, which has the beneficial property of allowing the test

functions to be manipulated in the same way a vector is in a vector space. Green’s

first identity is then used to remove the Laplace operator. If this then holds for

all points in Hilbert space, then the weak form of an equation is complete. This is

particularly beneficial over the strong form of an equation, as it does not have to

be well defined at all points. An approximate solution may then be calculated in a

finite-dimensional subspace of the Hilbert space, which may be expressed as a linear

combination of a set of basis functions, belonging to the subspace [75]. The basis

functions are generally very simple piecewise functions; however, the combination of

these functions in order to minimise the error between the approximation and solution

is generally kept secret by software providers.

2.3 Model creation and parametrisation

The unique and novel feature of the model described in this chapter is the ability to

create geometries which mimic that of native human skin, which allows for the mod-

elling of multiphase transport. Figure 2.2 shows E-cadherin immunohistochemical-
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stained native human epidermis. Shown are discrete keratinocytes within the lower

layers of the epidermis, which become flattened as they displace outwards towards

the stratum granulosum and corneum. To create the model geometry, we begin by

defining boundaries of each of they layers using WebPlotDigitizer. WebPlotDigitizer

allows a user to select points on an image, which can be exported to packages such

as Matlab and used to define a geometry.

Figure 2.2: E-cadherin immunohistochemical-stained native human epidermis, which
is used to define the geometry of our model. Discrete keratinocytes are visable in
the lower layers, which then flatten as they displace outwards towards the stratum
granulosum and corneum.

WebPlotDigitizer may also be used in the creation of the boundaries of the discrete

cells. One possible higher throughput approach is to use a Voronoi tessellation, which

only requires the point of the nucleus. This method is discussed in detail, and is

utilised in Chapter 4. One limitation of this method is that it only generates convex

polygons, and therefore would not pick up all the details of the histology image shown

in Figure 2.2. Instead, we chose to define the boundary points by selecting points

along it. While this took longer than the alternate approach, it picked up far more of

the detail of the histology image. In order to assess the range of extracellular gaps,
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transmission electron microscopy (TEM) was used. Figure 2.3 show a TEM image

on native human skin. With an understanding of the size of extracellular gaps, the

geometry created could be altered by moving all cell boundary points inward towards

the nucleus, in order to create gaps akin to that found in Figure 2.3.

Figure 2.3: Unpublished transmission electron microscopy image of human epidermis
was used to assess size of extracellular gaps.

This leads to the construction of the final geometry of the epidermis shown in Fig-

ure 2.4. The two outer most layers, the stratum corneum and stratum granulosum,

are described as individual, whole layers, while the lower layers are instead being

described by the discrete cells. Finally, we must define the dermis. Kretos et al.

[76] reported, for native human skin, the dermis is on average, 300µm thick. The

geometry for the dermis may be generated, by utilising the points which form the

base of the epidermis, to form a union, and create a geometry with a 300µm depth.
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Figure 2.4: The physiologically relevant skin geometry generated using the histol-
ogy image in Figure 2.2. Visible is the stratum corneum, stratum granulosum, and
discrete cells within the lower layers of the epidermis manually segmented, using
WebPlotDigitizer , with intracellular gaps estimated using the TEM image shown in
Figure 2.3.

2.3.1 Calculation of diffusion coefficient for the stratum corneum

With the model geometry defined, we now can assign transport properties to each

of the regions. As each of the stratum within the epidermis have varying levels of

lipids, proteins, water and morphology, each must be assigned a different diffusion

coefficient. Within the literature, significant effort has been put into predicting dif-

fusion coefficients across the stratum corneum (SC) using a variety of techniques.

As the stratum corneum is the primary barrier layer of the skin, the transfer of any

xenobiotic across the skin initially depends on the upon its ability and time taken to

permeate the stratum corneum.

One method for predicting diffusion coefficients, are so-called quantitative struc-

ture permeation relationship (QSPR) models. QSPR models extend quantitative
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structure-activity relationship (QSAR) models, by including physiochemical proper-

ties. The main focus of QSPRs has been the calculation of permeability coefficients

(ksc), defined as being the steady-state flux of a chemical across the skin, normalized

by the concentration gradient. An example of a QSPR model, can be derived from a

generalised form of the Potts-Guy equation [77], given as,

log ksc = a+ b logP − cMW, (2.1)

where a, b and c are estimated using regression methods, MW is the compounds

molecular weight, and logP is the partition coefficient. The equation incorporates the

essence of diffusion within the SC: an inverse relationship between molecular volume

and its diffusivity. A molecule’s theoretical maximum diffusivity was calculated,

and was used in conjunction with a function based on the molecular volume and

octanol water coefficient, kow, to predict a molecule’s permeability. This could be

used to derive a diffusion coefficient through a SC with thickness hsc. The diffusion

coefficient was calculated as follows,

D = D0e
−β V , (2.2)

where V is the estimated molecular volume of the permeant, D0 is the diffusivity

through water and β could be determined by fitting to experiments.

Johnson et al. proposed that transdermal drug delivery, for the most part, occurred

via the intrakeratinocyte lipid domain [78]. The authors assumed that the intrak-
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eratinocyte lipid is anisotropic, such that molecules pass through at different rates

in different directions, but the domain is arranged in such a way that molecules can

pass through the SC without having to cross the lipid head group region [27]. A

lateral diffusion coefficient was calculated as a function of a molecule’s permeability,

ksc, which in turn, was calculated as a function of the molecule’s octanol water co-

efficient (ksc = kβow). By performing a regression analysis on data from 120 human

skin permeability measurements, β was determined. A strong relationship was found

between molecular weight and ability to permeate the SC. It was concluded that the

lateral diffusion was sufficient to explain the resistance to permeation through the

SC. Where ksc is the permeability through the SC, and 0.36cm is derived by multi-

plying the thickness of the stratum corneum by the effective tortuosity of the stratum

corneum, the diffusion coefficient through the SC is given as,

Dlat =
ksc
K0.76
o/w

(0.36 cm). (2.3)

A different approach was taken by Mitragotri, who instead proposed an equation to

describe solute diffusion lipid bilayers using scaled particle theory [79]. Scaled particle

theory is a statistical mechanical descriptive device for the fluid phase of a model in

three dimensions [80]. The model allows for molecules to diffuse in all directions

within the lipids, and an averaged displacement between the three directions was

calculated. A diffusion coefficient can be calculated based upon the work required to

create a free volume required for diffusion, by calculating the conditional probability

density that a path exists between two points in the direction of diffusion and is
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of the critical path length required for solute diffusion. Mitragotri predicted that

solutes’ partition coefficients in the intrakeratinocyte lipids are similar to those that

are measured in isotropic solvents, such as octanol. They could therefore use the ratio

of a molecule’s solubility in octanol and water, Ko/w, along with the solute radius, r,

to predict permeability as,

ksc = 5.6× 10−6K0.7
o/we

−0.46r2 . (2.4)

Perhaps the most comprehensive approach is provided in a series of papers by Wang et

al. [51, 52]. In the first of the two publications, Wang et al. introduced a model which

incorporated more realistic keratinocyte shape, anisotropic lipid phase diffusion, and

allowed for molecules to permeate through the keratinocytes. Transport properties

were defined for diffusion through the intrakeratinocyte lipids, keratinocytes, as well

as transfer between the phases, proportional to the partition coefficient. The inclusion

of keratinocyte phase transport is particularly important for hydrophilic compounds,

which transport poorly through the lipid layers. In the second of the two papers,

the model is then fully parametrised using both experimental data and fundamental

transport theory. This led to a model which could predict permeability for both

small and large molecules through partially and fully hydrated SCs. Where (ksc)
comp

is the dimensional SC permeability (calculated as a function of diffusion and partition

coefficients of water, corneocytes and lipids) as described by Wang et al. [51, 52],

and hsc is the thickness of the stratum conreum, the diffusion coefficient through the
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SC is given as,

Dsc =
(ksc)

comp(hsc)

Ksc/w

. (2.5)

Diffusion coefficients for acetaminophen (APAP) were calculated using each of the

methods shown below in Table 2.1, to assess the difference between each of the models.

For the simulations within this chapter, we used the model described by Wang et al.

[51, 52]. The authors used the most comprehensive approach based on fundamental

transport theory calibrated with existing experimental data. This contrasts with

the other authors that either used mechanistic or empirical methods, rather then a

combination like Wang’s method.

Author Method used Dsc (cm2 s−1)
Potts & Guy [77] Re-arrangement of quantitative structure-

activity relationship (QSAR) equation.
1.6843× 10−9

Johnson et al. [78] Lateral diffusion coefficient via the intra-
cellular lipid matrix with no permeability
through the keratinocytes.

4.7892× 10−9

Mitragotri [79] Scaled Particle Theory. 1.6792× 10−9

Wang et al. [51, 52] Multiphase, trapezoidal brick and mortar
model parametrised using experimental data
and fundamental transport theory.

1.3931× 10−10

Table 2.1: The diffusion coefficients from four different models for APAP across the
Stratum Corneum.

2.3.2 Calculation of diffusion coefficients for the rest of the

viable epidermis and dermis

Within the rest of the viable epidermis, we need to define diffusion coefficients for the

stratum granulosum, the extracellular fluid, discrete cells, and the transfer between
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the extracellular fluid and cells. Nitsche et al. [53] calculated a multiphase diffusion

model for the viable epidermis, by treating the epidermis as a hexagonal array of

cells bounded by 4-nm-thick, anisotropic lipid bilayers, separated by 1-mm layers of

extracellular fluid. Diffusion via the extracellular fluid was assumed to be the bulk

aqueous diffusion, Daq, reduced by a hindrance factor, Hext = 2, which represents

the reduced mobility through extracellular space [81], and is given as,

Dext = Daq/Hext. (2.6)

Nische et al. [53] also calculated effective diffusion coefficients for the epidermis.

They provide three equations, which describe effective diffusion coefficients for hy-

drophilic and lipophilic molecules. These are calculated as a function of the diffusion

coefficient through water, and a hindrance factor. The hindrance factor arises from a

molecule’s tendency to diffuse via either cytoplasm (Hcyt), extracellular fluid (Hext) or

via the lipid matrix depending upon the molecules lipophilicity. Like in Equation 2.6,

diffusion coefficients are calculated as a function of bulk aqueous diffusion reduced

by a hindrance factor. For highly lipophilic permeants, the following relationship for

diffusion through the granular layer is given,

Dgran = Daq/Hcyt. (2.7)

This suggests that displacement through the epidermis is dependent on mobility

through cytoplasm. The same calculation can be used to calculate the diffusion
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coefficient through the cytoplasm, Dintra. For larger, hydrophilic permeants, within

the granular layer, the following relationship for diffusion is given,

Dgran = Daq/Hext. (2.8)

A series of papers by Menochet et al. [82, 83] described a method for calculating a

passive diffusion clearance for a xenobiotic, as a function of its logD7.4. A molecule’s

logD7.4 describes the partition coefficient at a specific pH value (in our case, 7.4).

For non-ionisable compounds, this is equal to the logP . For ionisable compounds,

the logD7.4 will be altered by pH, as the distribution of charged and uncharged forms

would change. Although the paper focuses on hepatocytes, it may be assumed that

hepatocytes and keratinocytes share similar lipid bilayers, and therefore the passive

diffusion clearance term may adequatly describe passive diffusion for keratinocytes.

The relationship between passive diffusion clearance and logD7.4 is given as follows,

log(Pdiff ) = 0.6316 logD7.4 − 0.3143. (2.9)

However, the units for this term are µL/min/106cells, whereas our model requires

units of either [unit of area/unit of time], or [1/unit of time]. A recent publication

by Leedale et al. [84] describes a method of modifying Pdiff , in order to define a per-

meability coefficient Q, which is also a function of the cell radius, R. An assumption

is made that the cells are spherical, and therefore, the rate of change of the amount
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in the cell, Acell, is calculated by integrating over the surface of the cell to get,

dAcell
dt

= 4πR2QC0 =
PdiffC0

106
, (2.10)

where C0 is the extracellular concentration, which cancels when utilising Eq 2.9 to

get,

Q =
1

106

100.6316 logD7.4−0.3143

4πR2
. (2.11)

As the stratum corneum and, more generally, the epidermis are the principal barriers

for transdermal delivery, little effort has been spent investigating diffusion coefficients

through the dermis as it was assumed that, if a substance may permeate the upper

layers of the epidermis, it will reach the dermis and enter systemic circulation. In

a number of models, this often leads to the lower layers of the epidermis and der-

mis being modelled as a single, homogeneous medium. In a geometrically complex,

non-homogeneous model such as ours, it is important to define each of the unique

regions with their own parameters, to more accurately represent human skin. The

composition of the dermis is largely collagen [85]. Therefore, we calculate the dif-

fusion coefficient in the dermis, Dderm, by looking at methods for deriving diffusion

coefficients for collagen within the literature. Such work has been done by Ramanu-

jan et al. in which diffusion coefficients for collagenous gels were calculated [86].

Permeability was measured by assessing the flow rate through the collagen gels. The
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diffusion coefficient was calculated as follows,

Dderm =
D0α

1 +
(
R2

h

K

)0.5
+ 1

9

(
R2

h

K

) , (2.12)

where α is the pore radius (calculated to be 5.25×10−7 cm), Rh represents the particle

radius, K is permeability calculated as function of pore size and porosity, and D0 is

calculated using the Stokes-Einstein relation given as,

D0 =
kBT

6πµRh

, (2.13)

where kB is the Boltzman constant, T is temperature in Kelvin and µ is the viscosity

of water.

2.3.3 Partition coefficients

As shown in Sections 2.3.1 and 2.3.2, a compound’s partition coefficient is one of

the significant predictors of its diffusivity; however, we must also utilise partition

coefficients in order to construct our boundary conditions to ensure the model does

not tend towards a homogeneous state. Without partition coefficients, a boundary

condition between two regions A and B may be,

CA = CB. (2.14)

However, due to the scale of the model and diffusion coefficients, this will lead to a

homogeneous state when steady state is reached, as previously mentioned. Instead, we



CHAPTER 2. TRANSPORT THROUGH THE SKIN 46

use a boundary condition similar to that used by Dancik et al.[87], which incorporates

the partition coefficient by setting the concentration at the boundary between two

regions, A and B, to be proportional to their partition coefficents, KA and KB, given

as,

CA
KA

=
CB
KB

. (2.15)

In general, partition coefficients are calculated relative to a common phase, which is

typically water. It is essential for boundary conditions like shown above, that each of

the partition coefficients are calculated relative to the same common phase. In order

to incorporate this into COMSOL, we set the boundary, by re-arranging Eq 2.15, to

the following,

CA =
CBKA

KB

. (2.16)

In order to implement Eq 2.16, we must estimate the partition coefficients for a drug

in the stratum corneum, the rest of the epidermis, the dermis, and the molecule’s

vehicle. Diffusion through the stata corneum predominately takes place either via the

lipid phase or via the corneocytes. Therefore, a partition coefficient may be calculated

by incorporating the partition coefficients (Klip, Kcor) and the volume fraction of these

individual phases (φlip, φcor).

Ksc = φlipKlip + φcorKcor. (2.17)
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Dancik et al. [87] claimed that the partition coefficient for unbound, non-ionized

solutes for the epidermis and dermis are equal, and may be calculated as,

Kde = Ked = φaq/fnon/vt, (2.18)

where φaq is the aqueous volume fraction accessible to the solutes, which was found

to be equal to 0.6 after fitting to data [87], and fnon/vt is the fraction of non-ionized

solute in the viable tissues, calculated as follows,

fnon/vt =
1

1 + 107.4−pKa . (2.19)

Finally, the partition coefficient of the vehicle in pure water is calculated from the

fraction of non-ionized permeant in the vehicle,

Kv =
1

fnon/veh
, (2.20)

where fnon/veh may be calculated from the vehicle pH and input pKa as,

fnon/veh =


1

(1+10pH−pKa)
, weak acid,

1
(1+10pKa−pH)

, weak base.

Alternatively, if the vehicle is volatile (e.g. ethanol, or acetone) then the partition

coefficient may be calculated by assuming there is no vehicle, instead utilising the



CHAPTER 2. TRANSPORT THROUGH THE SKIN 48

permeant’s density, ρ, and solubility in water, Sw, to give,

Kv = ρ/Sw. (2.21)

2.3.4 Boundary conditions on the SC/DP interface

As described in Section 2.3.3, the movement of the modelled compound between one

layer of the skin and another was modelled as a continuity of flux, where movement

is driven by the concentration gradient, and the partition coefficients of the two

layers. Due to there being no inherent boundary between these layers, instead there

is a change in physiological properties, it is a reasonable method for modelling these

interfaces, and has been used in a number of publications including work by Dancik et

al. [54, 55, 87]. It is well understood that the SC is the primary barrier in minimising

water loss from the body and preventing the permeation of xenobiotics. This is due

to the densely packed, lipid-protein matrix that exists within the SC. The protein

filaggrin has been shown to exist in abundance in the SC, and has been associated

with the barrier properties [56]. Mutations in the gene encoding filaggrin have been

associated with a number of skin diseases, and reduced barrier function. It is therefore

necessary that we account for this barrier-like property by modifying the boundary

condition on the SC/DP interface. We propose the following boundary condition,

−D∂C
∂x

= ksc

(
C∗
v −

Csc
ksc

)
, (2.22)
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where ksc is the permeability through the SC which is dependant on the thickness of

the SC, and is caclculated as described in Equation 2.4, Csc is the concentration in

the stratum corneum, ksc is the partition coefficient for the stratum corneum and C∗
v

is defined as follows,

C∗
v =

CsatCv
Cv +Km

, (2.23)

where Csat is the maximum concentration within the SC, Cv is the concentration

in the vehicle and Km = Csat/Z, where Z is some constant to be decided later.

Permeability constants were generally the accepted method for estimating delivery

through the SC, prior to the development of more computationally intense methods

in more recent years, which instead rely upon diffusion coefficients. Equation 2.4

relates a solutes octanol water partition coefficient Ko/w along with its approximate

atomic radius in order to approximate permeability. As Km is an artificial parameter,

designed to control the slope of C∗
v , a better approximation may be made by fitting

to experimental data. Dancik et al. [87] relates Csat to the partition coefficient in

the SC, Ksc/w, as calculated in Section 2.3.3, to the solute’s solubility in water Sw

through the following relationship,

Csat = Ksc/wSw. (2.24)

We may arrive at this equation naturally by understanding that Ksc/w = Csc/Cw,

when the two states are in steady state. At maximum solubility, we may instead have

Ksc/w = Csat/Sw, which re-arranges into Equation 2.24. As described by Dancik et

al. [87], Csat is a lower bound of the solubility in the stratum corneum; however, no
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changes should be made to the value without experimental data to validate. Where

no experimental value of Sw is known, it may be estimated at 25oC using a method

proposed by Jain and Yalkowsky [88],

logSw = 0.5− logKo/w − 0.01(Tm − 25), (2.25)

where Tm is the melting point of the permeant. A correction to solubility may be

made if there is a difference between the temperatures of the permeant when applied,

T1, and the surface temperature of the skin T2, through the following relationship,

Sw(T2) = Sw(T1)× 10[0.01(T2−T1)] (2.26)

Finally, as the relationship from Eq 2.25 has units mol/L, we must convert to g/L

for use in Equation 2.24.

In order to understand how the various parameters within the saturation function,

C∗
v , affect the overall distribution in the skin, we may perturb these parameters. We

chose to model cinnamyl alcohol, with an initial concentration in the donor phase of

191 mM, as it is a chemical we will investigate further later on in the chapter. We

begin by perturbing the maximum concentration, Csat between 20 and 200 mol/m3.

Figure 2.5 shows the effect of changing Csat on the distribution of cinnamyl alcohol

in the various layers of the skin. For all values of Csat, quasi-steady-state is reached

in the SC quickly. This steady-state concentration within the SC is driven by Csat,

as well as the partition coefficients of the various layers. An increase in Csat also
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Figure 2.5: Time-dependent, spatially averaged concentration of cinnamyl alcohol in
the donor phase, stratum corneum, epidermis and dermis with varying values of Csat.
The values of Csat are linearly spaced between 20 mol/m3(blue), and 200 mol/m3(red).

increases the concentration within both the epidermis and dermis. This is due to

both the increase in flux on the DP/SC boundary, and an increase in concentration

gradient at the SC/epidermis boundary.

