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Abstract

Galaxy evolution is complicated. Throughout their lifetimes, galaxies are subject to an amalga-

mation of astrophysical and cosmological processes that direct the growth of their stellar masses,

the transformation of their morphologies, and the cessation of their star formation. The vari-

able action of these processes begets a diverse population of galaxies, which exhibit a variety of

brightnesses, colours, shapes, and sizes, among myriad other features. Many of these features are

bimodally distributed, which has led to the general acceptance of a simple empirical paradigm of

galaxy evolution. However, connecting this diversity among galaxies with the array of processes

that are involved in their evolution, and constraining the relative influences of each of these pro-

cesses, requires that several features are analysed simultaneously. This has been enabled by the

recent advent of machine learning techniques, which are capable of extracting scientifically useful

information from complicated, multi-dimensional datasets, to astronomy and astrophysics. Un-

supervised machine learning techniques, free from the requirement for pre-labelled training data,

are especially well suited to the exploration of the data structures of galaxy samples in multi-

dimensional feature spaces. This thesis assesses the use of clustering, an unsupervised machine

learning technique, for the research of galaxy evolution.

Clustering is first tested on a well-characterised sample of galaxies from the GAMA survey. Galax-

ies are represented in five dimensions by a set of intrinsic astrophysical features. Use of a unique

cluster evaluation framework enables the robust identification of reproducible and astrophysically

meaningful clustering structures via the k-means method. Outcomes consisting of two, three, five,

and six clusters are deemed stable, and form a hierarchical structure that agrees well with estab-

lished notions of the galaxy bimodality. The two- and three-cluster outcomes are dominated in

their structures by the stellar masses, colours, and star formation activity of galaxies, with Sérsic

indices and half-light radii becoming important for the five- and six-cluster outcomes. Clusters

also exhibit broad correspondence with detailed morphological classifications, and it is suggested

that the inclusion of additional morphological features might improve this correspondence further.

The five- and six-cluster outcomes indicate the differential role of environment in the evolution

of galaxies with intermediate colours. This cluster evaluation framework is then applied for the

validation of the cosmological, hydrodynamical EAGLE simulations against the GAMA survey.

i



Outcomes consisting of seven and five clusters respectively, determined using the same five fea-

tures for both samples, are selected for analysis. These outcomes produce an agreement score of

Va = 0.76, indicating broad, overall agreement, but differences in their substructures. These differ-

ences include discrepancies in the growth of the central bulges of galaxies along the star-forming

main sequence, an over-abundance of low-mass, bulge-dominated, star-forming galaxies in the

EAGLE sample, and a subpopulation of high-mass, disc-dominated, star-forming galaxies in the

EAGLE sample that is not present in the GAMA sample. These differences are attributed to the

resolution of EAGLE, and to an active galactic nucleus feedback prescription that is not sufficiently

effective in EAGLE. Finally, clustering is used to compare samples of galaxies at low (z ∼ 0.06;

GSWLC-2) and intermediate (z ∼ 0.67; VIPERS) redshifts, in order to examine the evolution of

subpopulations of galaxies. Galaxies are clustered in a nine-dimensional feature space defined by a

series of ultraviolet-through-near-infrared colours using the Subspace Expectation-Maximisation

algorithm, which includes iterative dimensionality reduction. The algorithm models both samples

using seven clusters: four containing mostly star-forming galaxies, and three containing mostly

passive galaxies. Both sets of star-forming clusters form clear morphological sequences, captur-

ing the gradual internally-driven growth of galaxy bulges at both epochs. At high stellar masses,

this growth is linked with quenching. However, it is only at low redshifts that additional, environ-

mental processes appear to be involved in the evolution of low-mass passive galaxies.

The results of this thesis demonstrate the utility of clustering as a method with which to analyse

the large galaxy samples that are anticipated from next-generation surveys, and with which to

facilitate the multi-dimensional comparison of cosmological galaxy simulations with observations.

Clustering is robustly able to identify astrophysically meaningful substructures in complex, multi-

dimensional feature spaces, and these substructures may readily be interpreted with respect to the

evolutionary contexts of the galaxies that they encompass.
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Chapter 1

Introduction

The nature of the Milky Way was the subject of curiosity already in antiquity. The Greek philoso-

phers Anaxagoras and Democritus correctly guessed that the diffuse band of light that spans the

night sky is composed of multitudinous stars (Aristotle, 350BC)1, but it wasn’t until the tele-

scope was invented, nearly 2,000 years later, that this could be proven. Leonard and Thomas

Digges (1571; 1576) are thought to have been the first to aim a telescope skyward (Gribbin, 2003),

but Galileo Galilei (1610) was the first to use one to definitively resolve stars within the diffuse

Milky Way. The publishing of his book Siderius Nuncius, which reported this ground-breaking

result alongside many others, marked the commencement of observational astronomy. Another

140 years later, Thomas Wright (1750) discerned the shape of the Milky Way as a whole to be a

disc and, departing from the heliocentric view of the Universe that was still prevalent at the time,

proposed that the Solar System is radially displaced from its centre.

It was then suggested that some of the various “nebulae” that pervade the night sky might constitute

a class of celestial object analogous to the Milky Way (Wright, 1750; Kant, 1755). Evidence in

support of this “island universe” hypothesis started to accumulate in the Nineteenth and early

Twentieth Centuries. William Parsons (1850), wielding the 72-inch “Leviathan of Parsonstown” –

the largest ever telescope upon the completion of its construction – identified the spiral structures

of several nebulae for the first time. Huggins & Miller (1864) observed a continuum “crossed ...

by lines of absorption” in the spectrum of the nebula M31, revealing that it is composed of (then

unresolvable) stars. This enabled a distinction between gaseous and stellar nebulae, the latter of

which included all of the spirals. Slipher (1915), measuring the spectral redshifts of spiral stellar

nebulae, found their velocities to be an average of 25 times greater than those of gaseous nebulae

and of individual stars in the Milky Way, indicating that they could not be gravitationally bound

to it.
1Aristotle himself thought the notion “impossible”.
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The growing speculation prompted a “Great Debate” on the matter between Harlow Shapley and

Heber Curtis, on April 26th 1920 at Washington D.C.’s National Museum of Natural History.

Shapley believed that the Milky Way encompassed the entire Universe, including all of the nebu-

lae. He reasoned that if some were as large as the Milky Way, whose size he had calculated using

a calibration which related the periods and the luminosities of Cepheid variable stars (Leavitt &

Pickering, 1912), then they would have to be at “excessive” distances in order to be seen at their

apparent angular diameters. In addition, he used a measurement of proper motion in the nebula

M101 (van Maanen 1916; later discovered to be erroneous; Hubble 1935; van Maanen 1935) to

impose an upper limit upon their sizes. Curtis, however, argued that some nebulae were external

to, and analagous to, the Milky Way. He used the rates and the brightnesses of novae in spiral

nebulae (Ritchey, 1917) to infer Milky-Way-like star counts and sizes (via distances) for them. He

also cited the velocities that Slipher had measured as further proof for his argument.

There was no immediate victor of the Great Debate (Shapley & Curtis, 1921); it would ultimately

be resolved conclusively by Edwin Hubble over the following few years. Using the new 100-inch

Hooker telescope at Mount Wilson Observatory – the successor to the Leviathan as the world’s

largest telescope – he observed Cepheids in the nebulae M31 and M33 and, with Shapley’s own

calibration, calculated distances that definitively placed them outside of (and hence gave them

physical sizes comparable to that of) the Milky Way2 (Hubble, 1925). It wasn’t long before

other stellar nebulae were also confirmed as being beyond the extent of the Milky Way (Hub-

ble, 1926a,b). His work on the topic culminated in the discovery of a relationship between the

distances and the recession velocities of extragalactic nebulae (Hubble, 1929), which revealed the

true scale of the Universe and paved the way for observational cosmology. The island universe

hypothesis having been substantiated, the study of galaxies – systems of stars, gas, dust, and dark

matter like our own Milky Way – could begin in earnest.

The subsequent century has seen a great deal of progress in the field of extragalactic astrophysics.

The Universe is now known to contain trillions of galaxies (Gott III et al., 2005; Conselice et al.,

2016), arranged along the threads of a “cosmic web” and exhibiting a variety of shapes, sizes,

masses, colours, and more. Thorough inspection of this variety has revealed a series of di-

chotomies or bimodalities among the galaxy population, and has ultimately begotten a simple

observational paradigm of galaxy evolution. This paradigm has been met with an expansive the-

oretical literature dedicated to identifying and describing the various astrophysical processes that

drive it. However, the precise balance of these processes, and of the array of evolutionary path-

ways that they beget, is yet to be fully constrained. It is clear that a more detailed view of the

galaxy population, achieved by combining several features at once, is needed to better understand

galaxy evolution and the interplay of the astrophysical and cosmological processes involved.

2Oepik (1922) had previously also calculated a similarly large distance to M31, based instead on measurements of

its internal dynamics.
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Meanwhile, the last two decades have seen the burgeoning use of machine learning techniques

within astronomy and astrophysics (Ball & Brunner, 2010; Baron, 2019). The uptake of these

techniques has come primarily in response to the enormous data volumes anticipated from forth-

coming surveys (e.g. Laureijs et al. 2011; Ivezić et al. 2019), which demand the use of fast,

automated data analysis methods. Supplementary to these practical advantages is the ability of

these techniques to distill complex, multi-dimensional input data into interpretable models, which

invites a renewed examination of our understanding of astrophysics and especially (in the context

of this thesis) of galaxy evolution. Clustering, an unsupervised machine learning technique which

groups observations by their intrinsic similarity to one another, demonstrates substantial promise

for exploration and discovery as it expresses the “natural” data structure of input observations.

Thus, the main questions that I aim to address in this thesis are:

• What place does clustering, and by extension unsupervised machine learning in general,

have among the arsenal of methods used in future studies of galaxy evolution?

• Can clustering in feature spaces of high dimensionalities reveal substructures to the estab-

lished dichotomies, or bimodalities, of galaxies?

• If so, can these substructures be used to constrain the balance of theoretical processes that

have been proposed as driving galaxy evolution?

The remainder of this chapter, in which I introduce aspects of the current state of the field of galaxy

evolution with a view to setting the scene for the chapters that follow, proceeds thusly. In Section

1.1, I briefly discuss the cosmological origins of galaxies and their resultant distribution among

the cosmic web. In Section 1.2, I review observational progress in the study of the diversity of

galaxies, including the convergence to a simple observational paradigm of galaxy evolution. In

Section 1.3, I summarise theoretical processes that have been invoked to explain galaxy evolution

and, in Section 1.4, I highlight the increasingly important role of cosmological simulations of

galaxies in elucidating the balance of these processes. In Section 1.5, I summarise this chapter,

and finally, in Section 1.6, I outline the structure of the remainder of this thesis.

1.1 Galaxies and cosmology

Though it was Hubble for whom the relationship between the distances and the recession velocities

of galaxies was initially named, he did not consider its cosmological implications3. Instead, it was

3Hubble, at the time, referred to the recession velocities as “apparent” velocities, and merely viewed them as a

“convenient” way of linking the redshifts of galaxies to their distances (Hubble, 1936).
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Lemaı̂tre (1927, 1931a,b) who inferred that this relationship is a consequence of the expansion

of a homogeneous and isotropic Universe4. Tracing this expansion back in time, he also inferred

that the Universe originated as a singularity. This “Big Bang” model, as it would come to be

known (Kragh, 2013), was validated by its accurate explanation of the abundances of the chemical

elements (Alpher et al., 1948), and by the detection of Cosmic Microwave Background (CMB)

radiation (Penzias & Wilson, 1965), whose blackbody spectrum was predicted by the model as

a relic of the plasma-state of the early (∼ 105 yr) Universe (Dicke et al., 1965). The expansion

of the Universe would ultimately be discovered, through the use of type 1a supernovae in distant

galaxies as “standard candles”, to be accelerating (Riess et al., 1998; Perlmutter et al., 1999). This

acceleration is thought to be driven by “dark energy”, which permeates the Universe and acts in

opposition to gravity (Frieman et al., 2008). Its influence is represented in Einstein’s equations of

general relativity5 (1917) by the cosmological constant Λ. Recent measurements ascribe ∼ 70 per

cent of the energy density of the Universe to dark energy (Planck Collaboration et al., 2018).

Parallel to these advancements in our understanding of the expansion of the Universe came ad-

vancements in our understanding of the origin of structures within it. The measurement of un-

expectedly high velocities among galaxies in dense groups (Zwicky, 1933), and of unexpect-

edly high rotation velocities among stars in the outer discs of spiral galaxies (Rubin & Ford,

1970; Rubin et al., 1980), led observers to infer the presence of more mass within these sys-

tems than was implied by their luminous contents (Faber & Gallagher, 1979): gravitationally-

dominant, electromagnetically-inert “dark matter”, whose composition is unknown (Bertone &

Hooper, 2018). Theorists, meanwhile, began using dark matter to develop an explanation for the

emergence of the large-scale distribution of galaxies from predicted density fluctuations in the

plasma of the early Universe (Sachs & Wolfe, 1967; Silk, 1967, 1968; Peebles, 1968, 1982; White

& Rees, 1978; Blumenthal et al., 1984; Davis et al., 1985). The distribution of these fluctuations

was fixed and enlarged to cosmic scales by a period of rapid expansion of the early Universe

(called “inflation”; Guth 1981). While baryons were initially prevented from descending into the

peaks of these fluctuations by their electromagnetic coupling to photons, dark matter – affected

only by gravitational forces – was not, provided that it was “cold” (i.e. moving slowly). The

cooling of the Universe as it continued to expand (then at a slower rate than during the period of

inflation) eventually led to the decoupling of baryons and photons, thus allowing baryons to follow

cold dark matter (CDM) into the overdensities that it had already started to establish and yielding

the large-scale structure seen in the Universe today. The now freely propagating photons went on

to produce the CMB radiation, and the discovery of small angular anisotropies in the CMB radi-

ation by the Cosmic Background Explorer (Smoot et al., 1992), echoing these primordial density

4In order to acknowledge Lemaı̂tre’s contribution, members of the International Astronomical Union voted in 2018

to rename “Hubble’s Law” to “the Hubble-Lemaı̂tre Law”.
5Einstein had initially included a similar constant in his equations erroneously, in order to model what was thought

to be a static Universe at the time.
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Figure 1.1: The large-scale structure of the Universe, shown using r < 17.8 galaxies from the Sloan Digital

Sky Survey (SDSS; York et al. 2000), the 2-degree Field Galaxy Redshift Survey (2dFGRS; Colless et al.

