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Abstract 

Aims: The aims of this study were to investigate: the effects of home-HIIT and 

home-MICT completed in a postprandial state compared to a non-exercise control 

period on; i) hypoglycaemia ii) time in range (TIR), and iii) glycaemic variability (GV), 

for up to 48-hours post exercise in a free-living environment in adults with Type 1 

diabetes. A secondary aim was to investigate whether acute changes following 

exercise influenced 14-day glycaemic control.  

Methods: 11 adults with Type 1 diabetes (male n=4, female n=7, age 26 ± 7 years, 

BMI 25.43 ± 4.29 kg.m2, Type 1 diabetes duration 10 ± 8 years) completed a 

randomised crossover study consisting of three 14-day interventions; 1) home-HIIT, 

2) home-MICT and 3) non-exercise control (CON). During exercise intervention the 

effect of six exercise sessions on subsequent glycaemic control was assessed for up 

to 48-hours post exercise. CON data was time matched to home-HIIT. Glycaemic 

control was measured using an Abbot Freestyle Libre flash glucose monitor. Dietary 

intake and insulin dose were also assessed. 

Results: Neither home-HIIT or home-MICT increased time spent in serious, clinically 

significant hypoglycaemia (< 3.0 mmol/L) compared to CON at any period during the 

48 hours post exercise (P > 0.05). TIR in home-HIIT was significantly greater during 

the period immediately after exercise compared to CON (11% [0, 22], P = 0.043) and 

significantly greater compared to home-MICT during the awake periods on the day 

following (10% [2, 18], P = 0.013) and second day following exercise (11% [3, 20], P 

= 0.014). GV, assessed as coefficient of variation (CV) was increased during the 

nocturnal period on the second day following home-MICT compared to CON (CV = 

4% [1, 7] P = 0.008) and home-HIIT (CV = -5% [-8, 2], P = 0.005). This increase in 
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GV translated into an increased nocturnal GV over the 14-day day intervention 

period in home-MICT compared to home-HIIT (CV = -4% [-8, 0], P = 0.034). 

Conclusion: In conclusion, both home-HIIT and home-MICT are safe exercise 

modalities for people with Type 1 diabetes but Home-HIIT may provide more 

beneficial effects on glycaemic control compared to home-MICT. This study provides 

novel evidence that exercise affects glycaemic control for up to 48-hours post 

exercise in people with Type 1 diabetes.  
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1.1  Type 1 diabetes overviews 

Type 1 diabetes is a cellular-mediated autoimmune disease whereby autoreactive T-

cells infiltrate and destroy the ß-cells in the pancreas which produce insulin, resulting 

in high blood glucose levels (American Diabetes, 2012, American Diabetes, 2017). 

Causes of Type 1 diabetes are still relatively unknown, but there is a strong genetic 

component, thought to be controlled by a number of susceptibility genes that require 

exposure to an environmental stressor such as a virus, environmental toxins or certain 

foods (Atkinson and Eisenbarth, 2001). Type 1 diabetes can be diagnosed at any age, 

although incidence of diagnosis is greatest during childhood and adolescence with 

Type 1 diabetes accounting for ≥ 85% of all diabetes cases in youth < 20 years of age 

worldwide (Rogers et al., 2017, Maahs et al., 2010). Incidence rates of Type 1 diabetes 

are highly variable between ethnic populations and geographical location with the 

lowest recorded incidence of 0.1/100,000 per year in China and Venezuela, with the 

highest incidence rate of 36.5/100,000 per year in Finland and 36.8/100,000 in 

Sardinia (Maahs et al., 2010). Type 1 diabetes can be regulated through diet and blood 

glucose management, using exogenous insulin via continuous subcutaneous insulin 

infusion (CSII) or multiple daily injections (MDI) (Lascar et al., 2014). Type 1 diabetes 

provides challenges to maintain euglycaemia resulting in fluctuating blood glucose 

levels and has many acute and long-term complications, these being increased risk of 

developing diabetic ketoacidosis (DKA), foot ulcers resulting in amputation, 

retinopathy, neuropathy, nephropathy, cardiovascular disease (CVD) and all-cause 

mortality (Livingstone et al., 2020, Subramanian and Hirsch, 2018, de Ferranti et al., 

2014, Secrest et al., 2010).  
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1.2 Blood glucose levels 

1.2.1 Hyperglycaemia 

Hyperglycaemia is defined as blood glucose >10 mmol/l and is split into 2 severity 

levels; Level 1 (L1) hyperglycaemia (10.1 – 13.9 mmol/l) and level 2 (L2) 

hyperglycaemia (>13.9 mmol/l) (Battelino et al., 2019). The international consensus 

on clinical targets recommend spending <25% of time in L1 hyperglycaemia and <5% 

of time in L2 hyperglycaemia (Battelino et al., 2019). Hyperglycaemia in combination 

with catecholamine presence and severe insulin deficiency can have a very serious 

effect, causing increased ketone bodies to be present, leading to DKA if not managed 

with insulin, which can be fatal without treatment (Umpierrez and Korytkowski, 2016). 

Furthermore, hyperglycaemia in the presence of low levels of circulating insulin can 

result in hyperglycaemic hyperosmolar state ensuing dehydration and plasma 

hyperosmolality which correlate with impaired levels of consciousness and can also 

be fatal (Umpierrez and Korytkowski, 2016). At a vascular level, hyperglycaemia 

causes an increased inflammatory response and oxidative stress which have been 

reported as the key mechanisms of hyperglycaemic induced vascular damage 

(Brownlee, 2005). It is important to note that DKA and hyperglycaemic hyperosmolar 

state do not occur every time a person experiences hyperglycaemia, often the 

participants feels only very mild symptoms. However, the physiological consequences 

of repeated and chronic exposure to hyperglycaemia can result in many diabetic 

complications.  

The consequences of chronic and repeated exposure to hyperglycaemia in 

adults with Type 1 diabetes was first reported in the landmark Diabetes Control and 

Complications Trial (DCCT) (1993, 1995) which included 1441 patients with Type 1 

diabetes and spanned over a 6.5-year period. This was the first study to show an 
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increased risk of microvascular complications, including retinopathy, neuropathy and 

nephropathy, with increased long-term mean glycosylated haemoglobin levels, known 

as HbA1c (A1C) (a marker of mean blood glucose over the previous 8-12 weeks). 

However, no correlations with macrovascular disease were found, potentially due to 

the young nature of the participants. The Epidemiology of Diabetes Interventions and 

Complications (EDIC) study (2016) provided a 30 year follow up to the DCCT study 

and found that participants with higher A1C in the DCCT study had increased the 

subsequent risk of cardiovascular disease by 42%, even though the A1C levels at 

follow up had converged to similar levels. The potentially fatal conditions resulting from 

both acute hyperglycaemia and chronic hyperglycaemia suggest that strategies to 

avoid this level of dysglycaemia are needed. 

 

1.2.2  Hypoglycaemia 

Hypoglycaemia is defined as blood glucose levels ≤ 3.9mmol/l and is split into two 

severity dependent levels, L1 hypoglycaemia (blood glucose 3.0 to 3.9 mmol/l) and L2 

(blood glucose < 3mmol/l), with an episode of hypoglycaemia requiring third party 

assistance being classed as severe hypoglycaemia (Danne et al., 2017, Battelino et 

al., 2019). International consensus guidelines for clinical targets recommended 

spending < 4% of time in L1 hypoglycaemia and < 1% of time in L2 hypoglycaemia, 

highlighting the danger of this blood glucose level (Battelino et al., 2019). 

Hypoglycaemia has many negative symptoms ranging from acute to long-term effects. 

Acute side effects disrupt everyday life by impairing work and social activities through 

cognitive impairment, mood change and a general malaise (Frier, 2014). Long term 

effects include developing fear of hypoglycaemia (FOH), reduced quality of life, weight 

gain, restrictions on employment, driving license restrictions, cognitive decline 
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(possibly accelerating dementia), possible worsening of diabetic and vascular 

complications and in extreme cases, death (Frier, 2014, Amiel et al., 2019). Nocturnal 

hypoglycaemia accounts for around 50% of all severe hypoglycaemic episodes in 

individuals with Type 1 diabetes (Frier, 2014). Which is of great importance as people 

with Type 1 diabetes have been reported to have gone to bed in good health and been 

found dead the next morning as a result of hypoglycaemia causing cardiac death, this 

is known as the ‘dead-in-bed’ syndrome which is a devastating complication of Type 

1 diabetes (Hsieh and Twigg, 2014). The life-threatening side effects of 

hypoglycaemia clearly reinforce the reasoning for the presence of FOH in adults with 

Type 1 diabetes. Strategies to prevent hypoglycaemia are therefore required. 

 

1.2.3  Euglycaemia (“In Range”) 

Euglycemia often referred to as “In range” is defined as a blood glucose of 4-10 

mmol/L and has recently been recommended in the international consensus to be a 

focus point of clinical targets in people with Type 1 diabetes (Battelino et al., 2019). 

The guidelines suggest a target of >70% time in range (TIR) for people with Type 1 

diabetes (Battelino et al., 2019). Using data from the DCCT study, Beck et al (2019b) 

found that the risk of retinopathy progression and the development of 

microalbuminuria was increased by 64% and 40% respectively for each 10% decrease 

in TIR, concluding that deceased TIR is associated with microvascular complications 

(Beck et al., 2019a). Associations between TIR and A1C have also been observed, 

with an increase in TIR of 10% being reported to correspond to a decrease in A1C of 

approximately 0.5% in a study using datasets from 4 randomised controlled trials 

including 545 participants (Beck et al., 2019a) and 0.8% in a study reviewing 22 

studies including 1137 participants (Vigersky and McMahon, 2019). The evidence for 
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the benefits of increasing TIR support the notion to focus on TIR as an important metric 

of glycaemic control in adults with Type 1 diabetes, therefore strategies to increase 

TIR while not increasing hypoglycaemia are required for this population (Battelino et 

al., 2019) 

 

1.2.4 Glycaemic Variability 

Glycaemic variability (GV) can be defined as the degree to which a person’s blood 

glucose levels fluctuate between low and high blood glucose (Hirsch, 2015), and is 

also an important metric for assessing glycaemia in people with Type 1 diabetes 

(Battelino et al., 2019, Danne et al., 2017). Glycaemic management for people with 

Type 1 diabetes is extremely tough due to the large range of factors affecting blood 

glucose levels. Low blood glucose level will often result in a large rebound in glucose 

levels causing a large fluctuation, incidentally, increasing GV. GV has been found to 

be positively associated with clinically significant hypoglycaemic events and 

hypoglycaemia alert events (Gomez et al., 2019). GV has also been reported to be 

positively associated with cardiovascular events, retinopathy, nephropathy and 

increased brain glucose levels in people with Type 1 diabetes (Gorst et al., 2015, 

Hwang et al., 2019). However, some studies find that there are no associations 

between GV and vascular health benefits in people with Type 1 diabetes (Smith-

Palmer et al., 2014). Even-though there are disagreements surrounding the vascular 

benefits of improved GV in people with Type 1 diabetes, there is overwhelming 

evidence that GV is positively associated with hypoglycaemia in this population, 

therefore minimising GV is necessary to achieve glucose stability and decrease the 

risk of hypoglycaemia.  
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1.3.1  Exercise guidelines  

A position statement from the American Diabetes Association (ADA) recommends that 

people with Type 1 diabetes complete 150 minutes of moderate to vigorous intensity 

physical activity (MVPA) per week, spread over at least three days, with no more than 

two consecutive days without activity (Colberg et al., 2016). Regular physical activity 

(PA) is recommended for this population due to it’s associations with decreased risk 

factors for cardiovascular disease (CVD). CVD is reported as the leading cause of 

mortality in people with Type 1 diabetes and this population are at greater risk of CVD 

than healthy individuals (Orchard et al., 2015. Soedmah-Muthu et al., 2006). Regular 

PA has been found to improve vascular risk factors such as; blood lipid profiles, by 

increasing HDL-cholesterol levels and reducing LDL-cholesterol levels, endothelial 

function and insulin sensitivity, thereby reducing insulin resistance which is 

independently associated with developing micro and macrovascular complications 

(Chaturvedi et al., 2001, Fuchsjäger-Mayrl et al., 2002, Rigla et al., 2000, Laaksonen 

et al., 2000, Lehmann et al., 1997, Chimen et al., 2012). Furthermore, exercise has 

been found to improve aerobic capacity in people with Type 1 diabetes (Scott et al., 

2019b). Aerobic capacity is reported to be the strongest indicator of cardiovascular 

mortality and improvements are associated with a reduction in all-cause mortality in 

people without Type 1 diabetes, however there are currently no studies reporting the 

effect of aerobic capacity on mortality in people with Type 1 diabetes  (Lee et al., 2010, 

Myers et al., 2002). Furthermore a cohort study found that active men were three times 

less likely to die than sedentary men with Type 1 diabetes (Moy et al., 1993). The 

evidence for the benefits of regular PA and exercise are overwhelming and therefore 

adults with Type 1 diabetes should aim to achieve the PA guidelines. 
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Despite PA providing many health benefits, it is widely reported that the majority 

of people with Type 1 diabetes fail to meet these activity guidelines. Plotnikoff et al 

(2006) found that out of 682 Canadian adults with Type 1 diabetes, only 32% of the 

sample met the 150 minutes per week guidelines, when using self-report to assess 

PA. Bohn et al (2015) also used self-report methods to measure PA in 18,028 adults 

with Type 1 diabetes aged 18-80 from Germany and Austria and found that 63% of 

adults did not complete PA on at least one day per week. Furthermore, a UK based 

study using accelerometers found that adults recently diagnosed with Type 1 diabetes 

(< 3months) completed a quarter less MVPA per day than adults without Type 1 

diabetes (Type 1 diabetes = 37.4±9.1 mins/day, healthy = 52.9±9.1 mins/day)(Matson 

et al., 2018). Brazeau et al. (2012) objectively measured PA in both adults with long-

standing Type 1 diabetes (23.4 ± 10 years) and adults without diabetes using 

accelerometers and found no difference in PA levels between groups.  The 

aforementioned studies suggesting that a high percentage of people with Type 1 

diabetes are inactive and do not see the full benefits of PA, highlighting that there may 

be barriers to exercise. 

 

1.3.2  Barriers to exercise 

The large percentages of inactive people with Type 1 diabetes suggests there are 

many barriers preventing people from exercising. Several studies using 

questionnaires and semi-structured interviews have found that many of the barriers to 

exercise in people with Type 1 diabetes are also common to healthy individuals and 

other chronic diseases. These barriers being; lack of time caused by work, poor 

accessibility to facilities (e.g. travel to gyms and cost of memberships/ equipment), 

embarrassment of body image, lack of motivation, weather and low levels of fitness 
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(Brazeau et al., 2008, Lascar et al., 2014, Kime et al., 2018, Scott et al., 2019c). In 

addition to these common barriers, fear of hypoglycaemia (FOH) is a barrier specific 

to people with Type 1 diabetes. FOH was the most commonly reported barrier to 

exercise in a study using the Barriers to Physical Activity in Type 1 diabetes (BAPAD-

1) scale in 103 people with Type 1 diabetes (Brazeau et al., 2008) as well as in a study 

using semi-structured interviews and a focus group in 15 adults with Type 1 diabetes 

(Kennedy et al., 2018). Furthermore, FOH is accompanied with a lack of knowledge 

and confidence in managing the effects of exercise on blood glucose profiles, 

suggesting that people with Type 1 diabetes and their health care professionals need 

education in diabetes management with exercise (Kennedy et al., 2018, Lascar et al., 

2014). Individuals lack of knowledge results in a trial and error approach to managing 

the effects of exercise on their diabetes (Kime et al., 2018), often resulting in 

hypoglycaemia. Increased incidence of hypoglycaemia inevitably increases FOH 

(Brazeau et al., 2008), further reinforcing this barrier to exercise. The barriers to 

exercise in this population are outlined and strategies to relieve these barriers are 

required to increase PA in people with Type 1 diabetes. 