Figure 2.6 shows the effect of changing the value of Z on the distribution of cinnamyl

alcohol. The effect on changing Z has far less impact when the concentration in the

donor phase is greater then the maximum concentration in the SC. This is because Z

controls Km, which controls the slope of the curve. However, changes in Z does have

a small effect on C∗
v at all concentration of Cv sampled in Figure 2.6. The change in

C∗
v will in turn, have an effect on the concentration gradient on the DP/SC boundary,

therefore altering the flux, and the concentration in all layers of the skin.

Figure 2.7 shows the effect that varying the permeation constant, Psc, has on the

distribution of of cinnamyl alcohol. It is clear that a small value of Psc decreases the
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Figure 2.6: Time-dependent, spatially averaged concentration of cinnamyl alcohol in
the donor phase, stratum corneum, epidermis and dermis with varying values of Z.
The values of Z are linearly spaced between 2 (blue), and 10 (red).

concentration in all layers of the skin. However, increasing the value of Psc beyond

1 × 10−7 m2/s has very little effect on the amount of chemical permeating into the

skin. This would suggests that Psc is a sensitive parameters up to the point where

the concentration in the SC reaches maximum concentration imposed by Csat.

2.3.5 Metabolism

The presence of various phase II metabolising enzymes within the lower layers of the

skin is well known [89]. Depending on a chemical’s ability to permeate the skin, and

the concentration at which is reached in the lower layers of the skin, we may, or may

not require metabolism terms. Chemicals which pass through the skin quickly may

be subject to metabolism at levels which are negligible. However, for chemicals which

pass through more slowly, it may be important to account for the various metabolism
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Figure 2.7: Time-dependent, spatially averaged concentration of cinnamyl alcohol in
the four compartments with varying permeation constant, Psc. Values were sampled
between 1× 10−9 m/s (blue) and 5× 10−5 m/s (red). The permeation constant is a
key parameter in the dictating the total flux into the SC up to a point, at which the
concentration in the SC reaches Csat.

pathways. One issue is the lack of data on the concentration of these various enzymes

within the skin. However, for the liver these values are well documented. In order to

relate the two, we begin by assuming that Michaelis-Menten kinetics is an adequate

representation of the metabolism, where the Vmax andKm values are known for each of

the metabolising enzymes within the liver. Furthermore, we know that Vmax is related

to the catalytic rate constant, kcat, and the initial concentration of the enzymes, [E]0,

by the following,

Vmax = kcat[E]0.

If we therefore assume that kcat remains constant, we can relate our Vmax in the

liver and skin, by simply scaling by the ratio of enzyme concentrations. Where the
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concentration of the enzymes is unknown within the skin, we may instead turn to

the gene expression values relative to the liver. Figure 2.8 shows the relative fold

decrease in gene expression in the skin when compared to the liver.

Figure 2.8: Unpublished data on the relative fold decrease in gene expression for
a number metabolising enzymes preasent in both the skin and liver, provided by
collaborators at the University of Sheffield.

2.4 Model validation

In order to assess the ability of the model to predict the spatial distribution of xeno-

biotics, we must benchmark against in-vitro data for a number of different chemicals

which cover a range of physico-chemical properties. However, data sources within the

literature are scarce, with very few authors choosing to accompany their models with

data. Fortunately, a paper by Davies et al. [29] was accompanied by data describing

the distribution of 13 different chemicals at six time points across a 24 hour peroid.

The author’s experiment looked at the concentration of these chemicals in three skin

regions: the stratum corneum, the epidermis and the dermis. As well, two regions at
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opposite ends of the skin: the donor phase, above the stratum corneum which is the

source of the compound, and the receptor fluid, which is the region under the dermis.

In order to relate the model to the data, we must account for the two non-skin regions,

and alter our geometry. One limitation of this data source, is the majority of the

compounds modelled are skin sensitisers, that is, they irreversibly bind to proteins

in the skin. This can lead to a higher concentration of the sensitizing compound

in the upper layers of the skin, which will not reduce over time like non-sensitizing

compounds. Much time has been spent by various groups of researchers developing

in-silico models to predict compounds that potentially could be sensitizers, and to

which degree these compounds will bind [90, 91]. While these models are improving,

there is still much work to be done to be able to quantify if, and to which degree

compounds will sensitize the skin.

A finite dose of 25µL/cm2 was applied topically to exposed skin with a surface area

of either 0.64 cm2 or 0.32 cm2. Converting from µl to cm3, our dose may be re-written

as 0.025 cm3/cm2, which leads to a height of 0.025 cm, or 250µm. We may there-

fore create a donor phase geometry with a height of 250µm, to model this region.

Volume for the receptor fluid isn’t explicitly given in the publication, however, the

publication describes a flow-through chamber, where the receptor fluid is in constant

motion. This ensures that the concentration within the receptor fluid is never greater

than the dermis, and therefore ensures that flow out of the skin is not restricted by

lack of concentration gradient. As we are not able to account for the receptor fluid

motion, we instead set the thickness of the receptor fluid to be large enough, as to

never reach steady-state between the receptor fluid and dermis within the time scales
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studied. For each of the chemicals, the logP, logD and molecular weight, MW were

collected, in order to calculate diffusion coefficients in the same manner as Sections

2.3.1 and 2.3.2. These properties are summarised in Table 2.2.

Chemical log P log D MW
1,4-Dihydroquinone 0.59 1.36 110.112

MPT 0.99 0.99 208.235
Benzaldehyde 1.48 1.48 106.124

3,4-Dihydrocoumarin 1.89 1.89 148.161
4-Ethylresorcinol 2.32 2.32 138.166
Cinnamic aldehyde 1.9 1.9 132.162
6-Methylcoumarin 2.3 2.3 160.172
Cinnamic alcohol 1.95 1.82 134.178

DNCB 2.17 2.46 202.55
Phenylbenzoate 3.59 2.21 198.221

α-HCA 4.6 4.6 216.324
1-Bromododecane 5.9 5.9 250.228
1-Bromohexadecane 7.68 7.68 305.344

Table 2.2: The 13 chemicals which were topically applied to human skin by Davies
et al. [29]. logP values were taken directly from Davies et al. Molecular
weights were taken from PubChem, as were logD values, where available. If logD
were not available on PubChem, they were instead estimated using ChemSpider
(www.chemspider.com).

In order to calculate the diffusion coefficient for the dermis (Dcol), we require an

approximation to the radius of each of the molecules. However, these values cannot

be found in the literature. It is therefore necessary to estimate the radius for each of

the chemical using the following method.

By definition, the molecular weight, MW , is equal to the number of grams of one

mole of a molecule with units g/mol. If we additionally know a molecules density, ρ

with units g/cm3, we may calculate the molar volume, Vm, as follows,

Vm =
MW

ρ
, (2.27)



which has units mol/cm3. By utilising Avogadro’s constant, and assuming the molecule

is spherical, we may approximate its radius by the following,

rs =
( 3

4πNaVm

)1/3
(2.28)

With all the required physico-chemical properties calculated, we are able to calculate

the required diffusion coefficients for each of the regions for each of the chemicals, as

summarised in Table 2.3. The final step is the inclusion of an evaporation term. A

paper by Kasting et al. describes a method for estimating the evaporation of volatile

vehicles, such as ketones and alcohols [92]. The evaporation term may be calculated

as,

kevap =
kg
ρ

[
PvpMW

(0.76× 106)RT

]
, (2.29)

where T is the temperature in celsius, R is the gas constant, ρ is the density, Pvp is

the vapour pressure and kg is the gas phase mass transfer coefficient found to be 269

for a bench-top and 849 for a fume hood.

For the majority of the chemicals assessed in the Davies et al. paper, the vehicle

was a 4:1 mix of acetone and olive oil. We may therefore include the evaporation

term found in Eq 2.29, by multiplying kevap by 0.8, to account for the total volume

of acetone.
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2.4.1 Cinnamic alcohol

Cinnamic alcohol is an organic compound readily found in perfumes and deodorants.

Within the data, summarised within Section 2.4, examples of the distribution of cin-

namic alcohol may be found for initial concentrations of 192 mM and 1510 mM at six

time points across a 24-hour period. A summary of the diffusion coefficients calcu-

lated for cinnamic alcohol are shown in Table 2.3, calculated as described in Sections

2.3.1 and 2.3.2. For the boundary condition on the donor-phase/stratum corneum

boundary, we are required to calculate a permeability constant, h, as described in

Equation 2.22 in Section 2.3.4. The permeability constant is calculated by Equation

2.4, as function of its octanol/water partition coefficient, Ko/w, and the solute ra-

dius, rs, which can be estimated using Equation 2.28. The largest driver of the total

amount of solute which permeates the skin is the permeation constant, Psc, in the

flux term on the DP/SC boundary. In order to assess how well our predicted value

fits the data, we may perturb this value and calculate an error metric when compared

to the data presented in Section 2.4. The chosen error metric is the normalised root

mean squared error (NRMSE), defined as,

NRMSE =
| y − ŷ |
| y − µ |

, (2.30)

where y denotes the data, ŷ denotes the model estimate for the corresponding data,

and µ denotes the mean of the data. We require a normalised error metric in order

to calculate an averaged error for a given parameter as the concentration in the dif-
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ferent layers varies. Without the normalised error metric, the result would be heavily

weighted towards the donor phase fit, where the concentration is the highest.

Figure 2.9: The normalised root mean squared error (NRMSE) calculated for 13
different permeation constants, Psc, between the values of 1×10−9 m2/s and 5×10−7

m2/s. Highlighted in red and blue are the permeation constants which minimize the
NRMSE, corresponding to the same colour plots show in Figure 2.10. Highlighted in
black is the permeation constant which was calculated using Equation 2.4.

Figure 2.9 shows the averages NRMSE for cinnamyl alcohol with an initial concen-

tration of 192 mM. It shows that the values of Psc which minimises the error metric

are 2×10−8 m2/s (shown in red), and 4×10−8 m2/s (shown in blue). However, using

the predicted permeation constant only increased the error by 5.2%. It is clear from

Figure 2.10 there is no single value of the permeation constant which best models the

in-vitro data in all layers; instead, we see that Psc = 2× 10−8 m2/s fits the stratum

corneum and epidermis data, while Psc = 4 × 10−8 m2/s better fits the donor phase

and dermis data. One possible explanation may be a difference between the predicted

and actual partition coefficients for one or more of the layers. Due to continuity of
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flux boundary condition described in Section 2.3.4, compound movement is driven

by both difference in concentration and the ratio of partition coefficients for both

layers. An alteration in one or more of the partition coefficient would change the flux

between layers, therefore changing the concentration in one or more of the layers.
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Figure 2.10: The temporal distribution of cinnamic alcohol in the four simulated
layers. The red and blue plots correspond to the values of the permeation constant
which minimise the NRMSE in Figure 2.9, while the black-dashed plot corresponds
to the permeation constant calculated using Equation 2.4.
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Next, we again simulate the diffusion of cinnamyl alcohol with an initial concentra-

tion of 1510 mM in the donor phase. Like with the lower concentration, we will

perturb the value of the permeation constant, calculate the value of the error metric

and compare the predicted value.

Figure 2.11: The normalised root mean squared error (NRMSE) calculated for 13
different permeation constants, Psc, between the values of 1×10−9 m2/s and 6×10−7

m2/s. The permeation constant calculated using Equation 2.4, and the permeation
constant which minimises the NRMSE is highlighted (black circle).

The permeation constant which minimises the error is the value for the 15010 mM

concentration, is the value initially predicted. Looking at Figure 2.12, we see a

relatively poor fit when compared to the same chemical with a smaller initial concen-

tration in the donor phase. This is due to the maximum concentration imposed on

the stratum corneum by Csat in the saturating function on the DP/SC boundary. It

is clear that the flux predicted is lower than that observed. Similarly, the maximum

concentration observed within the stratum corneum is much higher then predicted.

As discussed in Section 2.3.4, the value of Csat is a lower bound, and therefore may be



CHAPTER 2. TRANSPORT THROUGH THE SKIN 64

higher than predicted. Furthermore, as described by Wang et al. [51, 52], there may

be variation in the volume fractions of the various phases of the stratum corneum,

with the lipid volume fraction, φlip, ranging between 0.0352 for a fully hydrated SC,

and 0.11 for a partially hydrated SC. This change in lipid content may explain a

change in Csat. Water gradients across the stratum corneum have also been reported

by both Bouwstra et al. [93], and Warner et al. [94]. This is due to the layers of

desquamated cells in the outer layer of the stratum corneum. As described by Pellett

et al. [95], this leads to an increased saturation in these layers, which increases the

concentration, as it now driven by both the concentration in the vehicle and Csat.

This may explain a poorer model fit for the higher concentration of cinnamyl alcohol.
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Figure 2.12: The temporal distribution of cinnamic alcohol in the four simulated
layers. The black-dashed plot corresponds to the permeation constant calculated
using Equation 2.4, which was also the permeation constant which minimised the
error.
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2.4.2 1-4-Dihydroquione

The next chemical we will validated the model with is 1-4-Dihydroquione, which again

will be simulated and compared to in-vitro at two initial concentrations. The logP

of 1-4-Dihydroquione, as given in Table 2.2 is 0.59, meaning it will be less soluble in

the stratum corneum and lower layers in the epidermis when compared to cinnamic

alcohol in the previous section. This results in a lower value for Csat, and reduced

diffusion coefficients when compared to cinnamic alcohol.

Figure 2.13: The normalised root mean squared error (NRMSE) calculated for 18
different permeation constants, Psc, between the values of 1× 10−9 m/s and 6× 10−7

m/s for 1,4-Dihydroquinone dosed at 76 mM. Highlighted in red is the permeation
constant which minimize the NRMSE, corresponding to the same colour plots show
in Figure 2.14. Highlighted in black is the permeation constant which was calculated
using Equation 2.4.

Figure 2.13 shows the error calculated for different permeation constants. The value

which minimises the error is shown in red, only reduces the error by 1% when com-

pared to the estimated permeation constant. As shown in Figure 2.14, there is very
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little change in the dynamics between the two values of the permeation constant.

While an increase in the permeation constant should increase the flux on the DP/SC

boundary, the maximum concentration within the stratum corneum is still governed

by Csat, which is low for this chemical due to its reduced lipophilicity. Therefore,

increasing the permeation constant results in very little change in the concentration

in the stratum corneum.
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Figure 2.14: The temporal distribution of 1,4-Dihydroquinone dosed at 76 mM in
the four simulated layers. The red plot correspond to the values of the permeation
constant which minimise the NRMSE in Figure 2.13, while the black-dashed plot
corresponds to the permeation constant calculated using Equation 2.4.
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Figure 2.15: The normalised root mean squared error (NRMSE) calculated for 18
different permeation constants, Psc, between the values of 1× 10−9 m/s and 6× 10−7

m/s for 1,4-Dihydroquinone dosed at 191 mM. Highlighted in blue is the permeation
constant which minimize the NRMSE. Highlighted in black is the permeation constant
which was calculated using Equation 2.4.

Figure 2.15 shows very similar results to what was found with the lower initial concen-

tration for the same chemical. While some improvement in error could be found by

changing the permeation constant, it only amounted to a 1.01% decrease. This again

can be related to very little increase in flux by increasing the permeation constant due

to the effect of Csat. The similarities between the distribution of 1,4-Dihydroquinone

for the two partition coefficients is shown in Figure 2.16.
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Figure 2.16: The temporal distribution of 1,4-Dihydroquinone dosed at 191 mM in
the four simulated layers. The red plot correspond to the values of the permeation
constant which minimise the NRMSE in Figure 2.13, while the black-dashed plot
corresponds to the permeation constant calculated using Equation 2.4.
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2.4.3 2,4-Dinitrochlorobenzene (DNCB)

The final chemical we will simulate in order to validate the model is 2,4-Dinitrochloro-

benzene (DNCB), which is commonly used for the treatment of warts, by causing an

immune response to the virus responsible [96]. While the logP value of DNCB would

suggest that it would be a better candidate for percutaneous absorption, it also has

a greater molecular weight when compared to the other chemicals simulated in this

chapter, which has been shown to have a negative impact on a compound’s ability to

permeate the skin [97].

Figure 2.17 and 2.18 show the change in error by perturbing Psc. The error dynamics

are very similar to what was found for 1-4-Dihydroquione. It shows small improve-

ments of 0.1046% for the 99 mM simulation and 0.1899% for the 189 mM simulation.

Like found with 1-4-Dihydroquione in Section 2.4.2, an increase in the permeation

coefficient resulted in very little change for the model dynamics due to the effect of

Csat as shown in Figures 2.17 and 2.18. However, the error for this compound is

low for both concentrations simulated. This is due to the compounds lipophilicity

increasing the solubility in the stratum corneum, paired with initial concentrations

close to the estimated Csat value.
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Figure 2.17: The NRMSE calculated for 18 different permeation constants, Psc, be-
tween the values of 1 × 10−9 m/s and 6 × 10−7 m/s for 2,4-Dinitrochlorobenzene
dosed at 99 mM. Highlighted in blue is the permeation constant which minimises the
NRMSE, while in black is the constant initially estimated.

Figure 2.18: The NRMSE calculated for 18 different permeation constants, Psc, be-
tween the values of 1 × 10−9 m/s and 6 × 10−7 m/s for 2,4-Dinitrochlorobenzene
dosed at 189 mM. Highlighted in blue is the permeation constant which minimises
the NRMSE, while in black is the constant initially estimated.
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Figure 2.19: The temporal distribution of 2,4-Dinitrochlorobenzene dosed at 99 mM
in the four simulated layers. The red plot correspond to the values of the permeation
constant which minimise the NRMSE in Figure 2.17, while the black-dashed plot
corresponds to the permeation constant calculated using Equation 2.4.
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Figure 2.20: The temporal distribution of 2,4-Dinitrochlorobenzene dosed at 189 mM
in the four simulated layers. The blue plot correspond to the values of the permeation
constant which minimise the NRMSE in Figure 2.18, while the black-dashed plot
corresponds to the permeation constant calculated using Equation 2.4.
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2.5 Chapter discussion

The advancement of computing power has enabled the development of more com-

plex models that more closely mimic skin physiology. Methods for predicting percu-

taneous absorption have seen incremental changes from simple permeation models,

which predict delivery solely based on a permeation constant, concentration and path

length [27]; to compartmental models; to finite-difference approaches to compartmen-

tal models [29]. In more recent years, models that are now also dependent on space

as well as time have been developed, such as those described in a publications by

Kattou et al. [54], and Chen et al. [55]. While these models are a big step forward

from the more simple compartmental models of the past, they still fail to include

some key features of the skin. These features have a large contribution to the skins

ability to act as a barrier: the evolving shape of the keratinocytes, which become flat-

tened, increasing the tortuous path taken by many lipophilic compounds across the

skin; the low solubility of many compounds within the stratum-corneum; the barrier

property about as a result of the densely packed lipid-protein matrix which exists

within the stratum corneum, which includes binding proteins such as filaggrin [56],

which reduces the flux across the stratum corneum; and the heterogeneous thickness

of the different layers of the skin.

The work within this chapter had three motives: to create a model which encapsu-

lates more of the physiological features of the skin then has previously been pub-

lished; to predict the spatio-temporal distribution of a compound based solely on its

physico-chemical properties; and to fit all in-vitro data well, instead of predicting
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the distribution of a single compound exceptionally. The use of histology to create

the geometry ensured that the tortuous path taken by many lipophilic compounds

during transdermal drug delivery is physiologically relevant. It also accounted for

the heterogeneous thickness of the different layers found in-vivo. For each phase of

the model, a diffusion coefficient, partition coefficient, and boundary condition were

calculated, based upon previously published models for diffusivity validated against

experimental data. This ensured that the model was able to perform well for a variety

of different physicochemical inputs.

The model was validated against in-vitro data for a variety of chemicals taken from

work by Davies et al. [29]. The model was shown to perform well for the initial doses

which were close to the estimated maximum stratum corneum concentration, Csat.

However, for initial doses with concentrations that were significantly higher than the

calculated Csat, the model underperformed. In Section 2.4.1, we discussed a variety

of reasons which we believe may contribute to this. These included that Csat, as

described by Dancik et al. [87], is a lower bound; however, its value could be greater.