2001), and the Galaxy And Mass Assembly project (GAMA; Driver et al. 2009). Each individual point

represents a galaxy. This figure has been adapted from Baldry et al. (2012).

fluctuations, was a strong validation of this explanation (Wright et al., 1992). CDM contributes

∼ 25 per cent of the energy density of the Universe, and ∼ 85 per cent of its matter density (Planck

Collaboration et al., 2018). Together, the cosmological constant Λ and CDM constitute the twin

pillars of the presently leading model of cosmology: ΛCDM (Bartelmann, 2010).

The continued dissipative collapse of gaseous baryons into the centres of gravitationally self-

bound CDM “haloes” eventually led to the formation of stars and galaxies (Binney, 1977; Silk,

1977; White & Rees, 1978). Disc galaxies form from gas whose angular momentum is preserved

during this collapse, and during its subsequent accretion into CDM haloes (Fall & Efstathiou,

1980; Mo et al., 1998). Massive elliptical galaxies result from the hierarchical merging of CDM

haloes, along with their constituent galaxies (Toomre 1977; White & Rees 1978; see also Section

1.3.2). This hierarchical merging has dictated the growth of large-scale structure since decoupling;

hence, the spatial distribution of galaxies in the Universe is directly contingent upon that of dark

matter. While dark matter does not emit electromagnetic radiation and cannot be observed directly,

galaxies do and can. Thus, galaxies constitute our best tracers of the structure and expansion of

the Universe, providing crucial observational constraints for cosmological models. The spatial

distribution of galaxies has been observed throughout the history of extragalactic astrophysics,

with Shapley & Ames (1926) first identifying a “cloud” of galaxies, and extensive catalogues of

similar such congregations following later (Zwicky, 1952; Abell, 1958; Abell et al., 1989). The

redshift surveys of the last ∼ 30 years (e.g. Geller & Huchra 1989; York et al. 2000; Driver

et al. 2009; Garilli et al. 2014) have catalysed progress, producing thorough maps of large-scale

structure6 (e.g. Gott III et al. 2005) which show that matter in the Universe forms a “cosmic web”

6The lensing of galaxy light by foreground dark matter represents another way in which the large-scale structure of

the Universe may be discerned (Refregier, 2003).
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made up of groups, filaments, sheets, and voids7. An example of one of these maps is shown in

Figure 1.1.

The relative position of a galaxy among the cosmic web – whether it lies within a group, filament,

etc. – is called its environment. The environment of a galaxy may be measured in several different

ways. For example, one may determine the number density of other, nearby galaxies surrounding

it (e.g. Baldry et al. 2006; Brough et al. 2013; Cucciati et al. 2017). Alternatively, one may use

a “Friends-of-Friends” algorithm (Geller & Huchra, 1983; Yang et al., 2005, 2007; Robotham

et al., 2011) to identify groups of galaxies via their proximity to one another. This facilitates the

estimation of a galaxy’s properties in the context of its group membership, such as its distance from

the centre of the group (e.g. Blanton & Berlind 2007; Bamford et al. 2009; Woo et al. 2013) or its

status as either a central (i.e. the most massive member) or a satellite (i.e. embedded within the

CDM halo of a central). Measures such as these enable the investigation of how the environments

of galaxies influence their evolution (see Sections 1.2.3 and 1.3.2). In turn, an understanding of

the role of environmental processes in galaxy evolution grants further insight into cosmology.

1.2 The diversity of galaxies

In this section, I describe the variety of galaxies that are observed in the Universe. I begin with

individual discussions of morphologies in Section 1.2.1, and of spectral energy distributions (in-

cluding colours, star formation rates, stellar masses, and more) in Section 1.2.2. Then, in Section

1.2.3, I bring these features together, along with environment, to present an overview of several

multi-feature distributions and scaling relations that have been observed among the galaxy popu-

lation, and what it is that they reveal about galaxy evolution.

1.2.1 Morphologies

The morphologies of galaxies - their visual appearances, modulo inclination - have been the target

of specific interest since before the genesis of extragalactic astrophysics (Sandage, 2005). Early

observers took stock of the variety of what were still “nebulae” at the time by organising them into

classes8. Herschel (1864) and Dreyer (1888), mustering the New General Catalogue (NGC) of

nebulae, contrived an intricate system for describing its entries, including such characteristics as

7The most massive congregations of galaxies in the Universe are called “clusters”. However, I reserve my use of

the term “cluster” in this thesis for data structures that are modelled with unsupervised machine learning techniques

(see Chapter 2) in order to avoid any possible confusion between these two different contexts. For the purposes of this

thesis, the term “group” (as above) may be assumed to refer also to cosmological clusters.
8Initially also including nebulae internal to the Milky Way.
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Figure 1.2: The Hubble tuning fork diagram, a schematic representation of the Hubble sequence for galaxy

morphological classification. This figure has been reproduced from The Realm of the Nebulae (Hubble,

1936).

shape, apparent size, and brightness. Wolf (1908) defined 23 different types of nebula and listed

NGC archetypes for several of them. Reynolds (1920) set out a sequence of seven grades of spiral

nebulae, ordered by the prominence of their central nuclei (or bulges, as they’re known today) and

the amount of apparent structure (or “resolution”) within them. Hubble (1922, 1926b) made the

most lasting contribution, building on the sequence of Reynolds to develop a simple yet effective

scheme for the classification of extragalactic nebulae (i.e. galaxies) that is still in use today (e.g.

Bremer et al. 2018; Kelvin et al. 2018).

The Hubble sequence distinguishes primarily between elliptical and spiral galaxies. Ellipticals

(denoted E) do not exhibit any internal structure; their light profiles are smooth, and they range in

their shapes from spherical (E0) to flattened (E7). Spirals (S), which do exhibit internal structure,

are ranked by the complexity of this structure (just as in Reynolds’ sequence). The simplest

spirals (Sa) have prominent central bulges, tightly wound spiral arms, and minimal structure within

their discs, while the most complex spirals (Sc) have weak bulges, open arms, and flocculent

structures. Borrowing from stellar spectroscopy, Hubble (1926b) used the terms “early” and “late”

to describe this gradient from simple to complex morphologies9; nowadays, these terms tend to

refer more generally to ellipticals and spirals (or “disc galaxies”) respectively (e.g. Kelvin et al.

2014a,b). Spirals may also have a central bar connecting their spiral arms (SB). Galaxies that are

neither elliptical nor spiral are classified as Irregular (Irr). Figure 1.2 shows the Hubble tuning fork

diagram10, which maps out Hubble’s galaxy classes. Included in the diagram is an additional class,

S0, which Hubble (1936) conjectured to be the then-unobserved missing link between ellipticals

and spirals.

9Hubble was careful, though, to avoid any inadvertent implications about galaxy evolution through his use of these

terms, intending them only express observed morphological complexity (Hubble, 1926b, 1927; Baldry, 2008).
10A similar diagram had previously been produced by Jeans (1928; who did propose that galaxies evolve along the

sequence, spinning up from late- to early-type), although it is not known whether this was the inspiration for Hubble’s

diagram, which was published eight years later (Sandage, 2005).
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Since its invention, the Hubble sequence has been subject to gradual amendments. Shapley &

Paraskevopoulos (1940) proposed the addition of an Sd class for disc galaxies with especially

late-type morphologies. Shapley (1943) and Holmberg (1958) used subclasses (e.g. Sa−, Sb+) for

finer divisions among spirals. de Vaucouleurs (1959) split the Irr class (Sm, for irregular galax-

ies that have weak spiral structure; and Im), and included notation to account for the presence

of outer rings (r). Sandage & Binggeli (1984) incorporated classes for dwarf galaxies (dE, dS0);

these galaxies had been excluded from the original Hubble sequence by Malmquist (1922) bias.

Kormendy & Bender (1996, 2012) removed the dependence of elliptical classifications on incli-

nation by using isophotes to distinguish between boxy (Eb) and discy (Ed) types, and introduced

a sequence of S0 classes (S0a, S0b, S0c; S0 galaxies having since been observed as smooth, disc-

dominated galaxies) parallel to that of spirals (see also van den Bergh 1976). These amendments

have reflected our increasingly detailed view of galaxies over time and revealed continuous varia-

tions in morphologies throughout the galaxy population. Nevertheless, the original elliptical-spiral

dichotomy remains fundamental in the study of galaxy morphologies (e.g. Schawinski et al. 2014;

Bremer et al. 2018; Kelvin et al. 2018).

The ongoing Galaxy Zoo project (Lintott et al., 2008, 2011; Willett et al., 2013) has enabled the

description of galaxy morphologies with particularly high fidelity. Galaxy Zoo enlists citizen

scientists to assign classifications, tallying their votes on the visual appearances of galaxies in

order to build up comprehensive morphological profiles. As a result, the properties and evolution

of galaxies that have specific morphological traits may be closely examined (e.g. Hart et al. 2017;

Kruk et al. 2019; Newnham et al. 2020).

Galaxies’ morphologies may also be characterised using quantitative features, which have the

benefit of being more objective and scalable than Hubble-like classifications (e.g. Naim et al.

1995; Kelvin et al. 2014a)11,12. Reynolds (1920) had already included a quantitative component

in his classification scheme, plotting the radial light profiles of spiral galaxies to establish the

prominences of their bulges. Sérsic (1963, 1968), building on work by Hubble (1930) and de

Vaucouleurs (1948), introduced a general equation with which to model galaxy light distributions,

with the shape of the profile defined by a single parameter, ng (the “Sérsic index”). Measures of

the sizes of galaxies, such as their effective/half-light radii or Kron radii, may be derived via the

Sérsic equation as well (Graham & Driver, 2005). Furthermore, the fitting of a galaxy’s light dis-

tribution with two Sérsic profiles enables its decomposition into separate contributions from the

bulge and the disc (Freeman, 1970; Peng et al., 2002; Simard et al., 2011). Alternatively, the CAS

system (Conselice 2003; see also references therein for predecessors) measures the concentration,

11Galaxy Zoo mitigates the subjectivity of individual classifications somewhat by exploiting “the wisdom of the

crowd”, and by down-weighting votes from unreliable classifiers (Willett et al., 2013).
12See Chapter 2 for a brief discussion on the relative scalability of quantitative morphologies, Galaxy Zoo classifica-

tions, Hubble-like classifications, and also of machine learning techniques.
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asymmetry, and smoothness of a galaxy’s light distribution non-parametrically. Other quantitative

morphological features include the Gini coefficient (G; Abraham et al. 2003), the M20 coefficient

(Lotz et al., 2004), and MID system (Freeman et al., 2013). A crucial strength of all of these fea-

tures is their correlation with Hubble-like morphological classifications. Features like ng, C, and

G, which express how centrally concentrated a galaxy’s light is, are sensitive to the presence of a

bulge (or the absence of a disc in ellipticals). The amount of structure within a galaxy’s disc may

be captured with S or M20. In addition, several of these features have been combined to identify

merging or irregular galaxies. Hence, these quantitative features incorporate key aspects of Hub-

ble-like morphologies. As such, they are commonly used to morphologically classify galaxies13,

and to distinguish between early- and late-type galaxies (e.g. Shen et al. 2003; Scarlata et al. 2007;

Lange et al. 2015).

Spectroscopic studies of the morphological components of galaxies reveal them to be, equivalently,

dynamical components. Stars within the discs of late-type galaxies rotate around galactic centres

in ordered, circular orbits (Slipher, 1914; Sofue & Rubin, 2001). Stars in early-type galaxies

were initially all believed to have disordered, triaxial orbits (Binney, 1982), but integral field spec-

troscopy (Emsellem et al., 2004, 2011; Cappellari, 2016) has shown that early-type galaxies may

be divided into slow rotators, which match the previous description, and fast rotators, which also

contain an additional smooth disc component. The bulges of late-type of galaxies may be similarly

divided on the basis of their dynamics (Kormendy, 1993; Kormendy & Kennicutt, 2004). “Classi-

cal” bulges are dynamically akin to slow-rotating elliptical galaxies, leading to the suggestion of

a common origin for these structures and the introduction of the general term “spheroid” to unite

them (Renzini, 1999). “Pseudobulges”, on the other hand, more closely resemble discs in terms of

their dynamics, being flatter than classical bulges and exhibiting rotation. These dynamical results

have prompted another amendment to the Hubble sequence (Cappellari et al., 2011; Cappellari,

2016), which connects spirals and S0 galaxies of similar complexity and suggests evolutionary

ties between them.

1.2.2 Spectral energy distributions

The ultraviolet-through-infrared (UV-through-IR) spectral energy distributions (SEDs) of galaxies

are as multifarious as their morphologies. SEDs spanning these wavelength regimes are governed

in their shapes chiefly by stellar emission, and the attenuation (in the UV and optical) and re-

emission (in the IR) of stellar emission by interstellar dust. Hence, a galaxy’s SED constitutes a

precise inventory of its present contents, which, in turn, constitutes a record of its evolutionary

history.

13See van der Wel (2008), though, for an example of how the differential use of quantitative morphological features

can produce slightly different classifications for the same galaxies.
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Figure 1.3: The u − r colour bimodality, as seen in a sample of low-redshift galaxies derived from SDSS.

