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Abstract
Non-invasive samples as a source of DNA are gaining interest in genomic studies of 

endangered species. However, their complex nature and low endogenous DNA content 

hamper the recovery of good quality data. Target capture has become a productive 

method to enrich the endogenous fraction of non-invasive samples, such as feces, but its 

sensitivity has not yet been extensively studied. Coping with fecal samples with an 

endogenous DNA content below 1% is a common problem when prior selection of 

samples from a large collection is not possible. However, samples classified as 

unfavorable for target capture sequencing might be the only representatives of unique 

specific geographical locations or to answer the question of interest. 

To explore how library complexity may be increased without repeating DNA extractions 

and generating new libraries, here we have captured the exome of 60 chimpanzees (Pan 

troglodytes) using fecal samples with very low proportions of endogenous content (< 1%). 

Our results indicate that by performing additional hybridizations of the same libraries, the 

molecular complexity can be maintained to achieve higher coverage. Also, whenever 

possible, the starting DNA material for capture should be increased. Lastly, we have 

specifically calculated the sequencing effort needed to avoid exhausting the library 

complexity of enriched fecal samples with low endogenous DNA content. 

This study provides guidelines, schemes and tools for laboratories facing the challenges 

of working with non-invasive samples containing extremely low amounts of endogenous 

DNA. 

Keywords: Non-invasive samples, fecal samples, target capture, molecular complexity, 

conservation genomics, chimpanzees.

Introduction
Studies of wild animal populations that are unamenable to invasive sampling (eg: 

trapping or darting) often rely on the usage of low quality and/or quantity DNA samples 

(Schwartz, Luikart, & Waples, 2007; Vigilant & Guschanski, 2009), traditionally restricting 

the analysis to neutral markers or genetic loci such as microsatellites (Arandjelovic et al., 

2011; Inoue et al., 2013; Mengüllüoğlu, Fickel, Hofer, & Förster, 2019; Orkin, Yang, A
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Yang, Yu, & Jiang, 2016), autosomal regions (Fischer, Wiebe, Pääbo, & Przeworski, 

2004) and the mitochondrial genome (Fickel, Lieckfeldt, Ratanakorn, & Pitra, 2007; 

Thalmann, Hebler, Poinar, Pääbo, & Vigilant, 2004). Depending on the researcher’s 

question, these neutral genetic markers may continue to be the most economical and 

efficient method (Shafer et al., 2015). However, for other questions such as cataloging 

genetic diversity, assessing kinship, making fine inferences of demographic history, or 

evaluating disease susceptibility, it is increasingly relevant to acquire a more 

representative view of the genome (Ouborg, Pertoldi, Loeschcke, Bijlsma, & Hedrick, 

2010; Primmer, 2009; Shafer et al., 2015; Städele & Vigilant, 2016; Steiner, Putnam, 

Hoeck, & Ryder, 2013). 

Conservation genomics of ecologically-crucial, non-model organisms, and especially 

threatened species such as great apes, have largely benefited from the current advances 

in next-generation sequencing (NGS) technologies (Gordon et al., 2016; Locke et al., 

2011; Mikkelsen et al., 2005; Scally et al., 2012). The ability to simultaneously interrogate 

hundreds of thousands of genetic markers across an entire genome allows greater 

resolution on inferences of demographic parameters, genetic variation, gene flow, 

inbreeding, natural selection, local adaptation and the evolutionary history of the studied 

species (De Manuel et al., 2016; Prado-Martinez et al., 2013; Xue et al., 2015).

The major impediment to the study of wild, threatened, natural populations continues to 

be the difficulties in acquiring samples of known location from a large number of 

individuals. To avoid disturbing and negatively influencing endangered species (alteration 

of social group dynamics, infections and stress) (Morin, Wallis, Moore, Chakraborty, & 

Woodruff, 1993; Taberlet, Luikart, & Waits, 1999), but also to track cryptic or monitor 

reintroduced species (De Barba et al., 2010; Ferreira et al., 2018; Reiners, Encarnação, 

& Wolters, 2011; Stenglein, Waits, Ausband, Zager, & Mack, 2010), sampling often relies 

on non-invasive (NI) sources of DNA such as feces and hair, rather than invasive 

samples such as blood or other tissues, which yield better DNA quality and quantity. 

NI samples have a complex nature: they are typically composed of low proportions of 

host or endogenous DNA (eDNA), are highly degraded (Perry, Marioni, Melsted, & Gilad, 

2010; Taberlet et al., 1999), and contain genetic material from the host’s microbiota and 

from species living in the environment where the sample was collected (i.e., exogenous 

DNA) (Hicks et al., 2018). The proportion of endogenous versus exogenous DNA can be A
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highly variable (Hernandez-Rodriguez et al., 2018) and as previous literature has 

proposed, may depend on the environmental conditions, with humidity and ambient 

temperature having the highest influence (Goossens, Chikhi, Utami, De Ruiter, & Bruford, 

2000; Harestad & Bunnell, 1987; King, Schoenecker, Fike, & Oyler-McCance, 2018; 

Nsubuga et al., 2004). Because of this, the employment of techniques that generate 

sequences of the whole genomic content of the samples, such as NGS, has not been 

economically feasible until recently. Target enrichment technologies, also known as 

capture, have become a common and successful methodology in ancient DNA studies 

(Burbano et al., 2010; Carpenter et al., 2013; Maricic, Whitten, & Pääbo, 2010) and have 

allowed for a more cost-effective use of NGS on NI samples, as the endogenous to 

exogenous DNA ratio greatly improves, thus reducing the sequencing effort (Perry et al., 

2010; Snyder-Mackler et al., 2016; van der Valk, Lona Durazo, Dalén, & Guschanski, 

2017). Capture methods reduce the relative cost of sequencing and improve the quality 

of the data by building DNA libraries that are hybridized to complementary baits for 

selected target regions (partial genomic regions, a chromosome, the exome, or the whole 

genome) increasing the proportion of the targeted eDNA to be sequenced. 