It would be difficult to make an adjustment to the value of Csat without any data.

The other reason is the saturation of the outermost layers of the stratum corneum,

consisting of desquamated cells, which may lead to the concentration in the stratum

corneum being greater than Csat due to a high concentration in the vehicle. However,

this is difficult to incorporate in our model as it would require the addition of an

extra layer within the stratum corneum. There is also uncertainty in the thickness

of this desquamated layer, and the layer is unnecessary when modelling compounds

where the initial concentration within the vehicle is close to the estimated Csat value.
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When modelling in-vivo and in-vitro set-ups using this model, the problem encoun-

tered with high initial concentrations when compared to Csat, would be less of an

issue. For use in therapeutic modelling, candidate compounds would be lipophilic

with logP values between 1 and 3 [98], leading to a higher Csat value. Furthermore,

pharmaceuticals which are delivered transdermally tend to be potent, with therapeu-

tic doses below 20 mg IV dose/day [99]. When modelling the exposure to chemicals,

such as house-hold cleaning products and cosmetics, for the most part, we gener-

ally see very small amounts of a compound applied to the skin, and therefore, the

concentration in the stratum corneum may not reach Csat.



Chapter 3

Physiologically-based

pharmacokinetic modelling

3.1 Background

Physiologically based pharmacokinetic (PBPK) modelling is a powerful, multi com-

partmental, mathematical method for describing the absorption, distribution, metabolism

and excretion (ADME) of substances in living organisms [100]. This is achieved by

utilising physiological properties of a chosen organism, such as organ volume and flow

rates, as well as accounting for any metabolism or excretion. With knowledge of the

composition of different organs, such as the volume fractions of proteins, lipids and

water, the concentration of a xenobioitc in different organs may be calculated for its

physiochemical properties. This information be used to model the time-dependent

distribution of a xenobiotic in the given compartments, representing the various or-

gans/tissues in the body.

78
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PBPK models come in varying degrees of complexity, with simple models following

the anatomical structure of the given organism such that each compartment rep-

resents a given organ [101]. These organs are often assumed to be homogeneous,

well-stirred compartments with transfer between compartments governed by perfu-

sion limited kinetics [102]. In recent years however, there has been a large drive by

the pharmaceutical industry to derive more detailed, mechanistic PBPK models, to

account for a wide array of biological features and human physiology in drug devel-

opment and regulatory decision-making [103]. Examples of commercially available

PBPK software include Simcyp PBPK Modelling and Simulation, Gastroplus, and

PKSIM. These platforms are commonly used by large pharmaceutical companies in

all stages of drug development, and are seen to be the gold standard in PBPK mod-

elling today.

PBPK modelling be differentiated from the more traditional pharmacokinetic (PK)

modelling through the inclusion of detailed physiological processes, and known physico-

chemical information about the compounds to be modelled in order to predict com-

plex biological properties [104]. This is of particular importance in the pharmaceutical

industry where drug development requires information related to both drug distri-

bution within the body, and the subsequent metabolism. Furthermore, unlike in PK

modelling, parameters in PBPK models may have a direct physical or biochemical

meaning, which can lead to a more intuitive mechanistic understanding.

A key issue with PBPK modelling is the varying physiological properties of the pop-

ulation. For example, fluctuations in people’s weight and size, which leads to varying

volumes of organs, varying flow rates, varying enzyme concentration and elimination
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rates. This has lead to the developments of population based methods, where phys-

iological parameters are instead described with distributions which span the range

of measured values [105, 106]. However, due to the large number of parameters in a

typical PBPK model, it can be difficult adequately covering the parameter space.

For a PBPK model with fixed physiological parameters, the xenobiotics physiochem-

ical properties coupled with the anatomical features of the host is what determines

its distribution in different organs. The properties include molecular weight, (MW),

lipophilicity (measured using partition coefficient, log P), and the acid dissociation

constant, (pKa). These values influence the concentration in various compartments.

There are numerous examples of PBPK models in the literature which follow similar

methodologies, which summarised in a systematic review by Sager et al. [102]. The

PBPK model within this chapter is based upon publications by Peters [104, 107].

As with many PBPK models, it is assumed that: each of the tissues are considered

to be a single, well-stirred compartment with spatially uniform concentration; and

drug distribution is based upon perfusion-limited kinetics. Perfusion-limited kinetics

dictate that blood flow to tissue is the limiting process in the model. That is, when

in steady state, the drug concentration within circulation and in tissues is at equilib-

rium, where the concentration is governed by the partition coefficient of the drug in

each tissue [108]. An alternate approach, for larger, polar molecules, is permeability

limited kinetics, where the limiting factor is permeability across the cell membrane.

This requires each tissue to be split into two compartments, representing extracellu-

lar and intracellular space. The time taken to reach steady state with permeability

limited kinetics, is then a function of a drug’s ability to permeate the cells membrane.
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There are numerous examples of PBPK models which account for gastric and intesti-

nal absorption, arterial infusion, and intravenous dose as these are the main route for

administering therapeutic agents. The complexity of these models varies hugely, from

simple models, to models with multiple compartments for single organs with param-

eter values instead described by distributions. However, while there are examples of

PBPK models that account for percutaneous absorption [57, 58, 59, 60, 61, 62], they

tend to be developed to model a specific chemical, where complexity in percutaneous

absorption is lacking.

3.2 Model parameters

3.2.1 Partition Coefficients in PBPK

Due to the change in physiological properties in organs and tissues found in humans,

compounds will have different solubilities in each. Within PBPK, it is generally as-

sumed that the drug may distribute in one of three ways: in the plasma unbound;

in the plasma bound; and bound to red blood cells. However, pharmacokinetic pa-

rameters are calculated by analysis of drug concentration in the plasma unbound.

Therefore, there a number of parameters which describe the distribution in these

three phases. The first is the blood-to-plasma concentration ratio, commonly de-

noted as R, which accounts for the distribution of a drug between plasma and red

blood cells. There are a number of drugs that have a greater binding affinity to

erythrocytes (i.e. R is greater then 1), for which, clearance may be overestimated if

the blood-to-plasma ration is not included. This is because only unbound compound
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may be metabolised or excreted. Next, the fraction unbound in plasma commonly

denoted as fu(p), describes the fraction of the drug unbound in the plasma. This,

along with the unbound tissue partition coefficient, Kpu(t), may be used to calcu-

late a tissue-specific partition coefficient, Kp, with the following, fu(p)×Kpu(t) = Kp.

Subsequently, this may then be used to described the tissue-blood concentration with

the following, Kp/R.

Calculation of the tissue specific partition coefficients depend on a number of physic-

ochemical properties including log P, pKa, pH and fraction of free drug in the plasma,

as well as tissue specific properties. In separate bodies of work by both Poulin and

Thiel [109], and Rodgers and Rowlands [110, 111], tissues are defined in terms of

the volume fraction of of water, lipids, and phospholipids. The drug-tissue specific

partition coefficient could therefore be calculated as a function of the drugs physico-

chemical properties, and the volume fraction of the various components of the tissue.

Increasing drug-tissue specific partition coefficient would lead to more drug parti-

tioning into the tissue. On the contrary, decreasing the drug-tissue specific partition

coefficient would lead to less drug partitioning into the tissue.

3.2.2 Estimating tissue partition coefficients

Partition coefficients in the PBPK model were estimated based upon the work of

Rodgers and Rowlands [110, 111]. In order to calculate the partition coefficient,

there are a number of physico-chemical properties that need to be known: the acid

dissociation constant, pKa; the base dissociation constant, pKb; the partition coeffi-

cient, logP ; the blood plasma concentration ratio, R; and the fraction of unbound
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drug in the plasma, fu(p). The partition coefficients can then be calculated using a

modified form of the Henderson-Hasselbalch equations,

Kpu =

[
few +

(1 + 10pKa−pHIW

1 + 10pKa−pHp
× fIW

)
+
(Ka[AP

−]T 10pKa−pHIW

1 + 10pKa−pHp

)
+

(PfNL + (0.3P + 0.7)fNP
1 + 10pKa−pHp

)]
, (3.1)

where pH describes how acidic or basic the phase is, f denotes the volume fraction

of a phase, P describes the antilog of logP , and [AP−]T describes the concentration

of acidic phospholipids in the given tissue. The subscript ew denotes extracellular

water, IW denotes intracellular water, NP denotes neutral lipids, and NP denotes

neutral phospholipids. Levels of these various components are reported by Rodgers

and Rowland [110]. However, values of Ka in Equation 3.1 are not readily available.

One approach is to estimate Ka for the blood cells, by rearranging Equation 3.1. To

do so, we must recognise that blood cells do not posses any extracellular space, and

therefore few = 0. The partition coefficient KpuBC is the blood cell to plasma water

concentration ratio, for which, values are redly available in the literature, or can be

measured in-vitro from the blood-to-plasma concentration-ratio, fraction of unbound

drug in the plasma and hematocrit [112]. This leads to the following,

KaBC =

[
KpuBC−

(1 + 10pKa−pHBC

1 + 10pKa−pHp
×fIWBC

)
−
(PfNLBC + (0.3P + 0.7)fNPBC

1 + 10pKa−pHp

)
−

( 1 + 10pKa−pHp

Ka[AP−]BC 10pKa−pHBC

)]
, (3.2)
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where the BC subscript denotes the blood cells. The assumption is then made that

KaBC is representative of the Ka in all tissues, therefore, by substituting Equation

3.2 in Equation 3.1, we may calculate tissue specific partition coefficients.

3.2.3 Metabolism and excretion

Pharmacokinetics are determined by both the movement of the drug, and distribu-

tion throughout the body, as well as how it may be cleared by the body through

metabolism and excretion. Generally, the assumption is made that drug metabolism

primarily takes place within the liver, due to the nature of the liver being responsible

for the first-pass metabolism. Metabolism is generally modelled with a first-order

term; however, case-specific examples can be found where the user has tailored the

metabolism equation to model specific metabolism pathways through the use of mul-

tiple metabolism terms [113, 114].

Renal elimation via the urine is also accounted for in many PBPK models. Like with

metabolism, renal elimination is generally modelled with a first order term [115].

This allows the user to account for non-hepatic clearance, which is important for

some compounds. The rate of renal clearance is estimated in one of two ways: fitting

to PK data to ensure a good fit; or using predictive models. There are a number of

examples of models within the literature which may be used to predict renal clearance

as a first-order elimination based on the glomerular filtration rate (GMR), which have

been summarised in work by Florkowski et al. [116]. More sophisticated models has

also been developed, such as work by Neuhoff et al. who created a dynamic model

which simultaneously could account for passive permeability, metabolism and various
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transport processes [117]. A comprehensive review of the more complex approaches

to modelling renal clearance are discussed in a publication by Scotcher et al. [118].

3.2.4 Model development

The basic Peters PBPK model has 16 compartments, and follows the schematic dia-

gram shown in Figure 3.1. Flow rates into, and out of tissue and organs are denoted

by Q, while organ volumes are denoted V . Both are followed by a subscript specific

to the given tissue or organ.

A summary of each of the flow rates into the organs and tissues, as well as their

respective volumes, is given in Table 3.1.

Organ/tissue Flow rate, Q, (mL/min) Volume, V, (mL)
Brain 700 1450
Gut 1100 1650

Spleen 77 192
Pancreas 133 77
Stomach 38 154
Liver 1650 1690
Kindey 1100 280
Heart 150 310
Lungs 5233 1172
Muscle 750 35000
Adipose 260 10000
Skin 300 7800
Bone 250 4579

Thymus 80 29
Hepatic artery 302 -
Arterial blood - 1698
Venous blood - 3396

Table 3.1: Description of the flow rates and volumes of each of the tissues present for
a human weighing 70 kg, taken from Peters [104].
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Figure 3.1: Schematic diagram of the basic Peters PBPK model, described in this
section. The compartments are as follows: lungs (LU), heart (HT), brain (BR), mus-
cle (MU), adipose (AD), skin (SK), spleen (SP), pancreas (PA), liver (LI), stomach
(ST), gut (GU), bone (BO), kidney (KI) and thymus (TH). Flow rates into, and out
of an organ are given by Q, followed by the subscript given above.

The rate of change of concentration in the lung, CLU , is calculated as follows,

dCLU
dt

=
QLU

VLU

(
CV E −

CLU ×R
fu(p) ×Kpu(LU)

)
, (3.3)

where R is the blood:plasma concentration ratio, fu(p) is the fraction unbound in

plasma, and Kpu is the unbound partition coefficient of the lung. The first term

represents flow from the venous compartment to the lungs and therefore is positive,
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while the second term represents distribution into the tissue, and flow from the lungs

to the arterial compartment, and therefore is negative.

The rate of change in the arterial blood compartment is given as,

dCAR
dt

=
1

VAR

(
QLU × CLU ×R
fu(p) ×Kpu(LU)

−
∑

QjCAR + AIR

)
, (3.4)

where j represents each of the 13 organs that flow from the arterial compartment,

and AIR is the arterial infusion rate, which represents the infusion of drug over a

period of time into some artery. The rate of change in venous blood is given as,

dCV E
dt

=
1

VV E

(∑ QT × CT ×R
fu(p) ×Kpu(T )

−QLUCV E + V IR

)
, (3.5)

where T represents all organs and tissues, except for the gut, pancreas, spleen, stom-

ach, and lungs, and V IR is the venous infusion rate, which represents a standard

IV dose over some given time period. A generalised form can be given for all non-

elimating organs, i, except for the stomach, gut, kidney, liver and lungs,

dCi
dt

=
Qi

Vi

(
CAR −

Ci ×R
fu(p) ×Kpu(i)

)
. (3.6)

Unlike the lung calculation in Equation 3.3, the first term represents flow from the

arterial compartment into the tissue, and the second term represents flow from the

tissue to the venous compartment. For the stomach, we have,

dCST
dt

=
1

Vst

[
QST

(
CAR −

CST ×R
fu(p) ×Kpu(ST )

)
+ gastric absorption

]
. (3.7)
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Within the Peters model, there are an additional nine gastrointestinal compartments

linking the stomach to the colon representing subsequent stages of the intestine, where

transfer is modelled using a first order term. Each consist of 4 ODEs for the following

variables; amount of undissolved drug, amount of dissolved drug, amount of degraded

drug, and amount absorbed. The drug absorbed in the stomach gives us our gastric

absorption in Equation 3.7, and the total intestinal absorption, TIA in Equation 3.8,

is the sum of the amount absorbed in the subsequent eight compartments. However,

as we are interested in transdermal infusion, we may set gastric absorption, AIR,

VIR, and TIA equal to 0. For the gut, we have,

dCGU
dt

=
1

VGU

[
QGU

(
CAR −

CGU ×R
fu(p) ×Kpu(GU)

)
+ TIA

]
, (3.8)

where TIA is the total intestinal absorption. For the kidneys, we have,

dCKI
dt

=
1

VKI

[
QKI

(
CAR −

CKI ×R
fu(p) ×Kpu(KI)

)]
−
CKI × ke(r)
Kpu(KI)

, (3.9)

where ke(r) is the renal elimination rate constant. Finally, the rate of change in the

liver is given as follows,

dCLI
dt

=
1

VLI

(
QHA × CART +

∑ Qj × Cj ×R
fu(p) ×Kpu(j)

− QLI × CLI ×R
fu(p) ×Kpu(LI)

− CLI × CLint
Kpu(LI)

)
(3.10)

where j represents the gut, pancreas, spleen and stomach, and CLint is a constant

for hepatic metabolism with units 1/min, representing intrinsic clearance.
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3.3 Model replication

PBPK models are today one of the key tools in early drug development. One of the

key strengths of PBPK models is the ability to make predictions outside a sampled

population, therefore reducing uncertainty [119]. This can aid the preclinical stage

of drug development by generating a greater understanding of the mechanisms which

drive ADME in-vivo. The prevalence of PBPK was highlighted by both the European

Medicines Agency, and the Food and Drugs Administration in the USA, who both

published guidelines on the use of PBPK in drug submissions [120, 121]. It clear from

both these sets of guidelines, that model validation is a key aspect in the use of PBPK

models. However, the scope of the model validation must correlate with the intended

use of the PBPK model. For the prediction of the ADME of a drug, comparison

with time-course blood plasma data would suffice, whereas, for the prediction of a

new potential drug or chemical, the validation must be far more comprehensive, as

outlined in report written by Simcyp Consortium members [122].

For the purpose of the work in these sections, comparison against time-course blood

plasma concentrations will be adequate for ensure the model is replicating the results

first described in the Peters publication. The paper, from which the PBPK model

in this chapter is based upon, also provides time-course blood plasma data for a

number of different drugs, over different time frames and different initial doses. Both

the drugs to be modelled, and their doses are summarised in Table 3.2.
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Drug Dose (IV) (mg)
Bisoprolol 10

Chlorpropamidel 50
Mebendazole 1.18
Theophylline 267

Table 3.2: The four drugs along with their IV doses that will be used to validate the
PBPK model taken from Peters [104].

A summary of the physico-chemical properties used to estimate the partition coeffi-

cients of the drug are summarised in Table 3.3.

Property Bisoprolol Chlorpropamide Mebendazole Theophylline
Molecular weight 325.4 276.7 295.3 180

logP 1.83 2.35 3.08 -0.03
Ionization type Base Acid Weak base Base

pKa 9.15 4.87 5 8.81
Free drug in plasma 0.7 0.04 0.073 0.44

Kp factor 2.5 50 5 1.3

Table 3.3: The physico-chemical properties of the four drugs that will be used to
validate the model taken from a publication by Peters [104]. These properties are
used for the calculation of tissue specific partition coefficients as described in Section
3.2.2.

Figures 3.2 and 3.3 shows the model prediction (as a solid line) and observed plasma

concentrations (as an asterisk) for the four compounds described in Table 3.2. The

Kp factor described in Table 3.3 is also used to alter the partition coefficients to

ensure a better fit to the in-vivo data. The model is shown to fit the data well for all

drugs except for mebendazole, shown in Figure 3.3. While the predicted maximum

plasma concentration is close the observed, it appears that mebendazole is being

cleared either by metabolism or renal excretion. However, as Peters estimates renal

excretion by fitting and neither metabolism or intrinsic clearance values are reported,

we assumed them to be zero. Inclusion of these terms would lead to a better fit for
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Figure 3.2: The predicted and observed plasma concentration of bisoproplol (in red)
and chlorpropamide (in black). Data taken from Peters et al. [104]. Clearance is
assumed negligable over this timescale

Figure 3.3: The predicted and observed plasma concentration of mebendazole (in
blue) and theophylline (in green). Data taken from Peters et al. [104].
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drugs which are cleared quickly either by the kidney or liver, like mebendazole.

3.4 PBPK with percutaneous absorption

In order to pair this model with the output from the skin model in Chapter 2, we

modify the equation for the skin compartment to account for a transdermal infusion.

To begin we first need to understand how we calculated the rate of infusion. A

previously referenced piece of work by Danick et al. [87] outlines a method for

modelling systemic clearance within the dermis. Clearance through the capillaries is

modelled as a 1st order elimination term given as,

kfree =
[
(PcapS)−1 +Q−1

]−1

, (3.11)

where S is the capillary surface area, and Q is the in-vivo blood flow estimated to

be Q = 2.2 × 10−3 s−1 by Kretsos et al. [76], and Pcap is the capillary permeability.

It must be noted that the units of Q were originally volume of blood, per volume of

tissue, per second, while the units of S are cm2/g tissue [76]. The units of S were

converted to cm2/cm3 by multiplying by the density of dermis, as given by Kretos

et al. [123]. This leads to kfree being a first order constant, where the value only

changes based up on differing physico-chemical properties of the solute permeating

the capillaries. A method for estimating Pcap is given by Ibrahim et al. [124] as

follows,

1

Pcap
=

1

Pmem
+

1

Paq
, (3.12)
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where Pmem describes the permeability across the endothelial wall, and Paq is the

permeability of the aqueous boundary layer adjacent to the membrane. A regression

model based upon phospholipid bilayer membrane data is given as,

logPmem = 1.64 logKoct − 1.37MW 1/3 + 2.82r. (3.13)

This has been shown to be the primary route of uptake for highly diffuseable lipid-

soluble solutes [125]. The inclusion of Paq is important to ensure the limiting of

permeation for small, highly lipophilic solutes, which would otherwise be overesti-

mated [126]. A value of Paq may be calculated as follows,

Paq =
Daq

haq
, (3.14)

where Daq is the diffusion coefficient through water and haq is the thickness of the

boundary layer, estimated for small solutes to be around 1× 10−8 cm.