Here, galaxies’ u − r colours have been calculated from “model”, profile-based magnitudes (Stoughton

et al., 2002), and are scaled against their absolute r-band Petrosian (1976) magnitudes. This figure has been

reproduced from Baldry et al. (2004).

The brightness of a galaxy – its flux through a single broadband filter – is the simplest measure-

ment that may be made of its SED, summing its stellar emission at the effective wavelength of the

filter used. The colour of a galaxy – the ratio of its fluxes through two broadband filters at differ-

ent effective wavelengths – can probe the contributions of different stellar populations to its total

stellar emission. Optical colours have been used for this purpose since the infancy of extragalac-

tic astrophysics, supported by what was already a mature understanding of stellar astrophysics

(Roberts, 1963). Blue galaxies contain hot, massive stars with short lifetimes that can only have

formed recently; hence, blue galaxies are actively star-forming. Red galaxies, lacking in these

stars, are not actively star-forming, and are instead called “passive” or “quenched”. The UV flux

of a galaxy, which is particularly sensitive to the presence of hot, massive stars, may be used (fol-

lowing its correction for attenuation due to dust) to infer its star formation rate (SFR; Madau et al.

1998; Salim et al. 2007).

The onset of survey astronomy (e.g. York et al. 2000) facilitated the discovery that the optical

colours of the overall galaxy population are bimodally distributed (Strateva et al., 2001; Baldry

et al., 2004), with most galaxies occupying either the red peak or the blue peak of this distribution.

The intermediate-colour region between these two peaks, containing fewer galaxies, is called the

“green valley” (Wyder et al., 2007; Martin et al., 2007; Salim et al., 2007; Schiminovich et al.,

2007). An example of the optical colour bimodality of galaxies is shown in Figure 1.3. Similar

bimodalities of galaxies have also been observed in several other colours involving UV and near-

IR (NIR) magnitudes (Williams et al., 2009; Arnouts et al., 2013). In general, these bimodalities

represent a simple, useful framework with which to distinguish between star-forming (blue) and
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passive (red) galaxies, and galaxies that are transitioning (green) relatively quickly between these

two states (e.g. Schawinski et al. 2014; Smethurst et al. 2015; Bremer et al. 2018; Kelvin et al.

2018). However, different colours yield slightly different bimodalities: for example, galaxies

occupying the blue peak of the g − r colour distribution may instead occupy the green valley of

the NUV − r colour distribution (Salim, 2014). In addition, the red peaks of these bimodalities

arise as a consequence of the saturation of the colours of particularly red galaxies while their star

formation rates carry on decreasing (Salim, 2014; Eales et al., 2018). It is therefore clear that,

for a complete and accurate description of the galaxy population in the context of the bimodality

and the green valley, several colours spanning the UV-through-NIR wavelength regime must be

considered simultaneously.

Spectroscopy offers another avenue by which to discern the contents of galaxies, with emission

lines from the interstellar medium (ISM) proving particularly useful. The flux of the Hα recom-

bination line (Kennicutt et al., 1994; Charlot & Longhetti, 2001) or of the [OII] λ3727 forbidden

doublet (Gallagher et al., 1989; Gilbank et al., 2010) of a galaxy may be used to infer its (Kennicutt,

1998), due to the photoionisation of HII regions by hot, massive stars at their centres. Estimates

of the chemical abundance of the ISM have been calibrated to the fluxes of several emission lines

(Kewley et al., 2019); stellar abundances, on the other hand, are calibrated to absorption line fluxes

(e.g. Worthey 1994). The presence of an active galactic nucleus (AGN), i.e. of radiation driven by

the accretion of material onto a galaxy’s central supermassive black hole, may be diagnosed using

emission-line diagrams (e.g. Baldwin et al. 1981; Kauffmann et al. 2003b; Cid Fernandes et al.

2010, 2011; Lamareille 2010). The size of the 4000 Å break in the spectra of galaxies (Balogh

et al., 1999), like their colours, may be used to distinguish galaxies in their emission by young

stars (small break) or old stars (large break), with the added benefit of being relatively unaffected

by attenuation due to dust.

Continued progress in our understanding of stellar astrophysics has enabled the estimation of

the full UV-through-IR SEDs of galaxies (Conroy, 2013; Ilbert et al., 2006; Da Cunha et al.,

2008; Boquien et al., 2019). This estimation requires the validation of synthetically-constructed

spectra against real observations (Walcher et al., 2011). As it is impractical to measure full galaxy

spectra that span large wavelength ranges (e.g. UV-through-IR), especially for the large number

of galaxies needed for a robust statistical study of galaxy evolution, SEDs are instead generally

validated against curtailed, summary measurements, such as galaxy colours. An accurate estimate

of the full SED of a galaxy enables the inference of its physical properties, including stellar mass,

SFR, stellar metallicity, and more.

The construction of synthetic galaxy spectra requires two main ingredients: a library of template

spectra of individual stars (either empirical, e.g. Pickles 1998; or theoretical, e.g. Martins et al.

2005), and a dust attenuation curve. Early studies simply matched sums of stellar template spectra
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Figure 1.4: Baryonic mass functions (BMFs), including: a GSMF (dashed line; a fit to low-redshift galax-

ies), a galaxy BMF (solid line; including the ISM), a theoretical subhalo BMF (dot-dashed line; including

the haloes of individual galaxies), and a theoretical halo BMF (dotted line; including group haloes). De-

viations between the subhalo/halo BMFs and the GSMF, shown by the arrows, are largest at low and high

masses. This figure has been reproduced from Baldry et al. (2008).

(i.e. synthetic composite spectra) to the observed optical colours of galaxies to discern their stellar

contents (Spinrad, 1962; Spinrad & Taylor, 1971; Faber, 1972). This method, particularly prone

to degeneracies, was superseded by stellar population synthesis (SPS; Tinsley 1968; Bruzual &

Charlot 2003; Maraston 2005), which uses theories of stellar evolution to set astrophysical con-

straints upon these synthetic composite spectra. Individual stellar template spectra are aggregated

using isochrones to build up template spectra of simple stellar populations (SSPs), the basic unit

of SPS consisting of groups of stars that form at the same time and with the same metallicity, but

with different masses given by an initial mass function (e.g. Salpeter 1955; Chabrier 2003). The

template spectra of SSPs are built up for various stages of their evolution. These SSP spectral tem-

plates are then themselves combined via their convolution with models of the metallicity-evolution

and star formation histories of galaxies to yield composite stellar spectra. Finally, the influence of

dust, modelled with a wavelength-dependent attenuation curve (e.g. Calzetti et al. 2000; Charlot

& Fall 2000) and with IR emission templates (e.g. Chary & Elbaz 2001), is added. A crucial

aspect of accurate SED estimation is the disentangling of the degenerate influences of stellar ages,

stellar metallicities, and attenuation due to dust, all of which may redden the spectrum of a galaxy

(Worthey, 1994; Bell & de Jong, 2001; Papovich et al., 2001).

1.2.3 The observational view of galaxy evolution

Galaxies increase their stellar masses as they evolve, through star formation and/or through accre-

tion and mergers. This evolution, across the population, begets the galaxy stellar mass function

(GSMF), a low-redshift example of which is shown using the dashed line in Figure 1.4 (Baldry
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et al., 2008). As a measure of the growth of structure in the Universe, the GSMF is an important

constraint for models of cosmology. The GSMF has a two-component form, broken by a “knee”

at ∼ 1010.6 M�. The GSMF is offset to lower number densities from the subhalo and halo baryonic

mass functions, which include the mass contribution of all baryons (i.e. not just stars) in individ-

ual galaxy haloes and in group haloes respectively. This indicates inefficiencies in the formation

of stars and galaxies from the full supply of available baryons at low and high masses. Separate

processes have been proposed to explain the inefficiencies at low and high masses (i.e. either side

of the knee), where the deviation of the GSMF from the baryonic mass functions is largest (see

Sections 1.3 and 1.4).

The decline of star formation at high masses has also been observed in distributions involving

other features. The power-law correlation of the SFRs and stellar masses of actively star-forming

galaxies – the “star-forming main sequence” (SFMS; Noeske et al. 2007; Salim et al. 2007) –

ceases beyond ∼ 1010.5 M�, where the rate of increase of star formation with stellar mass reduces

(Whitaker et al., 2015; Eales et al., 2017; Popesso et al., 2019a). Furthermore, passive galaxies

become more prevalent at higher steller masses. The colour-magnitude distribution of galaxies

goes from being dominated by blue galaxies at faint magnitudes to red galaxies at bright magni-

tudes (Figure 1.3; Baldry et al. 2004). Galaxy colours trend similarly with stellar mass as well

(Peng et al., 2010; Baldry et al., 2012; Taylor et al., 2015). Equivalent trends and divisions have

also been observed at higher redshifts (Brammer et al., 2009; Popesso et al., 2019b). In addition,

there are trends of the morphologies of galaxies with their brightnesses (reviewed in Binggeli et al.

1988) and with their stellar masses (Bundy et al., 2010; Kelvin et al., 2014b; Moffett et al., 2016),

with massive, bright galaxies more likely to be early-type. Kauffmann et al. (2003a), by way of

the 4000 Å break strengths and central concentrations of galaxies, divide the population into two

clear subpopulations about a critical mass of ∼ 1010.5 M�; Driver et al. (2006), swapping 4000

Å break strengths for colours, impose a similar division at an absolute magnitude of MB < −16.

Altogether, it is clear that stellar mass is a vital feature for the description of the evolutionary states

of galaxies, particularly in terms of the quenching of their star formation. However, it is also clear

that other features play an important role too.

The correlation between the colours and the morphologies of galaxies, with disc-dominated galax-

ies tending to be blue and spheroid-dominated galaxies tending to be red (Holmberg, 1958; Chester

& Roberts, 1964; Bower et al., 1992a,b; Mignoli et al., 2009), suggests that these features are

themselves evolutionarily linked. This link appears to be strongest among galaxies that have par-

ticularly concentrated morphologies, with several recent studies identifying the central density of

a galaxy, which measures the prominence of the bulge, as a potent predictor of its being passive

(Cheung et al., 2012; Wake et al., 2012; Fang et al., 2013; Bluck et al., 2014; Luo et al., 2020). This

has been used to explain the different distributions of blue and red galaxies in the size-mass plane

(van der Wel et al., 2009; van Dokkum et al., 2015; Haines et al., 2017). Furthermore, this has
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prompted the suggestion that a massive or dense bulge is necessary for the permanent quenching of

galaxies (Bell, 2008; van Dokkum et al., 2014). The general colour-morphology correspondence

has led some observers to use the colours of galaxies as proxies for their morphologies when se-

lecting samples (e.g. Bundy et al. 2006; Salimbeni et al. 2008; van der Wel et al. 2014). However,

studies using Galaxy Zoo morphologies have shown that this correspondence does not always ap-

ply: some pure-disc galaxies have red colours (due to being genuinely passive, rather than due

to attenuation by interstellar dust; Masters et al. 2010), and some spheroidal galaxies have blue

colours, indicating recent or ongoing star formation (Schawinski et al., 2009a). As exceptions to

the simple blue-and-discy versus red-and-spheroidal paradigm, an understanding of the origins of

these galaxies is important for a complete understanding of galaxy evolution.

Several early studies noted a connection between the morphologies and the environments of galax-

ies (Hubble & Humason, 1931; Oemler, 1974; Davis & Geller, 1976). Dressler (1980a,b), com-

bining Hubble sequence classifications with tenth-nearest neighbour surface densities, measured

a “morphology-density” relation among galaxies in and around groups, showing that elliptical

galaxies become more common, and spiral galaxies less common, with increasing local environ-

mental density. Goto et al. (2003), studying galaxy concentrations, fifth-nearest neighbour surface

densities, and groupocentric distances, and extending their analysis to the field (i.e. to lower en-

vironmental densities), further constrained this morphology-environment connection. Noting a

drop in the fraction of intermediately-concentrated galaxies at the highest densities (following a

gradual rise with density to that point), they also suggested that the morphological transformation

of galaxies is influenced by different processes at different densities. The colours of galaxies are

similarly connected to their environments, with blue, star-forming galaxies more common in low

density environments than in high density environments, and vice versa for red, passive galaxies

(Balogh et al., 2004; Baldry et al., 2006; von der Linden et al., 2010; Woo et al., 2013). Bam-

ford et al. (2009) and Skibba et al. (2009), separating the influence of environment on colour and

on morphology, found that the colour-environment connection is much stronger than, and may

therefore even be the cause of, the morphology-environment connection.

Peng et al. (2010) disentangled the influences of stellar mass and local environmental overdensity

on quenching by examining trends of these features with the changing fraction of red, passive

galaxies. They discovered that low-mass galaxies are only quenched in high-density environments

and that only high-mass galaxies are quenched in low-density environments (as shown in Figure

1.5). Thusly, they distinguished two phenomenological quenching pathways that act indepen-

dently of one another: “mass quenching” and “environment quenching”. Peng et al. (2012) and

Wetzel et al. (2012, 2013) established that the evolution of satellite galaxies in groups, exhibiting

little-to-no dependence on their stellar masses, is dominated by environment quenching. On the

other hand, observations of the increasing incidence of AGN among high-mass and green valley

galaxies (Kauffmann et al., 2003b; Schawinski et al., 2010), generally irrespective of their envi-
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Figure 1.5: The disentangling of trends of the star formation activity of SDSS galaxies (via red, passive

fraction) with their stellar masses and their local environmental overdensities. This figure has been repro-

duced from Peng et al. (2010).

ronments14, provided empirical support for mass quenching. Schawinski et al. (2014), studying

the morphologies of galaxies in the green valley, proposed two evolutionary pathways of their

own. Most late-type galaxies quench slowly (' 1 Gyr) once their halo (of which they are usually

the central) exceeds a mass of 1012 M�, and they retain their discs in doing so. Most early-type

galaxies, meanwhile, quench quickly (∼ 100 Myr) in a manner that is tied closely to their morpho-

logical transformation (e.g. via the merger of two late-type galaxies; see Section 1.3.2). Smethurst

et al. (2015), modelling the star formation histories of galaxies, presented further evidence for the

existence of multiple evolutionary pathways through the green valley.