Despite the existence of technical studies describing the use of NI samples for the 

genomic study of wild chimpanzees (Pan troglodytes) (Hernandez-Rodriguez et al., 2018; 

White et al., 2019) many aspects remain to be investigated. For instance, in Hernandez-

Rodriguez et al., samples were selected to cover the entire range of observed average 

fragmentation lengths and percentage of eDNA, in order to be as representative as 

possible. As a result, they observed a sequencing bias due to the different percentage of 

endogenous content in captured samples. To avoid that outcome, they proposed 

performing equi-endogenous pools instead of the standard pooling of libraries according 

to molarity. White et al. followed this recommendation and yielded a more balanced 

representation across samples. However, their experiments were limited to only those 

samples with a proportion of eDNA above 2% (White et al., 2019). As shown by 

Hernandez-Rodriguez et al. there is a positive association between endogenous content 

and the amount of data acquired from a sample, such that when possible, one should use 

those samples with higher endogenous content. However, the proportion of chimpanzee 

fecal samples with eDNA above 2% is often very low (<20%) (White et al., 2019). A
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Here, we look to expand on the methods presented in Hernandez-Rodriguez et al. (2018) 

and White et al. (2019) by focusing on very low endogenous content samples. These 

previous studies have illustrated the value and quality of genotype data derived from 

target capture enrichment protocols using complex non-invasive samples. Here, we will 

focus on methods to improve the acquisition of unique, endogenous or host DNA reads - 

the variable most important in increasing the amount and quality of genotype data. 

The NI chimpanzee samples used in this study were collected from 15 different 

geographic sites across the whole species’ ecological habitat in Africa and included all 

four subspecies, thus representing a wide variety of sampling and environmental 

conditions. With this screening approach we were able to examine how the proportion of 

eDNA content varies between each site, revealing that the majority of collected samples 

in some sites have low proportions of eDNA (<1%). Therefore, when prior selection of 

samples from a large collection is not possible, the only ones representing a specific 

location or that are relevant to the scientific question, might be those with extremely low 

proportions of endogenous content. Because of that, we have focused our efforts on 

developing approaches to retrieve the maximum data possible from challenging samples. 

In that regard, we sought to capture the exome of 60 chimpanzee fecal samples as part 

of the Pan African Programme: The Cultured Chimpanzee (PanAf) 

(http://panafrican.eva.mpg.de/) (Kühl et al., 2019) with eDNA estimates below 1%. We 

used a commercial human exome to evaluate how the coverage of targeted genomic 

regions may be increased in a collection of samples that may be regarded as unfavorable 

for target capture sequencing. We confirmed the importance of the correct estimation of 

eDNA and the pooling of libraries accordingly to avoid sequencing bias across samples 

(Hernandez-Rodriguez et al., 2018). We also expanded on previously explored and 

unexplored guidelines to ensure the maintenance of the captured molecule diversity or 

library complexity such as the number of libraries in a pool, the performance of additional 

hybridizations and increasing the total DNA starting material for capture (Hernandez-

Rodriguez et al., 2018; Perry et al., 2010; Snyder-Mackler et al., 2016; White et al., 

2019).

Our results provide the most comprehensive exploration to date of target enrichment 

efficiency in very low eDNA fecal samples, and guidelines to improve the quality of the 

data without re-extracting DNA and preparing new libraries. These findings could greatly A
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benefit the conservation effort on great apes, as well as any other species with similar 

DNA sampling limitations.

Material and Methods
Samples and Library Preparation
Chimpanzee fecal samples from 15 different sites in Africa were collected as part of the 

PanAf (Figure 1A). Approximately 5g (“hazelnut-size”) of feces were collected from each 

chimpanzee fecal sample and stored in the field using a two-step ethanol-silica 

preservation method (Nsubuga et al., 2004). Depending on the density of the sample, 

between 10 and 80 mg of dry fecal sample were extracted using a Qiagen robot with the 

QIAamp Fast DNA Stool Mini Kit (Qiagen) with modifications (Lester et al, in review, 

2020). The extractions, including blanks, were screened using a microsatellite genotyping 

assay (Arandjelovic et al., 2009; Arandjelovic et al., 2011) and up to 20 samples from 

each PanAf field site were selected as follows: (1) those that amplified at the most loci of 

the 15 loci panel, (2) represented unique individuals, and (3) were ascertained to have a 

low probability of being first degree relatives (Csilléry et al., 2006) (302 samples) 

(Supporting Information Table S1). None of the blanks amplified in the microsatellite 

assays. To ensure sufficient template DNA for library preparation, the 302 samples were 

re-extracted using the same QIAamp kit and between 100 and 200 mg of dry fecal 

sample. Total DNA concentration and fragmentation were measured on a Fragment 

Analyzer using a Genomic DNA 50Kb Analysis kit (Advanced Analytical) and the 

fragmentation level was calculated with PROSize Data Analysis Software (Agilent 

Technologies). Endogenous DNA content (fraction of mammalian DNA, relative to gut 

microbial and other environmental genetic material) was estimated by qPCR (Morin, 

Chambers, Boesch, & Vigilant, 2001). Finally, percentage of endogenous content for 

each sample was calculated by dividing the chimpanzee eDNA concentration by the total 

DNA concentration. We selected 60 samples with an intermediate percentage of eDNA 

(0.41-0.85%, average 0.61%) from the 302 screened samples (range of endogenous 

distribution: 0-47.57%, average 1.49%) (Supporting Information Figure S1 and Table S2). 

A single library was prepared for each of the 60 samples following the BEST protocol 

(Carøe et al., 2018) starting with 200 ng total DNA (from a sample) with minor A
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modifications. Specifically, double in-line barcoded adapters were used (Supporting 

Information Figure S2), barcoding each sample at both ends of its library to allow for its 

unique identification within a pool (Rohland & Reich, 2012). Library concentration was 

calculated using Agilent 2100 BioAnalyzer and DNA7500 assay kit. A detailed protocol 

for library construction can be found in Supplementary Information. 