By multiplying Equation 3.11 by the drug concentration in the dermis, Cde, we are

able to calculate a time dependent uptake rate. As the solute may only be enter

systemic circulation via the dermis, in the region whereby the solute is applied, we

must account for this in our uptake term, which is calculated as follows,

Uptake =
Vde
Vsk

(kfree × Cde)/bf, (3.15)

where Vsk is the volume of the skin, as given in Table 3.1, Vde is the volume of the

dermis of the area of application, and bf is the binding factor, which accounts for the
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fraction of non-ionized solute available to the tissues, dervied by Kreetos et al. [76].

This leads to the final form of the rate of change of concentration of the solute in the

skin to be,

dCsk
dt

=
Qsk

Vsk

(
CAR −

Csk ×R
fu(p) ×Kpu(i)

)
+
Vde
Vsk

(kfree × Cde)/bf. (3.16)

3.5 Lidocaine

Lidocaine is a drug used commonly in medical practice for a variety of situations,

administered in a number of different ways: intra-venously (IV); as a patch; and as a

topical cream. The pharmacokinetics of lidocaine are well documented for IV admin-

istration, making an excellent compound to model. In order to calculate the partition

coefficients as outlined in Section 3.2.2 we require the a number of physico-chemical

properties.

The acid dissociation constant, pKa, and base dissociation constant, pKb were es-

timated to be 13.78 and 7.75 using the ChemAxon prediction tool (available at

chemaxon.com/products/calculators-and-predictors-pka). The partition coefficient,

logP = 2.26, was estimated by Hansch et al. [127]. The fraction of unbound drug

in the plasma, fu(p) = 0.3521, was calculated using a machine learning model by

Wantanabe et al. [128], which was parametrised using a large dataset of 2,738 exper-

imental values.

The majority of lidocaine metabolism takes place within the liver by the cytochrome

P450 enzyme, CYP3A4. As the value ofDerby Km is much greater then the concen-
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tration in the liver, CLI , the Michaelis-Menten term stays within the linear range,

and we may therefore assume it to be a first-order kinetic term, CLint = Vmax/Km.

In-vitro values given by Li et al. [129] are as follows; Vmax = 10 pmol/min/106 cells

and Km = 77µM. To keep units consistent, we must rescale both the Vmax and Km

values. To rescale Vmax, we require the volume of 106 cells of human liver, which is

reported as [value], and the mass of a picomole of lidocaine, which may be calculated

from the molecular weight to be 2.3434 × 10−7 mg/pmol. We may rescale Km by

multiplying by the mass of a micromole of lidocaine, give as 0.2343 mg/µmol, and

the number of litres in a millilitre, given as 1×10−3L/mL. This leads to the following

rescaled values; Vmax = 6.892× 10−4 mg/min/mL, and Km = 0.018 mg/mL. The fi-

nal step is to account for change seen between in-vitro and in-vivo intrinsic clearance

rates or in-vitro-in-vivo-extrapolation (IVIVE). This is due to to the difference in cy-

tochrome P450 metabolism activity, between cryopreserved and human hepatocytes.

Methods for scaling between to two have been discussed in a number of publications,

[130, 131], including work by Hallifax et al. [132], who provide an IVIVE scaling

factor for lidocaine as 0.7516.

Values for the drug blood-to-plasma ratio, R, and the renal elimination rate, ke(r) are

unknown and must be calculated by fitting to experimental data. Additionally, a Kp

factor will be calculated, which is a multiplicative scaling factor which alters partition

coefficients in each of the compartments to make the model better fit experimental

data.

Experimental data of IV lidocaine pharmacokinetics was digitized from work by Ochs

et al. [133] using WebPlotDigitizer, a tool for extracting data from figures. In the
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paper, seven volunteers were each given three does of lidocaine; 25 mg, 75 mg and

100 mg IV, and serum lidocaine concentrations were measured at various time points

for 10 hours.

We fit the model to the experimental data using the non-linear optimisation function,

fminsearch in Matlab. The fminsearch function finds the minimum value of an un-

constrained multi-variable function using a derivative-free method; the Nelder-Mead

simplex algorithm [134]. The function we look to minimise is the normalised-root-

mean-squared-error, which is a normalised error metric, ideal when dealing with

datasets with multiple starting doses. The fit provided the parameter values given in

Table 3.4.

Parameter Nomenclature Value
Blood-to-plasma ratio R 7.9977
Renal elimation rate ke(r) 1663

Kp factor - 0.0431

Table 3.4: PBPK model parameters estimated by fitting to the experimental data
taken from Ochs et al. [133].
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Figure 3.4: Experimental data for three different concentrations of IV lidocaine taken
from Ochs et al. [133], shown as points. The model prediction using the fitted
parameters is shown as a solid line, where the same colour represents the same dose.

Figure 3.4 shows the predicted time-course profile of three different starting concen-

trations of IV lidocaine, along with experimental data of the same starting concentra-

tions taken from Ochs et al. [133]. At early time points, the model fits both the 25 mg

and 75 mg doses well, while under-estimating the 100mg profile. However, after five

hours, the model over-estimates the clearance for all three doses. After two hours, we

predict that plasma concentration will be in quasi-steady-state, where a reduction in

concentration will be governed exclusively by the first order kinetic elimination rates

in the liver and kidneys. This leads to the plasma concentration reducing linearly

on a log scale, as shown in Figure 3.4. This would suggest a reduction in clearance

terms would better fit the data at later time points; however, the model would not

then fit the earlier time points as well, increasing the value of the error metric.
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3.5.1 Percutaneous absorption of lidocaine

With a fully parametrised PBPK model for lidocaine, we are now able to model its

permeation and uptake. We begin by calculating diffusion coefficients as described

in Sections 2.3.1 and 2.3.2, partition coefficients as described in Section 2.3.3. The

boundary condition on the SC/DP interface is the same as previously described in

Section 2.3.4, where the permeation constant is calculated using Equation 2.4, and

the maximum concentration in the stratum corneum, Csat, is calculated as follows,

Csat = Ksc/wSw, (3.17)

where Ksc/w is the partition coefficient between the stratum corneum and water, and

Sw is the solubility of the lidocaine in water. A summary of these values are given in

Table 3.5.

Next, we need to create the geometry which will represent than patch in the skin

model. An example of a lidocaine patch made by Endo pharmaceuticals has a trade

name LIDODERM. The patch has a surface area of 140 cm2, and contains 700 mg

of lidocaine at 5%w/w. We can therefore infer that a patch has a volume of 14 cm3

and a depth of 0.1 cm, with an initial concentration of 213.36 mol/m3. Without the

ability to measure experimentally, to calculate the vehicle partition coefficient, it is

assumed that the vehicle for which the lidocaine is suspended in is water. While in

reality they may use a different vehicle, we believe this will have very little effect on

the partition coefficient. However, if it was found there was a large error between the
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predicted and actual partition coefficient, this could have a large carry over effect on

the simulation. If we overestimated the partition coefficient, the model would predict

less drug permeating the stratum corneum than in reality. On the contrary, if we

underestimated the partition coefficient for the vehicle, we may instead overestimate

permeation, and subsequently the blood-plasma concentration.

Parameter Value Units
Dveh 2.70× 10−11 m2/s
Dsc 5.4187× 10−14 m2/s
Dgran 2.9898× 10−12 m2/s
Dex 2.3958× 10−11 m2/s
Dint 1.1174× 10−11 m2/s
Q 1.57× 10−13 m2/s

Dderm 8.9759× 10−11 m2/s
Daq 2.7707× 10−7 m2/s
Kveh 1.0087 −
Ksc 1.3870 −
Ked 0.3966 −
Kde 0.7437 −
Csat 55.81 mol/m3

Psc 8.9374× 10−6 m/s

Table 3.5: Skin model parameters for lidocaine. Parameters beginning with D de-
note diffusion coefficients and parameters beginning with K describe partition coef-
ficients. Q and Psc describe permeability coefficients across cell membrane and the
stratum corneum respectively, and Csat is the maximum concentration in the stratum
corneum, as defined in Equation 2.24.

Using the information on the patch, and the parameters from Table 3.5, uptake may

be calculated as described in Equation 3.11.

Figure 3.5 shows two related plots: in blue, we have the cumulative uptake, measured

across the 24 hour time period; and in black is the time dependent uptake rate, which

may be calculated as the gradient at each time point of the cumulative plot, using

MATLAB’s gradient function. It is important to note that both of these values are
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Figure 3.5: Predicted uptake of 700 mg applied over a 24 hour period. The rate of
uptake may be derived by calculating the gradient of the cumulative uptake at each
time point.

concentrations, and therefore are not dependent on the surface area of the patch. In

order to account for the surface area the lidocaine it is applied to, we next calculate

Vderm from Equation 3.16. It is assumed that the dermis has a constant thickness of

300µm, and therefore Vderm = 4.2mL for one patch. Finally, we take Vsk = 7800 mL

as given in Table 3.1, which can be used to calculate the systemic clearance from the

dermis at each time point.

Figure 3.6 shows patch plasma concentration as reported by the US Food and Drugs

Administration [135] along with our prediction. A comparison between the predicted

and observed values of a three different metrics are compared in Table 3.6 for three

lidocaine patches, removed after 12 hours. It is clear from Figure 3.6 that our model

overestimates both the rate of absorption and rate of clearance when compared to
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Figure 3.6: Comparison of predicted and observed plasma concentration for three 700
mg lidocaine patches, which are removed after 12 hours.

Parameter Observed Predicted Error
Cmax 108.1µg/mL 100.5µg/mL 7%
AUC 9.21× 104 minµg/mL 7.14× 104 min µg/mL 22.4%

Total absorbed 64± 32 mg 57.67 mg 9.89%

Table 3.6: A comparison between the observed and predicted PK metrics, for three
700 mg patches of lidocaine which are removed after 12 hours.

the in-vivo data. However, as reported in Table 3.6, the error between observed

and predicted values for the maximum plasma concentration and total absorbed are

within an acceptable range. The total absorbed metric is particularly important, as it

is the only value that can be measured independently of the total mass of the subject

for which the patch is applied. The assumption of the PBPK model is that the person

is a 70kg, white male, and therefore, any deviation from this assumption may lead to

discrepancies between predicted and observed plasma concentration. However, the
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information on patients weights, gender and ethnicity was not provided in the FDA

report. Furthermore, it was assumption that no drug would enter systemic circulation

after 12 hours, and therefore does not account for the drug left in the dermis and

epidermis. Accounting for this may lead to a more gradual elimination after 12 hours,

leading to a better fit of the data.

3.6 Investigating model parameters

3.6.1 Varying stratum corneum thickness

The thickness of the stratum corneum varies across the body. In regions of the body

such as feet, hands and the elbows, the skin has an additional layer named the statum

lucidum which consists of keratinocytes. Additionally, the stratum corneum thick-

ness is increased, reaching up to 40µm [136]. As the stratum corneum is the primary

barrier of the skin, increasing its thickness will lead to reduced permeation of xeno-

bioitcs, however, the extent of which has not yet been quantified. This is particularly

important in modelling exposure style scenarios, whereby, different parts of the body

may be exposed to a xenobioitc. The part of the body which is exposed will influence

how much of the xenobiotic enters systemic circulation.

We will assume that the cells within the stratum lucidum are similar to those found

in the stratum corneum, and therefore, the stratum lucidum and stratum corneum

may be treated as a single homogeneous compartment. We may therefore explore

how percutaneous absorption varies across the body, by varying the thickness of the

stratum corneum only.
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Figure 3.7 shows the predicted change in plasma concentration by altering the thick-

ness of the stratum corneum between 6µm and 40µm. Lidocaine applied to skin

with a stratum corneum with a thickness of 40µm has a 43.5% reduction in plasma

concentration when compared to 6µm skin after 12 hours. The increased thickness

reduces concentration within the stratum corneum, which in turn reduces the con-

centration in the epidermis and dermis, due to reduced concentration gradients. This

leads to a reduced uptake rate and a lower plasma concentration.

Figure 3.7: The change in plasma concentration when one 700mg lidocaine patch is
applied to skin with different stratum corneum thickness’s. The stratum corneum
thickness is evenly varied between 6µm (in blue) and 40µm (in red).

When modelling the same system with small changes, there will be some relation

between the Cmax and AUC as shown in Figure 3.8. As Km is far greater then

the concentration in the liver and therefore within the linear range of the Michaelis-

Menten term , the metabolism, excretion and uptake terms are all first order kinetics
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Figure 3.8: The change in the maximum plasma concentration (black) of lidocaine,
and area under the curve (blue) after 12 hours, from varying the thickness of the
stratum corneum.

terms. This leads to similar dynamics between simulations, and therefore, an increase

in Cmax is going to lead to a similar increase in the area under the curve. A stratum

corneum with a thickness of 6µm, leads to a 2-fold increase in the AUC, and a 75%

increase in the maximum concentration in the plasma when compared to one of with

a thickness of 40µm. These changes will be greater for compounds less soluble in the

SC, and reduced for compounds which are more soluble due to the barrier function

of the stratum corneum.

3.6.2 Varying the vehicle concentration

Perhaps the most obvious way to increase the amount of compound permeating the

skin, is to increase the concentration of the initial dose. When pharmaceutical compa-
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nies are looking at patch or cream formulation, it may be economically advantageous

to increase the concentration in order to reduce the cost of any secondary materials

required. In order to gain a greater understanding on the relationship between the

initial concentration and uptake, we varied our simulated patch concentration, to see

the change in plasma concentration.

Figure 3.9: The change in cumulative uptake from the dermis after 12 hours, predicted
for initial vehicle concentrations between 100 mol/m3 and 500 mol/m3. Highlighted
in red is the vehicle concentration currently used in medical practice in patches.

Figure 3.9 shows the relationship between starting vehicle concentration and the cu-

mulative uptake after 12 hours.

As uptake is modelled using first order kinetics, the rate of uptake and cumulative

uptake share similar dynamics. Highlighted in red is the current concentration used

in medical patches, 213.36 mol/m3. It is particularly interesting to note that a two-

fold increase in patch concentration only increases the cumulative uptake by 5% and
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an almost three-fold increase in patch concentration only increases uptake by 7.5%.

This may be attributed to the solubility of lidocaine in the skin, and its relation to

Csat, and therefore, an increase in vehicle concentration does not increase the con-

centration in the SC by an equal fraction. It was found for each of the starting

vehicle concentrations, that steady-state was reached between the layers of the skin

after three hours. Therefore, an increase in SC concentration will lead to an increase

in both epidermis, and dermis concentrations, which in turn leads to an increase in

uptake.

Figure 3.10: The change in the maximum plasma concentration (black), and area
under the curve (blue) after 12 hours, from varying concentration of the vehicle.

Similar to what was found with the cumulative uptake, increasing the initial con-

centration from what is found in medical practice by three-fold only increases both

the maximum plasma concentration and area under the curve by 8%. Again, this
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may attributed to the lower value of Csat as defined in Equation 2.24, calculated

for lidocaine, causing a small increase in stratum corneum concentration for a large

increase in vehicle concentration. As the concentration in the patches for medical use

are already close to four times the calculated Csat, the increase in stratum corneum,

and in turn, plasma concentration will diminish. However, for compounds which

have higher solubility in the stratum corneum, and therefore a greater Csat value,

increasing vehicle concentration will have a far greater effect on stratum corneum

and plasma concentrations.

3.6.3 Atopic dermatitis

Atopic dermatitis (AD) is a chronic inflammatory skin disease which causes hyper-

reactivity to environmental triggers [137, 138], with the most common form being

eczema. The cause of AD is complex, and can be linked to a number of different im-

munologic and inflammatory pathways. AD has been linked to changes in groups of

genes that are responsible for encoding proteins [139]. One of the key loss-of-function

mutations is found with the FLG gene responsible for encoding the structural protein,

filaggrin [140]. An increase in protease activity, and decreased sythesis of the lipid

lamellae lead to a reduction in the dermal barrier property. This is due to an elevated

stratum corneum pH, which inhibits enzyme activity for both of these processes.

In Section 2.3.4, we argued that the presence of the binding protein filaggrin leads

to the need for a saturation function on the vehicle-stratum-corneum boundary due

to its link with barrier function. However, as discussed above, in the case of atopic

dermatitis, we find greatly reduced levels of filaggrin in the stratum corneum. In
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order to model atopic dermatitis, we may therefore remove this saturation function,

replacing it instead with a continuity of flux style boundary condition, as described

in Section 2.3.3.

The investigation of the effects of atopic dermatitis is particularly important, as com-

pounds that were previously found not to reach levels which cause toxicity, either in

the skin or when entering systemic circulation, may in-fact now reach these levels

due to the reduced barrier function. It is therefore important to quantify the differ-

ence between normal functioning skin, and skin affected by atopic dermatitis. While

there is some evidence that AD has some impact on the diffusivity [141], this has not

been quantified in the literature, and we believe the that alteration of the boundary

condition encapsulates what is happening physiologically.

Figure 3.11: The change in the maximum plasma concentration predicted for skin
with and without atopic dermatitis with SC thickness, (Hsc), varying in the physio-
logical range.
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Figures 3.11 and 3.12 show the change in maximum concentration and area under the

curve respectively achieved by altering the thickness of the stratum corneum. Like

found in Figures 3.8 and 3.10, the dynamics between Cmax and the AUC are very

similar for atopic dermatitis. As discussed in Section 3.6.1, this may be attributed

to the first-order rate kinetics for infusion, excretion, and metabolism. With nor-

mal skin, we see a two-fold increase in the AUC and a 75% increase in maximum

plasma concentration from varying the stratum corneum thickness from 40µm to

6µm. Likewise, with atopic dermatitis, we see the same two-fold increase in AUC,

and 75% increase in Cmax. Atopic dermatitis leads to around a five-fold increase in

both the maximum plasma concentration and AUC for all thickness’s when compared

to normal skin. Next, we investigate the effect of changing vehicle concentration on

skin with atopic dermatitis.

Figure 3.12: The change in the area under the curve (AUC) predicted for skin with
and without atopic dermatitis with SC thickness varying in the physiological range.
The model is simulated between 0 and 12 hours.
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It is clear from Figures 3.13 and 3.14 that increasing vehicle concentration has a

significant impact on both the maximum plasma concentration and AUC. With the

removal of the saturation function on the DP/SC boundary due to the reduced pres-

ence of filaggrin found with atopic dermatitis, concentration in all layers of the skin

increase proportionally with the concentrations in the vehicle. This increase in dermis

concentration leads to increased uptake, resulting in increased plasma concentration.

Both Cmax and AUC increase linearly with increasing vehicle concentration. A two-

fold increase in vehicle concentration from what is currently used medically results

in a two-fold increase in both Cmax and the AUC for skin with AD, compared to 5%

increase for both without atopic dermatitis.

Figure 3.13: The change in the maximum plasma concentration predicted for skin
with and without atopic dermatitis with the initial concentration in the vehicle vary-
ing between 100 mM and 500 mM.
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Figure 3.14: The change in the area under the curve (AUC) predicted for skin with
and without atopic dermatitis with the initial concentration in the vehicle varying
between 100 mM and 500 mM.

3.7 Chapter discussion

This chapter describes the combination of the complex skin model from Chapter

2, with a whole-body PBPK model, which may be used to describe the entire pro-

cess from uptake to removal via metabolism or renal excretion. Unlike many of

the currently published PBPK models which account for percutaneous absorption

[57, 58, 59, 60, 61, 62], uptake in this model is driven by the compounds ability to

passively diffuse across the capillaries present in the dermis, rather than a difference

style term (i.e. rate of uptake governed by the concentration gradient between the

dermis and blood). This is particularly advantageous, as the permeation of the en-

dothelial wall, and a compounds logP and molecular weight has been shown to be
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related [125]. It also ensures that the permeation of small, highly lipophilic solutes

is not overestimated as reported by Cussler et al. [126].

The PBPK model was initially validated against intravenous (IV) data for four com-

pounds with varying physico-chemical properties taken from work by Peters [104].