14Kauffmann et al. (2004) find that only galaxies containing the brightest, most powerful AGN exhibit any significant

dependence on environment, becoming less common with increasing local environmental density.
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1.3 Processes of galaxy evolution

In this section, I list and briefly summarise astrophysical and cosmological processes that, together,

influence the evolution of galaxies. In accordance with the observational and phenomenological

work of Peng et al. (2010), Schawinski et al. (2014), and others, I distinguish between internal

processes (Section 1.3.1), which apply to all galaxies, and external processes (Section 1.3.2),

whose additional influence depends on the environment of the galaxy in question. This internal

versus external dichotomy is most commonly asserted in the context of quenching processes (e.g.

Smethurst et al. 2017); in this section, I extend it to include processes that engender morphological

transformations in galaxies as well.

1.3.1 Internal processes

Bar inflows

Bars are present within the majority of low-redshift late-type galaxies (Eskridge et al., 2000; Nair

& Abraham, 2010; Masters et al., 2011), and were recognised as an important morphological

components already at the time of the inception of the Hubble sequence. They have been shown

to form naturally from instabilities within dynamically-cold, thin stellar discs (Ostriker & Peebles,

1973; Sellwood & Wilkinson, 1993; Debattista et al., 2004, 2006). Once in place, bars draw gas

into the inner regions of galaxies by redistributing its angular momentum (Hawarden et al., 1986;

Bournaud & Combes, 2002; Sheth et al., 2005), thus promoting central star formation and the

growth of pseudobulges (Kormendy & Kennicutt, 2004), and possibly fuelling AGN (Galloway

et al. 2015, though this is disputed; Cheung et al. 2015). Bars are most common in disc galaxies

with red colours and low levels of gas content (Masters et al., 2012; Cheung et al., 2013), which

suggests that they are involved with quenching.

Morphological quenching

Martig et al. (2009), analysing zooms of cosmological simulations, discovered that the morpholo-

gies of galaxies may contribute directly to their quenching. The gaseous disc of an early-type

galaxy may be stabilised against fragmentation and subsequent star formation by the gravitational

potential of its central bulge, which azimuthally shears the gas, and by the lack of an accompa-

nying stellar disc, which, if present, would contribute self-gravity to giant molecular clouds (i.e.

the sites of star formation). This mechanism, not requiring the removal of gas from galaxies for

their quenching (e.g. via feedback or stripping processes; see below and Section 1.3.2), naturally

explains the observed lack of star formation activity in early-type galaxies that retain their gas
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(e.g. Serra et al. 2012; Martig et al. 2013). The bulges of these galaxies may be grown via internal

processes such as bar inflows (see above) or violent disc instabilities (see below), or via external

processes (see Section 1.3.2). Morphological quenching offers an explanation for the link between

spheroids and passiveness, but it is not believed to constitute a dominant quenching mechanism

among the galaxy population as a whole (Bluck et al., 2014).

Stellar feedback

Recently-formed massive stars may supply energy to their surrounding ISM, inhibiting the contin-

ued formation of new stars (Hayward & Hopkins, 2017). Their radiation, stellar winds, and even-

tual explosions as supernovae can heat giant molecular clouds and induce turbulence within them,

preventing their cooling and gravitational collapse, and drive the expulsion of gas from galaxies

in powerful galactic outflows (Wada & Norman, 2001; Matzner, 2002; Murray et al., 2010, 2011;

Hopkins et al., 2011, 2012). Evidence for the action of these mechanisms is provided by direct

observations of galactic winds (Martin, 1999, 2005; Weiner et al., 2009) and of the chemical en-

richment of the intergalactic medium (IGM; Aguirre et al. 2001; Songaila 2005, 2006). Stellar

feedback is expected to be important for regulating star formation in galaxies with lower stellar

masses; supernova winds are not anticipated to be able to escape the deep gravitational potentials

of galaxies with higher stellar masses (Hopkins et al., 2014; Keller et al., 2016). Hence, stellar

feedback offers an explanation for the inefficiency of star formation at low stellar masses (Figure

1.4; see also Section 1.4), but alternative processes are required to explain the inefficiency at high

stellar masses (see below).

Supermassive black hole feedback

Supermassive black holes (SMBHs) at the centres of galaxies (Kormendy & Ho, 2013) grow via

the accretion of gas (Lynden-Bell, 1969; Shakura & Sunyaev, 1973; Ichimaru, 1977). A corollary

of this growth is the feedback of energy from the accreting gas to the wider gas supplies of galax-

ies. Galaxies whose inner regions contribute feedback in this manner are described as having an

AGN. AGN are characterised by a unified model (Antonucci, 1993; Netzer, 2015) which invokes

varied viewing angles to reconcile their disparate apparent properties. Two main modes of AGN

feedback are distinguished, differing in how they originate and in how they deliver energy to the

ISM (Churazov et al., 2005; Croton et al., 2006; Somerville et al., 2008; Heckman & Best, 2014).

Kinetic mode feedback is driven by relativistic polar jets, which are believed to be generated by

the magnetism and rotation of advective flows of hot gas around SMBHs. These jets imbue the

ISM of galaxies with kinetic energy which can exceed the galaxies’ gravitational binding energies

and, as a result, lead to its expulsion. In massive (> 1012 M�) CDM haloes, kinetic mode feed-
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back is expected to maintain the passivity of galaxies by continuously heating hot gas (see below).

Radiative mode feedback, on the other hand, is associated with stochastic events like mergers (see

Section 1.3.2) and violent disc instabilities (see above), or bar inflows (see above), all of which

funnel cold gas into the centres of galaxies, where it encircles the SMBH in a thin accretion disc.

This accretion disc then emits ionising radiation which launches powerful galactic winds that exert

pressure on the ISM and, in the most extreme cases, carry star-forming gas out of galaxies.

AGN may be identified using emission-line diagnostics (Baldwin et al., 1981; Kauffmann et al.,

2003b; Cid Fernandes et al., 2010, 2011; Lamareille, 2010). Direct tracers of AGN feedback

(see Fabian 2012 for a review) include X-ray observations of jet-blown gas bubbles (McNamara

et al., 2000; Hlavacek-Larrondo et al., 2012), and spectral features corresponding to fast outflows

(Tremonti et al., 2007; Maiolino et al., 2012). AGN are most commonly hosted by green valley

galaxies (Nandra et al., 2007; Schawinski et al., 2007, 2010; Hickox et al., 2009), substantiating

their link with quenching. The close correlation between the masses of SMBHs and their sur-

rounding stellar spheroids (i.e. bulges and/or whole elliptical galaxies; Silk & Rees 1998; Häring

& Rix 2004; McConnell & Ma 2013) explains both the connection between the morphologies and

the star formation activity of galaxies, and the sharp drop in the efficiency of star formation at high

stellar masses (Figure 1.4; see also Section 1.4). In addition, AGN feedback can account for the

observed downsizing of the galaxy population over cosmic time (i.e. the observation that the most

massive galaxies formed earliest; Cowie et al. 1988; Cimatti et al. 2006; Cattaneo et al. 2008),

which is in tension with its expected hierarchical assembly.

Violent disc instabilities

In comparison with those at low redshifts, star-forming galaxies at high redshifts are relatively

rich in gas (Daddi et al., 2010; Tacconi et al., 2010). Their thick, turbulent, gaseous discs, fuelled

by continuous cold inflows (Bournaud & Elmegreen 2009; Dekel et al. 2009; see also below), are

particularly susceptible to fragmentation and gravitational collapse into large (∼ 1 kpc), massive

(∼ 108 M�) stellar clumps due to “violent disc instabilities” (Bournaud et al., 2007b; Elmegreen

et al., 2007; Genzel et al., 2011; Cacciato et al., 2012). These clumps can then migrate into the

centres of galaxies via dynamical friction, where they contribute to spheroid growth such that there

is a classical bulge in place at later times (Immeli et al., 2004; Elmegreen et al., 2008b), provided

that the clumps survive any disruption to their star formation due to stellar feedback processes

(see above). In addition, it has been proposed that the inward migration of these clumps may

also facilitate the growth of central SMBHs (Elmegreen et al. 2008a; Bournaud et al. 2011, 2012;

Gabor & Bournaud 2013; see also above). Chains of stellar clumps are a commonly observed

morphological characteristic of star-forming galaxies at high redshifts (Cowie et al., 1996; van

den Bergh et al., 1996; Conselice et al., 2004).
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Virial shock heating

The manner in which galaxies acquire gas from the IGM is dependent upon the masses of their

host CDM haloes (Kereš et al., 2005; Dekel & Birnboim, 2006). At low halo masses (< 1012 M�),

gas descends into the discs of galaxies via cold, filamentary streams15 (Katz et al., 2003; Kereš

et al., 2009). Once in the disc, the cold gas can fuel star formation, and/or lead to violent disc

instabilities (see above). At high halo masses (> 1012 M�), though, cooling becomes inefficient,

and the incoming gas is instead heated upon entry to the halo by virial shocks such that it is

not immediately available for star formation (Birnboim & Dekel, 2003; Cattaneo et al., 2006).

Galaxies then remain quenched for as long as this gas remains hot. Kinetic mode AGN feedback

has been proposed as a mechanism for maintaining the passivity of massive galaxies in this way

(see above). It has also been argued that the continued accretion of gas can dynamically heat the

halo (Dekel & Birnboim, 2008; Birnboim & Dekel, 2011). Supporting evidence for virial shock

heating as a quenching mechanism comes from X-ray observations of the hot haloes of massive

galaxies (Paolillo et al., 2002; Xia et al., 2002).

1.3.2 External processes

Gravitational processes: galaxy-galaxy tidal interactions and mergers

Galaxies in dense environments, such as groups, interact gravitationally with one another. These

interactions are known as “tidal interactions” or “harassment” (Moore et al., 1996, 1998, 1999).

Fly-by encounters of galaxies may remove gas (Combes et al., 1988; Mayer et al., 2006) and stars

(Read et al., 2006; Chang et al., 2013) from their outer regions (especially if they are low-mass or

diffuse), encourage central star formation within them (Ellison et al., 2008; Renaud et al., 2014),

and dynamically heat their discs, all of which can cause a gradual transition from late- to early-type

morphologies. The presence of stellar or gaseous tidal tails in the vicinity of galaxies is interpreted

as evidence for prior galaxy-galaxy harassment (Arp, 1966; Combes et al., 1988; Kenney et al.,

1995).

Mergers between galaxies, more common in environments of higher densities (Darg et al. 2010;

Ellison et al. 2010; except in environments of the very highest densities; see below), are especially

influential upon their evolution (Toomre, 1977; Hopkins et al., 2006). The precise outcome of a

galaxy merger is contingent mostly upon the relative masses of the galaxies involved and upon

their gas content (Lotz et al., 2010a,b). Major mergers (in which the masses of the progenitors

– M1 and M2, where M1 is the higher mass – satisfy M2/M1 > 0.25) can destroy the discs of

15This manner of gas acquisition also applies to higher halo masses at high redshifts (Kereš et al., 2005; Dekel &

Birnboim, 2006; Kereš et al., 2009).
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late-type galaxies and, via the violent relaxation of the merger remnant, produce an early-type

galaxy (Barnes, 1988, 1992). The gravitational upheaval causes gas contained within the discs of

the progenitors (if present) to lose its angular momentum and descend to the centre of the remnant

(Barnes & Hernquist, 1996), where it may be consumed in a burst of star formation (Barnes &

Hernquist, 1991; Mihos & Hernquist, 1994a,b, 1996; Cox et al., 2008) or trigger AGN activity by

feeding the central SMBH (Di Matteo et al. 2005; Hopkins et al. 2005; Springel et al. 2005a,c; see

also Section 1.3.1). If the progenitors are particularly rich in gas, then the gas may instead form

a disc in the remnant via its reaccretion from tidal tails, and renew star formation (Barnes, 2002;

Hopkins et al., 2009a,b, 2010). Furthermore, a major merger remnant may accrete new gas from

the IGM with which to rejuvenate its star formation (Salim & Rich, 2010; Gabor et al., 2011).

Minor mergers (M2/M1 < 0.25), which are much more common (Lotz et al., 2011), may foster

the growth of a classical bulge within the more massive progenitor without the destruction of its

surrounding disc (Walker et al. 1996; Bournaud et al. 2004, 2005, 2007a; though they have been

shown to dynamically heat and thicken discs). Minor mergers may also induce starbursts, but they

are not as productive as those induced by major mergers (Cox et al., 2008; Lambas et al., 2012;

Kaviraj, 2014). Pre-merger systems are identified via close pairs of galaxies (Ellison et al., 2008;

Silva et al., 2018), and ongoing mergers and post-merger systems via visual inspection of images

(Arp, 1966; Lintott et al., 2008, 2011) or combinations of quantitative morphological features

(Conselice, 2003; Lotz et al., 2004). In addition, the early-type morphologies of post-starburst

galaxies (Yang et al., 2008; Almaini et al., 2017) are suggestive of major merger origins. Overall,

the role of mergers in transforming galaxies from late- to early-type is clear. However, the effect

of mergers on star formation activity varies case-by-case, such that mergers seemingly cannot be

tied unequivocally with quenching (Weigel et al., 2017).