Pooling and Capture
Endogenous DNA content is a key factor in target-capture experiments directly 

influencing the yield of on-target reads and molecule diversity (Hernandez-Rodriguez et 

al., 2018). Our equi-endogenous sample pooling strategy follows two criteria. First, 

samples belonging to a pool have similar eDNA proportions according to a 1:2 ratio rule: 

the sample with highest proportion of eDNA cannot double the sample with the lowest. 

Second, each sample within a pool contributes the same total amount of eDNA (µg) to 

the final pool, creating an equi-endogenous pool. So, the sample with the lowest 

percentage of eDNA will contribute more total DNA to the final pool compared to the 

sample with the highest, but the amount of eDNA per sample will be equivalent. 

According to the estimates of eDNA, we pooled the 60 libraries into three primary pools 

(see graphical representation in Figure 2). The first pool (P1) with 2 µg total DNA (in the 

pool) consisted of 10 samples with an average endogenous content of 0.81% (range 

0.69-0.85%). The second pool (P2) had 4 µg total DNA and consisted of 20 samples and 

an average endogenous content of 0.69% (range 0.58-0.80%). The 30 remaining libraries 

were pooled into the third pool (P3) of 6 µg total DNA with an average endogenous 

content of 0.49% (range 0.41-0.66%) (Table 1 and Figure 3A, Supporting Information 

Table S2). Subsequently, each initial primary pool was subdivided into two (P1E1, P1E2), 

four (P2E1, P2E2, P2E3, P2E4) and six (P3E1, P3E2, P3E3, P3E4, P3E5, P3E6) exome 

capture (E) replicates each consisting of 1 µg of total DNA. 

Independently, we repeated the construction of the primary pools (P1, P2 and P3), but 

with each having 4 µg total DNA. Each of these new primary pools was then divided into 

two replicates of 2 µg each (P1E3, P1E4, P2E5, P2E6, P3E7, P3E8). As a consequence 

of generating replicate primary pools, six of the 60 libraries were exhausted and are not 

present in these replicate primary pools. As a result, across all 60 samples and 18 A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

hybridizations there are a total of 388 individual hybridization experiments (Figure 2). All 

details are provided in Table 1.

Each exome capture experiment consisted of two consecutive hybridizations, or dual-

capture reactions as previously recommended (Hernandez-Rodriguez et al., 2018) using 

the SureSelect Human All Exon V6 RNA library baits from Agilent Technologies and was 

performed following the manufacturer’s protocol with some modifications (full protocol is 

available in Supporting Information), and started with either 1 µg or 2 µg total DNA (Table 

1 and Figure 2). After the first hybridization reaction and the subsequent PCR 

enrichment, we performed the second hybridization reaction with all available material. 

The final captured pool was amplified with indexed primers (Kircher, Sawyer, & Meyer, 

2012), double-indexing each library within a pool, thereby tagging each library to a 

specific hybridization experiment. Double inline barcoded (sample specific) and double 

indexed (pool specific) libraries allow for multiplexing many libraries into a single pool and 

sequencing many pools into a single sequencing lane, even when the same sample 

library is present in multiple hybridization reactions. This permits the tracking of unique 

experiments. 

For the reminder of the article when we use the word “capture” or “hybridization”, we will 

always be referring to the dual-capture or two consecutive rounds of capture 

hybridizations that are described above.

Sequencing and Mapping

Captured libraries were pooled into 3 sequencing batches and sequenced on a total of 

3.75 lanes of a HiSeq 4000 with 2x100 paired-end reads: SeqBatch1 (P1E1, P2E1, 

P2E2, P3E1, P3E2, P3E3), SeqBatch2 (P1E2, P2E3, P2E4, P3E4, P3E5, P3E6) and 

SeqBatch3 (P1E3, P1E4, P2E5, P2E6, P3E6, P3E7, P3E8) (Table 1). 

Demultiplexed FASTQ files were trimmed with Trimmomatic (version 0.36) (Bolger, 

Lohse, & Usadel, 2014) to remove the first 7 nucleotides corresponding to the in-line 

barcode (HEADCROP: 7), the Illumina adapters (ILLUMINACLIP:2:30:10), and bases 

with an average quality less than 20 (SLIDINGWINDOW:5:20). Paired-end reads were 

aligned to human genome Hg19 (GRCh37, Feb.2009 (GCA_000001405.1)) using BWA 

(version 0.7.12) (Li & Durbin, 2009). Duplicates were removed using PicardTools (version A
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1.95) (http://broadinstitute.github.io/picard/) with MarkDuplicates option. Further filtering 

of the reads was carried out to discard secondary alignments and reads with mapping 

quality lower than 30 using samtools (version 1.5) (Li et al., 2009). From now on, we will 

refer to those reads remaining after filtering as “reliable reads”. To retrieve the reliable 

reads on-target we used intersectBed from BEDTOOLS package (version 2.22.1) 

(Quinlan & Hall, 2010) using exome target regions provided by Agilent. In cases where 

we combined sequencing data, we merged filtered bam files from different hybridizations 

using MergeSamFiles option from PicardTools (version 1.95) 

(http://broadinstitute.github.io/picard/). Since the merged bam files can still contain 

duplicates generated during library preparation, we removed duplicates and then 

retrieved the reliable reads on-target using the same methodology as above (Supporting 

Information Figure S3). For all previous steps, the total number of reads were counted 

using PicardTools (version 1.95) (http://broadinstitute.github.io/picard/) with 

CollectAlignmentSummaryMetrics option. The percentage of human contamination was 

estimated by using positions where modern humans and chimpanzees consistently differ. 

We used previously published diversity data on high-coverage genomes from the Pan 

species (chimpanzee and bonobos) (De Manuel et al., 2016) and human diversity data 

from the 1000 Genomes Project (Auton et al., 2015), selecting positions where the 

human allele is observed at more than 98% frequency, and a different allele is observed 

in almost all Pan individuals (136 out of 138 chromosomes). Genome-wide, 5,646,707 

chimpanzee-specific positions were identified. Using samtools mpileup (Li et al., 2009), 

we retrieved the number of observations of human-like alleles at these positions in the 

mapped reads, and estimated the human contamination as the fraction of observations 

for the human-like allele across all positions.