This validation highlighted the need for the inclusion of a Kp factor, which either

increases or decreases the partition coefficient of each organ by a given scaling factor

in order to better fit the IV data. For each of the compounds simulated, a different

kp factor was required in order to better fit the IV data. The model was shown to

fit the IV data well, except for mebendazole, which would require a value for the

excretion term. As discussed by Peters in the publication, the renal excretion value

was fitted to the data in order to minimise the error; however, it was not reported

and therefore assumed to be 0.

We also fit the model to IV lidocaine data to estimate values for the blood-to-plasma

ratio, R, renal elimination rate, Ke(r) and the kp factor. This was an important step

as none of these parameters had values available within the literature and the esti-

mated plasma concentration was sensitive to all three. With both the skin model

from Chapter 2, and the PBPK model parametrised, we were now able to explore

how changes to the model affect the plasma concentration.

The purpose of a model like that described in this chapter may be used to answer

two key questions: how much drug enters systemic circulation; and what is the rate

at which the drug enters circulation? Two factors that affect the answer to these

questions is the concentration of drug applied, and where it is applied to. It was

found for lidocaine that increasing the concentration in the vehicle had little effect on
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the plasma concentration due to the value of Csat estimated for lidocaine. However,

for compounds with a greater lipophilicity, increasing the vehicle concentration will

have a greater effect due to an increase in the value of Csat. Increasing the thickness

of the skin showed far greater effects on the plasma concentration for two reasons:

a thicker stratum corneum means a greater distance for the compound to travel to

the dermis; and a greater amount of the compound is required to reach the saturat-

ing concentration. This reduces the concentration in both the epidermis and dermis

leading to reduced uptake.

Atopic dermatitis was modelled through the removal of the saturation function on

the SC/DP boundary. This was particularly important to quantify for exposure style

scenarios, whereby, a reduction in barrier properties could potentially lead to toxic

levels of a compound entering systemic circulation when the normal barrier proper-

ties of skin would have prevented it. We estimated that for all thicknesses of stratum

corneum, atopic dermatitis leads to a five-fold increase in the maximum plasma con-

centration. The more important factor for atopic dermatitis was shown to be the

concentration in the vehicle. The removal of the barrier property, along with dou-

bling the vehicle concentration from that found in current medical patches, resulted

in a two-fold increase in plasma concentration, compared with a 5% increase for skin

without atopic dermatitis. However, what was particularly interesting was that the

increase in concentration due to the removal of barrier properties, paired with an

increased vehicle concentration, leads to a multiplicative effect on the plasma con-

centration i.e. both changes increase plasma concentration, but when paired together

show a greater increase then the sum of their individual effects.



Chapter 4

Mathematical modelling of nanoparti-

cle delivery to cancer cells

4.1 Background

A malignant tumour is characterised by uncontrolled growth of abnormal cells which

have undergone epigenetic changes escaping the normal cell cycle to form a mass

within solid tissue (muscle, organ, bone) [142]. Cancer is a more broad term, used to

describe the group of different malignant tumours which may form throughout the

body. There are currently over 200 types of known cancers, arising in different areas

of the body caused by genetic changes in the DNA of a cell [143]. Within the UK,

around 300,000 people are diagnosed with some form of cancer each year [144], with 5

year mortality rates ranging from 3% for skin cancer, to 94.8% for pancreatic cancer

[145]. The majority of tumours are treated via surgery, radiotherapy, chemotherapy,

or some combination of these methods [146]. Surgery aims to remove all of the tu-

114
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mour cells; however, when unsuccessful, more aggressive treatments in radiotherapy

and chemotherapy are both options [147]. Radiotherapy makes use of ionizing radi-

ation which damages the DNA within the tumour cells [148], killing these cells and

reducing the size of the tumour. However, this often elicits the side effect of dam-

aging nearby tissue. Chemotherapy is the name given to a set of treatments, which

interrupts various stages of the mitosis pathway, reducing or stopping the spread

and growth of rapidly dividing cancerous cells [149]. Chemotherapeutic drugs may

be used simultaneously and are delivered systemically. However, the effectiveness of

changing, or mixing the chemotherapeutic will largely depend on the type and stage

of development of the cancer. In a survey by Carelle et al. [150], patients undergoing

chemotherapy reported 82 physical and non-physical side effects, including fatigue,

nausea, hair loss, emesis and diarrhoea.

One particular area of research aims to avoid the adverse effects of chemotherapy,

and increase its efficacy through the use of polymersomes which encapsulate thera-

peutic agents. The vascular nature of tumours causes an accumulation of anticancer

molecules due to elution of the drug [47, 151]. Polymersomes are nano-sized vesi-

cles constructed using amphiphilic synthetic block copolymers to create a membrane

[152], which may be used to house a therapeutic agent [153, 154]. Due to the synthetic

nature of the membranes, they may be altered to have more desirable properties. For

example, it has been shown that polymersomes may enter the cells via the endocytocic

pathway [155, 156], and therefore, one desirable property may be pH-sensitive mem-

brane. Membranes constructed of poly-2-(methacryloyloxy) ethyl phosphorylcholine

(PMPC), or poly- 2-(diisopropylamino)ethyl methacrylate (PDPA) have been shown
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to self assemble in neutral environments, but disassemble in enviroments with a pH

less than 6.44 [157, 158]. When the polymersomes enter the endosome, the acidic

environment causes the membrane of the polymersome to disassemble, releasing the

therapeutic agent. The increase in osmotic pressure then causes the endosome to

rupture, releasing the therapeutic agent intra-cellularly [159].

In the development of new cancer treatments, it is important for the treatment to

reach the targeted cells at the correct therapeutic dose. The use of polymersomes also

adds the complication of ensuring the formation of bonds between the polymersome

and cell surface receptors. A mathematical model allows us to study the interac-

tions between the cells and polymersomes, to ascertain the key properties affecting

this binding and uptake. This allows us to inform the experimentalist how to better

formulate the synthetic membranes of the polymersomes, and to ensure maximized

uptake.

In this chapter, we begin by looking at a previously published, time-dependent model

of polymersome uptake by cancer cells. The model is parametrised against experimen-

tal data of the uptake of polymersomes by monolayers of cancer cells, and provides us

with a detailed framework to build a more physiologically relevant model. We then

show that, with certain assumptions, model complexity may be greatly reduced, while

maintaining all relevant outputs, through the use of statistical moments. We then

modify the aforementioned model, with the addition of spatial dimensions, to more

closely mimic what would be found in a 3D in-vitro experiment. Finally, we make use

of fluorescence data of polymersome uptake within spheroids, to parametrise values

related to the geometry of the spheroid. We then have a fully parametrised spatio-
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temporal model, which can be analysed, to understand the key factors which affect

the penetration and uptake of polymersomes by cancer cells.

4.2 Binding model

We begin by looking at published model by Sorrell et al. [63], on which all models

within this chapter will be based upon. A schematic of the binding process is given

in Figure 4.1. This schematic describes how an unbound polymersome with ligands

specific to a cell type may bind to receptors on a cell surface. Once bound, it may

disassociate, form subsequent bonds or enter the cell via endocytosis. The model is

comprised of n+ 4 ordinary differential equations (ODEs), where n is the maximum

number of bonds that can form between a polymersome and receptors on the cell sur-

face. The polymersomes can therefore either be unbound (B0, Polymersomes mL−1),

bound with i bonds (Bi, Polymersomes mL−1), or internalised (Bin, Polymersomes

mL−1). The remaining 2 variables within the model represent the concentration of

receptors that are unbound (Fs, receptors mL−1) and internalised (Fin, receptors

mL−1). The rate of change over time of the concentration of unbound polymersomes

is given as follows,

dB0

dt
= −k3anFsB0 + kdB1, (4.1)

where k3a is the binding association parameter (mL receptors−1 min−1), Fs is the

number of free cell surface receptors per mL (receptors mL−1), B1 is the number

of polymersomes per mL bound to a cell with one bond (polymersomes mL−1) and

kd is the dissociation rate (min−1). Once the polymersome has bound to a cell, it
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is assumed that any subsequent binding with that polymersome may only happen

to this cell (i.e, a single polymersome may not bind to two cells at the same time).

Therefore, the rate of subsequent binding is dependent on the number of remaining

unbound surface receptors for that given cell, given as Fs/M where M is the number

of cells per ml. The rate equation for B1 is then given as:

dB1

dt
= k3anFsB0 − kdB1 −

k2a
M

(n− 1)FsB1 + 2kdB2 − kin(1)B1, (4.2)

where k2a is the 2D binding association parameter for polymersomes already bound

to a cell (cells receptors−1 min−1), B2 is the number of polymersomes bound with

two bonds per mL and kin (min−1) is the internalisation rate of the polymersomes,

which may be constant or a function of the number of bonds (e.g, kin(i)). The rate

equation for polymersomes bound with i = 2, ..., n− 1 bonds is given as,

dBi

dt
=
k2a
M

(n− i+1)FsBi−1− ikdBi−
k2a
M

(n− i)FsBi+(i+1)kdBi+1−kin(i)Bi. (4.3)

The rate equation for the number of polymersomes per mL bound with the maximum

number of bonds, n, is given as,

dBn

dt
=
k2a
M
FsBn−1 − nkdBn − kin(n)Bn. (4.4)
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The rate of change of free surface and internalised receptors are given, respectively,

as,

dFs
dt

= −k3anFsB0 −
k2a
M
Fs

n−1∑
i=1

(n− i)Bi + kd

n∑
i=1

iBi + uFin, (4.5)

dFin
dt

=
n∑
i=1

kin(i)Bi − uFin, (4.6)

where u is the rate at which internalised receptors are recycled back to the cell surface

(min−1). The final ODE represents the rate of change of internalised polymersomes,

namely:

dBin

dt
=

n∑
i=1

kin(i)Bi. (4.7)

Parameter descriptions, values and units are given in Table 4.1. Initial conditions are

given in Table 4.2. Both the paramater values and initial conditions were taken from

work by Sorrell et al. [63].

Parameter Notation Value Units
Free binding rate k3a 1.4× 10−19 mL receptors−1 min−1

Bound binding rate k2a 1.9× 10−3 cells receptors−1 min−1

Internalisation rate (constant case) kin 0.612 min−1

Dissociation rate kd 3.75× 10−25 min−1

Maximum number of bonds n 40 dimensionless
Receptor recycling rate u 0.1 min−1

Concentration of cells M 5 ×104 cells mL−1

Table 4.1: Parameter descriptions, values and units taken from work by Sorrell et al.
[63].
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Figure 4.1: A schematic for the internalisation of polymersomes. Key variables are
shown in larger font, parameters are given in italics. Initially binding takes place
at a rate of k3a, once bound a polymersome may subsequently bind at a rate of k2a,
dissociate at a rate kd, or is internalised at a rate kin. Once internalised, the increased
pH within the endosome causes the amphiphilic membrane to rupture, releasing the
therapeutic agent within the endosome. The increased osmotic pressure then causes
the endosome to burst, releasing the therapeutic agent. Internalised receptors are
then returned to the cell surface at a rate u.
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Variable Notation Initial value Units
Unbound surface receptors Fs 1000 Receptors cell−1

Unbound internal receptors Fin 0 Receptors cell−1

Free polymersomes B0 6.81× 1013 Polymersomes mL −1

Bound polymersomes B1, ..., Bn 0 Polymersomes mL −1

Internalised polymersomes Bin 0 Polymersomes mL −1

Table 4.2: Variable descriptions, values and units taken from work by Sorrell et al.
[63].

4.3 Statistical moments

In Section 4.2, we outlined a model for polymersome uptake by cancer cells. In this

section, we show how we can reduce the model complexity, from n + 4 equations

to 8 through the use of statistical moments. This allows us to look at the effect of

increasing the maximum number of bonds, n, without increasing computational power

that would have been required due to an increased number of equations. A statistical

moment model also provides information on variables of interest such as number of

bound polymersomes, total number of bonds, number of internalised polymersomes,

number of surface and internalised receptors, as well as quantifying the descriptive

statistics of bound polymersomes.

A moment is a measure of the shape of a function. Within statistics, a set of moments

can be used to uniquely desribe the distribution of a dataset. The significant moments

for the purpose of this work are the mean, which is a raw moment; variance, which is

a central moment; and skewness and kurtosis, which are normalised moments [160],

as given in Table 4.3. A raw moment is taken about 0, while a central moment is

taken around the mean. Normalised moments, are central moments, normalised by

the standard deviation in order to render the moment scale invariant. Where X is a



CHAPTER 4. NANOPARTICLE DELIVERY TO CANCER CELLS 122

random variable, we may use the following to define a 1st order raw moment,

µ = E[X]. (4.8)

This is simply the mean (i.e. the expectation), or the average number of bonds formed

between cells and polymersomes. The nth order centralised moment, about the mean

µ, is given as,

µn = E[X − µ]n. (4.9)

We use this to find our second order moment, variance, (σ2), which describes the

spread of the number of bonds formed between polymersomes and cells. The nth

order normalised moment is the n’th central moment divided by σn,

µn
σn

=
E[X − µ]n

σn
. (4.10)

We may use this to find the third and fourth order moments, given as skewness and

kurtosis respectively. Skewness describes the asymmetry of the distribution of bonds,

while kurtosis is a measure of the combined size of the two tails of distribution of the

bonds.

Moment Order Nomenclature
Mean 1 µ

Variance 2 σ2

Skewness 3 γ1
Kurtosis 4 γ2

Table 4.3: The first four statistical moments.

In order to make use of the above moments, we must relate it to the model given in
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Section 4.2. We define the total number of bound polymersomes to be v0, and the

total number of bonds to be v1,

v0 =
n∑
i=1

Bi, (4.11)

v1 =
n∑
i=1

iBi. (4.12)

We are able to define a more general form of the above, in order to find higher order

moments of the model from Section 4.2,

vx =
n∑
i=1

ixBi. (4.13)

Finally, we may relate our expected value of X, to Eq 4.13 to give,

E[Xn] =
vn
v0
. (4.14)

We are now able to quantify our four relevant statistical moments in terms of variables

found in section 4.2, and use these to find an averaged model written in terms of these

statistical moments.

4.4 An averaged model using statistical moments

We previously defined v0 in Eq 4.11, to be the total number of bound polymersomes.

We are able to find the rate of change of v0 by taking the summation of equations
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4.2-4.4, given as,

dv0
dt

=
d

dt

( n∑
i=1

Bi

)
=

n∑
i=1

dBi

dt
=
dB1

dt
+
dB2

dt
+...

dBn

dt
= k3anB0Fs−

n∑
i=1

kin(i)Bi−kdB1.

(4.15)

If we assume the internalisation rate kin is constant, i.e, kin(i) = kin, then we may

re-write equation 4.15 as,

dv0
dt

= k3anB0Fs − kin
n∑
i=1

Bi − kdB1. (4.16)

To close the system, we assume that the 2D binding rate, (k2a) is fast compared to k3a,

such that once a polymersome has bound to a cell, it will quickly form more bonds.

Therefore, it is assumed that kdB1, (the dissociation rate where a polymersome with

one bond reverts to being unbound) is very small, and taken to be ≈ 0. This leads

to,

dB0

dt
= −k3anB0Fs, (4.17)

dv0
dt

= k3anB0Fs − kinv0. (4.18)

The rate of change of the number of bonds, v1, is given as,

dv1
dt

=
d

dt

( n∑
i=1

iBi

)
= 1

dB1

dt
+ 2

dB2

dt
+ ...+ n

dBn

dt
, (4.19)

which leads to,

dv1
dt

= Fs
[
k3anB0 +

k2a
M

(nv0 − v1)
]
− kdv1 − kinv1. (4.20)
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Finally, a generalised form to find dvx/dt is given as,

dvx
dt

= Fs
[
k3anB0 +

k2a
M

n∑
i=1

(n− i)
[
(i+ 1)x − ix

]
Bi −

n∑
i=1

ixkinBi (4.21)

−
n∑
i=1

(ix+1 − i(i− 1)x)kdBi.

For the purpose of this work, we will calculate up to v4 to incorporate all the moments

outlined in Section 4.3. In order to calculate our averaged equations for our recep-

tor terms Fs and Fin, we make use of Equation 4.13, to substitute relevant terms.

Similarly, for our internalisation term Bin, we may substitute in Equation 4.11 into

Equation 4.7 to find its averaged form. This leads to the following system,

dB0

dt
= −k3anB0Fs, (4.22)

dv0
dt

= k3anB0Fs − kinv0, (4.23)

dv1
dt

= Fs
[
k3anB0 +

k2a
M

(nv0 − v1)
]
− kdv1 − kinv1, (4.24)

dv2
dt

= Fs

[
k3anB0 +

k2a
M

((2n− 1)v1 − 2v2 + nv0)

]
− (2v1 − v0)kd − kinv2, (4.25)

dv3
dt

= Fs

[
k3anB0 +

k2a
M

(
− 3v3 + 3v2(n− 1) + v1(3n− 1) + nv0

)]
(4.26)

− (3v2 − 3v1 + v0)kd − v3kin,

dv4
dt

= Fs

[
k3anB0 +

k2a
M

(−4v4 + v3(4n− 6) + v2(6n− 4) + v1(4n+ 1)+ (4.27)

nv0)

]
− (4v3 − 6v2 + 4v1 − v0)kd − v4kin,

dFs
dt

= −Fs
[
k3anB0 +

k2a
M

(nv0 − v1)
]

+ v1kd − uFin, (4.28)

dFin
dt

= kinv1 − uFin. (4.29)
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We are able show that the above averaged model, is equivalent to the full model from

Section 4.2. Figure 4.2 shows the temporal dynamics of both the full and averaged

model superimposed upon one another. The dynamics of the full model in blue, are

mimicked by the averaged model shown in red. Initial and subsequent bonding rates

increase linearly for 1.5 hours before reaching steady state, at which point binding

rates and internalisation rates reach an equilibrium.

Figure 4.2: Temporal dynamics of the averaged model in red, and full model in blue
are shown to be the same for each of the key variables within the model. Steady state
is reached at 1 hour, where the binding and internalisation rates reach equilibria.
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4.5 Defining aggregation of bond distribution

The use of statistical moment closure in the previous section allowed us to reduce

the number of equations required to model the system. The use of the four statis-

tical moments described in Section 4.3 also allows some insight into polymersome

distribution, which we gain by calculating metrics which describe the aggregation for

a given parameter set. Alongside the statistical moments, this is a beneficial tool

to help better design polymersome characteristics in order to optimise delivery. For

example, if it was found that bond distribution was aggregating towards a low num-

ber of average bonds forming, it may be experimentally desirable to increase binding

affinity, to promote subsequent bonding. This could be an issue if it was found that

internalisation was correlated with the number of bonds formed for example. On

the contrary, if it was found that bond distribution was aggregating towards a large

average number of bonds, you may instead wish to look at ways to increase the rate

of internalisation vs subsequent binding as a way to promote polymersomes to enter

the cells. The purpose of this section is therefore to better understand how the dis-

tribution of bound polymersomes changes across the model parameter space.

A number of techniques exist for defining aggregation, where the method of choice

will depend up on the type of data. Two methods which are relevant to the work

in this chapter were described by Wilson et al [161]; the variance-to-mean ratio, and

the coefficient of variation. For the Poisson distribution, the variance (σ2), and the

mean (µ) are equal, whereas for the negative binomial distribution, the variance and



CHAPTER 4. NANOPARTICLE DELIVERY TO CANCER CELLS 128

mean are not equal. The variance-to-mean ratio is calculated as follows,

D =
σ2

µ
. (4.30)

Referring back to the example distributions, a Poisson distribution will therefore have

a variance-to-mean ratio equal to 1, whereas for a negative binomial distribution

it will be greater then 1. We may therefore define an aggregated distribution, as

one with D > 1, with larger values indicating an increased level of aggregation. A

separate, but very similar, scale invariant measure of aggregation may be calculated

by dividing the variance-to-mean ratio by the standard deviation, in order to obtain

the coefficient of variance, namely,

cv =
σ

µ
. (4.31)

As the measure is relative to the mean, it is particularly useful when comparing

distributions on different scales. However, as our data will be on the same scale, we

will chose the variance-to-mean ratio as our aggregation metric. We may however

encounter an issue during the following scenario related to our model. For a given

parameter set, a distribution may follow the shape of a highly aggregated negative

binomial distribution, aggregating towards a lower number of bonds. We may also

have a distribution which is mirrored and now instead aggregates towards a higher

number of bonds due the imposed maximum number of bonds as shown in Figure

4.3.
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Figure 4.3: Two truncated distributions with equal variances, but different means.
This gives different variance-to-mean ratios despite both distributions having equal
levels of aggregation.