1.4  Acute effects of Moderate Intensity Exercise  

Moderate intensity continuous training (MICT; 50-70% heart rate maximum (HRmax) or 

VO2 maximum) can be completed in many forms, e.g. swimming, jogging, walking, cycling 

etc. MICT is the main exercise modality advised by the ADA for people with diabetes 

(Colberg et al., 2016). An international consensus statement by Riddell et al. (2017) 

providing exercise guidelines for people with Type 1 diabetes stated that MICT can 

commence if blood glucose levels are between 7-15 mmol/L and recommend a 

carbohydrate (CHO) intake of 10-30 grams/hour during an exercise bout >30 minutes, 

dependent on the level of circulating insulin (i.e. the greater the level of circulating 
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insulin, the greater the CHO requirement. If a meal is consumed 90-minutes prior to 

exercise commencing, guidelines suggest reducing bolus insulin dose by 50% for 30-

minutes of MICT and 75% for 1 hour of MICT to reduce the risk of hypoglycaemia 

occurring (Riddell et al., 2017). 

These guidelines are in place as MICT in people with Type 1 diabetes is 

associated with a decline in blood glucose and risks exercise-induced hypoglycaemia. 

A meta-analysis of 7 studies comparing the rate of change in glucose during a bout of 

MICT to a rest/control period presented an average hourly rate of change of -

4.43mmol/L/h-1 (Garcia-Garcia et al., 2015). These findings have been replicated in a 

Scott et al. (2019b) which reported an average rate of change of -5.5mmol/L during 

laboratory based MICT (lab-MICT) ranging from 30-50 minutes duration, at 65% VO2 

peak in the postprandial state in 14 sedentary adults (8 females, 6 males, age = 26 ± 

3 years, VO2peak = 35.6 ± 2.6 ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 

8.2 ± 1.4 years). Studies using euglycaemic clamps also support these findings; 

McMahon et al (2007) completed a study in 9 adolescents (4 females, 5 males, age = 

16 ± 1.8 years, VO2peak = 37.99 ± 2.92 ml/kg-1/min-1) with Type 1 diabetes (Type 1 

duration = 8.2 ± 4.1 years) where participants exercised for 45-mintues in the 

postprandial state at 95% lactate threshold (~55% VO2Max). This study presented 

findings of an increased glucose infusion rate (GIR) for the 90 minutes post exercise 

compared with a sedentary control visit (McMahon et al., 2007). Similarly, Guelfi et al. 

(2007) reported the glucose disposal (Gd) rate to be greater during exercise (30 

minutes MICT exercise at 40% VO2max) than at baseline in 9 physically active adults 

(4 females, 5 males, MDI, n= 6, CSSI, n = 3, age = 22.6 ± 5.7 years, VO2peak = 41.8 ± 

4.6 ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 5.6 ± 3.9 years). The 

increased Gd was greater than glucose appearance (Ga) rates, causing an imbalance 
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between utilisation and production, resulting in a decline in blood glucose (Guelfi et 

al., 2007). In summary, commencing MICT with blood glucose 7-15 mmol/L as stated 

in the guidelines (Riddell et al., 2017), risks hypoglycaemia if blood glucose decreases 

by the average rate of 4.43mmol/L/h-1 (Garcia-Garcia et al., 2015). Consequently, 

there is a need for an alternative exercise modality that prevents the decline in blood 

glucose seen with MICT. 

 

1.5  Mechanisms Responsible for dop in blood glucose with MICT  

1.5.1 Glucose Responses in adults without Type 1 diabetes 

Exercise increases blood flow and capillary perfusion, increasing the delivery of 

glucose to the muscle (Wagenmakers et al., 2016, Sjøberg et al., 2017, Kjaer et al., 

1991). Muscular contraction mediates GLUT-4 translocation to the sarcolemma due 

to increased Ca2+, ATP turnover and mechanical stress, resulting in glucose uptake 

into the muscle (Jensen and Richter, 2012). Glucose uptake into the muscle causes a 

decline in blood glucose resulting in suppression of insulin to below resting levels 

which enables an increase in glucagon secretion and further sensitising the liver to 

glucagon (Chan and Sherwin, 2013, Wasserman et al., 1989a, Wasserman et al., 

1989b). Glucagon travels to the liver via the portal vein to facilitate the production of 

hepatic glucose via gluconeogenesis to maintain glucose homeostasis and spare liver 

glycogen stores (Koyama et al., 2001, Wasserman et al., 1989a).  

If glucose production cannot match glucose utilisation during exercise, then 

blood glucose concentrations will continue to decrease, thereby triggering a counter-

regulatory response of increased epinephrine secretion from the adrenal medulla, 

resulting in increased glycogenolysis of liver glycogen stores (Cryer, 2008). As well as 

breakdown of muscle glycogen to further increase glucose availability and reduce 
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glucose uptake into the muscle (Cryer, 2008). Epinephrine is also an activator of 

hormone sensitive lipase (HSL) which has been described as the rate-limiting enzyme 

responsible for the lipolysis of triacyglycerol (TAG) stores in the adipose tissue, liver 

and muscle, thus increasing fatty acid (FA) availability (Watt and Spriet, 2004, 

Anthonsen et al., 1998, Watt et al., 2003). Exercise induces increased fat transporter 

protein (FATCD/36 and FABpm) translocation to the sarcolemma increasing uptake of 

plasma FA into the skeletal muscle ready to be oxidised (Bradley et al., 2012). 

Increased uptake of FA into the muscle is important during MICT as this leads to an 

increase in fat oxidation with plasma FA as the main fuel source (Watt et al., 2002, 

van Loon et al., 2003). Increased fat oxidation resulting in the reduction of CHO 

oxidation reduces the decrease in blood glucose seen during the earlier stages of an 

exercise bout (Watt et al., 2002, van Loon et al., 2003). The reduction in CHO oxidation 

is a result of activation of pyruvate dehydrogenase kinase which downregulates 

pyruvate dehydrogenase (PDH) and prevents the conversion of pyruvate to acetyl-

CoA needed for CHO oxidation (Watt et al., 2002). Taken together, the suppression 

of insulin secretion alongside the increase in glucagon secretion resulting in hepatic 

glucose production, as well as the shift to increased fat oxidation, facilitates 

homeostasis of blood glucose concentrations during MICT in people without Type 1 

diabetes. 

 

1.5.2  Glucose responses to MICT in adults with Type 1 diabetes 

People with Type 1 diabetes rely on exogenous insulin which has a much greater half-

life compared to endogenous insulin. Consequently, circulating insulin levels are not 

reduced and potentially even increased during exercise, due to increased blood flow 

around subcutaneous tissue (Marliss and Vranic, 2002, Mallad et al., 2015). Exercise 
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Increases capillary perfusion which in-turn increases insulin delivery to the muscle 

(Frank et al., 2018, Wagenmakers et al., 2016). Insulin results in GLUT-4 translocation 

to the sarcolemma (Watson and Pessin, 2001), this alongside contraction mediated 

GLUT-4 translocation also seen in healthy individuals has been reported to produce 

an additive effect resulting in greater glucose uptake into the skeletal muscle in people 

with Type 1 diabetes (Bally et al., 2015, Frank et al., 2018). High levels of circulating 

insulin in Type 1 diabetes supresses the increase in glucagon secretion which is 

responsible for 60% of hepatic glucose production required for glucose homeostasis 

in healthy individuals (Mallad et al., 2015, Chan and Sherwin, 2013, Wasserman et 

al., 1989a, Wasserman et al., 1989b). Furthermore, hyperinsulinemia downregulates 

HSL, thereby inhibiting lipolysis of TAG’s and intramuscular triglycerides which 

reduces the availability of fat as a fuel source and further increases the reliance on 

CHO as the fuel source (Horowitz et al., 1997).  

It has been reported that at physiologically optimal insulin levels, the glucagon 

response to exercise is in-tact in people with Type 1 diabetes (Bally et al., 2016). 

However, some individuals with Type 1 diabetes have a blunted glucagon response 

which has been reported to be impaired as early as 12-months after diagnosis and 

completely lost as early as 5 years from diagnosis (Ertl and Davis, 2004).  The loss of 

the glucagon response results in no gluconeogenesis in reaction to declining blood 

glucose values, reducing hepatic glucose production and therefore increasing the 

reliance on liver and muscle glycogen, consequently increasing the risk of 

hypoglycaemia with exercise.  

Repeated exposure to hypoglycaemia can cause hypoglycaemic-associated 

autonomic failure (HHAF) which results in a blunted epinephrine response to 

hypoglycaemia, thus preventing hepatic glucose production and importantly causing 
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a lack of autonomic symptom generation to hypoglycaemia (hypoglycaemia 

unawareness) (Cryer, 2013, Cryer, 2004, Rickels, 2019). Hypoglycaemic 

unawareness has been reported to be present in ~20% of adults with Type 1 diabetes 

(Geddes et al., 2008). It is often suggested that “hypoglycaemia begets 

hypoglycaemia” and has been described as a “viscous circle” (Ertl and Davis, 2004). 

Epinephrine reduces glucose uptake into the muscle by increasing glycogenolysis of 

muscle glycogen, increasing Glucose-6-Phosphate (G-6-P) concentration in the 

muscle, decreasing phosphorylation of glucose which subsequently reduces the 

glucose gradient between the muscle and the blood, attenuating further glucose 

uptake into the muscle (Watt et al., 2001). Epinephrine also upregulates HSL to 

increase the availability of FA for oxidation, therefore the loss of the epinephrine 

response to declining blood glucose during MICT further adds to the declining blood 

glucose by not reducing glucose uptake into the muscle or increasing FA availability 

for oxidation, thus increasing the reliability on CHO metabolism. The combined 

inability to suppress insulin, secrete glucagon and potentially epinephrine, in response 

to declining blood glucose levels, results in decreasing plasma glucose concentrations 

which could potentially lead to hypoglycaemia. This shows the issues for people with 

Type 1 diabetes during exercise and provides physiological reasoning supporting FOH 

associated with MICT, thus, highlighting the need for a safer alternative exercise 

modality for people with Type 1 diabetes. 

 

1.6  Acute effects of High Intensity Exercise  

1.6.1  Intermittent High Intensity Exercise (IHE) 

Intermittent high intensity exercise (IHE) consists of moderate intensity continuous 

exercise interspersed with supramaximal (>100% Wmax) high intensity intervals (often 
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lasting 4-15 seconds). IHE has been commonly researched in adults with Type 1 

diabetes and reduces the decline in blood glucose present during, and in the short 

period after exercise. Guelfi et al (2005) were one of the first to report that 

postprandial laboratory-based IHE (lab-IHE) (30 minutes cycling at 40% VO2max with 

4 second sprint intervals every 2 minutes) reduced blood glucose by 2.9 mmol/L 

compared to a 4.4 mmol/L decline with lab-MICT (30 minutes cycling at 40% VO2max) 

in 7 healthy, physically active adults (3 females,  4 males on MDI, age = 21.6 ± 4 

years, VO2peak = 41.8 ± 4.6 ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 8.6 

± 5 years). Furthermore, Bally et al (2016) using a euglycaemic clamp method 

reported a greater GIR with morning lab-MICT (90 minutes iso-cycling at 50% 

VO2max) compared to lab-IHE (90 minutes iso-cycling at 50% VO2max with 10 second 

sprints every 10 minutes) in the final 30 minutes of exercise in 15 physically active 

healthy males (MDI, n = 11, CSSI, n = 4, age = 26.1 ± 4.8 years, VO2peak = 47 ± 9 

ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 13.3 ± 6.7 years). Maran et al 

(2010) reported a reduced decline in blood glucose with afternoon postprandial IHE 

(30 minutes cycling at 40% VO2max + 5s sprint at 85% VO2max every 2 minutes) 

compared to lab-MICT (30 minutes cycling at 40% VO2max) in 8 healthy, physically 

active male adults on MDI (age = 34 ± 7 years, VO2max = 33.7 ± 6.1 ml/kg-1/min-1) 

with Type 1 diabetes (Type 1 duration = 14.3 ± 8 years). However, Iscoe & Riddell 

(2011) following afternoon postprandial exercise reported a decrement of 5.0 mmol/L 

with lab-IHE (45 minutes cycling at 55% WRpeak with 15 seconds intervals at 100% 

WRpeak every 5 minutes) compared to lab-MICT (45 minutes cycling at 55% WRpeak) 

showing a decline of 5.1 mmol/L in 11 physically active adults (6 females, 5 males, 

CSSI, n = 6, MDI, n = 5, age = 35.1 ± 3.5 years, VO2max = 42.4 ± 1.6 ml/kg-1/min-1) 

with Type 1 diabetes (Type 1 duration = 15.6 ± 5.6 years). The discrepancies in 
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results are potentially caused by the range of exercise protocols used in these 

studies or by the difference in time of day and prandial state that exercise was 

completed in as well as the variation in participant demographics. However, these 

studies show promise for IHE as a safer alternative to MICT for people with Type 1 

diabetes. However, IHE does not alleviate the barriers; lack of time, access to 

facilities and lack of motivation. Therefore, a shorter exercise modality that requires 

no equipment and produces similar, if not greater acute blood glucose responses to 

exercise is needed. 

 

1.6.2  High Intensity Interval Training (HIIT) 

The popular exercise modality “HIIT” provides an alternative to IHE by potentially 

alleviating the barrier “lack of time”, with studies using a laboratory-based HIIT (lab-

HIIT) protocol with a duration of 12-20 minutes, compared to laboratory-based MICT 

(lab-MICT) sessions which had a duration of 30-50 minutes (Scott et al., 2019b). HIIT 

is commonly defined as bouts of exercise > 80% of predicted maximal heart rate 

(HRmax) (220-age(years)) interspersed by periods of lower intensity exercise or rest 

(Gibala, 2018). HIIT has been reported to elicit the same if not greater physiological 

benefits than traditional MICT (Gibala, 2018, Gibala et al., 2012), and Scott et al 

(2019b) found that 6 weeks of lab-HIIT resulted in similar increases in aerobic capacity 

to 6 weeks of lab-MICT in people with Type 1 diabetes. However, for this to be an 

effective and safer exercise modality for people with Type 1 diabetes, the effects it has 

on acute blood glucose would need to replicate or better the response seen with IHE, 

by reducing or attenuating the decline in blood glucose that is present in MICT in 

people with Type 1 diabetes. 
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Scott et al (2019b) found that postprandial lab-HIIT (6, 8 and 10 intervals of 1-minute 

cycling at 100% VO2max interspersed with 1-minute rest) completed on a cycle 

ergometer resulted in an attenuated drop (-0.2 mmol/L) in blood glucose compared 

to lab-MICT (-5.5 mmol/l) (30-50 minutes cycling at 65% VO2max) in 14 sedentary 

adults (8 females, 6 males, age = 26 ± 3 years, VO2peak = 35.6 ± 2.6 ml/kg-1/min-1) 

with Type 1 diabetes (Type 1 duration = 8.2 ± 1.4 years). A study by Aronson et al. 