Hydrodynamical processes: removal of the ISM

Galaxy groups are permeated by hot (∼ 107 K), diffuse, gas (Voit, 2005). It may be detected via

its bremmsstrahlung emission at X-ray wavelengths (Forman et al., 1972; Arnaud et al., 2010), or

via the “Sunyaev-Zeldovich” effect (the inverse Compton scattering of CMB photons by energetic

free electrons in the hot gas; Sunyaev & Zeldovich 1972; Kukstas et al. 2020). This hot IGM

may interact hydrodynamically with the cold ISM of infalling galaxies in different ways, with the

general consequence of the removal of the ISM and the quenching of star formation16. These

hydrodynamical processes are invoked to explain the observed decrease in the cold gas content of

galaxies with increasing local environmental density (Giovanelli & Haynes, 1983; Brown et al.,

2017).
16Gabor & Davé (2015) combine external processes like gas-stripping and thermal evaporation with internal pro-

cesses like virial shock heating and AGN feedback (see Section 1.3.1) to propose a unified model in which hot gas

dictates the quenching of both centrals and satellites.

20



Chapter 1 Introduction

The motion of galaxies through the IGM can lead to the ram-pressure stripping of their cold gas

(Gunn & Gott, 1972; Hester, 2006). The pressure exerted by the IGM on the ISM of a galaxy scales

with the square of the velocity of the galaxy; hence, ram-pressure stripping is most efficient in the

inner regions of groups (Cayatte et al., 1990; Roediger & Hensler, 2005). It has also been shown

that ram-pressure stripping leads to a temporary increase in star formation, due to compression

of the ISM, before quenching (Tonnesen & Bryan, 2012; Vulcani et al., 2018). While face-on

stripping of gas from disc galaxies is expected to be dominated by ram-pressure, edge-on stripping

is instead expected to be dominated by the viscosity of the IGM (Nulsen, 1982; Marcolini et al.,

2003). Jellyfish galaxies, exhibiting extended trails of stars and/or gas (Gavazzi et al., 1995;

Ebeling et al., 2014; Poggianti et al., 2016, 2017), constitute prototypical examples of both ram-

pressure stripping and viscous stripping. Finally, the hot IGM may directly heat the cold ISM,

causing it to evaporate from the gravitational grip of galaxies Cowie & Songaila (1977); Nipoti

& Binney (2007). In general, these hydrodynamical processes are effective at quenching galaxies,

but they are not anticipated to cause significant morphological changes (Boselli & Gavazzi, 2006).

Pre-processing

While the morphologies of galaxies in environments of the highest densities are uniformly early-

type, their high orbital velocities mean that they are unlikely to merge with one another (Fujita,

1998; Darg et al., 2010; Ellison et al., 2010). This has prompted the suggestion that galaxies are

“pre-processed” in small groups (Fujita, 2004; Mihos, 2004), where mergers and morphological

transformations are more likely. These small groups of pre-processed galaxies are then, in line

with the predictions of the ΛCDM cosmological model of the hierarchical assembly of structure

in the Universe, accreted into large groups. Hence, pre-processing explains the uniformity of

the properties of satellite galaxies in large groups (McGee et al., 2009; Balogh & McGee, 2010;

Wetzel et al., 2013, 2015). Gravitationally-bound substructures have been observed within large

groups (Kodama et al., 2005) and are interpreted as a signature of pre-processing.

Starvation

In addition to being subject to the gravitational influence of other, nearby galaxies in groups (see

above), galaxies are also subject to the gravitational influence of groups as a whole. Group tides

can remove the warm, gaseous envelopes of galaxies (Larson et al. 1980; also known as the cir-

cumgalactic medium). This prevents its accretion into the inner regions of galaxies; as a result,

galaxies then quench either via the consumption of any remaining cold gas contained in their discs

through star formation, or via the subsequent stripping and/or heating of this cold gas (see above).

This overall process – the removal of a galaxy’s gaseous envelope followed by its slow or delayed
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quenching – is known as “starvation” or “strangulation” (Bekki et al., 2002; Peng et al., 2015).

Starvation provides an explanation for the inhibition of star formation at large groupocentric radii

and for apparent delays to the full quenching of galaxies in groups (Balogh et al., 2000; Wetzel

et al., 2012, 2013; Schawinski et al., 2014). Group tides have also been linked with enhancements

in the central star formation of infalling galaxies (Merritt, 1984; Byrd & Valtonen, 1990).

1.4 Cosmological galaxy simulations

Observations of galaxies can provide powerful constraints for theories of galaxy evolution. How-

ever, an exploration of the interplay of the aforementioned astrophysical and cosmological pro-

cesses necessitates an experimental approach, which may be achieved through the use of numerical

simulations which model the evolution of populations of galaxies in their cosmological contexts

by including prescriptions with which to model the influence of these processes (Baugh, 2006;

Somerville & Davé, 2015; Vogelsberger et al., 2020).

Two main methods are employed for this purpose: semi-analytic models and hydrodynamical

simulations17. Semi-analytic models (e.g. Kauffmann et al. 1993; Somerville & Primack 1999;

Somerville et al. 2008; Cole et al. 2000; Gonzalez-Perez et al. 2014; Henriques et al. 2015, 2020)

separate their treatment of dark matter and of baryons. The growth of large-scale structure, dic-

tated by the gravitation of dark matter, is traced in terms of the hierarchical merging of CDM

haloes and subhaloes, based either on collisionless N-body simulations (e.g. Springel et al. 2005b;

Boylan-Kolchin et al. 2009; Klypin et al. 2011) or on statistical considerations (e.g. Kauffmann

& White 1993; Lacey & Cole 1993; Somerville & Kolatt 1999). Analytical prescriptions which

capture the effects of astrophysical and cosmological processes like gas accretion, star formation,

and feedback are then used to infer the evolution of the integrated baryonic properties of galaxies

in the context of these merger trees. These prescriptions, which may have either a theoretical or

an empirical basis, are validated by their combined ability to reproduce the observed galaxy pop-

ulation. Semi-analytic models are relatively efficient, given that only the dark matter components

of galaxies are simulated numerically. In addition, model variations may readily be generated by

applying different analytical prescriptions to the same underlying merger trees.

Recent advances in computing power have enabled the application of hydrodynamical simulations

(e.g. Dubois et al. 2014; Vogelsberger et al. 2014; Schaye et al. 2015; Davé et al. 2016, 2019;

Pillepich et al. 2018), which fully and self-consistently model the evolution of the baryonic com-

17“Zoom” simulations are a subclass of hydrodynamical simulations which remodel small regions within cosmo-

logical simulations (containing e.g. groups or individual galaxies) at higher resolution in order to facilitate a closer

examination of the astrophysical processes at play (e.g. Katz & White 1993; Martig et al. 2009, 2012; Hopkins et al.

2014, 2018; Bahé et al. 2017; Barnes et al. 2017).
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ponents of galaxies (including their distributions within galaxies) alongside that of their dark mat-

ter components. The addition of hydrodynamics comes at considerable computational expense,

which, along with the requirement of modelling a cosmologically representative population of

galaxies, limits the resolution of hydrodynamical simulations. Hence, “sub-resolution” prescrip-

tions (e.g. Springel & Hernquist 2003; often similar in their design to the analytical prescrip-

tions used in semi-analytic models) are added to implement astrophysical processes that operate

at scales that are not resolved, such as (again) star formation and feedback. The influence of these

sub-resolution prescriptions is commonly calibrated to reproduce key observational results (e.g.

the z = 0 GSMF in Schaye et al. 2015); their subsequent ability to reproduce other observational

results to which they are not calibrated (e.g. galaxy morphologies) constitutes a prediction, and

may be used to validate hydrodynamical simulations. Differences between the outputs of hydrody-

namical simulations are driven mostly by differences between their sub-resolution prescriptions;

for example, while some simulations distinguish between the two modes of AGN feedback (see

Section 1.3.1; Pillepich et al. 2018), others do not (Schaye et al., 2015), leading to differences

between their resultant galaxies in terms of gas retention and star formation activity (Davies et al.,

2020b). The focus of the remainder of this section will be on hydrodynamical simulations.

Cosmological simulations have played an increasingly significant role in the study of galaxy evo-

lution over time. The widespread acceptance of the ΛCDM cosmological model was driven by the

successes of dark-matter-only simulations in recreating the large-scale structure of the Universe

(Springel et al., 2006). More recently, hydrodynamical simulations have highlighted the prominent

role of feedback processes in regulating star formation. Early such simulations were subject to the

spurious “overcooling” of their gas (Balogh et al., 2001), leading to star formation that was too

efficient, and to present-day galaxies whose stellar masses were too high and whose morphologies

were too spheroidal (Navarro & Steinmetz, 2000; Scannapieco et al., 2009). The development of

prescriptions that implement stellar and AGN feedback (e.g. Dalla Vecchia & Schaye 2012; Wein-

berger et al. 2017) has been instrumental in bringing the stellar masses and the morphologies of

galaxies in hydrodynamical simulations closer to those of observed galaxies in the real Universe

(e.g. Schaye et al. 2015; Pillepich et al. 2018).

Previous studies have tended to validate hydrodynamical simulations in the context of one or two

features at a time. Examples include stellar masses, colours, star formation rates, dust content,

sizes, morphologies, and kinematics (Trayford et al., 2015; Furlong et al., 2015; Camps et al.,

2016; Kaviraj et al., 2017; Trayford et al., 2017; Nelson et al., 2018; Genel et al., 2018; Donnari

et al., 2019; Rosito et al., 2019; Rodriguez-Gomez et al., 2019; van de Sande et al., 2019; Bignone

et al., 2020). However, these features are all intricately interrelated. Disentangling the influence

of the astrophysical processes that drive the coevolution of these features requires that several of

them are examined simultaneously. This multi-dimensional validation may be enabled through the

use of machine learning techniques.
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1.5 Summary

This chapter has offered an overview of the field of galaxy evolution. Astronomical observations

over the last century have revealed a rich diversity among the galaxy population. Survey astronomy

has, more recently, exposed bimodalities and dichotomies in the distributions of galaxy features,

and this has begotten a simple empirical paradigm of galaxy evolution. Galaxies, as they evolve

from low to high stellar masses, generally go from being actively star-forming and disc-dominated

to being passive and bulge-dominated, and the manner in which they do so is linked with their en-

vironments. An array of theoretical processes have been proposed as drivers of this diversity and

of this empirical paradigm. Large-scale cosmological processes are responsible for the formation

of galaxies, and continue to have a significant external impact upon their evolution into their later

lives. Galaxies are also subject to internal processes that operate on smaller scales. All of these

theoretical processes act in concert, affecting the growth, star formation activity, and morpholo-

gies of galaxies, and constraining their individual influence is an open problem in extragalactic

astrophysics. Cosmological, hydrodynamical simulations of galaxies have recently highlighted

the importance of feedback mechanisms in the regulation of star formation. However, disentan-

gling the interplay of evolutionary processes requires that many galaxy features are examined at

once. Such multi-feature analysis is enabled by machine learning.

1.6 This thesis

The remainder of this thesis proceeds thusly. In Chapter 2, I introduce the application of machine

learning techniques to astronomical and astrophysics contexts, focusing on clustering and dimen-

sionality reduction – the techniques that are explored in subsequent chapters – and on their prior

uses in studies of galaxy evolution. I also motivate my selection of particular algorithms for the

work presented in this thesis. In Chapter 3 (supplemented by Appendix A), I trial the use of the k-

means clustering method on a pilot sample of galaxies from the GAMA survey. Galaxies are char-

acterised using five intrinsic astrophysical features, with a view to establishing the interpretability

of the clustering structures of the pilot sample in terms the present understanding of galaxy evo-

lution. I build on the work of Chapter 3 in Chapter 4 (supplemented by Appendix B), applying

the same clustering approach to facilitate a comparison of simulated galaxies from the cosmolog-

ical, hydrodynamical EAGLE models with observed galaxies from the GAMA survey. The aims

are two-fold: to discern the utility of clustering as a tool for the multi-dimensional validation of

cosmological galaxy simulations, and to use the simulated galaxies to make inferences about the

evolution of observed galaxies (if they have been accurately recovered by the simulations). In

Chapter 5 (supplemented by Appendix C), I use clustering to compare samples of galaxies at low

and intermediate redshifts, in order to examine the cosmic evolution of subpopulations of galaxies.
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Galaxies are characterised for the clustering in terms of their rest-frame UV-through-NIR colours

only, to establish the extent to which the SEDs of galaxies encode their evolutionary states and to

assess clustering for the analysis of galaxy catalogues from deep photometric cosmological sur-

veys. Finally, in Chapter 6, I summarise the work presented in this thesis, offer conclusions, and

discuss prospects for future work.
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Chapter 2

An overview of machine learning

Machine learning techniques are computer algorithms that aim to discover patterns in input data,

and to use these patterns to construct models with which to make predictions about yet-unseen

data. While many such techniques are closely related to statistical methods that have been estab-

lished for hundreds of years already (e.g. Bayes 1763; Legendre 1805), the emergence of machine

learning as an analytical paradigm in its own right began with the development of artificial neu-

ral networks in the mid-to-late Twentieth Century (McCulloch & Pitts, 1943; Rosenblatt, 1957;

Werbos, 1975; Fukushima, 1980). The general rise in interest in machine learning techniques

since the turn of the Millennium has been driven by advances in computing power, and by the

publishing of large catalogues of labelled observations which enable the validation of supervised

machine learning models (e.g. LeCun et al. 1998; Deng et al. 2009). The continued increase of

astrophysical data volumes into unprecedented regimes (e.g. ∼ 20 TB per night from the Legacy

Survey of Space and Time; Ivezić et al. 2019) demands a scalable approach to data analysis, and

machine learning techniques represent a promising solution; their application to the morphological

classification of galaxies constitutes a pertinent example of their utility.