Both distributions have an equal variance, however the means will vary. This would

lead to the distribution aggregated towards the lower bond numbers having a higher

variance-to-mean ratio, despite both distributions having equal levels of aggregation.

We there calculate a modified variance-to-mean ratio, which alleviates this issue.

Where n is the maximum number of bonds from, we have,

MVM =
|µ− n/2|

σ2
. (4.32)

As our distributions are truncated between 1 and 40, this metric ensures that sce-

narios such as those shown in Figure 4.3 is no longer an issue as equal mirrored

distributions will not have the same value for our modified variance-to-mean ratio.
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We now perturb relevant parameters in order to quantify their effect on aggregation.

Within this section, we do not include kd, as perturbing kd in simulations showed

little change to model dynamics. Similarly, we also do not perturb n, as the variance-

to-mean ratio is not scale invariant, and therefore would not be a suitable metric

for investigating n. Firstly, we look to Figures 4.4 and 4.5, which show the change

in mean and variance by perturbing parameters between −90% to +400% of their

original value. As discussed in the publication by Sorrell et al. [63], the parameter

values estimated were one of a set of parameters which each fit in-vitro data. The

set of parameters chosen was shown to minimise the error compared to other param-

eter sets. It is therefore possible, that the true set of parameters may exist out of

the scope of this sensitivity analysis. However, without any additional experimental

measurements, we must assume the current parameter set is correct. Figures 4.4 and

4.5 show that k3a and u show a relatively small change to the mean and variance

across the studied parameter space.

The increase in k3a slightly decreases the mean number of bonds. This is due to

an increase in initial binding, reducing the number of surface receptors available for

subsequent bonds; however, this effect is minimal. Similarly, a reduction in u shows

a decrease in the mean number of bonds, again due to a reduction in the number

of surface receptors available to form subsequent bonds. However, an increase in u

shows little change to both the mean and variance. For the more sensitive param-

eters, k2a and kin, we look in particular to Figure 4.6, which shows our modified

variance-to-mean ratio.

In order to understand the direction of aggregation in Figure 4.6, we use a dashed
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Figure 4.4: The change in the mean number of bonds at steady-state, formed by
varying four key parameters between −90% to +400% of their original value.

line to indicate aggregated to the left, i.e. where the mean is less than n/2, and a

solid line to indicate aggregation towards the right, where the mean is greater then

n/2. The greatest levels of aggregation occur when kin is reduced by 90%. While

the variance is small, the mean is large leading to a large modified variance-to-mean

ratio. Figure 4.7 shows the distribution of bonds with the largest level of aggregation.

The distribution is heavily aggregated towards the higher number of bonds, with the

majority of the complexes formed with the maximum (n=40) number of bonds. A

reduction in kin, leads to a reduction in the number of polymersomes internalised.

As the rate at which subsequent bonds are formed is far greater than dissociation

rate, the number of polymersomes forming subsequent bonds increases, causing the

aggregation towards the higher number of bonds.
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Figure 4.5: The change in the variance at steady-state, in the concentration of bonds
formed by varying four key parameters between −90% to +400% of their original
value.

Figure 4.7 shows the distribution with the greatest level of aggregation, found when

the internalisation rate, kin, is reduced by 90%. A similar shaped, heavily aggrega-

tion distribution can be found when increasing the 2D binding rate, k2a. Reducing

the internalisation rate leads to a reduction in the number of polymersomes which

are internalised, and subsequently, an increase number forming subsequent bonds.

Biologically, aggregation to either a lower number, and a higher number of bonds is

caused by either polymersomes not binding, or bound polymersomes not being inter-

nalised with the exception begin an increase internalisation rate. It would therefore

be describable to have a low level of aggregation.
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Figure 4.6: The change in the modified variance-to-mean ratio at steady-state, calcu-
lated using Equation 4.32. We perturb four key parameters between −90 to +400 of
their original value. Dashed lines are used for both k2a and kin to distinguish between
aggregation to the a lower number of bonds, as opposed to solid lines which indicates
aggregation towards a higher number of bonds.

4.6 Spatial application of model

The model for polymersome uptake described in Sections 4.2-4.4 is dependent on time

only. This is a suitable simplification for what is observed in-vitro with a monolayer

culture, i.e. where all cells are exposed to the same concentration of polymersomes.

However, it has been shown that 3D cultures exhibit intrinsic properties not found

in monocultures, and more closely mimic what would be found in-vivo [162, 163,

164, 165]. The success of anti-cancer therapies has been shown to be influenced

by structural heterogeneity, and oxygen, glucose and pH gradients, which are found

in both tumours and spheroids of cancer cells [166]. This has been highlighted in a
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Figure 4.7: The distribution of bonds with the highest level of aggregation. This
occurs when kin is reduced by 90%. All other parameters and initial conditions are
as described in Tables 4.1 and 4.2 respectively.

number of papers which showed that anti-cancer drugs were less effective on spheroids

then monolayer cultures [167, 168], alluding to the fact that features only present in

3D models, such as the aforementioned pH, oxygen and glucose gradients, may affect

a drugs efficacy. Another possible limitation of anti-cancer drugs, is the ability to

penetrate deep within the tumour, which may only be detected on 3D models rather

then monolayer cultures.

In this section, we explore a more physiologically relevant model, with the addition

of a spatial element. We begin by introducing the theory, which allows us to modify

the model described in Section 4.2. A number of mathematical models for tumours

make the assumption of spherical symmetry [13, 14, 15, 16], choosing to only focus

on what happens radially. This will reduce the problem to a single spatial dimension
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(in r), and we also adopt this simplification.

4.7 A spatio-temporal model of nanoparticle uptake

Goodman et al. [64] published a model on the spatio-temporal modelling of nanopar-

ticle delivery to tumour spheroids. Goodman derived model parameters relating to

the spheroid geometry, by taking cross sections of stained tumour spheroids which

were assessed using imaging software. The radius of the cell and radius of the spheroid

were derived manually, while porosity was derived by setting a threshold of pixel in-

tensity, in order to determine the ratio of intra-and extracellular space. As in section

??, spherical symmetry was assumed, and therefore diffusion of unbound nanoparti-

cles was governed by an equation similar to Equation 1.14, with one difference; it was

assumed that the nanoparticles may only diffuse in the extracellular space (i.e. the

gaps between the cells), and therefore the addition of porosity term, ε, was consid-

ered. The model is comprised of four partial differential equations which describe the

spatio-temporal distribution of unbound, bound, and internalised nanoparticles and

unbound surface receptors. Model binding parameters were determined by fitting to

experimental data.

The first term is the porosity, ε, given as the ratio of intracellular to extracellu-

lar volume. This term is necessary as larger particles, such as polymersomes, may

only diffuse extracellularly. Secondly, it allows us to take into account heterogeneous

architecture with respect to radial distance, as shown in Figure 4.8. For example,

tortuosity, τ, describes the ratio of the path taken to the Euclidian distance. An ap-
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proximated relationship is given by Goodman et al. [64] between ε and the tortuosity

τ(ε),

1

τ(ε)
= 1− 2

3
(1 + ε)(1− ε)−

2
3 . (4.33)

Figure 4.8: The spatial dependency of ε, and how it changes with radial position, for
a spheroid with a radius of 248µm taken from Goodman et al. [64].

The next term is L(λ), which accounts for the hydrodynamic and steric reduction of

the diffusion coefficient. As discussed in a publication by Hansing et al. [169], the

extracellular matrix can have an effect of the diffusivity of nanoparticles through both

steric, and hydrodynamic interactions. A steric interaction accounts for the collision

of diffusing particles with the extracellular matrix fibres, while a hydrodynamic in-

teraction accounts for the slowing of particles due to restricted thermal motion while

moving near fibres. Work by Stylianopoulos et al. [170] looked at quantify theses
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effects on the diffusivity of particles. The value of λ is as the ratio of the particle

radius, α, and pore size, rp. The idea is that the value of the diffusion coefficient is

reduced to 0 if the particle radius, α, is larger then the extracellular pore radius rp.

As the pore radius is found to be spatially dependent, then so is L(λ). We define

L(λ) as follows,

L(λ) = (1− λ)2(1− 2.1044λ+ λ3 − 0.948λ5). (4.34)

Figure 4.9 shows how L(λ) changes with respect to λ.

Figure 4.9: The hydrodynamic and steric reduction of the diffusion coefficient changes
with different values of λ. As the λ gets close to 1, i.e. the particle radius α is
only marginally smaller then pore radius rp, there is large reduction in the diffusion
coefficient.
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Finally, Goodman et al. [64] describes a method for calculating an effective diffusion

coefficient, D, by utilising Equations 4.33 and 4.34, namely,

D = D0
L(λ)

τ(ε)
, (4.35)

where the diffusion coefficient, D0 is calculated using the Stokes-Einstein expression

[9], a method for determining the diffusion coefficient of spherical particles through

liquids with a low Reynolds number,

D0 =
kBT

6πµα
, (4.36)

where kb is the Boltzman constant, T is absolute temperature, µ is the viscosity and

α is the particle size.

Using these ideas we can modify our nanoparticle system to extend it to a radially

symmetric spheroid. Additionally, the movement term in Equation 4.37, and 3D bind-

ing term in Equations 4.37, 4.38 and 4.41 each contain an ε (the ratio of intracellular

to extracellular volume), to account for these processes taking place extracellularly.

For simplicity, we also rescale a number of terms in the model, i.e. we rescale both

receptor terms, Fs, Fin. F̃s = FsM , where M is the concentration of cells, to change

the units from receptors µL−1 to receptors/cell for more interpretable results. It is

assumed that cells in the spheroid remain static with a fixed radius, and therefore the

only equation that will be modified to include the movement term is Equation 4.1,

i.e. the rate of change of unbound polymersomes. It is also assumed that the radius
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of the spheroid does not change over time. The system may therefore be described

as follows,

∂B0

∂t
=

1

r2
∂

∂r

[
Dεr2

∂

∂r

(B0

ε

)]
− k3anB0FsM

ε
+ kdB1, (4.37)

∂B1

∂t
=
k3anB0FsM

ε
− kdB1 −

k2a
M

(n− 1)FsB1 + 2kdB2 − kinB1, (4.38)

∂Bi

∂t
=
k2a
M

(n− i+ 1)FsBi−1 − ikdBi −
k2a
M

(n− i)FsBi (4.39)

+ (i+ 1)kdBi+1 − kinBi, i = 2, ..., n− 1

∂Bn

∂t
=
k2a
M
FsBn−1 − nkdBn − kinBn, (4.40)

∂Fs
∂t

=
k3anB0FsM

ε
− k2a
M
Fs

n−1∑
i=1

(n− i)Bi + kd

n∑
i=1

iBi + uFin, (4.41)

∂Fin
∂t

=
n∑
i=1

kinBi − uFin, (4.42)

∂Bin

∂t
=

n∑
i=1

kinBi. (4.43)

Variable Initial value Units
Fs 1000 Receptors cell−1

Fin 0 Receptors cell−1

B0 6.81× 101 Polymersomes µm−3

B1,...,Bn 0 Polymersomes µm−3

Bin 0 Polymersomes µm−3

Table 4.4: Rescaled initial conditions and units for spatial model.
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Parameter Value Units
k3a 2.333× 10−9 µ m3 receptors−1 sec−1

k2a 3.1667× 10−5 cells receptors−1 sec−1

kin 0.0102 sec−1

kd 6.25× 10−27 sec−1

n 40 dimensionless
u 0.0017 sec−1

M 2.3873 ×10−4 cells µ m−3

kB 1.38× 10−23 m2kg s−2K−1

T 273 K
µ 6.92× 10−4 kg m−1s−1

α 1× 10−7 m

Table 4.5: Rescaled parameter values and units for spatial model.

We can use the set of binding parameters parameters given in Table 4.5, the movement

parameters taken from Goodman et al. [64] described in Equations 4.33-4.36, and

the initial conditions in Table 4.4 for all points in space except for B0. For B0 we

initially have,

B0(r, 0) = 0, (4.44)

and the following boundary conditions,

∂B0

∂t
=
∂Bi

∂t
=
∂Fs
∂t

=
∂Fin
∂t

=
∂Bin

∂t
= 0 at r = 0, (4.45)

and

B0(R, 0) = B0 at r = R, (4.46)
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Figure 4.10: The spatio temporal distribution of polymersomes, using parameter and
variable values found in Tables 4.5 and 4.4.

Figure 4.10 shows the spatio-temporal distribution of unbound polymersomes in the

spheroid interior between 0 and 2 hours. At close to r = 200µm, there is a large

reduction in the number of polymersomes. To better understand this, we may refer

back to Figure 4.8 which shows the change in porosity, ε. We can see, that when

ε minimises, less unbound polymersomes are present. As the assumption is made

that polymersomes may only diffuse extracellularly, a reduction in the volume frac-

tion of extracellular space reduces the polymersomes ability to permeate deeper into

the spheroid. This leads to a significant reduction in the number of polymersomes

permeating.
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4.8 Statistical moment closure for spatial model

In Section 4.4, we showed, for the time-only model, that it was possible to use statis-

tical moment closure in order to reduce the number of equations required to model

the system. For the full and averaged model to be equal, we assumed that kin remains

constant, and that kdB1 ≈ 0. By again making these assumptions, we are able to

create the following reduced system of equations.

∂B0

∂t
=

1

r2
∂

∂r

[
Dεr2

∂

∂r

(B0

ε

)]
− k3anB0FsM

ε
(4.47)

∂v0
∂t

=
k3anB0FsM

ε
− kinv0 (4.48)

∂v1
∂t

= FsM
[k3anB0M

ε
+
k2a
M

(nv0 − v1)
]
− kdv1 − kinv1 (4.49)

∂v2
∂t

= FsM
[k3anB0M

ε
+
k2a
M

(
(2n− 1)v1 − 2v2 + nv0

)]
− (2v1 − v0)kd... (4.50)

− kinv2

∂Fs
∂t

= −Fs
[k3anB0M

ε
+
k2a
M

(nv0 − v1)
]
− kdv1

M
+ uFin (4.51)

∂Fin
∂t

=
kin
M
− uFin (4.52)

∂Bin

∂t
= kinv0 (4.53)

A comparison of the variables shared between the full model from Section 4.7, and

the averaged model from this section are compared using parameters from Table 4.5

and 4.4 in Figure 4.11.
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Figure 4.11: A comparison of the full model described in Section 4.7 for the four
variables shared between the models. For each of these variables, the models each
get the same solutions given the same set of parameters.
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4.9 Calculating physiological parameters based on

experimental data

Up to now, we have used a combination of parameter values from Goodman et al.

[64] and Sorrell et al. [63] in order to predict the diffusion and uptake of the polymer-

somes. We are now in the position to start making predictions based on three forms

of data provided by collaborators at the University of Sheffield as shown in Figures

4.12 and 4.13.

Figure 4.12: Figure A is experimental data showing the uptake of polymersomes into
spheroids for a 72 hour time period. Figure B shows florescence staining of of cells
containing polymersomes after 24 hours.

Figure 4.12A shows the percentage of FaDu cells which contained polymersomes over

72 hours. A monolayer of FaDu cells, which are pharynx cells with squamous cell

carcinoma, were exposed to rhodamine labelled PMPC-PDPA polymersomes over a

72 hour period. The percentage of cells containing polymersomes was assessed by

calculating the percentage of cells with a fluorescence above a given intensity. We use

this data to compare to our model output, in order to reparametrise physiological

parameters previously taken from Goodman [64], that have an effect on the diffusivity
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of the polymersome, namely, pore radius, porosity and tortuosity.

Figure 4.12B shows internalised rhodamine labelled polymersomes in red, and counter-

stained FaDu cell nuclei in blue. We use this to quantify the depth to which the

polymersomes permeate after 24 hours.

Figure 4.13: Slice of 4 day old methylene blue stained FaDu spheroid provided by
collaborators at the University of Sheffield.

Figure 4.13 shows a 100x zoom image of a slice of 4 day old FaDu spheroid which is

used to approximate the radius of the spheroid, and necrotic core.

The data provided was conducted on spheroids which appear to have large physilog-

ical difference to that of Goodmans [64]. It is therefore necessary to re-parametrise

some terms in the model, namely, porosity ε, tortuosity τ , pore size, rp, and radius,

R. Looking at the physiological parameters given by Goodman shows a tortuosity

value of 4, which is far higher then upper bounds of estimates from the literature
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[171]. A tortuosity value of 4 implies that the distance taken extracellularly, is four

times that of the euclidean distance between two points. This would require highly

irregular cell shapes, which is not present in cancer spheroids.

To begin, we must define the points which define geometry of the spheroid. To do

so, we must find; the outer boundary points, inner boundary points (i.e. where the

nectrotic core has formed), and cell nuclei. We are able do this using the image anal-

ysis software WebPlotDigitizer. Figure 4.14 shows the geometry created in Matlab,

using the inner and outer boundary points, as well as the nuclei of the cells. We are

now able to use these points, in order to generate a computational approximation of

a spheroid geometry.

Figure 4.14: A computational representation of the inner and outer boundaries, as
well as cell nuceli represented using red asterisks. This was generated using the image
of the 4 day spheroid in Figure 4.13.
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4.9.1 Voronoi tessellation for cell boundaries

In order to be able to calculate values for tortuosity and porosity, we need to be able

to define cell boundaries. The method we chose, was to utilise a Voronoi tessellation,

which has been shown to be a more effective method for estimating cell boundaries

[172] than alternative methods such as watershed fragmentation [173].

Voronoi tessellation is a method that defines discrete regions in space, by finding

the equidistance between neighbouring points in order to create a boundary. If we

suppose, we have n nuclei, 2 ≤ n < ∞, in a planar region X ∈ R2. We may define

our set of cell nuclei by the following,

P = {p1, p2, ..., pn} ∈ R2. (4.54)

Using some distance function d, we may call the Voronoi region, V (pi), that is gen-

erated from some point pi [174, 175],

V (pi) = {x ∈ X|d(x, Pi) ≤ d(x, Pj)∀i 6= j}. (4.55)

To generate the Voronoi diagram, we calculate Equation 4.55 for pi 6= pj, and

i 6= j,∀i, j = 1, 2, . . . , n. The region generated for V (pi) may be though of as n − 1

half-spaces, which contains pi, bound by bisectors of pi and its neighbouring points

within P .

Figure 4.15 shows the bisector between two points, pi, pj, in order to generate their

respective half-spaces H(pi, pj), H(pj, pi).
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Figure 4.15: The red dotted line, represents the bisector between the two half-spaces
H(pi, pj), H(pj, pi). Each point in H(pi, pj) is closer to pi then pj.

Looking at Figure 4.16a, where, n = 3, we can see that three bisectors are formed,

between points pi, pj and pk. Clearly, these bisectors will continue to infinity. There-

fore, in order to generate the Voronoi diagram, we must terminate a bisector where

it intercepts the bisector of a different pair, or an imposed boundary like in Figure

4.16b in the centre. Using inner and outer boundaries shown in Figure 4.14, we may

Figure 4.16: The red dotted lines show the 3 bisectors of the points pi, pk and pk. To
form the Voronoi diagram, we terminate a bisector at the point it intersects another
bisector.

generate the spheroid geometry shown in Figure 4.17.

Now our spheroid geometry is defined, we are able to start estimating tortuosity and
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Figure 4.17: An estimation of the of 2D spheroid geometry. Inner and outer bound-
aries we digitised from spheroid images, as were nuclei points. The boundaries of the
cells were then estimated using Voronoi tessellation.

porosity. Firstly, a simple term to calculate are the spheroid radius, R, and the ra-

dius of the necrotic core, Rc. Straightforward measurement from the image gives a

spheroid radius of R=116.255µm, and a core radius of Rc = 5.3454µm.