(2019) assessing the effects of morning fasted lab-HIIT in 17 physically active adults 

using (4 females, 13 males, MDI, n=17, age = 24.9 ± 10.1 years, VO2peak = 40.3 ± 

6.6 ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 17 ± 11 years) found that 

a more demanding protocol (3x5-minute working intervals at >80% HRmax 

interspersed by 5 minutes rest mixing bodyweight and cycle ergometer exercise 

protocols) increased plasma glucose by an average of 3.8 mmol/L resulting in 

hyperglycaemia post exercise. However, this study was conducted after an overnight 

fast and a recent study by Scott et al. (2019a) reported that there were no 

detrimental effects on blood glucose with either lab-HIIT or lab-MICT when fasted 

(>10hours) in 14 sedentary adults (8 females, 6 males, age = 26 ± 3, VO2peak = 30.8 

± 2.0 ml/kg-1/ min-1) with Type 1 diabetes (Type 1 duration = 8.2 ± 1.4 years). 

In contrast, Lee et al. (2020) found afternoon postprandial lab-HIIT (-3.6 mmol/L) to 

decrease blood glucose greater than lab-MICT (-2.7 mmol/L) in 12 adults (9 females, 

3 males, MDI = 9, CSSI = 3, age = 40.4 ± 9.9 years, VO2peak = 28.2 ± 6.6 ml/kg-

1/min-1) with Type 1 diabetes (Type 1 duration = 16.5 ± 9.8 years). Discrepancies in 

findings by Lee et al. (2020) compared to Scott et al. (2019b) could be a result of a 

more demanding lab-HIIT protocol (4x4-minute intervals at 85-95% HRpeak 

interspersed with 3-minute rest intervals at 50-70% HRpeak on a cycle ergometer). 

Furthermore, the discrepancies could be caused by Lee et al. (2020) having an older 
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sample with a greater duration of Type 1 diabetes (age = 40.4 ± 9.9 years, Type 1 

duration = 16.5 ± 9.8 years) than Scott et al. (2019b) (age = 26 ± 3 years, Type 1 

duration = 8.2 ± 1.4 years) which may affect the physiological responses to exercise. 

Age may affect acute blood glucose responses as Kohrt et al. (1993) found that older 

people without Type 1 diabetes had blunted catecholamine response to exercise 

compared with younger people. Also, residual ß-cell function is reduced with 

increased duration of Type 1 diabetes which also may affect acute blood glucose 

responses to exercise (Davis et al., 2015). Finally the differences in prior physical 

activity and fitness levels could also provide reasoning for different acute responses 

to exercise. The findings from this small body of literature show potential for HIIT as 

a time efficient exercise modality that might provide more desirable acute responses 

to exercise for people with Type 1 diabetes. However, these studies do not address 

the barriers to exercise in people with Type 1 diabetes of lack of motivation and 

access to facilities, as these studies were completed in a laboratory on a cycle 

ergometer. Therefore, to ensure HIIT is a safer alternative exercise modality to 

MICT, research into the effects of exercise in a free-living environment are required. 

 

1.6.3  Home-based HIIT 

To address accessibility and motivation, Scott et al. (2019c) investigated the feasibility 

of home-based bodyweight HIIT (6, 8 and 10 intervals of 1 minute working at 80% 

HRmax interspersed with 1 minute rest) in 11 adults (7 female, 4 male, age = 30 ± 3 

years, VO2peak = 2.5± 0.2 L/min-1) with Type 1 diabetes (Type 1 duration = 10 ± 2 

years) in a free-living environment over a 6-week period. This study found home-based 

HIIT (home-HIIT) increased VO2peak and reduced insulin dose without reductions in 

blood glucose during or 1-hour post exercise (Scott et al., 2019c). The results also 
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indicate high levels of adherence to this exercise protocol when virtually supervised 

(Scott et al., 2019c). Qualitative data was collected from participants which identified 

three key themes, these being 1) the flexibility of home-HIIT; consisting of the stability 

of blood glucose in response to exercise, not requiring access to facilities and the 

freedom to exercise from home. 2) increased motivation; derived from the use of 

home-HIIT and virtual monitoring (monitored online by a member of the research 

team). 3) the “HIIT experience” resulting from having a range of exercise options, 

alleviating boredom (Scott et al., 2019c). This feasibility study shows the potential for 

home-HIIT to provide a safer, and more suitable alternative exercise modality to MICT 

for people with Type 1 diabetes. However, further investigation is needed to assess 

the effects of home-HIIIT on post exercise blood glucose profiles in people with Type 

1 diabetes. 

 

1.7 Mechanisms responsible for blood glucose response to high intensity 

exercise 

1.7.1 Glucose responses to high intensity exercise in adults without Type 1 diabetes 

The onset of High intensity intermittent exercise (HIIE) increases sympathetic nerve 

activation resulting in a 14-18 fold increase in catecholamines which are the primary 

regulators of hepatic glucose production (Marliss et al., 1992, Sigal et al., 1996, Marliss 

et al., 1991). HIIE causes a 7-8 fold increase in hepatic glucose production via 

glycogenolysis and a rise in plasma glucose during exercise (Marliss and Vranic, 

2002). Muscle glucose uptake however, only increases by 3-4 fold during exercise, 

consequently glucose production is greater than uptake causing blood glucose to rise, 

risking hyperglycaemia (Marliss and Vranic, 2002). Reduced glucose uptake during 

exercise is reportedly a result of increased Ca2+ and catecholamine mediated 
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activation of muscle glycogenolysis increasing Glucose-1-Phosphate (G-1-P) and G-

6-P concentrations in the muscle, reducing the need for plasma glucose uptake 

(Marliss and Vranic, 2002, Hargreaves and Spriet, 2020). To combat the rise in blood 

glucose with HIIE, insulin secretion post exercise increases. Insulin levels remain 

elevated for a sustained period to combat the potential for hyperglycaemia by 

increasing glucose uptake, through GLUT-4, into the muscle for glycogen resynthesis 

by glycogenosis (Marliss and Vranic, 2002). 

 

1.7.2  Glucose responses to high intensity exercise in adults with Type 1 diabetes 

In people with Type 1 diabetes, the inability to reduce insulin levels during HIIE does 

not cause the same issues as seen during MICT due to the dominance of the 

catecholamine response, contraction mediated glucose uptake and the reliance on 

muscle glycogen as the primary fuel at this intensity (Romijn et al., 1993, Marliss and 

Vranic, 2002, Sjøberg et al., 2017). In individuals with Type 1 diabetes and healthy 

individuals, the catecholamine and hepatic glucose response is comparable, with high 

intensity exercise often resulting in increases to plasma glucose concentrations and 

post exercise hyperglycaemia (Marliss and Vranic, 2002, Sigal et al., 1996, Potashner 

et al., 2019, Riddell et al., 2019). However, people with Type 1 diabetes cannot 

produce endogenous insulin to combat this rise in plasma glucose as seen in healthy 

individuals. Often resulting in individuals with Type 1 diabetes having to administer 

exogenous insulin and calculate the correct dose to maintain glucose homeostasis 

(Marliss and Vranic, 2002). The current guidelines do not provide any information 

regarding the post exercise insulin dose with HIIE, and for this reason speculation has 

suggested that HIIT may increase the risk of hypoglycaemia following exercise. 

However, a study by Aronson et al. (2019) found that both a typical (100% insulin 
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correction factor) and a greater (150% insulin correction factor) than usual insulin 

dose, calculated using a personalised insulin correction factor, increased TIR post 

exercise, without increasing the risk of hypoglycaemia. The physiological mechanisms 

described support the attenuation of the decrement in blood glucose during HIIE and 

support the potential for HIIT to provide a safer alternative avoiding hypoglycaemia 

during exercise. However, further research is needed into the effect of HIIT on blood 

glucose responses following exercise. 

 

1.8.1  Post exercise glycaemia  

So far, this literature review has provided evidence for home-HIIT be a safe alternative 

exercise modality compared to MICT due to the beneficial effects on acute blood 

glucose responses. However, for home-HIIT to be truly accepted as a safer alternative 

to MICT, it would have to elicit the same if not greater effects on post exercise 

glycaemic control. It is suggested in consensus and position statement’s that there is 

an effect of exercise on glycaemia for at least 12 to 24 hours post exercise (Riddell et 

al., 2017) and even potentially up to 48 hours post exercise (Colberg et al., 2016). The 

physiological reasoning for exercise affecting glycaemia for a sustained period post 

exercise is the increased insulin sensitivity that exercise induces. Insulin sensitivity is 

increased for up to 48 hours post exercise (Hawley and Lessard, 2008), causing 

increased insulin stimulated translocation of GLUT-4 to the sarcolemma, increasing 

glucose uptake into the muscle. The increases in glucose uptake into the muscle 

results in a decrease in plasma glucose, consequently affecting glycaemic control by 

potentially altering time in ranges, resulting in blood glucose fluctuations. The 

development of continuous glucose monitoring (CGM) has allowed studies to assess 
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the effects of exercise on glycaemia post exercise by providing readings every 5-15 

minutes, dependent on the monitor used.  

 

1.8.2 Post exercise late-onset hypoglycaemia 

1.8.2.1 MICT 

Gomez et al (2015), using CGM in 33 adults with Type 1 diabetes (16 female, 17 

male, age = 30.31 ± 12.66) with Type 1 diabetes (Type 1 duration = 13.67 ± 9.15 

years), found that 60 minutes postprandial lab-MICT in the afternoon increased the 

incidence of hypoglycaemia compared to morning fasted lab-MICT, especially during 

nocturnal periods and between 15-24 hours post exercise. Scott et al. (2019a) found 

there to be no increased incidence of, or time spent in hypoglycaemia for up to 24 

hours post exercise following 30 minutes fasted lab-MICT at 65% VO2max compared 

to a sedentary control period in 14 sedentary adults (8 females, 6 males, age = 26 ± 

3, VO2peak = 30.8 ± 2.0 ml/kg-1/ min-1) with  Type 1 diabetes (Type 1 duration = 8.2 ± 

1.4 years) (Scott et al., 2019a). Findings by Scott et al (2019a) suggest that the fed 

state may be responsible for findings by Gomez et al (2015) between morning fasted 

exercise and afternoon postprandial exercise. There is evidence that exercise in a 

postprandial state increases the risk of hypoglycaemia as a study conducted under 

euglycaemic-insulin clamp conditions by McMahon et al. (2007) in  

9 adolescents (4 females, 5 males, age = 16 ± 1.8 years, VO2peak = 37.99 ± 2.92 

ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 8.2 ± 4.1 years) 

, found that a 45-minute lab-MICT session at 55% VO2max commencing at 4pm 

required an increased GIR at 7-11 hours post exercise (11:45pm – 03:45am) 

compared to a sedentary control day. Iscoe and Riddell. (2011), using CGM, 

reinforced these findings by observing an increased number of hypoglycaemic 
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episodes in the night following postprandial, afternoon lab-MICT (45 minutes MICT at 

55% WRpeak) compared to a sedentary control in in 11 physically active adults (6 

females, 5 males, CSSI, n = 6, MDI, n = 5, age = 35.1 ± 3.5 years, VO2max = 42.4 

± 1.6 ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 15.6 ± 5.6 years). 

In summary, laboratory-based studies have shown that postprandial MICT can 

increase the risk of post exercise hypoglycaemia especially when exercise is 

completed in the afternoon, with nocturnal periods providing the greatest risk period. 

Therefore, an alternative exercise modality reducing the risk of post exercise 

hypoglycaemia in people with Type 1 diabetes would be desirable. However, Riddell 

et al (2020) found no differences in time spent in hypoglycaemia in the 24 hours 

following home-MICT (30-minutes at 70-80% HRmax) performed under free-living 

conditions.  

1.8.2.2 IHE 

Two studies using CGM have compared overnight glucose profiles in adults with T1D 

following postprandial lab-MICT (Bally et al., 2016: 90 minutes iso-cycling at 50% 

VO2max, Rempel et al., 2018: 45-minutes walking at 45-55% HRR) and lab-IHE (Bally 

et al., 2016; 90 minutes iso-cycling at 50% VO2max with 10-second sprints every 10-

minutes, Rempel et al., 2018: 45% HRR for 45-minutes with 60-second intervals at 

70, 80 and 90% HRR every 4-minutess). These studies found no differences between 

training modes for incidence and time spent in hypoglycaemia (Bally et al., 2016, 

Rempel et al., 2018). In contrast, Maran et al (2010) found a significantly greater 

number of hypoglycaemic episodes following postprandial, afternoon lab-IHE (30 min 

at 40% VO2max + 5s sprint at 85% VO2max every 2 minutes) compared to lab-MICT (30 

min at 40% VO2max). Whereas, Iscoe and Riddell (2011) found that postprandial, 

afternoon lab-IHE (45-minutes at 55% WRpeak interspersed 15-second intervals at 
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100% WRpeak every 5-minutes) reduced the incidence of nocturnal hypoglycaemic 

episodes compared with lab-MICT (45-minutes at 55% WRpeak), but did increase 

nocturnal hypoglycaemia compared to a sedentary control period. The varying results 

could be a result of the range of exercise protocols included within these studies, 

making it difficult to determine the effect of lab-MICT compared to lab-IHE.  

1.8.2.3 HIIT 

Scott et al. (2019a) found there to be no difference in incidence or time spent in 

hypoglycaemia during the nocturnal and 24 hours periods following fasted (>10 

hours) lab-MICT (30 minutes at 60-70% VO2max) and lab-HIIT (6x1-minute working 

intervals at 100% VO2max interspersed by 1-minute rest intervals) in 14 sedentary 

adults (8 females, 6 males, age = 26 ± 3, VO2peak = 30.8 ± 2.0 ml/kg-1/ min-1) with  

Type 1 diabetes (Type 1 duration = 8.2 ± 1.4 years). These findings have been 

replicated by Lee et al (2020), who also found no differences in time spent in 

hypoglycaemia between lab-HIIT (4x4-minute intervals, at 85-95% HRmax 

interspersed with 3 minutes recovery at 50-70% HRmax), lab-MICT (33-minutes at 60-

70% HRmax) and sedentary control in the nocturnal and 24-hour periods post 

exercise in 12 adults (9 females, 3 males, MDI = 9, CSSI = 3, age = 40.4 ± 9.9 

years, VO2peak = 28.2 ± 6.6 ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 

16.5 ± 9.8 years). A recent study by Riddell et al. (2020) has shown that the 

aforementioned studies are translatable to the real world in adults with Type 1 

diabetes. Riddell et al. (2020) found that home-HIIT (30-minutes with intervals at 80-

90% HRmax) did not increase time spent in hypoglycaemia compared to sedentary 

control days in 44 adults (MDI, n= 9, CSSI, n= 34, age = 35 ±  15 years) with Type 1 

diabetes (Type 1 duration = median 16 (9, 24) years). In summary there may be no 

difference between MICT and HIIT for risk of late-onset hypoglycaemia post 
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exercise, further increasing the potential for home-HIIT to provide a safer and more 

effective alternative exercise modality to MICT, due to the acute blood glucose 

benefits and barrier reductions, for people with Type 1 diabetes. However, no study 

has yet investigated the effects of exercise on blood glucose for more than 36 hours 

post exercise, even though insulin sensitivity is increased for 48 hours post exercise. 

Therefore the effects of both home-HIIT and home-MICT on glycaemia should be 

investigated for 48 hours post exercise. 

 

1.8.3  Post exercise time in range 

TIR has now come to the forefront of assessing glycaemic control, with the aim being 

to increase TIR while not increasing time in hypoglycaemia (Battelino et al., 2019). 