Historically, the morphologies of galaxies have been classified by expert observers, working either

individually or in small teams of . 10, in accordance with schemes like the Hubble sequence. Ex-

amples of catalogues that have been compiled in this manner include those published by Sandage

(1961), de Vaucouleurs et al. (1991), Fukugita et al. (2007), Nair & Abraham (2010), Oh et al.

(2013), Kelvin et al. (2014a, 2018), and Moffett et al. (2016), which each list between 102 and

104 galaxies. Hubble-like morphological classifications are particularly scientifically useful, but

are time-consuming to assign, involving the close examination of images of galaxies. Hence, the

assembly of catalogues of classifications for more than ∼ 104 galaxies by small teams of experts

is impractical. The Galaxy Zoo project (Lintott et al., 2008) innovated upon this approach by

amassing morphological classifications from up to 105 citizen scientists at a time. Galaxy Zoo
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catalogues, listing morphological classifications for galaxies from various surveys (Lintott et al.,

2011; Willett et al., 2013, 2017; Simmons et al., 2017) and from simulations (Dickinson et al.,

2018), contain between 104 and 106 galaxies. Crowd-sourcing, however, also has its limits; ∼ 14

months were required to reach the necessary number of independent classifications for each of the

∼ 200, 000 galaxies in Galaxy Zoo 2 (Willett et al., 2013). Next-generation galaxy surveys, such

as those that will be delivered by Euclid (Laureijs et al., 2011) and the Vera C. Rubin Observatory

(Ivezić et al., 2019), will observe yet more galaxies (∼ 109). In order to scale up to this regime, the

assignment of morphological classifications will need to be quicker still, and automated. While

simple, quantitative morphologies meet these criteria (and have previously been measured for up

to ∼ 106 galaxies at a time; e.g. Simard et al. 2011), it is machine learning techniques that have the

potential to produce morphological descriptions of galaxies with a comparable fidelity to Hubble-

like morphological classifications (Lahav et al., 1995; Ball et al., 2004; Huertas-Company et al.,

2008, 2011, 2015, 2019; Banerji et al., 2010; Dieleman et al., 2015; Walmsley et al., 2020). Fur-

thermore, while fulfilling the demand for scalable approaches to data analysis, machine learning

techniques also invite a renewed examination of our understanding of astrophysics due to their

ability to distill complex, multi-dimensional input data into interpretable models.

Two main types of machine learning techniques are distinguished: supervised techniques and un-

supervised techniques1. Supervised techniques are useful for mapping existing domain knowledge

onto new data. A supervised classification algorithm, for example, may assign labels to previously

unseen observations after being trained on pre-labelled observations. Unsupervised techniques,

on the other hand, demonstrate substantial promise for exploration and discovery because they are

less reliant on prior knowledge than supervised techniques. An unsupervised clustering algorithm,

for example, assigns labels to observations in accordance with their similarity to one another (i.e.

the distances between observations in terms of the features used to represent them). Unsupervised

techniques, then, construct models that are driven purely by the structure of input data, and require

no training. They may therefore be said to express the “natural” structure of the input data, rather

than expressing structures imposed upon it by assumptions that are explicitly built into the use

of supervised techniques. The use of unsupervised techniques does, though, incorporate implicit

assumptions, and the precise definition of similarity can vary between techniques. Ensuring the

astrophysical utility of these models therefore requires carefully considered choices of algorithm

and features.

In the remainder of this chapter, I provide a brief description of concepts involved in clustering

(Section 2.1) and in dimensionality reduction (Section 2.2), which are the two machine learning

1While supervised techniques are suitable for fully labelled input data, and unsupervised techniques for input data

with no labels, semi-supervised techniques (Zhu, 2005) combine aspects of both to enable the analysis of partially

labelled input data by assuming relationships between unlabelled and labelled observations (e.g. that unlabelled obser-

vations are likely to share the label of their nearest labelled observation).
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techniques that are most relevant to the work presented in this thesis. The literature on previous

applications of these techniques within astronomy and astrophysics is vast; hence, my literature

review (Section 2.3) focuses on studies of galaxy evolution. Various metrics exist with which

to measure distances between observations in multi-dimensional feature spaces; throughout this

thesis, I use Euclidean distances only. Further comments on concepts mentioned in this chapter

are included throughout the remainder of this thesis (see Sections 3.1, 5.2, A.1, B.1, C.1, and C.3

in particular). Finally, I summarise this chapter in Section 2.4.

2.1 Clustering

Clustering is an unsupervised machine learning technique that aims to partition N observations in a

D-dimensional feature into k clusters. Observations are partitioned in accordance with their intrin-

sic similarity to one another; their distances from one another in the D-dimensional feature space.

Hence, clustering algorithms do not require any training on pre-labelled observations. Clustering

algorithms vary in their definitions of a cluster and of similarity, and will find different clusters ac-

cordingly. I distinguish between three main methods of clustering in this thesis: prototype-based

clustering, density-based clustering2, and model-based clustering.

Clusters determined by prototype-based clustering methods are defined by singular, central points:

their prototypes. Observations are assigned to their nearest prototype, with the assignments con-

stituting cluster memberships. The prototype of a cluster is given by a measure of the central ten-

dency of its members (e.g. mean, median). The positions of prototypes are optimised iteratively

(via Expectation-Maximisation; Dempster et al. 1977) in order to minimise the distances (and

maximise the similarities) between the observations and their prototypes. As a result, prototype-

based clustering methods tend to produce spherical clusters with similar sizes to one another, and

cannot effectively model true clusters (i.e. clusters that actually exist in the input data) that do not

match this description. The outcomes of prototype-based clustering methods are only locally opti-

mal, so repeated, randomised initialisations are commonly used to find the global optimum (Arthur

& Vassilvitskii, 2007). An advantage of prototype-based clustering algorithms is their simplicity,

which means that they may robustly scale to large samples and high dimensionalities. The number

of prototypes and clusters, k, must usually be specified in advance of the use of these methods.

Various strategies may guide the selection of optimal values of k, including compactness- and

stability-based approaches (Liu et al., 2010; von Luxburg, 2010; Lisboa et al., 2013). Examples of

prototype-based clustering methods include k-means (MacQueen, 1967; Lloyd, 1982), k-medoids

(Kaufmann & Rousseeuw, 1987), and affinity propagation (Frey & Dueck 2007; which does not

require that k is specified in advance).

2This includes, in this thesis, what is also known elsewhere as connectivity-based clustering.
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Density-based clustering methods determine clusters using thresholds in inter-observation dis-

tances3. Different approaches are used to connect observations and thereby construct clusters,

from single-linkage (i.e. clusters include all observations that lie within a given distance of their

nearest observation) to neighbourhood-based criteria (i.e. requiring that cluster members are sur-

rounded by a given number of other cluster members, within a distance threshold). Density-based

methods are versatile in that they can model clusters with arbitrary shapes and sizes. While not

requiring that k is set in advance (like most prototype- and model-based methods), they instead

require the assertion of thresholds in inter-observation distances or densities. Density-based clus-

ters are difficult to evaluate, due to the lack of prototypes with which to compare cluster members

(though stability-based approaches may still be used for evaluation). The lack of prototypes (and

of any estimated cluster parameters) also means that the identities of density-based clusters can

be less clearly defined than those of clusters determined via other methods. Furthermore, they

do not scale well to high dimensionalities, at which observations become uniformly sparse (the

“curse of dimensionality”; Bellman et al. 1957). Examples of density-based clustering methods

include hierarchical clustering (Ward Jr., 1963; Sibson, 1973), and the DBSCAN (Ester et al., 1996;

Schubert et al., 2017) and HDBSCAN (Campello et al., 2013) algorithms.

Model-based clustering methods assume that the structure of input data may be described using a

mixture of k probability density functions. Observations are assigned probabilities of belonging to

each of the k functions, and clusters, corresponding to each of these functions, comprise observa-

tions that are most likely to belong to each function. Like prototype-based methods, model-based

methods tend to require the specification of k in advance of their use. Model parameters for

each of the functions, such as means, standard deviations, and mixture proportions (in the case

of Gaussian density functions), are then optimised iteratively using an Expectation-Maximisation

approach. Model-based clustering methods are flexible; their iterative adaptation of the model pa-

rameters means that they can adapt to accommodate a variety of cluster shapes and sizes (although

they cannot model concave shapes, like density-based clustering methods can). They exhibit poor

scalability with increasing samples sizes and dimensionalities, due to the accompanying increase

in the number of model parameters that must be estimated. Model-based clusters are relatively

straightforward to evaluate, via measurement of the quality of fit of the model to the input data.

However, the use of these methods incurs a risk of overfitting through the use of too many model

components. Hence, evaluation of clusters determined via model-based methods also tends to

penalise the number of model parameters in order to favour simpler models (e.g. Schwarz 1978;

Biernacki et al. 2000). Examples of model-based clustering methods include Gaussian Mixture

Models (McLachlan & Basford, 1988) and Subspace Expectation-Maximisation (Bouveyron &

Brunet, 2012).
3Density-based clustering methods are similar in their design to group-finding methods (such as the “Friends-of-

Friends” algorithm; Geller & Huchra 1983; see also Section 1.1) that are used to identify overdensities of galaxies in

physical space.
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Figure 2.1: Examples of prototype-, density-, and model-based clustering outcomes in three simple two-

dimensional data sets. Clustering is conducted using the k-means method, the DBSCAN algorithm, and a

Gaussian Mixture Model respectively. Black points in panels showing density-based clustering outcomes

are points that have been designated as “noise” by DBSCAN.
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Figure 2.1 shows examples of clustering outcomes determined in three simple two-dimensional

data sets using each of these three main methods. Prototype-based clustering is conducted us-

ing the k-means method (k = 2; initialisation per Arthur & Vassilvitskii 2007), density-based

clustering using the DBSCAN algorithm (ε = 0.04, minimum cluster size of 20), and model-based

clustering using a Gaussian Mixture Model (k = 2; k-means-based initialisation; full covariance

freedom). All three methods are similarly successful in partitioning the trivial data set in the left

column of Figure 2.1, which consists of two well-separated true clusters. Only density-based

clustering is able to accurately partition the more complicated concave structure of the data set in

the middle column. Prototype- and model-based clustering methods produce inaccurate partitions

because the structure of the input data is inconsistent with the assumptions of these methods re-

garding the structures of clusters. It should, however, be noted that the ability of prototype- and

model-based methods to partition complicated data structures (such as that of the middle column

in Figure 2.1) improves as the number of clusters is increased. This is because the additional

clusters may be used to segment such data structures. This effect is exploited throughout Chapters

3-5, and care is taken to ensure that the resultant clustering outcomes are robustly reproducible

and astrophysically meaningful. Finally, only model-based clustering is able to partition the data

set in the right column satisfactorily, giving a curved boundary between the two overlapping true

clusters. Prototype-based clustering, due to its tendency to produce clusters of similar sizes, ap-

proximately bisects the data set. Density-based clustering, unable to define a boundary between

the two overlapping true clusters, groups them together as one.

Clustering is appealing because it is descriptive, modelling the structure of input data directly with-

out using any explicit prior notion of any classes that might exist. Choice of clustering method and

of features will, however, implicitly influence the clusters that emerge. Features must offer suf-

ficient discriminating information to the model while avoiding redundancies and overfitting, and,

as outlined above, different clustering methods are suited to modelling different data structures.

Hence, it is necessary to select an appropriate combination of features and algorithm for a given

clustering situation. These choices may be informed by both domain-specific knowledge (perti-

nent scientific theory), and an awareness of the strengths and weaknesses of different clustering

methods.

2.2 Dimensionality reduction

For N observations in a D-dimensional feature space, dimensionality reduction aims to determine

a d-dimensional subspace (where d < D, and usually with 1 ≤ d ≤ 3 for visualisation purposes)

within which to represent these observations, while incurring a minimal loss of information in do-

ing so. Different methods vary in their definition of information, and in how they aim to preserve
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it in the subspace that they determine. Both supervised and unsupervised methods exist. I distin-

guish between two main types of dimensionality reduction methods in this thesis: linear methods

and non-linear methods.

The subspaces determined by linear methods of dimensionality reduction are linear projections

of full, D-dimensional feature spaces. The d subspace features are linear combinations of the D

original features, and so the relationship between the subspace and full space is clearly defined.

This enables observations that were not used for the dimensionality reduction to be mapped onto

the subspace afterwards. Principal component analysis (Pearson, 1901; Hotelling, 1936) is an

unsupervised method which, by calculation of the eigenvectors of the covariance matrix of input

data, yields D perpendicular components which successively capture the maximum remaining

variance in the input data. The projection of observations onto the first d of these components

yields a subspace which encompasses largest share possible (in d dimensions) of their overall

variance. Linear discriminant analysis, on the other hand, is a supervised method which maximises

the variance between the prototypes of labelled observations which occupy k classes. Because the

positions of k class prototypes in a D-dimensional full space may be described using k − 1 vectors

(assuming that one prototype is taken as the origin), d ≤ k−1 for subspaces calculated using linear

discriminant analysis.

Various non-linear methods exist. The architectures of both self-organising maps (Kohonen, 1982)

and auto-encoders (LeCun, 1987; Bourlard & Kamp, 1988; Kramer, 1991) are based on artificial

neural networks, which enables the preservation of global structures within the input data when

mapping it onto a subspace, and makes these methods useful for pre-processing. Methods like

Sammon (1969) projection, t-distributed stochastic neighbour embedding (van der Maaten & Hin-

ton, 2008) and uniform manifold approximation and projection (McInnes et al., 2018) are instead

based directly on inter-observation distances, and aim to preserve the local structures of obser-

vations with their transformation from D-dimensional full feature spaces to d-dimensional sub-

spaces. While these methods do not produce models with which to map new observations (i.e.

that were not used for the dimensionality reduction) onto subspaces4, they can produce powerful

visualisations which assist in the interpretation of input data (see Section 6.1).