Capture performance
Capture performance was evaluated by calculating the enrichment factor (EF), capture 

specificity (CSp), library complexity (LC), and capture sensitivity (CS) as described in 

Hernandez-Rodriguez et al (2018). EF is calculated as the ratio of the number of reliable 

reads on-target to the total reads sequenced divided by the fraction of the target space 

(64Mb) to the genome size (~3Gb). CSp is defined as the ratio of reliable on-target reads 

to the total number of reliable reads. LC is defined as the number of reliable reads A
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divided by the total number of mapped reads (containing duplicated reads). Capture 

sensitivity (CS) is defined as the number of target regions with an average coverage of at 

least one (DP1) - but also four (DP4), ten (DP10), twenty (DP20) or fifty (DP50) - divided 

by the total number of target regions provided by the manufacturer (n = 243,190). To 

calculate the average coverage of the target regions we used samtools (version 1.5) with 

the option bedcov (Li et al., 2009). 

To generate molecular complexity or library complexity curves (MC), we used the 

subsampling without replacement strategy implemented in Preseq software (version 

2.0.7) with c_curve option (http://smithlabresearch.org/software/preseq/) from the bam 

files without removing duplicates. MCs were sequentially estimated by adding the 

production reads, i.e. raw reads produced by sequencing, from additional hybridizations, 

one at a time until all hybridizations from the same library were merged (schematic 

representation in Figure S4). 

Correlation coefficients among all pairs of study variables were estimated. Spearman’s 

rho (cor.test(, method = “sp”) from R stats package) was estimated when comparing two 

numeric variables. Among two categorical variables we estimated Cramér’s V, derived 

from a chi-squared test (chisq.test() from R stats package). When comparing a numeric 

and categorical variable we took the square root of the R-squared statistic derived from a 

univariate linear model (lm() from R stats package) with a rank normal transformation 

(rntransform() modified from the GenABEL package to randomly split tied values) on the 

dependent, numerical values. In addition, univariate and multivariate type I hierarchical 

analysis of variances (ANOVA; anova() from R stats package) were performed to 

estimate the variance explained (or eta-squared) each experimental variable has on 

performance summary statistics (number of unique reads, reliable reads, EF, LC, CS and 

CSp). We down-sampled libraries to 1,500,000 reads (n=274) to remove production 

reads as a confounding factor. Each performance statistic was rank normal transformed 

with ties being randomly split to ensure normality of the dependent variable. Univariate 

analysis focused on the effect that subspecies, geographic sampling site, total DNA 

concentration, endogenous DNA concentration, percent endogenous DNA, average 

fragment length, pool, amount of DNA in a hybridization, hybridization and sequencing 

batch had on each performance statistic. A multivariate model was built to conform with 

experimental (hierarchical) order, such that each dependent variable (performance A
cc

ep
te

d 
A

rt
ic

le

http://smithlabresearch.org/software/preseq/


This article is protected by copyright. All rights reserved

summary statistic, CS at DP1) was explained by ~ subspecies + site + % eDNA + 

average fragment size + pool + amount of DNA + hybridization + sequencing batch + 

error. Again, the variance explained by each independent variable was summarized by 

computing the eta-square statistic derived from the sums of squares for each variable 

using a type I hierarchical ANOVA. All statistical analyses were performed in R (version 

3.5.2) (R Core Team, 2018). 

  

Results
Sample Description
Samples were collected from 15 different PanAf sites distributed across the entire range 

of chimpanzees in Africa (Figure 1A and Supporting Information Table S1). The 302 

screened samples had an average eDNA of 1.49%, ranging from 0 to 47.75% (Figure 1B, 

Supporting Information Figure S1A and Table S1) with 70.2% of the samples below 1% 

eDNA, according to qPCR estimates (Figure 1C). The average fragment length for 

screened samples was 3,479.94 bp (ranging from 72 to 17,966 bp) (Supporting 

Information Figure S1B and Table S1).

We observe variation on the average endogenous content among geographical sites 

(Figure 1B), and also variation on fragment length among geographical sites (Supporting 

Information Figure S1B). For instance, samples collected in a specific location such as 

Campo Ma’an (Cameroon) have an average eDNA of 0.02%, an extremely low value 

compared to the average of all sites of 1.49%. On the other hand, some sites such as 

Ngogo (Uganda) have samples with higher than average eDNA (6.95%) (Supporting 

Information Table S3). This might be explained by the influence of weather, humidity and 

temperature on DNA preservation and bacterial growth in the fecal sample before 

collection as well as a product of sample age and quality of sampling conditions 

(Brinkman, Schwartz, Person, Pilgrim, & Hundertmark, 2010; Goossens et al., 2000; 

Harestad & Bunnell, 1987; King et al., 2018; Nsubuga et al., 2004; Wedrowicz, Karsa, 

Mosse, & Hogan, 2013).

A total of 60 samples with a mean percent endogenous content of 0.58% (range from 

0.41% to 0.85%), and with a median human contamination of 0.0875% (range from 

0.04% to 7.50%) from all four chimpanzee subspecies and 14 geographic sites were A
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carried forward into target capture enrichment experiments (Table S2). After double-

inline-barcoded library production, the 60 samples were placed into 3 pools with 10, 20 

and 30 samples each (Figure 2). Samples were divided into pools based on their percent 

endogenous content, such that those samples with higher levels of percent endogenous 

content were in P1 with 10 samples (mean = 0.81) and those with the smallest were in P3 

with 30 samples (mean = 0.49; P2 mean = 0.69) (Figure 3A). As such the percent 

endogenous DNA is highly structured among the three pools, explaining 81% of the 

variation in eDNA (univariate linear model using rank normal transformed % eDNA; p-

value = 2.05x10-91) (Supporting Information Figure S5A). 