Therefore, an exercise modality that increases TIR without increasing 

hypoglycaemia would be desirable. To date a limited number of studies have 

assessed TIR following exercise in people with Type 1 diabetes. Gomez et al (2015) 

found there to be an increased TIR on the days following (up to 36hours) 60-minutes 

of morning fasted lab-MICT compared to a non-exercise control day, but no 

difference was found following 60-minutes of postprandial, afternoon lab-MICT 

compared to control in 33 adults with Type 1 diabetes (16 female, 17 male, age = 

30.31 ± 12.66) with Type 1 diabetes (Type 1 duration = 13.67 ± 9.15 years). 

However, this finding could be due to the difference in fed states that exercise was 

conducted in. Scott et al. (2019a) found there to be no difference in TIR between lab-

HIIT (6x1-minute intervals 100% VO2peak interspersed with 1 minute rest), lab-MICT 

(30-minutes at 65%VO2peak) and a sedentary control day during the 24 hours post 

exercise when exercise was completed in a fasted state (>10 hours) in 14 sedentary 

adults (8 females, 6 males, age = 26 ± 3, VO2peak = 30.8 ± 2.0 ml/kg-1/ min-1) with  
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Type 1 diabetes (Type 1 duration = 8.2 ± 1.4 years). Lee et al. (2020) found no TIR 

differences between postprandial lab-HIIT (4x4-minute intervals, at 85-95% HRmax 

interspersed with 3 minutes recovery at 50-70% HRmax), lab-MICT (33-minutes at 60-

70% HRmax) and a sedentary control period during the nocturnal periods and 24 

hours post exercise in 12 adults (9 females, 3 males, MDI = 9, CSSI = 3, age = 40.4 

± 9.9 years, VO2peak = 28.2 ± 6.6 ml/kg-1/min-1) with Type 1 diabetes (Type 1 

duration = 16.5 ± 9.8 years). In contrast under free-living condition Riddell et al. 

(2020) have recently shown that exercise, comprising a mixture of home-HIIT, home-

MICT (30-minutes at 70-80% HRmax) or habitual exercise, resulted in improved TIR 

during the 24 hours post exercise compared to non-exercise control in 44 adults 

(MDI, n= 9, CSSI, n= 34, age = 35 ±  15 years) with Type 1 diabetes (Type 1 

duration = median 16 (9, 24) years).The failure to observe differences in laboratory-

based studies compared to the free-living environment may have been related to the 

small, and highly variable study samples as well as large glucose variability among 

the laboratory-based study participants. To the best of the authors knowledge, no 

study has yet assessed the effects of exercise on TIR for greater than 36 hours post 

exercise. Therefore, further investigation into the effects of home-HIIT and home-

MICT for up to 48 hours post exercise is required. 

 

1.8.4 Post exercise glycaemic variability 

The interest in GV has recently grown due to the associations with increased 

hypoglycaemia and the potential vascular complications this could have in people 

with Type 1 diabetes. To ensure home-HIIT can provide a safer alternative to MICT, 

HIIT should elicit the same, if not greater GV responses than MICT. Iscoe & Riddell 

(2011) reported similar GV on the day of exercise between afternoon, postprandial 
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lab-IHE (45-minutes at 55% WRpeak interspersed 15-second intervals at 100% 

WRpeak every 5-minutes) and lab-MICT (45-minutes at 55% WRpeak) in 11 physically 

active adults (6 females, 5 males, CSSI, n = 6, MDI, n = 5, age = 35.1 ± 3.5 years, 

VO2max = 42.4 ± 1.6 ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 15.6 ± 5.6 

years). However, these exercise conditions both had greater GV scores than a 

sedentary control day. A study by Scott et al. (2019a) in 14 sedentary adults (8 

females, 6 males, age = 26 ± 3, VO2peak = 30.8 ± 2.0 ml/kg-1/ min-1) with  Type 1 

diabetes (Type 1 duration = 8.2 ± 1.4 years) showed that GV was not different 

between lab-HIIT (6x1-minute intervals 100% VO2peak interspersed with 1-minute 

rest), lab-MICT (30-minutes at 65%VO2peak) and a sedentary control day during the 

24-hours post exercise, when exercise was completed in a fasted state (>10 hours). 

However, GV was found to be increased in the nocturnal periods following lab-HIIT 

(CV = 28±5%) compared to lab-MICT (CV = 19±4%), with the control period being 

similar to lab-HIIT (CV = 25±4%) (Scott et al., 2019a). In contrast, Lee et al. (2020) 

found no difference in GV during the nocturnal and 24-hour periods following 

postprandial lab-HIIT (4x4-minute intervals, at 85-95% HRmax interspersed with 3 

minutes recovery at 50-70% HRmax), lab-MICT (33-minutes at 60-70% HRmax) and a 

control period when post exercise insulin doses were reduced in 12 adults (9 

females, 3 males, MDI = 9, CSSI = 3, age = 40.4 ± 9.9 years, VO2peak = 28.2 ± 6.6 

ml/kg-1/min-1) with Type 1 diabetes (Type 1 duration = 16.5 ± 9.8 years). Finally, 

Riddell et al (2020) found there to be no difference in GV during the 24 hours post 

exercise in home-HIIT and home-MICT compared to sedentary control periods, when 

performed in a free-living environment in 44 adults (MDI, n= 9, CSSI, n= 34, age = 

35 ±  15 years) with Type 1 diabetes (Type 1 duration = median 16 (9, 24) years).  

To the best of the authors knowledge, no study has investigated the effects of 
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exercise on GV for greater than 24-hours post exercise. The aforementioned studies 

suggest that postprandial HIIT and MICT do not affect GV, however, the current 

body of evidence is limited and only one study has assessed home-based exercise 

in a free-living environment. Therefore, further investigation into the effects of home-

based HIIT and MICT on GV for up to 48 hours post exercise is required.  

 

1.9 Summary and Aims 

This literature review has sought to provide an overview of the issues surrounding 

exercise in people with Type 1 diabetes. The overwhelming beneficial effects of 

exercise for people with Type 1 diabetes have been highlighted. However, it is clear 

that people with Type 1 diabetes face many barriers when exercising, consequently 

large numbers of this population are inactive. This literature review has highlighted the 

potential benefits of HIIT on acute blood glucose responses compared to traditional 

MICT. On the other hand, the effects of both HIIT and MICT on post exercise 

glycaemic control in people with Type 1 diabetes is less well understood with many 

studies not investigating greater than 24 hours post exercise. Furthermore, most of 

studies have been conducted under highly controlled laboratory conditions, with only 

one investigating exercise in a free-living environment (Riddle et al., 2019).  This study  

had low levels of control on additional structured exercise, prandial state that exercise 

was completed in and intensity and duration of exercise sessions (Riddell et al., 2020). 

Therefore, the aims of this study were to investigate: the effects of home-HIIT and 

home-MICT completed in a postprandial state compared to a non-exercise control 

period on; i) hypoglycaemia ii) TIR, and iii) GV, for up to 48-hours post exercise in a 

free-living environment. A secondary aim was to investigate whether acute changes 

following exercise influenced 14-day glycaemic control.   
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2.1  Methods 

2.1.1 Ethical approval 

All participants provided written informed consent, the study was approved by the 

Liverpool John Moores University Research Ethics Committee (approval reference no. 

19/SPS/061) and conformed to the Declaration of Helsinki (Rickham, 1964). 

 

2..1.2 Participants 

11 adults (n= 4 men, n= 7 women) with Type 1 diabetes (see Table 2.1 for descriptive 

statistics) on basal-bolus insulin treatment administered via multiple daily injections 

(MDI) (n = 6) or continuous subcutaneous insulin infusion (CSII) (n = 5) were recruited 

through adverts on Type 1 diabetes social media groups. Inclusion criteria were; aged 

between 18-55 years, diagnosed with Type 1 diabetes > 6 months and BMI ≤ 32 

kg.m2. Exclusion criteria were; pregnancy, disability preventing participation in an 

exercise regime, angina, autonomic neuropathy, medication that affects heart rate, 

major surgery planned within 6 weeks of the study, uncontrolled blood pressure, 

significant history of hyperglycaemia, history of severe hypoglycaemia requiring third 

party assistance within the last 3 months, severe non-proliferative and unstable 

proliferative retinopathy. Participant eligibility was confirmed during an initial meeting, 

which included a 12-lead resting electrocardiogram. 

 

2.1.3 Study Design 

Participants completed a randomised counterbalanced crossover experiment, 

consisting of three 14-day intervention periods: home-based high intensity interval 

training (home-HIIT), home-based moderate intensity continuous training (home-

MICT) and a non-exercise control period (CON). Ten out of eleven participants 
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completed interventions consecutively, one participant had a 14-day period between 

intervention two and three. Free-living glycaemic control was assessed throughout the 

14-day periods using an Abbott Freestyle Libre (Abbott Diabetes Care, CA, USA) flash 

glucose monitor (FGM), inserted subcutaneously into the interstitial fluid of the upper 

arm prior to each intervention. Participants were unblinded to the FGM, meaning they 

could see their glucose values by scanning the monitor. Participants also recorded 

insulin doses and dietary intake throughout the intervention periods. 

During the CON period participants were instructed to perform no structured 

exercise (e.g. playing sport, going to the gym or running), but could continue any 

habitual physical activity (e.g. walking to work or shops). Exercise intervention periods 

were identical except for the exercise performed. During the two exercise periods 

(home-HIIT and home-MICT) the effect of 6 exercise sessions on subsequent 

glycaemic control was assessed. Exercise sessions were performed on days; 1, 3, 6, 

8, 10 and 13 of the 14-day period, leaving at least 48 hours between sessions. The 

timing of exercise sessions was not controlled, but participants were asked to 

complete sessions at a similar time of day within and between interventions, and bouts 

were not performed after an overnight fast. Participants were asked to refrain from any 

form of structured exercise other than the prescribed sessions during the intervention 

periods.  

 

2.1.3.1 Exercise Session Monitoring 

To ensure exercise sessions were completed as prescribed participants were provided 

with a Polar H10 heart rate (HR) monitor (Polar, Kempele, Finland) and asked to wear 

this for each exercise session. During home-HIIT and home-MICT sessions 

participants were asked to attain specific HR targets, described below. Participants 
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received instant feedback on their HR during sessions, using the compatible polar 

application (Polar Beat, www.polar.com/beat/uk-en). Following exercise, HR data was 

automatically uploaded to a cloud storage site (www.flow.polar.com), allowing the 

research team to assess the number of exercise sessions completed and compliance 

with HR targets. 

 

2.1.3.2  Home-based High Intensity Interval Training (home-HIIT) 

Participants were instructed to complete a low intensity warm up for 3-minutes prior to 

starting each home-HIIT session. All home-HIIT sessions had a duration of 12 

minutes, with participants completing six 1-minute high intensity intervals, interspersed 

with 1-minute rest intervals. Intervals used bodyweight exercises, with each interval 

divided into two different bodyweight exercises performed for 30 seconds with no rest 

between exercises. Participants were able to choose from a selection of 18 exercise 

pairs detailed in an exercise workbook (appendix 10). Participants were advised to 

achieve ≥80% of predicted HRmax (220-age) during the intervals. A session was 

deemed compliant if participants completed at least 1 interval with a heart rate ≥80% 

of predicted HRmax. 

 

2.1.3.3 Moderate Intensity Continuous Training (MICT) 

MICT sessions consisted of 30 minutes of continuous exercise of the participant’s 

choosing (e.g. walking/jogging, cycling, swimming etc). Participants were asked to 

attain a HR of 60-70% of predicted HRmax during the exercise session and a session 

was deemed compliant if mean HR (HRmean) was between 60 and 70% HRmax.  
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2.1.4  Measurements  

2.1.4.1 Assessment of Glycaemic Control 

Twelve metrics of glycaemia were assessed in line with the American Diabetes 

Association (ADA) guidelines (Danne et al., 2017, Battelino et al., 2019); mean 

glucose (mmol/L), glycaemic variability measured through standard deviation (SD) 

(mmol/L) and coefficient of variation (CV) (%), % time below range (TBR) (≤ 3.9 

mmol/L), % time above range (TAR) (> 10 mmol/L), % time in level 2 (L2) 

hypoglycaemia (< 3.0 mmol/L), % time in level 1 (L1) hypoglycaemia (3.0 – 3.9 

mmol/L), % time in range (TIR) (4.0 – 10.0 mmol/L), % time in L1 hyperglycaemia 

(10.1 – 13.9 mmol/L), % time in L2 hyperglycaemia (> 13.9 mmol/L), number of 

hypoglycaemic episodes (≥ 2 consecutive FGM values ≤ 3.9 mmol/L) and number of 

hyperglycaemic episodes (≥ 2 consecutive FGM values > 10 mmol/L). Over the 14-

day period, estimated glycated haemoglobin was also measured through use of the 

glucose management indicator (GMI) (mmol/L) (Bergenstal et al., 2018). 

Glycaemic metrics recorded over the 14-day intervention period were assessed 

and reported at three time points in line with the current ADA guidelines (Battelino et 

al., 2019, Danne et al., 2017), i) full 14-day period, ii) nocturnal periods (00:00 – 06:00) 

during the 14-day period, iii) awake periods (06:00 – 00:00) during the 14-day period.  

 Glycaemic metrics were also assessed over five time points for up to 48 hours 

post exercise. Post exercise metrics are reported as an average of all 6 exercise 

sessions. A detailed description of the post exercise time points can be found in Figure 

2.1, in brief the 5 time points were; 1) Awake 0 (A0), post exercise to 00:00 on the day  

of exercise, 2) Nocturnal 1 (N1) 00:00 to 06:00 the day following exercise (days begin 

at 00:00), 3) Awake 1 (A1), the awake period (06:00 – 00:00) the day following 

exercise, 4) Nocturnal 2 (N2), the nocturnal period (00:00 – 06:00) on the second day 
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following, 5) Awake 2 (A2), the awake period on the second day following exercise 

until 48 hours post exercise or the commencement of the next exercise session 

dependent on which occurred first. Post-exercise glucose data in the CON intervention 

was time and day matched with sessions from the home-HIIT intervention.  
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Figure 2.1. Assessment of glycaemic control within this study. Glycaemia metrics recorded over the 14-day intervention 

period were assessed at three time points; 1) Full 14-day period, 2) Nocturnal periods (00:00 – 06:00), 3) Awake periods (06:00-

00:00). Exercise interventions consisted of 6 exercise bouts on days 1, 3, 6, 8, 10 and 13 of the intervention. A) FGM data 

following home-HIIT, home-MICT and CON was assessed over five time periods until 48 hours post exercise or until the next 

exercise bout commenced, dependent on which occurred first. B) Dietary intake and insulin dose data assessed for the day of 

exercise, day following exercise and the second day following exercise exercise with CON periods time matched to home-HIIT 

post exercise periods.  
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2.1.4.2  Insulin dose 

Participants using MDI were asked to self-report insulin doses using either the smart 

phone application (LibreLink) or the reader linked to the FGM. This data was then 

automatically uploaded to the cloud system (LibreView) alongside the interstitial 

glucose data. Participants using CSSII were asked to provide information from their 

pump report online for the dates they were participating in the study. Basal and bolus 

(units) insulin were recorded and total daily dose relative to bodyweight (TDD/kg) was 

also calculated (basal dose + bolus dose / bodyweight(kg) = TDD/kg (units.kg)) for 

each 14-day intervention period and for the day of exercise, the day following exercise 

and the second day following exercise (see Figure 2.1). 