2.3 Literature review

A common aspect among previous studies that have examined the use of clustering methods on

samples of galaxies has been the comparison of clustering outcomes with the established early-

versus late-type morphological dichotomy. Ellis et al. (2005), hierarchically clustering 350 galax-

ies from the Millennium Galaxy Catalogue (Liske et al., 2003) using 10 photometric and morpho-
4Although a neural network, for example, may be trained to learn this mapping.
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logical features (including colours and central concentrations), found that a two-cluster outcome

that correlated with Hubble-like classifications offered the most natural description of their sam-

ple. Barchi et al. (2016), specifically examining two-cluster outcomes given by the k-means and

hierarchical clustering methods, determined a similarly broad morphological distinction for a sam-

ple of 1, 962 galaxies that were characterised by a set of five morphological features. They found

that their clustering outcomes could predict simple Galaxy Zoo morphologies with ∼ 90 per cent

accuracy overall. Hocking et al. (2017, 2018) directly analysed the images of ∼ 60, 000 galaxies

from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (Grogin et al., 2011;

Koekemoer et al., 2011; Skelton et al., 2014). Their clusters, given by the hierarchical clustering

of a graph-based representation of their sample, also offered a clean early- versus late-type divi-

sion and demonstrated good agreement with Galaxy Zoo classifications (Simmons et al., 2017).

In addition, the high number of clusters that were determined (∼ 1, 000) enabled the discovery of

rare objects. Martin et al. (2020), building upon this work, applied the same method to a sample of

galaxies from the Hyper Suprime-Cam Subaru Strategic Programme (Aihara et al., 2018a,b), used

the k-means method to derive clear morphological identities for their ∼ 160 clusters, and evaluated

these clusters using silhouette scores (Rousseeuw, 1987) and trends with ancillary features (e.g.

colours, stellar masses). Spindler et al. (2020) used an auto-encoder to learn a summary set of 20

morphological features from SDSS images, and a Gaussian Mixture Model to discern 12 clusters

on the basis of these features. Their outcomes were evaluated against Galaxy Zoo 2 classifications

(Willett et al., 2013). Use of an auto-encoder also enabled the generation of synthetic images

from parameters estimated by the Gaussian Mixture Model. Cheng et al. (2020), also working

with SDSS pixel data, combined an auto-encoder with k-medoids and hierarchical clustering to

determine 27 clusters which predicted Oh et al. (2013) morphological classifications with ∼ 87

per cent accuracy.

Sánchez Almeida et al. (2010) adopted a particularly exploratory stance, using the k-means method

to cluster the spectra (in a 1, 637-dimensional feature space) of 788, 677 galaxies from SDSS.

They converged upon a 28-cluster outcome following a trial-and-error model selection search,

with 99 per cent of their sample being contained within 17 “main” clusters. The strong imbalance

in the sizes of their clusters (spanning three orders of magnitude in the number of galaxies that

they contained, in base 10) likely resulted from the extremely high dimensionality of their input

feature space. Their clusters correlated closely (as would be expected) with spectral features (e.g.

colours, emission lines), and also exhibited a trend with Hubble sequence morphologies. Sánchez

Almeida et al. (2010) proposed the use of their cluster prototypes as templates for the estimation

of redshifts and the imputation of missing data. de Souza et al. (2017) applied a Gaussian Mixture

Model to find four main clusters of galaxies in a three-dimensional feature space that incorporated

the axes of two two-dimensional emission-line diagrams (Baldwin et al., 1981; Cid Fernandes

et al., 2010, 2011). Their model differed slightly from the classical view of emission-line galaxies,
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distinguishing two types of star-forming galaxies and grouping Seyfert galaxies with those that

host low-ionisation nuclear emission line regions.

Siudek et al. (2018b) used clustering to partition galaxies observed by the VIMOS Public Extra-

galactic Redshift Survey (VIPERS; Scodeggio et al. 2018). They chose the Subspace Expectation-

Maximisation, which implements a clustering approach called the “Discriminative Latent Mix-

ture” model. The approach incorporates dimensionality reduction via linear discriminant analysis

as it iterates rather than as a part of any preparation of input data ahead of clustering. This ensures

that improvements to the estimated parameters of the model are adaptive, and that the clustering

uses only the most important information encoded within the input features. They aimed to estab-

lish the ability of Subspace Expectation-Maximisation to find a naturally-defined, astrophysically

meaningful partition in terms of their input features: spectroscopic redshifts and 12 rest-frame

UV-through-NIR colours. In this sense, their approach amounted to an unsupervised machine

learning manifestation of SED estimation. The 12 clusters that they found revealed substructure to

the colour bimodality of galaxies, and correlated with a variety of astrophysical features including

stellar masses and morphologies. Their final outcome was evaluated using a series of quality-of-

fit criteria and the hierarchical structure of outcomes with different k. Their study was repeated

using photometric redshifts in place of spectroscopic redshifts, demonstrating that a meaningful

partition may be determined using photometrically-derived features alone Siudek et al. (2018a).

Further comments on this work are made in Chapter 5 and Appendix C.

Principal component analysis has a rich history of application in studies of galaxy evolution. Its

use on galaxy spectra, which have particularly high dimensionalities, was pioneered by Sodré &

Cuevas (1994) and Connolly et al. (1995) on samples consisting of 24 and 70 galaxies respec-

tively. From the first two principal components of the spectra of 2dFGRS galaxies, Madgwick

et al. (2002, 2003) manufactured a feature (η) which, by way of its correlation with emission

line and absorption line strengths, summarised their current star formation activity. Yip et al.

(2004), analysing ∼ 170, 000 SDSS galaxies, and Marchetti et al. (2013), analysing ∼ 30, 000

VIPERS galaxies, derived template eigenspectra for spectral classification and imputation. Ellis

et al. (2005), parallel to their clustering work (see above), revealed via principal component anal-

ysis that their 10 photometric and morphological features each generally captured an even share

of the variance of their sample. They also demonstrated, using linear discriminant analysis, a

clear separability of E and S0 galaxies from late-type galaxies. Principal component analysis has

enabled the excision of sky emission from SDSS images (Wild & Hewett, 2005) and the robust

identification of post-starburst galaxies from spectra and SEDs (Wild et al., 2007, 2009, 2014).

Cochrane & Best (2018) used principal component analysis to distinguish the differential roles of

mass quenching and environment quenching upon the evolution of centrals and satellites from a

cosmological, hydrodynamical simulation in terms of their stellar masses, halo masses, and SFRs.
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Self-organising maps have also proved popular with extragalactic astrophysicists. Molinari &

Smareglia (1998) used them to isolate early-type group galaxies in a four-dimensional photomet-

ric feature space. Geach (2012), exploring their potential for the pre-processing of survey data,

demonstrated their utility in source classification and photometric redshift estimation on the ba-

sis of multi-wavelength photometry. Masters et al. (2015) suggested refinements to photometric

redshift calibration strategies for upcoming large scale cosmological surveys (like Euclid) by us-

ing self-organising maps to highlight regions of their photometric feature space that yielded less

reliable photometric redshifts. Nolte et al. (2018) projected a 41-dimensional sample of 7, 356

galaxies from the GAMA survey onto a two-dimensional 20-by-20 self-organising map, and con-

cluded that Kelvin et al. (2014a) and Moffett et al. (2016) morphological classifications were not

cleanly separable in their map. Hemmati et al. (2019) and Davidzon et al. (2019), studying obser-

vations and simulations respectively, applied self-organising maps for the inference of the physical

properties of galaxies from their colours and SEDs, with a view to bypassing the need for the full

estimation of the SEDs of galaxies. Steinhardt et al. (2020), by way of the t-distributed stochastic

neighbour embedding of 30 bands of photometry onto two dimensions, were able to make a finer

distinction between passive and dusty galaxies than that which would be possible through the use

of traditional colour-colour plots.

2.4 Summary

Much of the interest in machine learning techniques within astronomy and astrophysics has been

targeted at supervised techniques (Ball & Brunner, 2010; Baron, 2019), with a view to scaling

existing astrophysical knowledge up to next-generation sample sizes. However, the use of unsu-

pervised techniques has also been explored, and, among these, clustering and dimensionality re-

duction have shown significant potential in terms of their scientific utility. As motivated in Chapter

1, the aims of this thesis are to assess the use of clustering for the study of galaxy evolution. Hence,

I focus on prototype- and model-based clustering algorithms, whose clear cluster identities will

assist in the astrophysical interpretation of clustering outcomes. The k-means method is a simple,

robust, and versatile clustering approach, and it is employed for the exploratory work presented in

Chapters 3 and 4. In Chapter 5, I switch to Subspace Expectation-Maximisation, whose model-

based clusters are freer to vary in their shapes and sizes. In addition, the move to a feature space

of a higher dimensionality in Chapter 5 (nine, up from five in preceding chapters) is addressed by

the inclusion of iterative dimensionality reduction in Subspace Expectation-Maximisation.
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Chapter 3

Reproducible k-means clustering in
galaxy feature data from the GAMA
survey

The work presented in this chapter and in Appendix A has been published in Turner et al. (2019).

See also the Publications page of the front matter of this thesis.

In this chapter, I test the viability of the k-means method as a galaxy classification solution for the

next generation of extragalactic surveys and as a tool with which to explore feature spaces of high

dimensionalities using a redshift- and magnitude-limited pilot sample of 7, 338 galaxies from the

GAMA survey. I represent the sample using a preliminary selection of five features. I comment

on how this preliminary feature selection influences the clusters that I find in the pilot sample, and

how the selection might be improved for future studies. Cluster identities are discussed in terms

of the input clustering features, by comparison with Hubble-like morphological classification, and

in relation to the local environmental densities of the galaxies that they contain.

This chapter proceeds as follows. In Section 3.1, I describe my k-means implementation and my

cluster evaluation method. In Section 3.2, I outline the pilot sample and feature selection. In Sec-

tion 3.3, I present and analyse clustering results, and in Section 3.4, I summarise and conclude this

chapter. This chapter is supplemented by Appendix A, in which I use a simple two-dimensional

simulation to explain my use of stability for cluster evaluation (Section A.1), examine the stability

of the clustering results in the context of bootstrap resampling of the pilot sample (Section A.2),

and present examples of images of the galaxies in each of the clusters comprising each of the

outcomes that I examine in the chapter (Section A.3). Where required in this chapter, I assume a

(H0, Ωm, ΩΛ) = (70 km s−1 Mpc−1, 0.3, 0.7) cosmology.
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3.1 k-means and cluster evaluation

The k-means method is an unsupervised clustering approach that aims to partition a sample of

N observations, represented in a D-dimensional feature space, into k compact, spherical clusters.

Each of the clusters (a set of observations C) is characterised by its centroid (c̄); its arithmetic

mean in each of the D features. The standard k-means implementation (“k-means”; MacQueen

1967; Lloyd 1982) is a simple, fast algorithm comprising three steps:

0. Initialise: k initial centres are selected (e.g. uniformly at random) from the observations.

1. Assign: the observations are assigned to their nearest centre (by Euclidean distance); these

assignments are clusters.

2. Update: the centroid of each assignment is calculated; these become the new, updated cen-

tres.

Steps 1 and 2 are iterated until the algorithm converges; until there are no further differences

between subsequent iterations. The convergence of k-means to a clustering outcome is provably

always finite (Selim & Ismail, 1984), with a complexity O(NDki) and generally requiring far

fewer iterations (i) than there are observations (Duda et al., 2000). The final assignment of the

observations may be taken as a classification scheme. The resultant partition of the sample is

a Voronoi tessellation based on the final centroids. The final centroids are cluster prototypes: a

k-point characterisation of the sample.

By iteratively recalculating the centroids, k-means inherently minimises the Sum of SQuare resid-

uals Within (S S QW; Equation 3.1; i.e. variance within) each of its clusters. The k-means defini-

tion of a cluster follows: clusters are data structures that are compact and separated (and therefore

accurately characterised by their centroids), such that they have a lower S S QW. The total S S QW

of a set of k-means clusters, φ (Equation 3.2), may be applied as an overall measure of their clus-

tering quality. A consequence of the minimisation of φ is that k-means tends to produce clusters

of similar sizes in the feature space. This is called the “uniform effect” (Liu et al., 2010), and

it acts equally in all dimensions, leading also to spherical (rather than extended) clusters. It is

common to normalise data to mitigate the influence of this effect on the results of k-means.

S S QW j =
∑
c∈Cj

||c − c̄j||
2. (3.1)

φ =

k∑
j=1

S S QW j =

k∑
j=1

∑
c∈Cj

||c − c̄j||
2. (3.2)
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k-means is a local search heuristic: the behaviour of the centres as the algorithm iterates is dictated

by those observations in their vicinities. Therefore, the outcome of k-means is dependent on the

input initialisation. A common initialisation technique is to select k observations from the sample

uniformly at random. However, different such random initialisations may result in different, locally

optimal clustering outcomes. It is computationally impractical to search for the global optimum

in all of the kN clustering permutations of a large sample. Hence, when presented with different

outcomes generated from different runs of k-means with the same k on the same sample, it is

standard practice to select as the optimal outcome that with the lowest φ.

To mitigate the local dependency of k-means, I apply the random initialisation technique of Arthur

& Vassilvitskii (2007) in all of my runs of the algorithm. It spreads out the initial centres, making

the subsequent results of k-means more competitive with globally optimal outcomes. The first

of the k centres is selected from the sample with uniform probability. Subsequent centres are

then selected with an increasing probability at larger distances from all preceding centres. This

encourages optimisation to separated clusters. Whilst this initialisation is slower than a uniformly

random initialisation, it generally yields a faster convergence over the iteration steps, resulting in

a lower overall computation time for k-means.