Read Summary Statistics and Capture Performance 

As illustrated in Figure 3B across a total of 18 hybridization experiments sequenced we 

obtained ~1.40 billion reads distributed among 3 pools. Of those, ~1.19 billion were 

mapped reads (85.19%), with ~203 million reads being considered duplicate-free, reliable 

reads (14.6%). After removing off-target reads, we obtained a total of ~174 million on-

target-reliable reads (12.48%) (Supporting Information Table S4, Figure S3A). However, 

on average each hybridization experiment yielded an average of 17.35% on-target-

reliable reads, with a range of 4.15% in our earliest experiments to 34.85% in our later 

experiments (Supporting information Table S5). The observed high levels of duplicates 

are a consequence of the low endogenous content of the samples and the exhaustion of 

library complexity during sequencing; we will elaborate on outcome and improvements 

below. 

The ~1.40 billion reads were not equally distributed among the 3 pools (production reads 

explained by pools; r2 = 0.41, p-value = 3.24x10-16) or 18 hybridizations (r2 = 0.62, p-

value = 2.59x10-30). In fact, two hybridizations of P1 (P1E1, P1E2) were sequenced to an 

average depth of 18 million reads, while all other hybridizations had an average depth of 

3 million reads (Figure 3C). This very deep sequencing, in P1E1 and P1E2, led to a point 

where the library complexity was exhausted, leading to the sequencing of a high number 

of PCR duplicates (Supporting Information Figure S3A, S3B and Table S5). We therefore 

reduced subsequent sequencing efforts, as discussed in section “Optimization of required 

production reads”, for the remaining replicate hybridizations.A
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All capture performance summary statistics (Supporting Information Table S4), to the 

exception of capture specificity (CSp), are strongly correlated with the number of 

production reads acquired (median correlation coefficient = 0.422, CI = 0.03 to 0.93; 

Supporting information Figure S5A, Table S6). Given this, and also because of the 

distinct difference in the number of production reads between P1E1 and P1E2 and all 

other hybridizations we down-sampled all experiments to 1.5 million production reads, 

retaining only those 274 sample/hybridization experiments with 1.5 million production 

reads, and re-estimated all capture performance summary statistics (Supporting 

Information Figure S5B, Table S7 and S8). The effect each experimental variable has on 

performance was estimated in a univariate linear model after rank normal transforming 

each summary statistic (Figure 4A). We observed a near uniformity in the variance 

explained by each experimental variable across each performance statistics. In short, the 

average, ranked order of variance explained by each explanatory variable are sample 

(86.50%), hybridization (38.72%), sequencing batch (28.78%), site (20.5%), pool (13%), 

% endogenous DNA (11%), subspecies (8.85%), starting DNA amount (7.35%), 

endogenous DNA concentration (5.14%), average fragmentation size (2.12%,), and total 

DNA concentration (2.07%). Given these observations we may conclude that variation in 

hybridization and sequencing are crucial to performance. However, sample quality and 

starting material varies among our hybridizations and sequencing batches. These 

tendencies can be observed in Figure 5A-C. We account for this in a multivariate linear 

model followed by a decomposition of the variance in a type I hierarchical analysis of 

variance (ANOVA). To do so we fit a linear model ordered by experimental choices, as 

described in materials and methods, to explain Capture Sensitivity (CS) at DP1 which is 

being used here as an example of capture performance. This model indicates that 

hybridization explains, on average, an attenuated 17.80% of the variation in performance, 

followed by percent endogenous content (17.11%), site (9.62%), subspecies (9.26%), 

pool (3.92%) and then the amount of DNA in the hybridization (3.58 %) (Figure 4B). 

Results for all other performance summary statistics mirror those for CS at DP1 and can 

be seen in Figure S6.
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Relevance of Equi-Endogenous Pools

The observations of Hernandez-Rodriguez et al. and White et al. suggest that pooling 

libraries by eDNA concentration (in equi-endogenous pools) prior to hybridization capture 

should reduce or remove the effect of variation in eDNA across samples on targeted 

capture sequencing performance. Indeed, eDNA did not have a major influence on 

production reads or on-target reads, although a slightly positive trend can be observed in 

some hybridizations of P2 (Supporting Information Figure S7). Without equi-endogenous 

pooling, it is expected that samples with higher eDNA would accumulate more on-target 

reads than other samples with lower eDNA as observed by Hernandez-Rodriguez et al. 

(2018). The reason why in P2 we find some outliers might be traced to both pipetting 

variations and inaccurate endogenous measurements from qPCR values due to the 

presence of inhibitors (Morin et al., 2001). Avoiding outliers is extremely important in 

limiting variability within a pool. For example, sample N183-5 accumulated 29.4% of total 

raw reads in P2, when a value 5% (1/20 of 100%) was expected (Supporting Information 

Figure S8). 

Impact of Amount of Starting DNA for Capture on Library Complexity

One major decision when performing capture experiments is the amount of starting DNA 

in the pool. In twelve hybridizations we used the manufacturer’s suggested amount of 

starting material, 1 µg for each pool. For the last two hybridizations of each pool (a total 

of six hybridizations) we doubled the starting material, up to 2 µg of pooled libraries 

(Table 1). With this approach we aimed to test the effect on the final LC when doubling 

the amount of DNA and to determine how much DNA should be used for fecal capture 

experiments. We observed an average increase of 2.8-fold in LC for experiments using 2 

µg of total DNA in the hybridization relative to those using 1 µg (Supporting Information 

Figure S3B). However, given that production reads also vary between these two 

conditions, we down-sampled the data to 1,500,000 reads per library. After this correction 

we still observed 2-fold higher LC when starting the experiments with 2 µg of total DNA in 

all pools (Figure 5D). 

Molecular complexity, as influenced by the amount total DNA in a hybridization, was 

further investigated by evaluating the relationship between MC and production reads in a A
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MC curve analysis. The MC curve for each hybridization was obtained by subsampling 

without replacement their reads. The results supported the conclusion above: increasing 

the amount of total DNA in the hybridization increased the MC (Supporting Information 

Figure S9). Therefore, whenever there is sufficient library available, it is advisable to start 

with 2 µg rather than 1 µg. 