 

2.1.4.3  Dietary Intake 

Dietary Intake was assessed using the MyFitnessPal application on smartphone 

(MyFitnessPal, CA, USA). Calorie (kcal) and carbohydrate (CHO) intake (grams) were 

assessed for each 14-day intervention period and for the day of exercise, the day 

following exercise and second day following exercise (see Figure 2.1). Participants 

were asked to maintain their habitual diet and report their dietary intake as accurately 

as possible. A day was considered complete and valid if the calorie intake recorded 

was ≥ 500 kcal and ≤ 5000kcal (Carter et al., 2013). If participants recorded less than 

50% valid days (< 7 days) in an intervention period, then their dietary data was 

excluded (Burke et al., 2011). 

 

2.1.5 Statistical analysis  

Statistical analysis was performed using SPSS 26 (IBM SPSS Statistics 26; Armork: 

IBM Corp). A linear mixed model was used to assess all variables at all time points 
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unless stated otherwise. Data for the interventions were converted to change from 

CON (home-HIIT = home-HIIT – CON; home-MICT = home-MICT – CON; CON = 

CON – CON) and are presented as adjusted change with values showing mean 

difference between interventions. The linear mixed model method assessed the 

statistical difference between home-HIIT and CON, home-MICT and CON, as well as 

between home-HIIT and home-MICT using LSD post hoc tests. Data are presented 

as mean differences and 95% Confidence Intervals (95% CI). A two factor repeated 

measures ANOVA was used to assess whether there was an acute change in 

interstitial glucose concentration following home-HIIT and home-MICT, with the within-

subject factors ‘training mode’ and ‘time point’, data presented as mean ± SD. Paired-

samples t-test’s were used to analyse exercise session data (Sessions completed and 

compliance with the HR target), data presented as mean ± SD.  Throughout all 

statistical tests, the alpha level was set at P ≤ 0.05. 

 
2.2 Results 

Table 2.1 presents the participant characteristic of the eleven physically active adults 

with Type 1 diabetes in this study. Participants completed >150 minutes of MVPA 

per week and were physically active on at least 3 days per week. 

 
Table 2.1 Descriptive statistics for participants. Data presented as means ±  SD. 
 

Variable All  Female  Male  

Participants (n=) 11 7 4 

Age (years) 26 ± 7 26 ± 7 25 ± 6 

Height (m) 1.68 ± 0.14 1.60 ± 0.05 1.82 ± 0.15 

Mass (kg) 71.65 ± 13.14 67.20 ± 14.57 79.43 ± 4.88 

BMI (kg/m2) 25.43 ± 4.29 26.10 ± 4.90 24.25 ± 3.23 

Type 1 diabetes 
Duration (years) 

10 ± 8 10 ± 10 9 ± 4 

CSSI (n=) 5 5 0 

MDI (n=) 6 2 4 
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2.2.1 Exercise Sessions & HR Data 

A total of 59 home-HIIT and 56 home-MICT sessions were completed. Participants 

completed 5±1 home-HIIT sessions (range = 4 to 6 sessions) and 5±1 home-MICT 

sessions (range = 2 to 6 sessions), with no difference in the number of sessions 

completed between home-HIIT or home-MICT (t10 = 0.61, P = 0.557). Compliance 

with the target HR was significantly greater (t10 = 3.26, P = 0.009) in home-HIIT than 

home-MICT (home-HIIT 100±0%, home-MICT 65±35% of sessions completed at 

the target HR). Lower compliance in home-MICT was due to 25±36.27% of sessions 

being completed above the HR target (HRmean 60-70%HRmax) and 9±15% of 

sessions being completed below target. The average start time of the home-HIIT 

sessions was 17:36:44 ± 02:24:00 (hh:mm:ss) and the average start time of the 

home-MICT sessions was 16:29:33 ± 02:06:55 (hh:mm:ss).  

 

2.2.2 Glycaemic Control Assessed Over the 14-day Intervention Periods 

A total of 448 days were included in the analyses with an average of 41 ±3 days per 

participant included. On average, 914:20 ± 62:45 (hhh:mm) of FGM data per 

participant was included in the analyses, equating to 91 ± 6 % of the prescribed period. 

Glycaemic control data from the FGMs assessed over the full 14 day, nocturnal and 

awake periods are presented in Tables 2.2.1, 2.2.2. and 2.23. The data below is 

presented as change from CON, see Appendix 1, 2 and 3 for raw data on the 

glycaemic metrics assessed over the full 14 day, nocturnal and awake periods, 

respectively (mean± SD). The effects of training modes on post exercise glycaemic 

control are presented in Figure 2.3 



 51 

Compared to control neither home-HIIT or home-MICT altered mean glucose, TIR, 

TAR and TBR over the full 14 day, nocturnal or awake periods (P>0.05). The 

number of hypo- and hyperglycaemic episodes were also not different during home-

HIIT or home-MICT compared to control over the full 14 day, nocturnal or awake 

periods (P>0.05). Glucose CV was not different during home-HIIT or home-MICT 

compared to control over the full 14 day or awake periods (P>0.05). Compared to 

control neither home-HIIT (P = 0.734) or home-MICT (P = 0.068) increased nocturnal 

glucose CV significantly. However, glucose CV was significantly greater following 

home-MICT compared to home-HIIT (P = 0.034).  
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Variable Home-HIIT (95%CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95%CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95%CI) 

P Value 
(HIIT vs 
MICT) 

Mean Glucose (mmol/L) -0.2 (-0.8, 0.4) 0.496 0.0 (-0.6, 0.6) 0.996 -0.2 (-0.8, 0.4) 0.500 

GMI (mmol/L) -0.9 (-3.7, 1.8) 0.496 -0.0 (-2.8, 2.7) 0.996 -0.9 (-3.7, 1.8) 0.500 

% TIR  4 (-12, 9) 0.170 -1 (-6., 5) 0.737 5 (-1, 10) 0.093 

% TAR  -4 (-11, 2) 0.185 0 (-7, 7) 0.969 -5 (-11, 2) 0.173 

% Time in L1 
Hyperglycaemia  

-4 (-9., 0) 0.072 -2 (-7, 3) 0.349 -2 (-7, 3) 0.357 

% Time in L2 
Hyperglycaemia  

0 (-3, 3) 0.987 2 (-1, 6) 0.161 -2 (-6, 1.) 0.166 

% TBR  1 (-2, 3) 0.575 1 (-1, 3) 0.449 0 (-2, 2) 0.841 

% Time in L1 
Hypoglycaemia  

1 (-1, 2) 0.188 1 (-1, 2) 0.211 0 (-1, 2) 0.945 

% Time in L2 
Hypoglycaemia  

0 (-1, 1) 0.411 0 (-1, 1) 0.803 0 (-1, 1) 0.563 

Number of 
Hyperglycaemic episodes 

-1 (-6, 4) 0.759 -3 (-8, 2) 0.165 3 (-2, 8) 0.272 

Number of 
Hypoglycaemic episodes 

1 (-3, 6) 0.498 1 (-3, 5) 0.556 0 (-4, 4) 0.928 

SD (mmol/L) 0.1 (-0.2, 0.3) 0.676 0.2 (-0.1, 0.4) 0.137 -0.1 (-0.4, 0.1) 0.274 

CV (%) 1 (-2, 4) 0.559 2 (-1, 5) 0.120 -1.3 (-4.0, 1.4) 0.315 

Table 2.2.1. Glycaemic Metrics during the 14-day intervention periods in home-HIIT and home-MICT. Values presented 
as mean change from CON (95% CI).  
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Variable Home-HIIT (95%CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95%CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95%CI) 

P Value 
(HIIT vs 
MICT) 

Mean Glucose (mmol/L) -0.0 (-0.8, 0.7) 0.926 -0.3 ( -1.1, 0.4) 0.353 -0.3 (-0.4, 1.0) 0.401 

% TIR  4 (-4, 12) 0.295 3 (-5, 11) 0.433 1 (-7, 9) 0.786 

% TAR  -4 (-12, 4) 0.307 -4 (-13, 4) 0.272 0 (-8, 9) 0.938 

% Time in L1 
Hyperglycaemia  

-6 (-13, 2.) 0.159 -5 (-13, 3) 0.207 0 (-8, 7) 0.875 

% Time in L2 
Hyperglycaemia  

1 (-4, 7) 0.606 0 (-5, 6) 0.865 0.9 (-5, 6) 0.728 

% TBR  0 (-4, 4) 0.978 1 (-3, 6) 0.505 -1 (-6, 3) 0.522 

% Time in L1 
Hypoglycaemia  

2 (-1, 4) 0.198 2 (-1, 5) 0.129 0 (-3, 2) 0.805 

% Time in L2 
Hypoglycaemia  

-2 (-4, 1) 0.255 -1 (-3, 2) 0.657 -1 (-4, 2) 0.432 

Number of 
Hyperglycaemic episodes 

-1 (-4, 2) 0.353 -2 (-4, 1) 0.262 0 (-3, 3) 0.841 

Number of Hypoglycaemic 
episodes 

0 (-1, 1) 0.444 0 (-1, 1) 0.565 0 (-1, 1) 0.847 

SD (mmol/L) -0.1 (-0.6, 0.5) 0.848 0.2 (-0.3, 0.7) 0.439 -0.2 (-0.8, 0.3) 0.337 

CV (%) -1 (-5, 3) 0.734 4 (0, 8) 0.068 -4 (-8, 0) 0.034 

Table 2.2.2. Glycaemic Metrics during nocturnal time periods throughout the home-HIIT and home-MICT 14-day 
intervention periods. Values presented as mean change from CON (95% CI). 
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Variable Home-HIIT (95%CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95%CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95%CI) 

P Value 
(HIIT vs 
MICT) 

Mean Glucose (mmol/L) -0.2 (-0.9, 0.5) 0.587 0.1 (--0.6, 0.8) 0.772 -0.3 (-1.0, 0.4) 0.407 

% TIR  3 (-4, 9) 0.409 -2 (-9, 4) 0.509 5 (-2, 11) 0.145 

% TAR  -4 (-11, 4) 0.341 2 (-6, 9) 0.681 5 (-13, 3) 0.179 

% Time in L1 
Hyperglycaemia  

-4 (-8, 1) 0.098 -1.4 (-5.8, 3.0) 0.525 -2 (-7, 2) 0.289 

% Time in L2 
Hyperglycaemia  

0 (-4, 5) 0.938 2.9 (-1.6, 7.4) 0.200 -3 (-7, 2) 0.227 

% TBR  1 (-1, 3) 0.423 0.6 (-1.6, 2.8) 0.565 0 (-2, 2) 0.818 

% Time in L1 
Hypoglycaemia  

1 (-1, 2) 0.302 0.5 (-0.9, 2.0) 0.455 0 (-1, 2) 0.769 

% Time in L2 
Hypoglycaemia  

0 (-1, 1) 0.774 0.1 (-0.8, 1.0) 0.843 0 (-1, 1) 0.930 

Number of 
Hyperglycaemic episodes 

-1 (-7, 4) 0.586 -2.4 (-7.5, 2.8) 0.348 1 (-4, 6) 0.689 

Number of Hypoglycaemic 
episodes 

1 (-3, 5) 0.472 1.1 (-2.8, 5.0) 0.564 0 (-4, 4) 0.885 

SD (mmol/L) 0.0 (-0.2, 0.3) 0.751 0.2 (--0.0, 0.4) 0.098 -0.2 (-0.4, 0.1) 0.172 

CV (%) 1 (-2, 3) 0.666 1.8 (-0.9, 4.5) 0.175 -1 (-4, 1) 0.344 

Table 2.2.3. Glycaemic Metrics during the awake time periods throughout the home-HIIT and home-MICT 14-day 
intervention periods. Values presented as mean change from CON (95% CI). 
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2.2.3 Acute changes in interstitial glucose concentration during exercise  

There was a significant interaction effect between timepoint and training mode (P = 

0.042) for mean interstitial glucose pre to post exercise.  Post hoc analysis revealed 

that home-HIIT resulted in a stable mean interstitial glucose response from pre (9.5 

±  2.1 mmol/L) to post (9.0 ±  2.3 mmol/L) exercise (P = 0.139). However, home-MICT 

resulted in a significant decrease in mean interstitial glucose from pre (9.7 ±  1.8 

mmol/L) to post (8.0 ±  1.9 mmol/L) exercise (P = 0.011). 

 

2.2.4 Glycaemic Control within 48h of Exercise 

Mean interstitial glucose profiles for the 48-hours post exercise for each intervention 

period are presented in Figure 2.2. Figure 2.3 presents a summary of the data 

captured over the 5 time points. The data below is presented as change from CON, 

see Appendix 4, 5, 6, 7 and 8 for raw data on the glycaemic metrics assessed over 

the five time points, respectively (mean± SD).   
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Figure 2.2. Mean interstitial glucose profiles for the 48-hour post exercise 

following home-HIIT, home-MICT and CON. Solid black line represents mean 

interstitial glucose values every 15-minutes post exercise; light grey error bars 

represent mean variance measured as SD at each timepoint. The vertical dashed 

lines represent the start and end of exercise and the solid horizontal lines 

represent hypoglycaemic and hyperglycaemic thresholds.  
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Figure 2.3. Schematic illustrating glycaemic control during five post exercise time points. H) Home-HIIT compared to 

CON, M) home-MICT compared to CON, H-M) home-HIIT compared to home-MICT. Grey = no change, red = significant 

negative effect (P ≤ 0.05), green = significant positive effect (P ≤ 0.05). Green at ‘H-M’ reflects home-HIIT as positive.  
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2.2.3.1  Awake period on the day of exercise (A0) 

The awake period on the day of exercise had an average duration of 05:41:21 ± 

02:17:51 (hh:mm:ss). FGM data for the awake period on the day of exercise is 

presented in Table 2.3.1. Compared to CON, mean glucose was not different following 

home-HIIT (P 0.256) or home-MICT (P = 0.488). Unlike home-MICT (P = 0.114) home-

HIIT significantly increased TIR compared to CON (P = 0.043). There was no 

difference between training modes for TIR (P = 0.611). Increased TIR following home-

HIIT compared to CON was accounted for by significantly reducing TAR in home-HIT 

compared to CON (P = 0.022). There were no differences, in TAR in home-MICT (P = 

0.073) compared to CON or home-HIIT (P = 0.559). Specifically, time spent in L1 

hyperglycaemia was reduced by both home-HIIT (P = 0.002) and home-MICT (P 

=0.002) compared to CON. Time spent in L2 hyperglycaemia and the number 

hyperglycaemic episodes were similar in all conditions (P>0.05). Compared to CON, 

TBR was not different following home-HIIT (P = 0.174) or home-MICT (P = 0.296). 

However, time spent in L1 hypoglycaemia was significantly increased following home-

HIIT (P = 0.033) but not home-MICT (P = 0.070) compared to CON. No between 

training mode difference was observed (P = 0.708). Importantly, no differences in time 

spent in L2 hypoglycaemia or the number of hypoglycaemic episodes were observed 

between conditions (P>0.05). Home-HIIT did not alter either glucose CV or SD 

compared to control. However, home-MICT significantly increased glucose CV (P = 

0.034) and SD (P = 0.014) compared to control, but no between training mode 

differences were observed (P > 0.05). 
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2.2.3.2  Nocturnal period on the day following exercise (N1) 

FGM data for the nocturnal period the day following exercise is presented in Table 

2.3.2. Compared to control mean glucose was not different following home-HIIT (P = 

0.420) or home-MICT (P = 0.879). TIR, TAR, TBR and number of episodes of hypo- 

and hyperglycaemia were not different following home-HIIT or home-MICT compared 

to control (P>0.05). Although TIR and TAR were not different, time in L1 

hyperglycaemia was reduced following both home-HIIT (P = 0.035) and home-MICT 

(P = 0.034). Neither home-HIIT nor home-MICT affected glucose CV or SD compared 

to control (P>0.05). 