The second term we will investigate is tortuosity, τ . In order to calculate τ , we make

use of the graph that has been generated from the Voronoi tessellation. To do so, we

select a node and find all nodes that exist within a given Euclidean radius of it. We

then find the shortest distance to all nodes within the selected region, and calculate

the tortusoity as a ratio of the Euclidean distance to the path taken. We complete

this process for each node within the graph and calculate the tortuosity as a mean

of all ratios. Figure 4.18 shows how the tortuosity value changes as we change the

Euclidean distance used. We wish to reduce the size of the errors bars while keeping

as many points within 1 standard deviation in order to reduce uncertainty. The value

chosen was 30 as above, which is approximately twice the size of the largest node (i.e.
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longest cell boundary side), while still being smaller then the necrotic core (this can

cause abnormally large τ values). For the region radius set to 30 µm, we calculate

the tortuosity for all points, and calculate the mean, as shown in Figure 4.19. Figure

4.19 shows each of the ratio’s calculated and their respective radial positions. We

then set τ equal to a piecewise function, such that,

τ(r) =


1 if r < Rc,

1.2136 if r ≥ Rc.

Figure 4.18: Image A shows how the tortuosity, τ changes by selecting different region
radii to sample from. Image B then shows, for each of the region radii selected, how
many points have tortuosity values which fall outside 1 standard deivation of the
tortuosity value calculated.
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Figure 4.19: All tortuosity values calculated for a region radius of 30 µm with respect
to the nodes radial position. A mean tortuosity value could then be calculated which
was found to be τ = 1.2136.

4.9.2 Calculation of porosity

The final term we wish to calculate is ε, the fraction of the extracellular volume. An

assumption is made that a 2D slice is an adequate representation of the spheroid

geometry. Using the Voronoi diagram produced in the previous section, we may

calculate the area of the spheroid using MATLAB’s PolyArea function to be 42,234

µm2. The area excluding the necrotic core accounts for 38,272 µm2. Again, making

use of the Voronoi diagram, the sum of the non boundary edges is 7799.6 µm2. The

value of ε can be calculated a piece-wise function, where, if r is less then the radius

of the necrotic core, ε = 1. If r is greater then, or equal to the radius of the necrotic
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core, then we may calculate epsilon as,

ε(r) =
2× 7799.6× rp

38272
. (4.56)

We must first calculate a value for the radius of the pore, rp. To do so, we make use of

data shown in Figure 4.12 which show the percentage of cells containing polymersomes

after over a 72 hour peroid, and the depth permeated after 24 hours. Figures 4.12A

and 4.12B were produced from spheroids with a radius of 221 µm, therefore, we

increase our model radius to 221 µm and we therefore scale the radius of our necrotic

core by a factor of 221/116.2555 (i.e. scaled by the ratio of the radii of the two

spheroids).

We begin by splitting our spheroid into q equally spaced points on a straight line

from the centre to the boundary r as shown in Figure 4.20. We can use this to create

q − 1 annulus, where a given annulus j exists between points rj and rj+1.

Figure 4.20: In order to estimate the radius of the pore size, rp, we divide our spheroid
into annulus. We have a total of q points which will lead to q − 1 annulus. The blue
area highlighted shows annulus j which is found between points rj and rj+1

For each annulus, we can calculate Bint(j), the number of internalised polymersomes
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in a given annulus, and Mc(j) and the number of cells in annulus j, defined as,

Bint(j, t) = 4π

∫ rj+1

rj

r2Bin(r, t) dr, (4.57)

Mc(x) = 4π

∫ rj+1

rj

r2mdr. (4.58)

We are then able to calculate the total number of polymersomes per cell P (j, t) for a

given annulus by calculating Bint(x, t)/Mc(x). As our calculation for the total number

of polymersomes per cell is continuous, we need to assign some type of threshold to

say whether cells in a given annulus contains polymersomes. We define a function,

h(j, t) =


0 if P (j, t) < threshold,

1 if P (j, t) ≥ threshold.

The function h(j, t), is a binarising function that will allow us to calculate the num-

ber of cells containing polymersomes, by multiplying Mc(j) × h(j, t). We may also

calculate the number of polymersomes per cell by multiplying P (j, t) × h(j, t). The

percentage of cells containing polymersomes is given as,

% cells containing polymersomes =

∑q
j=1 h(j, t)×Mc(x)

4π
∫ R
0
r2mdr

. (4.59)

Figure 4.21 shows the sum of squared errors between the output for a given threshold

value and rp when compared to the data from Figure 4.12A. We can see for a given

threshold value, we have a pore radius which would be best fitting to the data. With

this, we find that the lowest SSE is found for rp = 0.1071 µ m with a threshold value
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of 1.6327 polymersomes/cell as highlighted in Figure 4.21.

Figure 4.21: How the sum of squared errors changes for differing threshold and pore
radii values when compared to data shown in Figure 4.12A. The white line shows
the pore radii, which best fits the data for a given threshold value. The pair which
minimises the SSE is highlighted in red with rp = 0.1071µm, and a threshold value
of 1.6327 polymersomes/cell.

We are now able to use the above value of rp, with equation 4.56 to generate the

following piecewise function for ε.

ε(r) =


1 if r < core boundary,

0.0115 if r ≥ core boundary.

Figure 4.22 shows the model output, using the pore radius and threshold values

selected in Figure 4.22, with the data points shown in Figure 4.12A. The model

predicts that after 72 hours, 74.45% of cells will contain polymersomes, while the

data suggests 71.66% cells will contain polymersomes. To better visualise where the

binding is taking place, we make use of the the Voronoi diagram generated in Section
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Figure 4.22: Model output using best fitting pore radius (0.1071 µm) and threshold
(1.6327 polymersomes/cell) values, along with the data previously shown in figure
4.12A.

4.9.1, along with the model output to generate Figure 4.23. Figure 4.23 shows the

total number of internalised polymersomes per cell at six different time points. The

number of polymersomes in each of the cells was estimated by calcuating the distance

from the cell to the boundary, and assigning it to a specific annulus. Polymersomes

per cell in a given annulus can then be calculated using Equations 4.57 and 4.58 for

a given time point.

At 1 hour, few polymersomes have permeated the spheroid and therefore only cells

on the outer boundary internalise polymersomes. After 24 hours, polymersomes have

permeated deeper into the spheroid and have been internalised by cells closer to the

core. After 72 hours, a greater number of cells now contain polymersomes, with only

cells close to the necrotic core not containing any, while cells on the outer boundary

contain approximately 10,000 polymersomes each.
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Figure 4.23: Prediction of the number of internalised polymersomes per cell at 6
different time points. The geometry was generated using the Voronoi Tessalation in
section 4.9.1. For each cell, the number of internalised polymersomes was predicted
by calculating the distance from the cell nucleus to the outer boundary. Units for all
images are polymersomes/cell.
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4.10 Varying pore radii

It is well understood that the spheroid physiology changes with culture time. Dur-

ing the initial growth stage of the spheroid, growth is limited by the consumption

and supply of nutrients and oxygen which enter via diffusion [164]. The increasing

spheroid radius leads to hypoxia within the centre, which has been shown to form a

necrotic core when the radius > 150 µm [176]. The extracellular matrix (ECM) is

subject to constant remodelling by matrix-degrading enzymes released by cells. Fur-

ther stress may be placed up on the ECM by the cells migrating to regions in which

they can proliferate [177]. Cell adhesion and apoptosis are closely linked [178]. It is

therefore expected, that older spheroids may have larger extracellular gaps. As the

diffusion coefficient in our model is calculated using the Stokes-Einstein equation with

a hydrodynamic and steric reduction term, an increase in the size of the gap leads

to an increased rate of diffusion. This in turn leads to an increase in the depth to

which the polymersomes permeate. In order to quantify what difference this makes,

we instead look towards images of spheroids cultured for 7 days.

Due to the scale of intracellular gaps compared to the scale of the overall spheroid,

we must use transition electron microscopy (TEM) images of 7-day spheroids in order

to assess ranges for the poire radius parameter in the model, rP . Figure 4.24 shows

a TEM image of a 7-day spheroid at 890x zoom. In order to measure the diame-

ter of the extracellular gaps, we utilise WebPlotDigitizer ’s measurement tool, which

allows the user to measure the number of pixels in a reference scale bar. The user

may then measure the number of pixels in the intracellular gaps across the image to
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approximate the size of the intracellular gap. For Figure 4.24, 46 spatial measure-

ments were taken at various points of the image. It was found that the pore radius,

rp = 0.1426± 0.296µm.

For the purpose of the following simulations, it is assumed that the only charac-

teristic that varies between the 4-and 7-day spheroids is the size of pore radius, rp.

As concentrations of both extracellular and intracellular polymersomes are higher at

points closer to the external boundary, a binarising function (like that found in Sec-

tion 4.9.2) can be used to calculate the depth to which the polymersomes permeate.

Figure 4.25 shows the depth to which polymersomes were internalised for rp values

equivalent to 4-and 7-day spheroids. For the 7-day spheroid, we see polymersomes

being internalised at a far greater rate when compared to the 4-day spheroid. After

20 hours, we see the depth infiltration levelling off, at the point at which all cells

contain polymersomes. This may be confirmed visually by looking at Figure 4.26,

which shows a prediction of the number of internalised polymersomes. We can see

that at 24 hours, most cells contain polymersomes.
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Figure 4.24: TEM image of a 7 day old spheroid at 890x zoom. This may be used to
assess the range of intracellular gap radius to calculate a new value for rp.

Figure 4.25: A comparison of the depth to which polymersomes permeate for pore
sizes equivalent to 4 and 7 day spheroids.
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Figure 4.26: A prediction of the total number of internalised polymersomes for a
spheroid with a rp equivalent to that found in a 7 day spheroid. The geometry was
generated using the Voronoi Tessalation in section 4.9.1. For each cell, the number
of internalised polymersomes was predicted by calculating the distance from the cell
nucleus to the outer boundary. Units for all images are polymersomes/cell.
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4.11 Optimising the therapeutic dose delivery

Due to the diffusion coefficient being governed by the ratio of the radius of the poly-

mersome and extracellular gap, it is clear that decreasing the polymersome radius will

lead to a greater concentration within the spheroid. However, a decreased polymer-

some radius may also lead to a smaller volume of therapeutic agent being delivered.

Therefore, there may exist an optimal polymersome radius to maximize the deliv-

ery of the therapeutic agent to different points within the spheroid. The volume of

therapeutic agent per cell, Vther, may be related to the number of internalised poly-

mersomes per cell, Bint as calculated in Eq 4.57, and the radius of the polymersome,

α, through the following relationship,

Vther = Bint
4πα3

3
. (4.60)

In order to quantify how the volume of therapeutic agent varies across the spheroid, we

calculate the dose per cell delivered to 3 points: an outer point on the outer boundary;

a mid point, in-between the inner and outer boundaries; and an inner point on the

boundary of the necrotic core. We may sample across a range of polymersome radii

in order to assess the optimal therapeutic dose.

Figure 4.27 shows the changes in therapeutic dose at the 3 points within the spheroid

with differing polymersome radii. The point on the outer boundary is not affected

by the reduced permeability, and therefore the optimal size is the greatest volume

possible. However, for both the mid and inner points, we see a large decrease in the
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volume delivered with large polymersome radius, due to the reduced permeability. In

order to optimise the total number of cells containing polymersomes after 24 hours,

you would therefore chose the optimal radii for the inner point, i.e. for total spheroid

coverage. We are also able to generate a similar plot for a pore size equivalent to a 7

day spheroid, shown in Figure 4.28.

Figure 4.27: The total volume of therapeutic agent delivered to each cell at 3 different
points within the spheroid after 24 hours. Optimal radii for each point are marked.

When comparing Figure 4.27 with Figure 4.28, we see an increase in permeation to

the mid and inner points with large polymersomes, due to the increased pore size.

This leads to a polymersome with a radius around 20% larger predicted to deliver

the optimal dose to the inner points of the 7 day spheroid.

By varying both the pore size and radius of the polymersome, we are able to quantify

how the optimal polymersome radius changes for each of the three points within the

spheroid with respect to different pore sizes.
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Figure 4.28: The total volume of therapeutic agent delivered to each cell at 3 different
points within the spheroid with a pore size equivalent to a 7 day spheroid, after 24
hours. Optimal radii for each point are marked.

Figures 4.29, 4.30 and 4.31 show a series of pore sizes which represent a typical range

found in spheroids older then 4 days. Unsurprisingly, as is found in Figures 4.27 and

4.28, the largest size polymersome will deliver the most therapeutic agent to cells on

the outer boundary.

In Figure 4.30, we see similar behaviour to the outer point for largest two pore radii,

however, for smaller radii, we see the need to reduce the polymersome radii in order

to ensure that the optimal dose is delivered. Finally, in Figure 4.31, we see a similar

bell shaped curve for smaller rp values in the mid point. It is clear from this figure,

the need to balance the volume of therapeutic agent, with the permeability reduction,

that comes from a larger volume of polymersome.

Figure 4.32 shows the the optimal size polymersome for the total volume delivered

to cells after 24 hours for the range of pore radii from 0.1076µm to 0.1826µm.
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Figure 4.29: The total volume of therapeutic dose delivered to cells on the outer
boundary of the spheroid, after 24 hours for varying polymersome and pore radii.

Figure 4.30: The total volume of therapeutic dose delivered to cells on the in the
middle of the inner and outer boundaries of the spheroid, after 24 hours for varying
polymersome and pore radii.
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Figure 4.31: The total volume of therapeutic dose delivered to cells on the inner
boundary of the spheroid, after 24 hours for varying polymersome and pore radii.

As observed previously, the optimal size for delivery to the outer points will be the

largest possible polymersome. For both the mid and inner points, there is an almost

linear relationship between the optimal size and pore radii, with the mid and outer

points coinciding at around rp = 0.165µm. This would suggest that permeation to

the middle of the spheroid isn’t restricted by the size of the polymersome at this

point. However, the optimal size polymersome for the inner point doesn’t reach this

maximum size, suggesting permeation is still a limiting factor when trying to deliver

the maximum amount of therapeutic agent deep within the spheroid. This suggests

that for larger spheroids, the optimal size of polymersomes may be smaller, in order

to increase the overall permeability. Similarly, for smaller sized spheroids, a larger

size polymersome may be closer to the optimal size as the depth permeability is not

limiting. In a more broad sense, it is therefore clear that delivering the optimal dose
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is not only a function of the pore radius and polymersome radius, but also the depth

to which the polymersome must penetrate.

Figure 4.32: The optimal polymersome radius for maximizing the therapeutic dose
delivered is shown for different radii of intracellular gaps, rp, for three points in a
221µm spheroid after 24 hours.
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4.12 Global sensitivity analysis

In order to gain a greater understanding of the model, we will explore parameter sen-

sitivity. This will allow us to better understand the relationship between the binding

parameters and uptake of the therapeutic agent, which in turn will lead to a increase

in therapeutic efficacy. An encompassing approach to take when looking at parame-

ter sensitivity, is global sensitivity analysis, as it allows the user to look at parameter

sensitivity by perturbing parameters simultaneously.

During a global sensitivity analysis all parameters are varied simultaneously over

predefined ranges which allows the user to evaluate the relative contributions of each

individual parameter as well as the interaction between parameters. This is partic-

ularly valuable in modelling systems with orders of magnitude differences between

model inputs as it allows one to determine from where and how changes will affect the

system. A number of methods of Global sensitivity analysis exists, including; par-

tial rank correlation coefficient [179], Fourier amplitude sensitivity analysis (FAST),

eFAST [180] which is an extension of the FAST method, and Sobol’s method [181].

FAST, eFAST and Sobol’s methods are all variance based methods, with the main

difference being the algorithm used to perform the multidimensional integration [182].

Variance based methods have been shown to be particularly useful in quantifying not

only the effect of each parameter, but the effect of combinations the parameters.

Due to the increase in interaction terms, runtime for higher dimensional models grows

exponentially [183], where for the total number of parameters, k, we may calculated

2k − 1 interaction terms. Fortunately, we can make use of the COSSAN tool set
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(www.cossan.co.uk), developed at the University of Liverpools Institute for Risk and

Uncertainty to perform our Global sensitivity analysis. COSSAN is an open-source

tool set, designed with Matlab interface in order to quantify, mitigate and manage

risk and uncertainty.

We begin by generating a probability distribution for each of the parameters we wish

to perturb, around the means of the original parameter values. COSSAN then utilises

Latin Hypercube Sampling (LHS) to generate N near-random parameter sets, where

N is the total number of iterations. At each iteration, the model is solved with a

given parameter set, and output is assessed against a predefined baseline output,

which was generated using the mean value of each parameter. Parameter sensitivity

is then calculated using Sobol’s method in order to ascertain the effect of each pa-

rameter.

Before looking at the COSSAN output, we will look at the theory and method of

generating Sobol indices, used to calculate our sensitivity measures.

4.12.1 Sobol’s method

Say we have some function Y = f(X) where our input parameters,X = (x1, x2, ..., x
k),

are mutually dependent and uniformly distributed on [0, 1] after some rescaling. We

have a mean f0 written as,

f0 =

∫
Rk

Xf(X)dX = E[Y ]. (4.61)



CHAPTER 4. NANOPARTICLE DELIVERY TO CANCER CELLS 169

We may write f(X) in a decomposed form, known as its Hoeffding-Anova decompo-

sition where we have the following,

f(X) = f0 +
n∑
i=1

fi(xi) +
n∑
i<1

fij(xi, xj) + ...+ f12...n(x1, x2, ...x
n). (4.62)

Where the factors of the decomposition are given as,

fi = E[Y | xi]− E[Y ], (4.63)

fij = E[Y | xi, xj]− fi − fj − E[Y ]. (4.64)

However, Sobol showed that we can only calculate each term as conditional expecta-

tions of the model if each term within the expansion has a 0 mean, as in Equation

4.65, ∫ 1

0

fi1...is(xi1 , ..., xis)dXk = 0 for k = i1, ..., is. (4.65)

We can also calculate the variance V , given as,

V =

∫
Rk

X2f(X)dX − f 2
0 = E[Y 2]− E[Y ]2. (4.66)

If Equation 4.65 holds true, then squaring by both sides of Equation 4.62 and inte-

grating over Rk leads to the following, where the decomposed terms are calculated in

the same fashion as above:

V =
k∑
i=1

Vi +
k∑
i<j

Vij +
k∑

i<j<l

Vijl + ...+ V1,2,...,k, (4.67)
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which represents the total variance of the f(x). In order to quantify each input pa-

rameter’s contribution we calculate the Sobol indices, which is simply a normalized

measure of the variances described in Equation 4.67, and represents all the combina-

tions of sources for a parameters. To calculate, we must divide Equation 4.67 by the

total variance, V , to get the following,

k∑
i=1

Si +
k∑
i<j

Sij +
k∑

i<j<l

Sijl + ...+ S1,2,...,k = 1. (4.68)

From the above, we can calculate the so-called first order and total effect contribu-

tions. The first order contribution Si quantifies the main effect of each parameter on

the output variance. We can also calculate interaction effects, from the higher order

terms of the decomposition. Factors are said to have interacted, when the sum of

their first order terms is not equal to the total effect. The total effect term ST i, which

is the total effect of a parameter xi on the variation, given as the sum of first and

all higher order terms. In practice, due to the exponential increase in the number of

parameter combinations, (2k− 1), and therefore computational cost, it is common to

instead estimate both the first order effects, Si, and the total effects, ST i and. Saltelli

et al. [184] provides a method that is utilised by COSSAN for estimating both terms.
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4.13 Parameter sensitivity

4.13.1 Number of internalised polymersomes

With an understanding of the method which is utilised by COSSAN, we are able to

perform a global sensitivity analysis on the spatially dependent model from section

4.8. The first output variable we will investigate is the total number of internalised

polymersomes. This will provide information on what parameters have the greatest

contribution to the binding and internalisation processes. In order to calculate the

total number of internalised polymersomes at each time point, we integrate the num-

ber of internalised polymersomes, Bin over the volume of the spheroid, for each time

point, given as,

Bint(t) = 4π

∫ R

0

r2Bin(r, t) dr. (4.69)

This will generate a cumulative number of internalised polymersomes over time, for

the entire volume of spheroid for a given parameter set.

Figure 4.33 shows the normalised first order, and total effect sensitivity measures for

each of the parameters. We can see in Figure 4.33 that the parameter which has the

largest change on the number of internalised polymersomes is the 3d binding rate k3a.