Molecular Complexity and Capture Sensitivity

One of the critical aspects to increase coverage is to acquire as many unique on-target 

reads as possible without exhausting the library’s molecular complexity. We applied a 

subsampling without replacement method to assess how many mapped reads are unique 

after incrementally adding production reads from replicate hybridizations. In principle, 

molecular complexity curves that plateau quickly are derived from low complexity 

libraries, and conversely high complexity libraries may not reach plateau. Thereby the 

plateau indicates when there are no new unique reads to be sampled or sequenced (see 

Supporting Information Figure S4 for a schematic representation).

We performed the analysis of molecular complexity in libraries belonging to P3 since 

more hybridization replicates were available (8 in total) for 30 libraries. We found that for 

the majority of the libraries, performing additional hybridizations increased the number of 

unique reads retrieved (Supporting Information Figure S10, example library N259-5). 

However, there were libraries that quickly hit exhaustion where performing additional 

hybridizations would add little extra information (Supporting Information Figure S10, 

example library Kay2-32). Overall, by performing additional hybridizations, it was possible 

to retrieve new unique reads and thus increase the final coverage (Figure 6A), because 

libraries themselves were not exhausted but merely their hybridization-captured 

molecules reached exhaustion. 

Following the same strategy, we calculated the sensitivity in P1, P2 and P3 (4, 6 and 8 

replicates respectively). After cumulatively adding data from replicate hybridizations we 

covered 85.57% in P1 (95% CI: 74.78-96.36%), 76.23% in P2 (95% CI: 64.55-87.91%) 

and 79.83% in P3 (95% CI: 74.44-85.22%) on average of the target space, with at least 1 

read (Supporting Information Figure S11). Interestingly, no sample covered 100% of 

target space. Looking carefully into this, we observed that precisely the same 3,804 A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

regions (1.54%) were never covered in any replicate hybridizations, suggesting that some 

regions are either difficult to capture (Kong, Lee, Liu, Hirschhorn, & Mandl, 2018) or are 

too divergent between Homo and Pan to either capture or map these particular 

sequences (Supporting Information Figure S12).

For deeper coverage of at least 4 or 10 reads, we still observed a positive progression, 

with each additional hybridization increasing coverage, indicating that additional 

hybridizations would result in an increase of the proportion of the genome covered at 

these depths as well (Supporting Information Figure S11).

Optimization of Required Production Reads

Assessing the amount of sequencing needed is one of the major decisions when 

planning an experiment. As a result of the low eDNA content of most fecal samples, 

derived libraries can easily reach saturation (i.e., high levels of duplicated reads). 

Therefore, sequencing depth should be carefully calculated. Without previous knowledge, 

we sequenced the first 2 hybridizations for P1, the first 4 hybridizations for P2, and the 

first 6 hybridizations for P3 in three lanes of a HiSeq 4000. For P1 only ~6% and for P2 

and P3 only ~13% of production reads were unique reads (Supporting Information Table 

S5), indicative of high levels of PCR duplicates due to library exhaustion. To avoid over-

sequencing in our next experiments, we set an arbitrary threshold to recover 

approximately 20% of the “informative” data (unique reads) available in a hybridization 

experiment. This 20% threshold was chosen to maximize the output cost ratio given the 

diminishing returns on further sequencing (Figure S13). Using the data from SeqBatch 1 

and 2, we estimated that on average, for samples with less than 1% eDNA, we would 

sequence at most 2 million mapped reads per library (Figure S13). Given that 80% of 

reads mapped to the genome in these experiments, we estimated that we would need to 

sequence at most 2.5 million production reads per library (Supporting Information Table 

S5). 

To test these estimates, we sequenced the remaining hybridizations (P1E3, P1E4, P2E5, 

P2E6, P3E7, P3E8) in three-fourths of a HiSeq 4000 lane. The number of average 

production reads obtained were 3.5, 2.0 and 1.5 million for libraries in hybridizations from 

P1, P2, and P3, respectively. On average ~38% (range: 8.09-50.81%) of reads were A
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unique reads in all pools (Supporting Information Figure S14). We note that these values 

exceeded what we observed in the previous hybridization experiments. An outcome we 

attribute to the increase in starting material (2 µg), also used in these experiments, as 

noted above.

Pooling Strategy 

Choosing how many samples to pool is a difficult decision, since little is known on how 

the pool size will affect the final molecular complexity. Taking advantage of our pooling 

strategy (Figure 2), we assessed the effect of size on the average library complexity for 

all samples within each hybridization with a subsampling without replacement strategy. 

When only a single hybridization was performed, a single library within a pool of 10, 20 or 

30 would, on average, result in a similar number of unique molecules (Figure 6B, 

Supporting Information Figure S15). However, there is a tendency for samples in smaller 

pools (P1) to perform better than those in larger pools. This could be explained by our 

experimental design, where samples with higher eDNA content are in smaller pools. 

However, let us address this possibility here. Using CS as an example summary statistic, 

we observed that CS is higher for pools with smaller numbers of samples in them (Figure 

5C). Given median estimates, a pool of 10 libraries (median CS = 0.46) had 1.44-fold 

higher CS than a pool of 20 libraries (median CS = 0.32), and 1.92-fold higher than a pool 

of 30 libraries (median CS = 0.24). Between a pool of 20 and a pool of 30, the ratio was 

1.33-fold (Figure 5C and Supporting Information Figure S16). If we remove the effect of 

having a variable number of production reads across experiments by down-sampling, this 

observation still remains (Supporting Information Figure S17). That is, smaller pools do 

have higher CS estimates, and pools linearly account for 18% of the variation in CS 

(univariate ANOVA, p-value=3.47x10-12 (Figure 4A)). Finally, if we correct for all 

experimental variables with a multivariate analysis, as done above, we show that ‘Pool’ 

only accounts for 4% of the variation in CS (Figure 4B), but the effect of pool size 

remains significant (multivariate ANOVA, p-value = 2.7x10-4; Supporting Information 

Figure S17). However, this effect on CS attenuates with additional hybridizations (4, 6 

and 8, for P1, P2 and P3 respectively) for the same pool (Supporting Information Figure 

S18). Moreover, a similar outcome can be observed when comparing the effect of pool A
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size on LC. After sequentially adding data from replicate hybridizations in each pool (see 

Supporting Information Figure S4 for a schematic representation), we can acquire the 

same number of unique reliable reads (Figure 6C, Supporting Information S17).