 

2.2.3.3  Awake period on the day following exercise (A1) 

Table 2.3.3 presents the FGM data for the awake period on the day following exercise. 

Compared to control, mean glucose was not different following home-HIIT (P = 0.141) 

or home-MICT (P = 0.253). However, mean glucose was significantly lower following 

home-HIIT compared to home-MICT (P = 0.013). Compared to CON, TIR was not 

different following either home-HIIT (P = 0.209) or home-MICT (P = 0.173), but there 

was significantly more TIR in home-HIIT compared to home-MICT (P = 0.013).  

Compared to CON, there were no differences in TAR following home-HIIT (P=0.153) 

and home-MICT (P = 0.158). Increased TIR in home-HIIT compared to home-MICT 

was accounted for by significantly less TAR (P = 0.013).  There were no differences 

in time spent in L1 hyperglycaemia following home-HIIT and home-MICT compared to 

CON, or between training modes (P > 0.05). However, significantly less time was 

spent in L2 hyperglycaemia following home-HIIT compared to home-MICT (P = 0.030). 

Compared to CON, there were no differences in time spent in L2 hyperglycaemia in 

home-HIIT or home-MICT. Compared to CON, TBR and the number of hypo- and 
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hyperglycaemic episodes were not different in home-HIIT or home-MICT and there 

were also no differences between training modes (P > 0.05). Neither home-HIIT nor 

home-MICT affected glucose CV or SD (P > 0.05)  

2.2.3.4  Nocturnal Period on the second day following exercise (N2) 

Table 2.3.4 presents the FGM data for the nocturnal period on the second day 

following exercise. Compared to CON, mean glucose was not different in home-HIIT 

(P = 0.477) or home-MICT (P = 0.204). TIR, TAR, TBR and the number of hypo- and 

hyperglycaemic episodes were not different in home-HIIT or home-MICT compared to 

CON (P > 0.05). Although, TBR was not different in home-HIIT compared to CON (P 

= 0.071), time spent in L1 hypoglycaemia was significantly greater in home-MICT 

compared to CON (P = 0.047). Home-HIIT did not alter either glucose CV or SD. 

However, home-MICT significantly increased both glucose CV (P = 0.024) and SD (P 

= 0.008) compared to CON. Furthermore, home-MICT increased glucose CV (P = 

0.008) and SD (P = 0.019) compared to home-HIIT. 

 

2.2.3.5  Awake period on the second day following exercise (A2) 

The awake period on the second day following exercise had an average duration of 

09:52:10 ± 02:10:09 (hh:mm:ss). Table 2.3.5 presents the FGM data for the awake 

period on the second day following exercise. Compared to CON, mean glucose was 

not different following home-HIIT (P = 0.666) or home-MICT (P = 0.806). TIR, TAR, 

TBR and the number of hypo and hyperglycaemic episodes were not different 

following home-HIIT and home-MICT compared to CON (P > 0.05). Although there 

were no differences in TIR following home-HIIT or home-MICT compared to CON, 

there was significantly more TIR following home-HIIT compared to home-MICT (P = 

0.034). This was accompanied by significantly less time spent in L1 hypoglycaemia 
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following home-HIIT compared to home-MICT (P = 0.014). Neither home-HIIT or 

home-MICT affected glucose CV and SD (P > 0.05) compared to CON (P > 0.05) 
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Variable Home-HIIT (95%CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95%CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95%CI) 

P Value 
(HIIT vs 
MICT) 

Mean Glucose (mmol/L) -0.8 (-2.3, 0.7) 0.256 -0.5 (-2.0, 1.0) 0.488  -0.3 (-1.8, 1.2) 0.647 

% TIR  11 (0, 22) 0.043 89 (-2, 20) 0.114 3 (-8, 14) 0.611 

% TAR  -14 (-27, -2) 0.022 -11 (-23, 1) 0.073 -3 (-16, 9) 0.559 

% Time in L1 
Hyperglycaemia  

-15 (-23, -7) 0.002 -14 (-23, -6) 0.002 -1 (-9, 8) 0.911 

% Time in L2 
Hyperglycaemia  

1 (-10, 11) 0.929 3 (-7, 14) 0.503 -3 (-14, 8) 0.560 

% TBR  3 (-2, 8) 0.174 2 (-2, 7) 0.296 0. (-4, 5) 0.737 

% Time in L1 
Hypoglycaemia  

3 (0, 5) 0.033 2 (0., 5) 0.070 1 (-2, 3) 0.708 

% Time in L2 
Hypoglycaemia  

0 (-2, 3) 0.833 0 (-3, 3) 0.996 0 (-2, 3) 0.830 

Number of 
Hyperglycaemic episodes 

-1 (-1, 0) 0.006 0 (-1, 0) 0.224 0 (-1, 0) 0.082 

Number of Hypoglycaemic 
episodes 

0 (0, 0) 0.722 0 (0, 0) 0.586 0 (0, 0) 0.849 

SD (mmol/L) 0.1 (-0.2, 0.4) 0.539 0.4 (0.0, 0.7) 0.034 -0.3 (-0.6, 0.1) 0.112 

CV (%) 3 (-1, 6) 0.125 4 (1, 8) 0.014 -2 (-5, 2) 0.285 

Table 2.3.1. Glycaemic Metrics during the period A0 for home-HIIT and home-MICT interventions. Values 

presented as mean change from CON (95% CI). 
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Variable  Home-HIIT (95%CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95%CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95%CI) 

P Value 
(HIIT vs 
MICT) 

Mean Glucose (mmol/L) -0.5 (-1.7, 0.7) 0.420 0 (-1, 1) 0.879 -0.6 (-1.8, 0.6) 0.340 

% TIR  11 (-2, 24) 0.104 5 (-8, 18) 0.435 6 (-8, 19) 0.376 

% TAR  -11 (-25, 4) 0.130 -5 (-19, 9) 0.484 -6 (-20, 8) 0.396 

% Time in L1 
Hyperglycaemia  

-12 (-24, -1) 0.035 -13 (-24, -1) 0.034 0 (-11, 12) 0.986 

% Time in L2 
Hyperglycaemia  

2 (-7, 10) 0.635 8 (0, 16) 0.052 -6 (-14, 2) 0.129 

% TBR  0 (-7, 7) 0.974 0 (-7, 7) 0.946 0 (-7, 7) 0.972 

% Time in L1 
Hypoglycaemia  

1 (-3, 5) 0.571 0 (-4, 3) 0.848 1 (-2, 5) 0.450 

% Time in L2 
Hypoglycaemia  

-1 (-6, 4) 0.640 0 (-5, 5) 0.969 -1 (-6, 4) 0.613 

Number of 
Hyperglycaemic episodes 

0 (0, 0) 0.220 0 (0, 0) 0.713 0 (0, 0) 0.382 

Number of Hypoglycaemic 
episodes 

0 (0, 0) 0.629 0 (0, 0) 0.758 0 (0, 0) 0.860 

SD (mmol/L) 0.1 (-0.2, 0.4) 0.539 0.4 (0.0, 0.7) 0.034 -0.3 (-0.6, 0.1) 0.112 

CV (%) 3 (-2, 8) 0.273 2 (-4, 7) 0.539 1 (-4, 6) 0.622 

Table 2.3.2. Glycaemic Metrics during the period N1 for home-HIIT, home-MICT. Values presented as mean 

change from CON (95% CI). 
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Variable  Home-HIIT (95%CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95%CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95%CI) 

P Value 
(HIIT vs 
MICT) 

Mean Glucose (mmol/L) -0.5 (-1.2, -0.2) 0.141 0.4 (-0.3, 1.1) 0.253 -0.9 (-1.6, -0.2) 0.013 

% TIR  5 (-3, 12) 0.209 -5 (-13, 4) 0.173 10 (2, 18) 0.013 

% TAR  -6 (-14, 2) 0.153 6 (-2, 13) 0.158 -11 (-19, -3) 0.008 

% Time in L1 
Hyperglycaemia  

-3 (-9, 2) 0.204 2 (-4, 7) 0.494 -5 (-11, 0) 0.058 

% Time in L2 
Hyperglycaemia  

-3 (-8, 3) 0.394 4 (-2, 9) 0.158 -6 (-12, -1) 0.030 

% TBR  1 (-2, 4) 0.534 0 (-3, 3) 0.793 1 (2, 4) 0.379 

% Time in L1 
Hypoglycaemia  

1 (-1, 3) 0.319 0 (-2, 2) 0.779 1 (-1, 3) 0.469 

% Time in L2 
Hypoglycaemia  

0 (-1, 1) 0.730 -1 (-2, 0) 0.210 1 (-1, 2) 0.356 

Number of 
Hyperglycaemic episodes 

0 (0, 0) 0.859 -0 (-1, 0) 0.728 0 (0, 0) 0.865 

Number of Hypoglycaemic 
episodes 

0 (0, 0) 0.746 0 (0, 0) 0.837 0 (0, 1) 0.597 

SD (mmol/L) 0.2 (-0.2, 0.5) 0.342 0.2 (-0.9, 0.6) 0.151 -0.1 (-0.4, 0.2) 0.609 

CV (%) 3 (0, 6) 0.073 1 (-2, 5) 0.398 2 (-2, 5) 0.315 

Table 2.3.3. Glycaemic Metrics during the period A1 for home-HIIT and home-MICT. Values presented as mean 

change from CON (95% CI). 
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Variable  Home-HIIT (95%CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95%CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95%CI) 

P Value 
(HIIT vs 
MICT) 

Mean Glucose (mmol/L) -0.3 (-1.1, 0.5) 0.477 -0.5 (-1.3, 0.3) 0.204 0.2 (-0.6, 1.0) 0.563 

% TIR  1 (-14, 15) 0.922 -6 (-21, 8) 0.363 7 (-7, 22) 0.315 

% TAR  -3 (-14, 8) 0.551 -0 (-11, 11) 0.966 -3 (-14, 8) 0.580 

% Time in L1 
Hyperglycaemia  

-4 (-15, 7) 0.470 2 (-9, 14) 0.661 -6 (-17, 5) 0.251 

% Time in L2 
Hyperglycaemia  

1 (-9, 11) 0.874 -3 (-12, 7) 0.575 3 (-7, 13) 0.474 

% TBR  3 (-5, 10) 0.480 7 (-1, 14) 0.071 -4 (-11, 3) 0.248 

% Time in L1 
Hypoglycaemia  

1 (-4, 6) 0.646 5 (0, 10) 0.047 -4 (-9, 1) 0.115 

% Time in L2 
Hypoglycaemia  

1 (-4, 7) 0.565 2 (-3, 7) 0.483 -0 (-5, 5) 0.899 

Number of 
Hyperglycaemic episodes 

0 (0, 0) 0.988 0 (0, 0) 0.125 0 (-1, 0) 0.122 

Number of Hypoglycaemic 
episodes 

0 (0, 0) 0.195 0 (0, 0) 0.077 0 (0, 0) 0.604 

SD (mmol/L) 0.0 (-0.3, 0.3) 0.914 0.4 (0.1, 0.7) 0.024 -0.4 (-0.7, 0.1) 0.019 

CV (%) 0 (-3, 3) 0.869 4 (1, 7) 0.008 5 (-8, 2) 0.005 

 
 

      

Table 2.3.4. Glycaemic Metrics during the period N2 for home-HIIT and home-MICT. Values presented as mean 

change from CON (95% CI). 
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Variable  Home-HIIT (95%CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95%CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95%CI) 

P Value 
(HIIT vs 
MICT) 

Mean Glucose (mmol/L) -0.1 (-0.8, 0.5) 0.666 0.1 (-0.6, 0.7) 0.806 -0.2 (-0.9, 0.4) 0.500 

% TIR  6 (-3, 15) 0.180 -5 (-14, 3) 0.213 11 (3, 20) 0.014 

% TAR  -5 (-15, 4) 0.222 3 (-6, 12) 0.551 -8 (-17, 1) 0.077 

% Time in L1 
Hyperglycaemia  

-4 (-12, 4) 0.319 0 (-8, 8) 0.971 -4 (-12, 4) 0.302 

% Time in L2 
Hyperglycaemia  

-2 (-9, 5) 0.559 3 (-5, 10) 0.367 -4 (-11, 3) 0.145 

% TBR  0 ( -4, 3) 0.801 3 (-1, 6) 0.105 -3 (-7, 0) 0.065 

% Time in L1 
Hypoglycaemia  

0 (-2, 2) 0.739 2 (0, 4) 0.067 -2 (-4, 0) 0.034 

% Time in L2 
Hypoglycaemia  

0 (-2, 2) 0.934 1 (-1, 3) 0.407 -1 (-3, 1) 0.363 

Number of 
Hyperglycaemic episodes 

0 (0, 0) 0.769 0 (-1, 0) 0.510 0 (0, 1) 0.345 

Number of Hypoglycaemic 
episodes 

0 (0, 0) 0.505 0 (-1, 0) 0.194 0 (-1, 0) 0.057 

SD (mmol/L) -0.1 (-0.6, 0.3) 0.535 0.1 (-0.3, 0.6) 0.617 -0.3 (-0.7, 0.2) 0.268 

CV (%) -1 (-7, 4) 0.592 2 (-3, 7) 0.444 -3 (-9, 2) 0.200 

Table 2.3.5. Glycaemic Metrics during period A2 for home-HIIT and home-MICT. Values presented as mean change 

from CON (95% CI). 
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2.2.4 Insulin Dose 

Insulin data is presented in Table 2.2.3. Compared to CON, neither home-HIIT or 

home-MICT effected bolus, basal or TDD/kg insulin dose during the 14-day 

intervention period or on the day of exercise, day following exercise and the second 

day following exercise (P > 0.05). 