The 3d binding rate is the initial process that subsequent binding and internalisation

relies upon. An increase in k3a, leads to greater number of ligand-receptor complexes

forming, therefore increasing the number available polymersomes to further bind or

be internalised. Similarly, a decrease in k3a, results in fewer ligand-receptor complexes

forming, reducing then number of polymersomes available for internalisation.
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Figure 4.33: The global sensitivity output from COSSAN for total number of in-
ternalised polymersomes. The parameter that has the greatest effect on the total
number of internalised polymersomes is the 3d binding rate, k3a.

The second most important parameter is the receptor recycling rate, u. An increase in

receptor recycling rate, leads to an increased number of surface receptors Fs, which

in turn, increases the number of available initial binding sites. On the contrary,

reduction in the receptor recycling rate decreases the number of available binding

sites. Finally, an increase in internalisation rate kin, will clearly increase the number

of polymersomes internalised.

In order to quantify the effect of perturbing the above sensitive parameters, we will

now perturb each parameter individually, between -90% and 300%, in order to see

how it affects the total number of internalised polymersomes. Like with the global

sensitivity analysis, the total number of internalised polymersomes will be calculated

using Equation 4.69. However, for comparison, a single value of Bint will be taken
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after 12 hours.

Figure 4.34 shows how individually perturbing k3a, u and kin affects the total number

of internalised polymersomes. As shown in the global sensitivity analysis, k3a is the

most sensitive parameter, where a 100% rate increase would result in a 46% increase

in the number of polymersomes internalised after 12 hours. Likewise, a 100% increase

in the least sensitive of the 3 parameters, kin would cause an 13.5% increase in the

number of polymersomes internalised.

Figure 4.34: The 3 most sensitive parameters from the global sensitivity analysis
are perturbed individually, between -90% and 300% of their original value. The
cumulative number of internalised polymersomes after 12 hours is then normalised
by the unperturbed value and plotted as a % change.

Due to the method of calculating the effective diffusion coefficient in section 4.7,

another parameter which could effect the total number of internalised polymersomes
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is the polymersome radius, α. The diffusion coefficient is calculated as a function

of the ratio of polymersome radius to the pore radius rp, and therefore, decreasing

α, would result in an increased concentration of polymersomes within the spheroid.

Like in Figure 4.34, we will perturb the radius of the polymersome to show how this

effect the number of internalised polymersomes. However, α will only be perturbed

between −80% and +5% of its original value, as the effective diffusion coefficient is

equal to zero when α ≥ rp.

Figure 4.35: A decrease in the polymersome radius, a, increases the effective diffusion
coefficient, and therefore increases the concentration of polymersomes within the
spheroid. This leads to an increase number of complexes forming, and therefore an
increase in the number of internalised polymersomes.

Figure 4.35 shows the relationship between polymersome radius, and the number of

internalised polymersomes. Initially, decreasing the radius of the polymersome shows

a linear increase in the number of internalised polymersomes, however, after a -60%
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decrease, there is a far less significant change. To better understand, we look to

Figure 4.36 and Figure 4.37, which show the distribution of unbound polymersomes

with a 20% and 60% reduction in the the radius of the polymersome. In Figure

4.36, the concentration of unbound polymersomes is high near the spheroid boundary

and negligible in the core. In comparison, Figure 4.37 the external and internal

concentrations are equal in all points of the spheroid after 7 hours. At this point,

initial binding will reach its maximum rate, subsequently maximising the number of

internalised polymersomes.

Figure 4.36: The distribution of unbound polymersomes, B0, with a 20% decrease in
the radius of the polymersomes. Units of the colour bar are polymersomes per µm3.



CHAPTER 4. NANOPARTICLE DELIVERY TO CANCER CELLS 176

Figure 4.37: The distribution of unbound polymersomes, B0, with a 60% decrease in
the radius of the polymersomes. Once the polymersome radius has reduced by 60%,
there in very little increase in the number of internalised polymersomes. Units of the
colour bar are polymersomes per µm3.

4.13.2 Cells containing polymersomes

Another metric we may perform a global sensitivity analysis on is the number of cells

containing polymersomes. As in Section 4.9.2, we calculate the percentage of cells

containing polymersomes, by calculating if the number of polymersomes per cell in

an annulus is greater than a given threshold, where the threshold is given as 1.6327

polymersomes/cell. The percentage of cells containing polymersomes at time t is

given as,

% cells(t) =

∑q
j=1 h(j, t)Mc(j)

4π
∫ R
0
r2M dr

, (4.70)
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where h(j, t) is a binarising function defined as,

h(j, t) =


0 if P (j, t) < threshold,

1 if P (j, t) ≥ threshold.

and P (j, t) is the number of polymersomes per cell in a given annulus, j and the

number of cells in a given annulus is defined to as follows,

Mc(x) = 4π

∫ rj+1

rj

r2mdr, (4.71)

where m is the concentration of cells.

Figure 4.38: The Global sensitivity output from COSSAN for percentage of cells
containing polymersomes after 12 hours. The parameter that has the greatest effect
on the total number of internalised polymersomes is the 3d binding rate, k3a.

Figure 4.38 shows the normalised first order, and total effect sensitivity measures



CHAPTER 4. NANOPARTICLE DELIVERY TO CANCER CELLS 178

for each of the parameters. As with the total number of internalised polymersomes,

the most sensitive parameter is the 3d binding rate, k3a. In regions of low extracel-

lular concentration of unbound polymersomes, a larger initial binding rate ensures

receptor-ligand complexes more readily form. On the contrary, even in regions with

high extracellular concentrations, if there is a low rate of initial binding then poly-

mersomes cannot be internalised. The maximum number of bonds formed, n is also

a sensitive parameter. If there a lower number of maximum bonds, there are less

ligands to form the ligand-receptor complexes, resulting in less internalised polymer-

somes. Again, we can quantify how much changing the parameters effects the number

of cells containing polymersomes, by perturbing their values individually and looking

at the relative fold change.

Figure 4.39: The global sensitivity output from COSSAN for percentage of cells
containing polymersomes after 12 hours. The parameter that has the greatest effect
on the total number of internalised polymersomes is the 3d binding rate, k3a.
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Figure 4.39 shows how perturbing k3a and n relates the the relative fold change in

cells containing polymersomes. A 95% reduction in k3a leads to no cells containing

polymersomes, while a 100% increase leads to a 18.5% increase in cells containing

polymersomes. A 150% increase in the maximum number of only leads to an increase

of 5% more cells containing polymersomes, while a 95% decrease leads to 20% less

cells containing polymersomes.

A factor which affects the amount of cells containing polymersomes is the inability

for the polymersome to permeate deeper into the spheroid. Figures 4.36 and 4.37

showed that decreasing the polymersome radius, increased the extracellular concen-

tration, and the total number of internalised polymersomes. Figure 4.40 shows a

similar relationship to Figure 4.35, where a reduction in particle radius leads to a

large increase in the number of cells containing polymersomes. A reduction of 20%

leads to 150% increase in the number of cells containing polymersomes, while a 40%

decrease leads to nearly all cells containing polymersomes. We may therefore con-

clude that the limiting factor for the uptake of polymersomes to all cells within the

spheroid is the ability for the polymersome to permeate, as long as the reduced radius

does not have a large, detrimental effect on the 3d binding rate, or the maximum

number of bonds.
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Figure 4.40: The relationship between polymersome radius and the number of cells
containing polymersomes. A 40% decrease leads to nearly all cells containing poly-
mersomes, due to their ability to permeate through the entire spheroid.

4.14 Chapter discussion

The use of polymersomes as a vehicle to deliver therapeutic agents to specific cells

type is an exciting prospect in increasing payload delivery [47], and reduce off target

toxicity [45], which leads to many of the side effects found with current treatments

[150]. Modelling the uptake of these polymersomes was done in one of two ways: a

complex binding model that was only dependent on time [63, 40]; or a simple binding

model which is dependent on both space and time [64, 13, 47]. However, there are

currently no models which combines the two. This is due to the computational power

required to solve a large number of partial differential equations (PDEs), which makes

model analysis slow.
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In the first Sections of this chapter, we recreated a previously published model by

Sorrell et al. [63], which was parametrised against monoculture experimental data.

It was shown, that under the assumption of a constant internalisation rate, and

kdB1 ≈ 1, statistical moments could be used to create a simpler model with much of

the model complexity removed. This reduced the model from 44 ODEs, to 8 ODEs,

while retaining all relevant variables, such as unbound, bound and internalised poly-

mersomes, and unbound and internalised surface receptors. Methods for defining

the aggregation of a distribution were investigated. Both the variance-to-mean ratio,

and coefficient of variation were described as possible metrics, however, due to the

changing direction of aggregation, neither were suitable. Instead, a modified variance-

to-mean ratio was suggested, which could describe both the degree and direction of

aggregation, (i.e. aggregation to a higher number, or lower number of bonds). By

utilising this metric alongside the mean and variance, we gained a greater understand

as to what happens to the distribution across the parameter space. It was found that

a reduction in the rate of internalisation, kin, and an increase in the subsequent bind-

ing rate, k2a, caused the greatest degree of aggregation. Defining this aggregation

is key in aiding experimentalists modify the polymersome membrane properties, to

optimise delivery.

Next, we applied this complex binding model to a spatial framework published by

Goodman et al. [64]. The model by Goodman et al. described the diffusion of

nanoparticles through the extracellular space of a spheroid. However, it only included

simple rate equations for unbound, bound and internalised nanoparticles. This model

incorporated a number of physiological parameters which affected the diffusivity of
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these nanoparticles, such as the tortuosity and porosity terms. However, it was found

that a number of the physiological parameters from the work didn’t match previously

reported ranges from within the literature. This is particularly important in mod-

elling nanoparticles, as it has been shown by both Graff [13] and Ghaghaha [40], that

the permeation was the rate limiting factor in uptake. It was therefore important to

recalculate these physiological parameters based up on data and images provided to

us by collaborators at the University of Sheffield. These were used to derive values

for tortuosity, pore size, volume fraction of inter/extracellular space and a threshold

intensity for the number of polymersomes per cell. In particular, we found a large

discrepancy between our predicted values for both tortuosity and pore size, when

compared to the values calculated by Goodman et al. [64]. Part of the differences

may be attributed to the difference in methods used to calculate these parameters.

With a fully parametrised model for four day old spheroids, we were able to be-

gin to understand how the different physiological and binding parameters affected

permeation and uptake, which is key when trying to optimise delivery. Under the

assumption that the only physiological change between 4 and 7 day old spheroids was

the radius of extracellular gap, we could quantify the difference in permeation depth

and total therapeutic dose delivery. As more recent methods to control the size of the

nanoparticles are developed, such as work by Hicky et al. [185], we are explore the

relationship between polymersome size and pore radius in order to maximise delivery

of therapeutic agent. There is clear trade off, as reducing polymersome size in order

to increase permeability, also decreases the volume of therapeutic agent. However,

we were able to quantify the radius which optimises this trade off for a number three
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different points within the spheroid. We believe this the first example of optimising

delivery based on polymersome volume within the literature.

Finally, we wanted to understand how the various binding parameters affected both

the number of cells containing polymersomes, and how many polymersomes these

cells contained. We chose to utilise a global sensitivity analysis in order better un-

derstand the interactions between parameter in the system. One of the key points

was how important the initial binding rate, or polymersome affinity is to the binding

process. An increase affinity not only lead to an increase in polymersome uptake, but

a small increase in the number of cells containing polymersomes. Experimentally,

this will lead to a greater volume of the therapeutic agent delivered into cells, which

in turn will lead to an increase in percentage of cell deaths. This may be attributed

to an increased concentration gradient if there is more binding and uptake near the

outer boundary of the spheroid.



Chapter 5

Discussion & Future Work

The development of multi-scale, mechanistic in-silico models are ever more impor-

tant at all stages of the drug development process. In the early stages, models may

be used in order to screen potential candidate molecules. In the latter stages, the

in-silico models are constantly refined using data from both in-vitro and in-vivo ex-

periments to better inform the development process. The methods used to model

these processes generally fall into one of two categories: spatially dependent models,

where movement is governed by a diffusion coefficient, solved using partial differential

equations; and mass balance derived models where movement is generally governed

by a first-order kinetic term solved with ordinary differential equations. This thesis

outlines problems that are solved using both of these methods; in Chapters 2 and 4,

where we are exploring heterogeneity on the micro-scale, space is far more important

than when looking at organs as a whole as found in the PBPK model in Chapter 3.

Chapter 2 describes the development of a novel numerical, continuous-discrete hy-

brid partial differential equation approach to predicting the permeation of xenobiotics

184
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through the skin. The model’s first novelty is the inclusion of histology derived ge-

ometries for both layer boundaries, and the discrete cells within the lower layer of the

epidermis. One benefit of this approach over a brick and mortar style approach is the

ability to account for the evolving shape of the keratinocytes as they perfuse from

the basal layer up towards the stratum corneum, becoming flatter. This ensures the

path taken by many lipophilic compounds which diffuse via intracellular lipid matrix

will have a gradually reducing tortuosity as it permeates to the lower layers of the

skin. This is particularly advantageous when modelling compounds which may be

subject to change from the phase I and II enzymes present in the lower layers of the

epidermis [89, 186], as it ensures metabolism is not overestimated.

Model parameters, such as layer-specific diffusion and partition coefficients are de-

rived using a compound’s physico-chemical properties as described in other publica-

tions using a finite element approach by both Kattou et al. [54], and Chen et al [55].

As found in these publications, many of the boundary conditions in the model from

Chapter 2 assume a continuity of flux. However, our model differs on two boundaries;

on the donor-phase/stratum-corneum boundary and with the discrete cells found in

the lower layers of the epidermis. Due to the large concentration gradient found at

early times, a continuity of flux boundary condition on the DP/SC boundary leads to

quick saturation of the stratum corneum, rather than the slow saturation dynamics

found in-vitro, which may in part be due to the presence of the protein filaggrin. It

is, therefore more suitable to assign a saturation function to this boundary, where

the maximum concentration may be estimated with knowledge of the compounds

partition coefficient in the stratum corneum, and solubility in water. The additional



CHAPTER 5. DISCUSSION & FUTURE WORK 186

boundary condition to mimic the membrane for the discrete cells in the lower epider-

mis is also a novelty of this work. If instead, a continuity of flux boundary condition

is assumed, a local steady-state between the extracellular and intracellular space is

reached quickly, as movement between the two phases will be exclusively governed by

the concentration gradient and ratio of partition coefficients. With the addition of

the membrane, this movement between phases takes place over a larger time frame,

more closely mimicking what is found in-vivo.

One of the great difficulties of modelling a compounds permeation of the skin is the

large degree of variability in the data, even between similar experiments. There are

a number of biological factors that may have contributed to these differences, which

include the gender [187, 188], age [189] and ethnicity [190, 191] of the subject from

which the skin sample is taken. As shown in Chapter 2, the model performs well at

predicting the spatial distribution for compounds with lower initial concentrations

but does not perform as well for larger starting concentrations. However, this is less

of an issue as compounds delivered transdermally tend to be potent, with therapeutic

doses below 20 mg IV dose/day [99].

In Chapter 3, the modifications necessary to alter a previously published PBPKmodel

by Peters [104] to account for percutaneous absorption are described. While there are

examples of PBPK models which account for percutaneous absorption [57, 59, 62],

they have each been developed to model a single specific chemical, paired with a

simple skin model, where uptake is modelled as a difference term rather than being

governed by the permeability of the compound based on physico-chemical properties.

This is important as it ensures that the uptake of small compounds with a lower
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lipophilicity is not overestimated [126].

It was clear from the validation of this model against IV data, a Kp factor that modi-

fies all partition coefficients by the same scaling ratio was necessary to ensure a good

fit, with values varying between 2 and 50. This may be attributed to intrasubject

variability [192], and errors in estimates for parameters such as the fraction unbound

in plasma, and blood-plasma ratio. An alternate approach taken by Sawyer et al. [57]

was to fit the diffusion coefficient, and permeation of dermal capillaries to instead fit

in-vivo data. However, this method isn’t viable for a finite-element approach due to

the run time and still requires in-vivo data.

A key novelty from this chapter quantifies the effect on plasma concentration by al-

tering both the thickness of the stratum corneum and the concentration in the patch

modelled. We show that if the concentration within the patch is higher than the esti-

mated maximum stratum corneum concentration, then increasing the concentration

has little effect on increasing the plasma concentration. This chapter, also quantifies

the negative impact a thicker stratum corneum has on the total quantity of drug

which enters systemic circulation. This has been well understood for a number of

years, but has never been quantified. This work has further highlighted the need

for permeability enhancers such as micro-fabricated needles, to bypass the stratum

corneum and delivering the therapeutic agent to lower layers of the epidermis, ensur-

ing a more consistent dose is delivered to the patient. A better understanding of the

whole process will only aid the development of more chemicals which can be delivered

via the dermal route.

There have been numerous reports which have linked the lack of the protein filag-
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grin found in patients with atopic dermatitis, to a reduction in epidermal barrier

properties [137, 138]. However, very little time has been spent on understanding

how this affects the uptake of compounds applied to the skin. We estimate that

atopic dermatitis leads to a five-fold increase in the plasma concentration for skin

from across the whole body, with this figure increasing linearly with an increase in

vehicle concentration. This is an important finding for drug development and must

be considered when designing the mode of delivery for highly potent chemicals, such

as fentanyl. This also has an effect on the development of other compounds that

humans are regularly exposed to, such as cosmetics and household cleaning products.

Chapter 4 describes the delivery and uptake of polymersomes as a vehicle for de-

livering anticancer therapeutics. The chapter describes the steps needed to modify

a previously published complex binding model by Sorrell et al. [63], with a spatial

model published by Goodman et al. [64]. Currently, modelling polymersome up-

take is achieved in one of two ways: a complex binding model only dependent on

time [40, 63]; or a simple binding model which is dependent on both space and time

[13, 47, 64]. However, there currently is not a model that accounts for both, due to

the computational cost of running large, partial differential equation models. The

use of statistical moments for model closure is not novel technique, however is novel

method when applied to this problem. It has previously been used, and is particularly

useful in a system with many states, as it allows the system to still be described, with

a reduced number of equations.

The model’s physiological parameters were fitted to experimental data provided by

collaborators at the University of Sheffield. There were large differences between our
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estimated values for porosity, tortuosity, and pore size when compared to the values

published by Goodman et al. [64]. However, these values do vary depending on cell

type, age of spheroid, and method of measuring them. This fully parametrised model

allowed us to study the key binding and physiological parameters which affect the

total number of cells containing polymersomes, and the total number of internalised

polymersomes.

One of the key results in this chapter is that there is an optimal polymersome size

that maximises the delivery of the therapeutic agent. As discussed by both Graff et

al. [13] and Ghaghaha et al. [40], permeation is the rate-limiting factor of uptake.

However, as the volume of a polymersome scales cubically with radius, reducing this

in order to increase permeation reduces the volume of the therapeutic agent delivered.

Neither of these authors explores the range of optimal radii, in order to maximise

delivery of the therapeutic agent. As permeation is a function of both the polymer-

some radius and the radius of on extracellular gaps, we have defined optimal size for

delivery to different points within a spheroid. This is particularly useful, as more

recent methods have been developed to control the size of polymersome produced

[185].

As a complex binding model with spatial components has not yet been explored

within the literature, the effect of the binding parameters on the uptake in a spatial

context has not yet been quantified. We show using global sensitivity analysis that

the key parameter which increased both the number of cells containing polymersomes

and the total number of polymersomes was the initial binding affinity of the poly-

mersome to the cell receptor. However, as permeation is still a key issue, altering
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the binding affinity only had a small positive effect on the number of cells containing

polymersomes.

While the results in this thesis are novel, and have interesting applications, with ad-

ditional time and resources, model predictions and utility could be improved. With

regards to the skin model and its application to PBPK in Chapters 2 and 3, the use

of additional histology images would be useful in order to quantify any difference

between in-silico calculations. While we believe there would be very little difference

in results, it would allow us to put more trust in our results. Additionally, exploring

histology images of skin from different regions of the body may also be interesting.

Any anti-cancer therapy which leads to a greater volume of therapeutic agent deliv-

ered to target cells while reducing off-target toxicity has great future potential. In

order to further validate the physiological parameters estimated in Chapter 4, mim-

icking the process with additional histology images to assess differences in estimated

values would be worth investigating. Additionally, this may be investigated with dif-

ferent cell lines, to assess whether the binding dynamics and optimal physiological

parameters vary.
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