 

Discussion
Capturing host DNA from fecal samples is a challenging endeavor. Previous work has 

shown that the retrieval of genomic data from fecal samples by target enrichment 

methodologies is a feasible and powerful tool for conservation and evolutionary studies 

(Perry, 2014; Snyder-Mackler et al., 2016). However, obtaining good quality and quantity 

DNA from fecal samples is not always possible. Because of that, many studies have 

characterized the technical difficulties of capturing DNA from non-invasive samples and 

proposed different strategies (Hernandez-Rodriguez et al., 2018; van der Valk et al., 

2017; White et al., 2019). Van der Valk et al. (2017) captured the whole mitochondrial 

genome but no autosomal regions, and describe the biases introduced during capture 

such as DNA fragment size, jumping PCR and divergence between bait and target 

species. The study performed by Hernandez-Rodriguez et al. (2018) systematically 

analyzed the capture performance and library complexity. While they described that 

pooling different libraries into the same hybridization is feasible, they did not discuss how 

many of them should be pooled. Also, they concluded that performing multiple libraries 

from the same extract or even from different extracts from the same sample can increase 

the final complexity. Finally, they recommended performing two capture rounds for the 

same library. On the other hand, White et al. (2019) suggested to do only one capture 

round, at least when eDNA is higher than 2-3%, stressing the importance of pooling 

libraries as well as taking into consideration the eDNA content, as first proposed by 

Hernandez-Rodriguez et al. 

The present study addresses these gaps left unexplored by the previous studies. We 

focused our analysis on a representative set of samples with very low proportions of 

endogenous content (< 1%) as are often found in the field. After screening 302 samples, 

we found that up to 70% of samples are below this threshold, similar to what was already 

described (White et al., 2019). Hence, if time and economic reasons hinder the ability to 

collect and select the best samples, the only available one(s) might have low eDNA. This A
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may be a common situation when using historical samples, aiming for a large sample 

size, or if an interesting sampling location is particularly challenging in terms of low eDNA 

(such as Campo Ma’an, Figure 1B). 

For these reasons, it is of utmost importance to characterize ways to maximize the 

amount of data to be recovered from these types of samples. In this regard, we have 

extensively evaluated how to increase library complexity without doing more extractions 

or library preparations from the same sample, how many libraries to pool together, and 

how much starting amount of DNA should be used in a capture, as well as the impact of 

endogenous content for pooling. 

Consistent with previous findings (Hernandez-Rodriguez et al., 2018; White et al., 2019), 

we determined that assessing the endogenous content of fecal samples and pooling 

them equi-endogenously is a practical way to equally distribute raw reads between 

samples. Importantly, the correct estimation of the proportion of eDNA is key for the 

success of this method. Thus, we recommend the usage of shotgun sequencing 

(Hernandez-Rodriguez et al., 2018) rather than qPCR estimates, since the later can 

easily fluctuate due to the presence of inhibitors (Morin et al., 2001).

In regard to the performance of target capture sequencing experiments, gaining new 

unique reads is crucial to reach higher sensitivity, which is a good predictor of capture 

success. Here, we have established an approach to obtain new unique reads using the 

same prepared libraries. Since it is mainly during capture experiments when the 

molecular diversity is reduced, we propose to perform additional hybridizations from the 

same library so the final coverage can reach higher values. If the library complexity is 

already very low, the only solution is to re-extract DNA or prepare a new library from the 

same sample (Hernandez-Rodriguez et al., 2018). 

We observed a better performance (MC and CS) in small pools, when evaluating initial 

results derived from the entire dataset. However, after correcting for other variables that 

differ among pools, the effect is attenuated and can only explain ~4% of the variance, an 

effect that may be largely negligible for most studies. Moreover, performing additional 

hybridizations can also compensate for this effect. Therefore, we do not conclude, based 

on this data, that pool size is a major contributor to performance. However, in cases 

where libraries have small proportions of eDNA, we would advocate for the reduction of 

the number of samples per pool so that pipetting volumes may remain larger, and as a A
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consequence variability due to pipetting error may be reduced. Otherwise when the 

eDNA proportion is not a limiting factor, pooling more libraries together and performing 

additional hybridizations can be a good strategy. 

It is worth noting that without taking into consideration individual sample quality and the 

amount of starting material used, one of the most influential variables on the performance 

of target capture enrichment experiments is the hybridization experiment itself. After 

accounting for all other variables, it still explains 18% of the variation. This is due to the 

technical complexity and variability inherent to these experiments. Careful equipment 

optimization, material selection, preparation and experience will aid in minimizing this 

variation, although it is likely to remain a sensitive experiment that requires diligence. 

Finally, we have illustrated that a sequencing effort of exome-captured fecal samples with 

low eDNA (< 1%) should be set at ~3 million reads per library in a pool to avoid 

exhausting the molecular complexity. We have benefited from the usage of double-

barcoded and double-indexed libraries to multiplex many samples in a single sequencing 

lane. This becomes a great advantage because we can utilize high throughput 

sequencing technologies at a lower price per read. 

To summarize, when starting a project involving fecal samples, we recommend screening 

your set of samples based on quantity and quality of the DNA extracted. If having related 

or identical individuals in the study should be avoided, microsatellite genotyping could be 

an option, helping as well to discard samples with high amount of PCR inhibitors. Further 

selection of samples should be based on the proportion of eDNA; we recommend using 

shotgun sequencing from the prepared libraries. Performing re-extractions of the most 

valuable samples and preparing replicate libraries from each extract can help increase 

the final molecular complexity. As we have shown here, another approach to achieve 

higher molecular complexity is based on conducting additional hybridizations of the 

captured libraries, always pooling libraries in an equi-endogenous manner, and starting 

with more library material than the standard protocol suggests. Finally, we suggest not 

sequencing the captured libraries very deeply, since their molecular complexity is already 

very low and over-sequencing can result in rapidly depleting the economic feasibility of 

the experiment.  