 

2.2.5 Dietary intake 

Dietary intake data is presented in Table 2.3.3. Compared to CON, calorie and CHO 

intakes were not different on the day of exercise and the second day following 

exercise in home-HIIT or home-MICT (P > 0.05). On the day following exercise, 

there was no difference in calorie content in either home-HIIT (P = 0.335) or home-

MICT (P = 0.151) compared to CON. There was also no difference in CHO intake on 

the day following exercise in home-HIIT compared to CON (P = 0.535). However, 

CHO intake on the day following exercise was significantly greater in home-MICT 

compare to CON (P = 0.050). 
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Time 
period 

Variable Home-HIIT (95% CI) 
P Value 
(CON vs 

HIIT) 
Home-MICT (95% CI) 

P Value 
(CON vs 
MICT) 

Between Groups 
(95% CI) 

P Value 
(HIIT vs 
MICT) 

In
te

rv
en

ti
o

n
 Calorie Intake (Kcal) 114 (-9, 236) 0.067 17 (-105, 140) 0.767 96 (-26, 219) 0.116 

CHO Intake (grams) 14 (-1, 28) 0.064 9 (-6, 24) 0.217 5 (-10, 20) 0.488 

Bolus (units) -2 (-5, 0) 0.078 -1 (-4, 2) 0.429 -1 (-4, 1) 0.290 

Basal (units) 0 (-1, 2) 0.676 -1 (-2, 1) 0.231 1 (0, 3) 0.117 

TDD/kg (unit.kg) 0 (-5, 1) 0.239 0 (-5, 2) 0.266 0 (-3, 3) 0.943 

D
ay

 o
f 

ex
er

ci
se

 Calorie Intake (Kcal) 65 (-47, 178) 0.237 47 (-65, 160) 0.387 18 (-95, 131) 0.738 

CHO Intake (grams) 12 (-7, 31) 0.190 8 (-11, 27) 0.371 4 (-15, 23) 0.659 

Bolus (units) -2 (-6, 1) 0.132 -1 (-4, 2) 0.541 -1 (-4, 2) 0.346 

Basal (units) 0 (-1, 2) 0.490 -1 (-2, 1) 0.291 1 (0, 3) 0.092 

TDD/kg (unit.kg) 0 (-1, 0) 0.317 -0 (-1, 0) 0.342 0 (0, 0) 0.958 

D
ay

 f
o

llo
w

in
g 

ex
er

ci
se

 

Calorie Intake (Kcal) 109 (-123, 341) 0.335 165 (-67, 398) 0.151 -56 (-289, 176) 0.614 

CHO Intake (grams) 7 (-16, 30) 0.535 23 (0, 47) 0.050 -16 (-40, 7) 0.157 

Bolus (units) 0 (-4, 3) 0.838 -1 (-4, 2) 0.593 1 (-3, 4) 0.740 

Basal (units) 0 (-2, 2) 0.932 -1 (-2, 1) 0.414 1 (-1, 2) 0.369 

TDD/kg (unit.kg) 0 (0, 0) 0.824 0 (0, 0) 0.363 0 (0, 0) 0.487 

Se
co

n
d

 d
ay

 

fo
llo

w
in

g 
ex

er
ci

se
  

Calorie Intake (Kcal) 274 (-52, 600) 0.094 146 (-180, 473) 0.335 128 (-199, 454) 0.420 

CHO Intake (grams) 34 (-8, 76) 0.104 21 (-21, 63) 0.305 13 (-29, 55) 0.514 

Bolus (units) -2 (-7, 2) 0.317 0 (-4, 5) 0.867 -2 (-7, 2) 0.247 

Basal (units) 1 (-1, 2) 0.314 0 (-2, 1) 0.525 1 (0, 2) 0.112 

TDD/kg (unit.kg) 0 (0, 0) 0.593 0 (0, 0) 0.913 0 (0, 0) 0.521 

Table 2.3.3. Energy intake and insulin dose in home-HIIT and home-MICT interventions during the 14-day intervention 

period and the day of exercise, the day following exercise and the second day following exercise. Values presented as mean 

change from CON (95% CI). 

 



 
 
 

 
 
 

2.3 Discussion  

 
The aims of this study were to investigate the effects of home-HIIT and home-MICT 

completed in a postprandial state compared to a non-exercise control period on; i) 

hypoglycaemia ii) TIR, and iii) GV, for up to 48-hours post exercise in a free-living 

environment. A secondary aim was to investigate whether acute changes following 

exercise influenced 14-day glycaemic control.  The most important novel findings of 

this study were that;1) neither home-HIIT or home-MICT increased time spent in 

serious, clinically significant hypoglycaemia (< 3.0 mmol/L) compared to non-exercise 

control at any period measured in the 48-hours following exercise. 2) That TIR 

compared to a non-exercise period was increased immediately following (post 

exercise to 00:00 on the day of exercise) home-HIIT but not home-MICT. After this 

initial period following exercise neither home-HIIT or home-MICT altered TIR 

compared to a non-exercise period, but TIR was significantly higher in the awake 

periods following home-HIIT compared to home-MICT. However, the differences 

observed following exercise did not translate to an improvement in TIR over the 14-

day intervention period. 3) GV (SD and CV) was increased compared to CON 

immediately following home-MICT but not home-HIIT. GV (CV) was also increased in 

the nocturnal period on the second day following home-MICT. This increase in GV 

following home-MICT translated into an increased nocturnal GV over the 14-day 

intervention period in home-MICT compared to home-HIIT. 

The findings of the current study add to a growing body of evidence that 

suggests HIIT does not increase the risk of serious, clinically significant 

hypoglycaemia compared to traditional MICT or non-exercise periods (Aronson et al., 
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2019, Lee et al., 2020, Martín-San Agustín et al., 2020, Riddell et al., 2020, Scott et 

al., 2019a, Scott et al., 2019b). However, to date much of this work has been 

conducted following HIIT performed in an optimal laboratory environment (Aronson et 

al., 2019, Lee et al., 2020, Martín-San Agustín et al., 2020, Scott et al., 2019a, Scott 

et al., 2019b), with controlled glycaemic management strategies employed to minimise 

hypoglycaemia following exercise, including, insulin dose adjustment (Lee et al., 

2020), carbohydrate intake and insulin dose adjustment (Aronson et al., 2019, Martín-

San Agustín et al., 2020) or fasted exercise (Aronson et al., 2019, Scott et al., 2019a). 

As in the current study, Riddell et al. (2020) recently demonstrated that neither home-

based vigorous intensity continuous training (30 minutes at an intended intensity of 

70-80% HRmax) or home-HIIT (30 minutes of intervals at an intended intensity of 80-

90% HRmax), performed under free living conditions, increased time spent in serious, 

clinically significant hypoglycaemia compared to on-exercise days. The current study 

adds important information, as the home-HIIT intervention investigated has previously 

been shown to be efficacious (increasing cardiorespiratory fitness and reducing insulin 

dose), time-efficient and practical, leading to high exercise adherence, in people with 

Type 1 diabetes (Scott et al., 2020).  

Although serious, clinically significant hypoglycaemia was not increased, time 

spent in L1 hypoglycaemia was elevated, compared to CON, immediately following 

home-HIIT, but not home-MICT. This contrasts previous findings in the period 

immediately after HIIT, where interstitial glucose concentrations have been shown to 

be maintained (6-hours post exercise)(Martín-San Agustín et al., 2020) or elevated (3-

hours post exercise)(Aronson et al., 2019). This difference may be due to differences 

in the HIIT protocol used. Martin-San Augustin et al. (2020) investigated a lab-HIIT 

strength program, where Thera-Bands were used to provide resistance during 
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intervals (8x 20 second intervals interspersed with 10s rest). While, Aronson et al 

(2019) used a more demanding lab-HIIT protocol (3x 5 minute bouts of HIIT 

interspersed with 5 minutes of rest, HIIT bouts involved 5x 30 second intervals at 100-

130% of peak power output interspersed with 30 seconds of rest at 50% peak power 

output) where exercise was completed in a fasted state, which has been found to elicit 

more stable glucose responses to exercise compared to postprandial exercise in 

people with Type 1 diabetes (Scott et al., 2019a, Scott et al., 2019b). In addition, both 

Aronson et al. (2019) and Martin-San Augustin et al. (2020) implemented post exercise 

glycaemic management strategies through reduced insulin dose and standardised 

dietary intake to ensure hypoglycaemia was avoided. Therefore, practical post 

exercise glycaemic management guidelines may be needed to manage the drop in 

blood glucose immediately following home-HIIT. 

Home-HIIT increased TIR by 11% in the awake period immediately following 

exercise compared to CON and ~10% on the day and second day following exercise 

compared to home-MICT. TIR increases appeared to be primarily influenced by 

decreases in time spent in L1 hyperglycaemia. Riddell et al. (2020) have recently 

shown that exercise, performed in a free-living environment, increases TIR compared 

to non-exercise control days. However, Riddell et al. (2020) were unable to show 

differences in TIR between home-HIIT and home-based vigorous intensity continuous 

exercise. The different responses to continuous exercise between the studies may be 

due to the increased exercise intensity investigated by Riddell et al. (2020) (30 minutes 

at 70-80% HRmax) compared to the current study (30 minutes at 60-70% HRmax). 

Two other studies have investigated TIR following laboratory-based exercise 

compared to a non-exercise control period, neither of these studies found a change in 

TIR following lab-HIIT (Lee et al. 4x 4-minute intervals at 86-95% HRmax interspersed 
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with 3 minutes rest at 50-70% HRmax; Scott et al. 6x 1-minute intervals at 100% VO2peak 

interspersed with 1-minute rest) or lab-MICT (Lee et al. 33 minutes at 60-70% HRmax; 

Scott et al. 30 minutes at 65% VO2peak). Importantly, Riddell et al. (2020) and the 

current study investigated the effect of exercise under free-living conditions, 

investigating multiple bouts of exercise in each participant, while the controlled 

laboratory studies investigated TIR following one bout of exercise. The increases in 

TIR following home-HIIT potentially have clinically significant implications. A chronic 

increase of 10% in TIR has been shown to reduce the risk of retinopathy progression 

and development of microalbuminuria by 64% and 40%, respectively, and is 

associated with reductions in HbA1c values between 0.5 and 0.8% (Beck et al., 2019a, 

Beck et al., 2019b, Vigersky and McMahon, 2019). 

Home-HIIT had no deleterious effects on GV compared to CON and had 

beneficial effects when compared to home-MICT. Compared to home-HIIT, home-

MICT was found to increase glucose CV in the nocturnal period over the 14-day 

intervention period (4%), which appeared to be primarily a result of increased GV in 

the nocturnal period on second day following exercise (CV = 4%, SD = 0.35 mmol/L). 

GV was also increased compared to CON immediately after home-MICT but not 

home-HIIT. Riddell et al. (2020) found there to be no difference in glucose CV during 

the 24 hours following both home-HIIT and home-MICT compared to sedentary control 

days. However, this study only assessed glucose for up to 24 hours post exercise and 

therefore did not assess the nocturnal period on the second day following exercise. 

To the best of the authors knowledge, no study has yet investigated the effect of HIIT 

or MICT during the nocturnal period on the second day following exercise in adults 

with Type 1 diabetes, therefore this study provides important novel information. These 

findings could have implications for people with T1D, as glucose CV >36% has been 
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found to be associated with increased incidence of clinically significant hypoglycaemia 

(Gomez et al., 2019). Furthermore, GV is positively associated with cardiovascular 

events, retinopathy, nephropathy and increased brain glucose levels in people with 

Type 1 diabetes (Gorst et al., 2015, Hwang et al., 2019). As such, the current findings 

add to the potential of home-HIIT as a more effective exercise modality compared to 

traditional MICT for people with Type 1 diabetes. In addition, this finding provides 

further evidence for the effect of exercise at time points greater than 24-hours post 

exercise. 

The key strength of this study is the robust assessment of the effects of home-

HIIT and home-MICT on glycaemia in a free-living environment, and the extensive 

methods used to assess interstitial glucose data in line with current international 

consensus guidelines from the ADA (Battelino et al., 2019, Danne et al., 2017). 

Importantly, unlike previous free-living exercise studies in people with Type 1 diabetes 

which used self-reported exercise information, exercise intensity and timing were 

device derived, via heart rate monitoring, allowing adherence and compliance with 

exercise prescriptions and specific exercise timings to be objectively assessed. 

Furthermore, this is the first study to assess the effects of exercise on glycaemia for 

up to 48 hours post exercise, providing novel findings within the field of exercise and 

Type 1 diabetes.   

The changes in glycaemia observed following exercise are likely due to a 

combination of physiological and behavioural factors. The current study was not 

designed to explore the physiological mechanism responsible for the differences in 

glycaemic control observed following home-HIIT and home-MICT. However, an aim of 

was to investigate differences in glycaemic management through diet and insulin dose 

following exercise. The only difference in glycaemic management behaviour observed 



 74 

was an increase in CHO intake the day following home-MICT compared to CON, which 

may have contributed to the decreased TIR the day following home-MICT compared 

to home-HIIT. However, it is possible that the use of self-reported dietary intake, and 

insulin dose data for participants using MDI, may be a limitation in the approach of the 

current study. The use of MyFitnessPal to self-report energy intake has been found to 

under-report energy intake by 127 to 445 kcal/per day(Chen et al., 2019). 

MyFitnessPal also did not allow for data to be time stamped, meaning diet data could 

not be assessed using the same time points as glycaemic control. Finally, anecdotal 

reports suggest that the majority of participants did not include corrective fast-acting 

CHO intake following exercise in their food diary. The omission of corrective CHO 

doses may be important as previous work has suggested that fast-acting CHO was 

used to prevent or treat episodes of hypoglycaemia more often during MICT than HIIT 

(Scott et al., 2019b). Participants using MDI were also asked to self-report insulin dose 

using the FGM application/reader, this could have also resulted in an underestimation 

of insulin dose. Moreover, although insulin data was time stamped, participants tended 

to input insulin doses at the end of the day meaning that insulin doses post exercise 

could not be distinguished. Despite the limitations with self-reporting of glycaemic 

management behaviours outlined above, these methods were used consistently 

across all three interventions; therefore, findings should be comparable.  

The accuracy of the Abbot libre freestyle FGM used in the current study has 

been found to be reduced when blood glucose is in a hypoglycaemic range as well 

as during exercise, with a mean absolute relative difference (MARD) of 31.6% and 

29.8% respectively (Moser et al., 2019). However, these monitors have been found 

to be accurate when not exercising and not in hypoglycaemic range by several 

studies reporting MARD scores between 13.2% and 14.3% respectively (Aberer et 
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al., 2017, Moser et al., 2019, Boscari et al., 2018). Furthermore, in the current study, 

participants were unblinded to their FGM which may have resulted in improved 

glycaemic control (Tyndall et al., 2019). However, the Abbot libre freestyle FGM is 

commonly used in clinical practice within the United Kingdom and Europe by people 

with Type 1 diabetes, therefore being unblinded to the monitors represents a free-

living environment for this population. Also, participants were unblinded in all 3 

interventions, limiting any effect.  

The sample within the current study were young adults (26 ± 7 years) with an 

average BMI close to healthy range (25.43 ± 4.29 kg/m2) and had a female bias 

(female n = 7, male = 4). Therefore, the sample within the current study is not 

representative of the entire Type 1 diabetes population. A different demographic of 

participants may have yielded different physiological and behavioural responses to 

home-HIIT and home-MICT that would have affected post exercise glycaemia. 

Therefore caution should be taken when generalising the findings of this study to the 

whole Type 1 diabetes population. However, the findings from the current study are 

suitable for generalisation to otherwise healthy young adults with Type 1 diabetes.  

The current study used an age dependent formula (220-age) to calculate 

predicted HRmax to set HR goals for participants during the exercise sessions in line 

with recommendations from the ADA. This method has its own limitations as factors 

such as smoking status, gender and fitness levels can affect HRmax  (Zavorsky, 

2000, Papathanasiou et al., 2013). However, Nes et al. (2013) could not find 

evidence of interaction with gender, self-reported PA, smoking status, VO2peak or BMI 

and found that age alone is the best predictor of HRmax.  

Finally, this study did not control for menstrual cycle within female participants. 

This was due to the demanding nature of the study protocol and difficulties recruiting 
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people with Type 1 diabetes. Brown et al. (2015) found decreased insulin sensitivity 

during the luteal phase in people with Type 1 diabetes. This was associated with an 

increased risk of hyperglycaemia during the periovulation and early luteal phases 

compared to the early follicular phase. It was common for participants in the current 

study to complete intervention periods consecutively, meaning the second 14-day 

intervention period was completed in a different phase to the first and third 

interventions (Brown et al., 2015). However, intervention order was randomised 

minimising any potential influence.   

2.3.1 Future Directions 

Future studies should aim to assess the effects of differing exercise modalities at a 

mechanistic level for up to 48 hours post exercise in adults with Type 1 diabetes by 

assessing Gd and Ga rate using a euglycaemic insulinemic method. A greater 

understanding of the effects of HIIT and MICT on glucose uptake and production for 

up to 48 hours post exercise would allow for improved post exercise glycaemic 

management strategies for people with Type 1 diabetes. Given that the effects of 

exercise on glycaemia are likely a combination of both physiological and behavioural 

factors, further investigation into the effects of exercise on post exercise glycaemic 

management is required. The current study and Riddell et al (2020) are the only 

studies to assess the effects of HIIT and MICT in free-living environments in people 

with Type 1 diabetes, and both of these studies failed to identify differences in the 

glycaemic management behaviours between interventions. Therefore, thought must 

be given to the methods used to assess dietary intake and insulin dosages post 

exercise to ensure this pivotal data is not missed.  