In the study presented here we have thoroughly explored approaches to increase the 

molecular diversity and capture sensitivity and hence the final coverage of exome A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

captured fecal samples with extremely low endogenous content in an attempt to help 

laboratories facing the challenges of working with non-invasive samples. 
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FIGURE 1. Sample description. (a) Geographical location of the 15 sites from the Pan African 

Programme: The Cultured Chimpanzee (PanAf). (b) Endogenous DNA (eDNA) content for all 

screened samples according to geographic origin. The maximum value of the x-axis has been set 

to 10% eDNA for visual purposes. (c) eDNA distribution for all screened samples. Samples with > 

10% eDNA are excluded (N=5). In the boxplot, lower and upper hinges correspond to first and 

third quartiles and the lower and upper whiskers extend to the smallest or largest value no further 

than 1.5 times the interquartile range (distance between the 1st and 3rd quartile).

FIGURE 2. Pooling strategy illustration. P1 has 10 libraries with average endogenous of 0.81%. 

We performed two primary pools of 2 g and 4 g each that were further divided into four 

hybridization pools, two at 1 g and two at 2 g. P2 has 20 libraries with average endogenous of 

0.69%. Two primary pools of 4 g were divided into four hybridization pools of 1 g each and two 

hybridizations pools of 2 g. P3 has 30 libraries and an average endogenous of 0.49%. Two 

primary pools of 6 g and 4 g were distributed into six hybridization pools of 1g and two 

hybridization pools of 2 g each. Colors represent the sequencing batch.

FIGURE 3. Capture performance and sequencing. (a) Percentage of eDNA among hybridizations, 

structured by pools (P1, P2 and P3). (b) Sequencing stats across all samples for the 18 

hybridizations in 3,75 HiSeq 4000 lanes. (c) Distribution of production reads across 18 

hybridizations. The colors red, blue and yellow found in the box plots for figure (a) and (c) denote 

the sequencing batch to which each hybridization was assigned. In the boxplots, lower and upper 

hinges correspond to first and third quartiles and the lower and upper whiskers extend to the 

smallest or largest value no further than 1.5 times the interquartile range (distance between the 

1st and 3rd quartile).

FIGURE 4. Analysis of variance. (a) Estimated variance explained from univariate linear models 

after rank normal transforming each performance summary statistic (columns). LC stands for 

library complexity and DP describes read depth at different cutoffs (1, 4, 10, 20 and 50 reads) (b) 

Multivariate type I ANOVA of the experimental variables affecting Capture Sensitivity (CS) at 

depth 1. Both models are built down-sampling libraries to 1,500,000 reads.

FIGURE 5. Summary stats after down-sampling to 1,500,000 reads: (a) Enrichment factor and (d) 

Capture Specificity (c) Capture Sensitivity at depth 1 for the 18 hybridizations in P1, P2 and P3; A
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colors illustrate sequencing batch.  (d) Library complexity contrasting the amount of starting DNA 

(1 g or 2 g) in down-sampled data and structured by pools (P1=Pool1, P2=Pool2, P3=Pool3).  

See Figure 2 for more details on pools. In the boxplots, lower and upper hinges correspond to 

first and third quartiles and the lower and upper whiskers extend to the smallest or largest value 

no further than 1.5 times the interquartile range (distance between the 1st and 3rd quartile).

FIGURE 6. Analysis of coverage and LC with hybridizations done with 1 µg. (a) Coverage after 

merging data from additional hybridizations with up to 2, 4 and 6 for P1, P2 and P3. (b) 

Comparison of average LC curves of individual hybridizations belonging to pools with different 

size. Each line is the average of libraries within each hybridization and the surrounding area is the 

standard deviation. (c) Two examples comparing the effect of pool size on the average LC curves 

from merged hybridization: P1 (10 samples) - 1 hybridization, P2 (20 samples) – 2 hybridizations 

and P3 (30 samples) – 3 hybridizations; and P1 (10 samples) - 2 hybridizations, P2 (20 samples) 

– 4 hybridizations and P3 (30 samples) – 6 hybridizations. Sample Lib1-6D in P2 was removed 

from the analysis due to low coverage. 

Pool
Average eDNA 
content (range)

Hybridization 
ID

Number 
of pooled 
libraries

Total 
DNA

Sequencing 
Batch

P1E1 10 1 g SeqBatch1

P1E2 10 1 g SeqBatch2

P1E3 9 2 g SeqBatch3

Pool 1 

(P1)

0.81%

(0.60% - 0.85%)

P1E4 9 2 g
SeqBatch3

P2E1 20 1 g SeqBatch1

P2E2 20 1 g SeqBatch1

P2E3 20 1 g SeqBatch2

P2E4 20 1 g SeqBatch2

P2E5 19 2 g SeqBatch3

Pool 2 

(P2)

0.69%

(0.58% - 0.80%)

P2E6 19 2 g
SeqBatch3

P3E1 30 1 g SeqBatch1Pool 3 

(P3)

0.49%

(0.41% - 0.66%) P3E2 30 1 g SeqBatch1A
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P3E3 30 1 g SeqBatch1

P3E4 30 1 g SeqBatch2

P3E5 30 1 g SeqBatch2

P3E6 30 1 g SeqBatch2

P3E7 26 2 g SeqBatch3

P3E8 26 2 g
SeqBatch3

TABLE 1. Pooling Strategy. Sixty libraries were divided into 3 pools for capture hybridization 

experiments in 4 replicates for P1, 6 replicates for P2 and 8 replicates for P3. Total DNA 

represents the starting material for each capture hybridization. 
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