 Future research should also consider residual ß-cell function in participants with 

Type 1 diabetes as previous work has assumed absolute insulin deficiency (American 
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Diabetes, 2012). However, more recently studies have found that high proportions 

(80%) of people with Type 1 diabetes are insulin microsecretors, with people 

diagnosed with Type 1 diabetes over the age of 18 years having greater residual ß-

cell function for longer post diagnosis than patients diagnosed under the age of 18 

years(Oram et al., 2015, Davis et al., 2015). Patients under18 years of age often had 

residual ß-cell function at 3-5 years from diagnosis, but this was lost 10 years post 

diagnosis (Davis et al., 2015). Residual ß-cell function has been shown to increase 

TIR following exercise in adults with Type 1 diabetes(Taylor et al., 2020). The effects 

of interindividual differences in ß-cell function are likely to effect results and should be 

considered in future studies investigating the effects of exercise in people with Type 1 

diabetes as well as within exercise prescriptions for people in this population. 

 Finally, future research and exercise prescriptions in people with Type 1 

diabetes should consider prior PA levels, especially involving HIIT. The home-HIIT 

protocol used in this study included 6-minutes of working intervals which may leave 

patients with high prior PA levels feeling underwhelmed following exercise and even 

lose motivation to exercise (Scott et al., 2019c). A recent home-HIIT feasibility study 

included bi-weekly increases of two working intervals into a six-week exercise 

intervention and found that motivation was maintained. Therefore to maintain 

motivation, sense of achievement and exercise benefits with HIIT, a different number 

of exercise intervals may need to be prescribed for patients dependent on prior PA 

levels. However, consideration must be provided to the minimum volume of exercise 

required to gain the physiological benefits of HIIT. 

2.3.2 Conclusions  

In conclusion, this study provides evidence that both home-HIIT and home-MICT are 

safe exercise modalities for people with Type 1 diabetes, as time spent in serious, 
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clinically significant hypoglycaemia was not increased by either exercise mode 

compared to a non-exercise control. However, home-HIIT may result in more desirable 

effects on TIR and GV following exercise than home-MICT, which may have clinically 

significant implications for people with Type 1 diabetes. Finally, the study provides 

novel evidence that exercise has the potential to influence glycaemic control for up to 

48 hours in people with Type 1 diabetes. 
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Appendix 1.  

Raw glycaemic data during the 14-day intervention periods. Data presented as 
means ±SD.  

  Home-HIIT Home-MICT CON 

Mean Glucose 
(mmol/L) 

8.8 ± 1.5 9.0 ± 1.7 9.0 ± 1.2 

GMI (mmol/L) 7.1 ± 0.7 7.2 ± 0.7 7.2 ± 0.5 

% TIR 64.4 ± 18.8 59.7 ± 18.6 60.6 ± 17.3 

% TAR 30.4 ± 18.0  34.8 ± 19.8 34.7 ± 16.4 

% Time in L1 
Hyperglycaemia 

20.4 ± 10.7 22.6 ± 11.0 24.8 ± 10.5 

% Time in L2 
Hyperglycaemia 

9.9 ± 10.0 12.2 ± 11.0 9.9 ± 7.2 

% TBR 5.3 ± 4.0 5.5 ± 5.0 4.7 ± 3.5 

% Time in L1 
Hypoglycaemia 

4.0 ± 2.7 3.9 ± 3.2 3.0 ± 1.8 

% Time in L2 
Hypoglycaemia 

1.3 ± 1.5 1.6 ± 2.1 1.7 ± 1.9 

Number of 
Hyperglycaemic 
episodes 

28.9 ± 10.9 26.3 ± 10.9 29.6 ± 9.5 

Number of 
Hypoglycaemic 
episodes  

11.2 ± 7.4 11.0 ± 9.2 9.8 ± 5.3 

SD (mmol/L) 3.3 ± 1.2 3.5 ± 1.0 3.3 ± 0.8 

CV (%) 36.7 ± 8.2 38.1 ± 7.3 36.0 ± 6.1 
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Appendix 2.  

Raw glycaemic data during the nocturnal periods of the 14-day intervention 
periods. Data presented as means ±SD.  

 

  Home-HIIT Home-MICT CON 

Mean Glucose 
(mmol/L) 

9.3 ± 2.5 9.0 ± 2.1 9.3 ± 1.8 

% TIR 58 ± 27 57 ± 21 54 ± 24 

% TAR 36 ± 27 36 ± 24 40 ± 24 

% Time in L1 
Hyperglycaemi
a 

23 ± 14 24 ± 14 28 ± 15 

% Time in L2 
Hyperglycaemi
a 

13 ± 18 12 ± 13 12 ± 12 

% TBR 6 ± 6 7 ± 9 5 ± 6 

% Time in L1 
Hyperglycaemi
a 

4 ± 4 4 ± 5 2 ± 3 

% Time in L2 
Hyperglycaemi
a 

2 ± 2 3 ± 5 3 ± 4 

Number of 
Hyperglycaemi
c episodes 

8 ± 4 8 ± 4 10 ± 3 

Number of 
Hypoglycaemic 
episodes  

2 ± 2 2 ± 2 2 ± 1 

SD (mmol/L) 3.2 ± 1.1 3.4 ± 1.1 3.2 ± 1.0 

CV (%) 34 ± 7 38 ± 9 34 ± 10 

 
 

 

 
 
 
 
 



 90 

 
 
Appendix 3.  

Raw glycaemic data during the awake periods of 14-day intervention periods. 
Data presented as means ±SD.  

  Home-HIIT Home-MICT CON 

Mean Glucose 
(mmol/L) 

8.7 ± 1.5 9.0 ± 1.7 8.9 ± 1.1 

% TIR 65 ± 19 61 ± 19 62.6 ± 15.3 

% TAR 30 ± 17 35 ± 19 33.0 ± 14.5 

% Time in L1 
Hyperglycaemia 

20 ± 10 22 ± 11 23.7 ± 9.1 

% Time in L2 
Hyperglycaemia 

10 ± 10 12 ± 11 9.3 ± 6.5 

% TBR 5 ± 4 5 ± 4 4.4 ± 3.9 

% Time in L1 
Hyperglycaemia 

20 ± 10 22 ± 11 23.7 ± 9.1 

% Time in L2 
Hyperglycaemia 

9 ± 10 12 ± 11 9.3 ± 6.5 

Number of 
Hyperglycaemic 
episodes 

26 ± 11 25 ± 11 27.7 ± 12.7 

Number of 
Hypoglycaemic 
episodes  

10 ± 7 10 ± 8 8.8 ± 5.2 

SD (mmol/L) 3.3 ± 1.2 3.4 ± 1.0 3.2 ± 0.8 

CV (%) 37 ± 8 38 ± 7 36.0 ± 6.2 

 
 

 

 
 
 
 
 



 91 

 

 
Appendix 4. 

Raw glycaemic data during period A0. Data presented as mean ±SD 

 

  Home-HIIT Home-MICT CON 

Mean Glucose 
(mmol/L) 

8.8 ± 3.2 9.3 ± 2.9 9.6 ± 1.8 

% TIR 65 ± 26 61 ± 24 54 ± 24 

% TAR 29 ± 27 34 ± 26 43 ± 23 

% Time in L1 
Hyperglycaemi
a 

16 ± 14 19 ± 12 30 ± 15 

% Time in L2 
Hyperglycaemi
a 

13 ± 23 16 ± 19 13 ± 15 

% TBR 6 ± 8 5 ± 5 3 ± 4 

% Time in L1 
Hypoglycaemia 

4 ± 5 3 ± 3 1 ± 2 

% Time in L2 
Hypoglycaemia 

2 ± 4 1 ± 2 2 ± 3 

Number of 
Hyperglycaemic 
episodes 

0 ± 0 1 ± 1 1 ± 1 

Number of 
Hypoglycaemic 
episodes  

0 ± 0 0 ± 0 0 ± 0 

SD (mmol/L) 2.1 ± 0.8 2.4 ± 0.7 2.0 ± 0.6 

CV (%) 25 ± 8 26 ± 6 22 ± 5 
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Appendix 5.  

Raw glycaemic data during the period N1. Data presented as mean ±SD 
 

  Home-HIIT Home-MICT CON 

Mean Glucose 
(mmol/L) 

8.7 ± 1.9 9.3 ± 2.9 9.2 ± 2.1 

% TIR 62 ± 1 56 ± 23 51 ± 27 

% TAR 31 ± 9 37 ± 27 42 ± 29 

% Time in L1 
Hyperglycaemia 

20 ± 14 20 ± 16 32 ± 23 

% Time in L2 
Hyperglycaemia 

11 ± 23 17 ± 21 9 ± 8 

% TBR 7 ± 9 7 ± 11 7 ± 12 

% Time in L1 
Hypoglycaemia 

5 ± 6 3 ± 5 4 ± 5 

% Time in L2 
Hypoglycaemia 

3 ± 23 4 ± 8 4 ± 8 

Number of 
Hyperglycaemic 
episodes 

1 ± 16 1 ± 0 1 ± 0 

Number of 
Hypoglycaemic 
episodes  

0 ± 13 0 ± 0 0 ± 0 

SD (mmol/L) 1.5 ± 0.3 1.5 ± 0.5 1.4 ± 0.8 

CV (%) 19 ± 0 18 ± 6 16 ±9 

 



 93 

 

Appendix 6.  

Raw glycaemic data during the period A1. Data presented as mean ±SD 

 

  Home-HIIT Home-MICT CON 

Mean Glucose 
(mmol/L) 

8.2 ± 1.1 9.1 ± 1.6 8.7 ± 1.3 

% TIR 70 ± 15 60 ± 18 65 ± 16 

% TAR 24 ± 13 36 ± 18 30 ± 16 

% Time in L1 
Hyperglycaemia 

18 ± 9 23 ± 12 21 ± 11 

% Time in L2 
Hyperglycaemia 

7 ± 7 13 ± 11 9 ± 7 

% TBR 6 ± 5 5 ± 4 5 ± 5 

% Time in L1 
Hypoglycaemia 

5 ± 4 4 ± 4 4 ± 3 

% Time in L2 
Hypoglycaemia 

1 ± 1 0 ± 1 1 ± 2 

Number of 
Hyperglycaemic 
episodes 

2 ± 1 2 ± 1 2 ± 1 

Number of 
Hypoglycaemic 
episodes  

1 ± 1 1 ± 1 1 ± 1 

SD (mmol/L) 2.9 ± 1.0 3.0 ± 1 2.8 ± 0.7 

CV (%) 35 ± 8 33 ± 9 32 ± 5 
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Appendix 7.  

Raw glycaemic data during the period N2. Data presented as mean ±SD 
 

  Home-HIIT Home-MICT CON 

Mean Glucose 
(mmol/L) 

9.2 ± 2.5 -0.5 ± 2.2 9.5 ± 2.5 

% TIR 58 ± 29 -6 ± 24 57 ± 33 

% TAR 35 ± 30 -0 ± 23 38 ± 31 

% Time in L1 
Hyperglycaemia 

20 ± 18 2 ± 14 24 ± 18 

% Time in L2 
Hyperglycaemia 

15 ± 18 -3 ± 13 14 ± 19 

% TBR 7 ± 10 7 ± 13 5 ± 6 

% Time in L1 
Hypoglycaemia 

4 ± 4 5 ± 10 3 ± 4 

% Time in L2 
Hypoglycaemia 

3 ± 7 2 ± 6 2 ± 4 

Number of 
Hyperglycaemic 
episodes 

1 ± 0 0 ± 0 1 ± 0 

Number of 
Hypoglycaemic 
episodes  

0 ± 0 0 ± 0 0 ± 0 

SD (mmol/L) 1.2 ± 0.6 0.4 ± 1 1.2 ± 0.4 

CV (%) 14 ± 5 4 ± 5 14 ± 4 
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Appendix 8.  

Raw glycaemic data during the period A2. Data presented as mean ±SD 

  Home-HIIT Home-MICT CON 

Mean Glucose 
(mmol/L) 

8.8 ± 1.3 9.0 ± 1.8 8.9 ± 1 

% TIR 69 ± 21 58 ± 21 63 ± 20 

% TAR 27 ± 19 35 ± 22 33 ± 18 

% Time in L1 
Hyperglycaemia 

20 ± 14 23 ± 12 23 ± 12. 

% Time in L2 
Hyperglycaemia 

8 ± 9 12 ± 12 10 ± 8 

% TBR 4 ± 5 7 ± 6 4 ± 4 

% Time in L1 
Hypoglycaemia 

3 ± 3 5 ± 4 3 ± 3 

% Time in L2 
Hypoglycaemia 

1 ± 3 2 ± 4 1 ± 2 

Number of 
Hyperglycaemic 
episodes 

1 ± 1 1 ± 1 1 ± 1 

Number of 
Hypoglycaemic 
episodes  

0 ± 1 1 ± 1 0 ± 0 

SD (mmol/L) 2 ± 1 2.7 ± 0.7 2.6 ± 0.9 

CV (%) 28 ± 112 31 ± 8 29 ± 8 



 
 
 

 
 
 

Appendix 9.  

Raw dietary intake and insulin data during the 14-day intervention period, the day of exercise, the day following exercise 
and the second day following exercise. Data presented as mean ± SD 
 

Time-point Variable home-HIIT home-MICT CON 

In
te

rv
en

ti
o

n
 Calorie intake (Kcal) 1487 ± 460 1761 ± 647 1633 ± 789 

CHO intake (grams) 155 ± 69 189 ± 75 176 ± 71 
Bolus Insulin (Units) 19 ± 6 16 ± 6 19 ± 8 

Basal Insulin (Units) 19 ± 5 20 ± 6 18 ± 5 

TDD/kg (Units.kg) 0 ± 0 0 ± 0 0 ± 0 

D
ay

 o
f 

ex
er

ci
se

 

Calorie intake (Kcal) 1552 ± 317 1534 ± 438 1486 ± 378 

CHO intake (grams) 174 ± 47 170 ± 44 162 ± 55 

Bolus Insulin (Units) 17 ± 6 18 ± 7 20 ± 7 

Basal Insulin (Units) 20 ± 6 18 ± 5 19 ± 5 

TDD/kg (Units.kg) 0 ± 0 0 ± 0 1 ± 0 

D
ay

 f
o

llo
w

in
g 

ex
er

ci
se

 

Calorie intake (Kcal) 1563 ± 429 1619 ± 412 1454 ± 460 

CHO intake (grams) 166 ± 45 182 ± 49 159 ± 69 
Bolus Insulin (Units) 20 ± 5 19 ± 5 20 ± 6 

Basal Insulin (Units) 19 ± 7 18 ± 5 19 ± 5 

TDD/kg (Units.kg) 1 ± 0 0 ± 0 1 ± 0 

Se
co

n
d

 d
ay

 
fo

llo
w

in
g 

ex
er

ci
se

 

Calorie intake (Kcal) 1761 ± 647 1633 ± 789 1487 ± 460 

CHO intake (grams) 189 ± 75 176 ± 71 155 ± 69 

Bolus Insulin (Units) 16 ± 6 19 ± 8 19 ± 6 

Basal Insulin (Units) 20 ± 6 18 ± 5 19 ± 5 

TDD/kg (Units.kg) 0 ± 0 0 ± 0 0 ± 0 



 
 
 

 
 
 

Appendix 10. 

Images below show the home-HIIT workbooks that participants received upon 

commencing the study 
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