3.1.1 Stability

A key consideration with applying k-means is the use of a suitable value of k; this is required as

an input to the algorithm. k-means will always converge to an outcome, even in the absence of

clustering structure in the sample. Assuming the sample has a clustering structure, it is generally

the case that ktrue, the true number of clusters in a given sample, is not known. It may even be

that the true clusters in a sample have a hierarchical structure, such that there are several unknown

values of ktrue. Hence, it is common to trial clustering on a sample at several values of k and

to identify good values for modelling the true clustering structure of the sample post-clustering.

Comparing these results necessitates an additional, alternative measure of clustering quality; φ

decreases systematically as k increases because more clusters occupy the same sample.

I identify good values of k based on the stability of their clustering outcomes (von Luxburg, 2010;

Lisboa et al., 2013). Specifically, I examine the stability of outcomes in spite of random initial-

isations, which may result in different clustering outcomes. Outcomes at some values of k may

be more or less different to one another than outcomes at other values of k. Those values of k at

which outcomes are more similar to one another are more stable; k-means consistently converges

to similar outcomes, which implies a clustering structure in the sample at those values of k.

Stability may be understood by considering the behaviour of the k-means centres as the algorithm

iterates. A key expectation is that if there is at least one centre in each of the ktrue clusters at
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initialisation, then the centres will remain within those true clusters as k-means proceeds (Bubeck

et al., 2012). For k = ktrue, the centres will then settle to the centroids of the true clusters, in

accordance with the algorithm’s inherent minimisation of φ. For k > ktrue, this key expectation

means that true clusters containing more than one centre at initialisation will be split. For k < ktrue,

where this key expectation does not hold, centres may move between true clusters and lead to

mergers. The exact splits and mergers that occur are dependent on the locations of the centres

at initialisation and will therefore change with different initialisations. It is important to note

that when k = ktrue, the Arthur & Vassilvitskii (2007) initialisation technique facilitates the ideal

situation in which the ktrue clusters contain one centre each at initialisation. I demonstrate these

concepts using a simple two-dimensional simulation in Section A.1.

To measure the difference between a pair of clustering outcomes at the same k, I use Cramér’s V

index of association (Cramér, 1946). My use of the index in the context of stability is denoted

with the symbol Vs:

Vs =

√
χ2

N · (k − 1)
. (3.3)

Here, χ2 is the chi-squared value for two clustering outcomes (categorical variables A and B)

on the same sample, each consisting of the same number (k) of unique labels. It is calculated

(Equation 3.4) using a k × k contingency table (a.k.a. cross tabulation), comparing the observed

frequency of observations (o) in each cell (a, b) with its expected frequency (e = N/k2; equal in

every cell) given a null hypothesis of independence of the two outcomes. I provide examples of

contingency tables and of the calculation of their corresponding χ2 and Vs values in Section A.1.

χ2
A,B =

∑
a,b

(oa,b − ea,b)2

ea,b
. (3.4)

Vs is normalised, reporting χ2 as a square-root-scaled fraction of its maximum possible value

given N (the number of observations in the sample) and k. It ranges from 0 for no agreement

(i.e. the outcomes are independent; agreement is consistent with uniform random chance) to 1 for

perfect agreement. In practice, k-means cannot produce outcomes that disagree to the extent that

Vs = 0. I assess the stability of an individual clustering outcome by calculating its median Vs with

respect to other outcomes at the same k. I assess the stability of a set of clustering outcomes at the

same k by examining their distribution in median Vs (see Figures 3.4, A.5, and A.6). Stability also

enables the determination of whether there is no clustering structure in the sample (i.e. no ktrue),

as no particular value of k will stand out from the others as being particularly stable.
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3.2 The pilot GAMA sample

I use data from phase II of the Galaxy And Mass Assembly (GAMA) survey (Driver et al., 2009,

2011; Liske et al., 2015). The main aim of the survey is to study cosmic structure on scales of

1 kpc to 1 Mpc in the context of CDM models of the Universe. The survey is structured around

its spectroscopic campaign, conducted at the Anglo-Australian Telescope using the AAOmega

spectrograph (Sharp et al., 2006), and based on an input catalogue defined by Baldry et al. (2010).

The spectroscopy provided reliable heliocentric redshifts for ∼ 238, 000 objects to a limiting r-

band Petrosian magnitude of 19.8 and across five regions covering a total area of 286 deg2. It has

been supplemented with reprocessed imaging in 21 bands from a variety of other surveys (e.g.

SDSS) that overlap with the GAMA spectroscopic campaign footprint (the Panchromatic Data

Release; Driver et al. 2016). Data derived from these spectra and images are listed in tables hosted

at http://www.gama-survey.org/.

I derive my pilot sample from the well-characterised sample of Moffett et al. (2016) (listed in

the GAMA survey table VisualMorphologyv03) with a view to facilitating the interpretation

of clustering results, particularly by comparison with results from other, previous GAMA survey

studies. It is a flow-corrected-redshift- (0.002 < z < 0.06) and magnitude- (rPETRO < 19.8)

limited sample of 7, 556 local objects that have been morphologically classified using the method

of Kelvin et al. (2014a). Note that while I intend to compare clustering outcomes with these visual,

Hubble-like morphologies (see Section 3.3), I do not aim to reproduce them.

The Kelvin et al. (2014a) method assigns classifications by the consensus of three expert observers,

whose visual inspection of optical three-colour images of galaxies is guided by a decision tree.

The tree discriminates galaxies firstly as being either spheroid- or disc-dominated, and secondly

as consisting either of a single component or of multiple components. The tree goes on to discern

multiple component galaxies with bars from those without, but I ignore this distinction in this

chapter due to the relatively low number of barred galaxies in my pilot sample (∼ 4 per cent of

all of the galaxies have bars). An examination of bars in the context of clustering is reserved for

a future study, though, due to the significant role they play in the evolution of any barred galaxy

(see Section 1.3.1).

The two levels of the tree that I do consider lead to four morphological types: E, S0-a, Sab-Scd,

and Sd-Irr. A fifth type, “Little Blue Spheroid” (LBS), is identified separately at the top level of

the tree. As star-forming, spheroid-dominated, blue dwarf galaxies, they have been likened to the

blue early-type galaxies of Schawinski et al. (2009a) in that they defy expected galaxy trends with

colour or morphology. Contaminants are also identified at the top level of the tree. There are 25 in

the sample, which are mostly secondary galaxies, partial galaxy structures, or star-galaxy blends.

These are removed from the sample, leaving 7, 531 galaxies.
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Table 3.1: The features used to characterise galaxies, and the survey tables from which they are retrieved.

Feature Unit Table Version Column Reference

Stellar mass M� MagPhys 6 mass stellar best fit Driver et al. 2016

u-r colour mags StellarMassesLambdar 20 uminusr Taylor et al. 2011

Sérsic index - SersicCatSDSS 9 GALINDEX r Kelvin et al. 2012

Half-light radius kpc SersicCatSDSS 9 GALRE r Kelvin et al. 2012

Specific star formation rate yr−1 MagPhys 6 sSFR 0 1Gyr best fit Driver et al. 2016

I then retrieve feature data for the galaxies in the pilot sample. There are hundreds of features

available in the GAMA database with which to characterise the galaxies in the sample. One

may be tempted to find clusters in the sample using all of them at once, in order to provide the

algorithm with as much information as possible. However, as the dimensionality of the feature

space containing the sample increases, the observations become more sparse, and k-means (or any

clustering algorithm) will tend to overfit its clusters to the observations. Representing the sample

using a smaller subset of features instead results in clusters that are more readily generalisable to

the overall galaxy population.

Feature selection may involve both domain-specific knowledge and statistical considerations. I se-

lect features that capture intrinsic properties of galaxies, relating to their formation and evolution,

and aim for a selection that expresses most known aspects of these processes. The redundancy

of features - the extent to which they provide the same information as other features - may be as-

sessed statistically, such as by calculation of their Spearman rank-order correlation coefficients. A

higher correlation between features implies greater redundancy. Redundant features exert a higher

influence over the clusters that k-means finds in that they lead to a projection of the feature space

in which the sample is highly extended in one direction over others (e.g. Figure 3.3). k-means

will therefore tend to split the data along the extended direction of the data due to the uniform

effect. While it is common to discard such features to avoid this bias, retaining them could instead

serve to strengthen a desirable pattern in the data.

Table 3.1 lists the feature data I retrieve and the main GAMA survey tables I access to do so.

Stellar masses (M∗) and Gigayear-timescale specific star formation rates (sSFR) are taken from

MagPhysv06, generated by Driver et al. (2016) from a run of MAGPHYS (Da Cunha et al., 2008)

on all 21 bands of foreground extinction-corrected photometry listed in LambdarCatv01 (Wright

et al., 2016). MAGPHYS estimates SEDs from input redshifts, fluxes, and flux errors using star- and

dust-emission template spectra, and corrects for light-attenuation by dust within galaxies. Rest-

frame u − r colours come from StellarMassesLambdarv20, derived from the same photometry

(Taylor et al., 2011). I select u − r colours for their ability to express the galaxy bimodality in

the colour versus stellar mass plane. Unlike M∗ and sSFR, it does not include corrections for dust

attenuation, meaning clustering outcomes will be influenced in some capacity by the presence of

dust in some of the galaxies in the pilot sample. I take r-band Sérsic indices (ng) and half-light

41



Chapter 3 Reproducible k-means clustering

Table 3.2: The limits for truncation that have been imposed on each of the features. The truncated his-

tograms are viewable in Figure 3.1. Limits marked with an asterisk do not actually exclude any galaxies.

Feature Units Lower Upper

M∗ log10(M�) 6 ∗12

u − r mags 0.3 2.7

ng log10(n) −0.6 1.2

R1/2 log10(kpc) −1.0 ∗1.5

sSFR log10(yr−1) −14 −8

radii (R1/2) from SersicCatSDSSv09, whose derivation is described in Kelvin et al. (2012) and is

based on reprocessed SDSS imaging (Hill et al., 2011). The accuracy of Sérsic indices is expected

to be consistent throughout the pilot sample due to the low redshifts of the galaxies therein (Vika

et al., 2013).

Matching for data in all features leaves 7, 516 galaxies in the sample, with 15 lost due to incom-

pleteness. My use of features derived primarily from broad-band photometry facilitates a compar-

ison of clustering results with a wide range of other surveys. This feature selection is preliminary,

and I comment on the consequences of it for clustering later in this section and in Section 3.3, and

on the potential for optimising feature selection in Section 3.4.

The half-light radii listed in SersicCatSDSSv09 are presented in units of arcseconds, which are a

function of the distances to the galaxies as well as of their intrinsic sizes. Flow-corrected redshifts

(DistanceFramesv12; Baldry et al. 2012) are used to convert these angular radii to intrinsic

kiloparsec radii.

A series of transforms are applied to standardise the data, with the intention of avoiding unintuitive

partitions due to the uniform effect, and of granting equal weight to all of the features. The distri-

butions of all of the features except u − r colour are strongly skewed in linear units. The centroids

that k-means iteratively recalculates are sensitive to the uneven tails of skewed distributions. I

therefore ensure that all features are represented in logarithmic units (see Table 3.2), as it typical

in the astrophysics literature.

Outliers in the sample are more readily apparent when examining the distributions of each of the

features in logarithmic units. In order to mitigate the influence of outliers on the calculation of

centroids by k-means, the sample is truncated in each of the features, removing galaxies that lie

outside given limits. The limits that are imposed are listed in Table 3.2. While some of these limits

have been set simply by inspection of histograms of the sample in each of the features, others have

also involved astrophysical considerations. For example, the limits in Sérsic index have been set to

eliminate subcomponent fits, or fits affected by light from sources near the galaxy that was fitted.

Removing 198 outliers from the sample leaves 7, 338 galaxies.
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Figure 3.1: A profile of the pilot sample. It is represented using histograms and scatter plot projections.

The dashed lines mark “classical” distinctions between the two main populations of galaxy (see text). The

mean ( f̄ ) and standard deviation (σ̄) of the sample in each feature is also listed in the upper right of the

figure, in the units shown on the axes.
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This now constitutes the final pilot sample, which I profile in Figure 3.1. Histograms and scatter

plots are used to show the distribution of the sample in one- and two-dimensional projections.

These distributions reveal a dominance of low-mass, blue, star-forming galaxies with low Sérsic

indices in the sample. Most features exhibit significant secondary components to their distribu-

tions. The bimodality of galaxies is visible in several of the scatter plot projection panels.

I include dashed lines in Figure 3.1 which mark “classical” distinctions from the literature that

have been made between the two main populations of galaxies. The line in the colour-mass panel

is based on equation 11 of Baldry et al. (2004). I use a solar r-band absolute magnitude of 4.71 and

equation 12 from the same paper to adapt it from applying to magnitudes to applying to masses.

While the original line was calculated using SDSS “model” magnitudes, the LAMBDAR apertures

were set using Source Extractor (Bertin & Arnouts 1996; see also section 6.1 of Wright et al.

2016). Model magnitudes report redder colours than magnitudes derived using top-hat apertures:

I calculate an approximate mean offset of −0.15 over the range of colours in the sample and adjust

the line accordingly. The lines in the scatter panels involving Sérsic indices and u − r come from

Lange et al. (2015). I apply a similar colour offset of +0.4 as the u − r colours in Lange et al.

(2015) are corrected for dust attenuation. The line for sSFR is taken from Pozzetti et al. (2010);

specifically, I take their distinction between passive and non-passive galaxies.

Figure 3.2 shows the distribution of Kelvin et al. (2014a) morphologies in the pilot sample. The

histogram reveals a dominance of late-type morphologies in the sample. The morphological types

are ordered from highest (E) to lowest (LBS) mean stellar mass.

Some features span larger numerical ranges in logarithmic units than the others. For example, M∗
spans six orders of magnitude (base 10) while ng spans 1.8. Given that k-meansminimises φ in all

dimensions, it will tend to split the sample along any direction in which it is extended. To mitigate

any bias of k-means for or against any of the features on this basis, the data is coded in each

of the features using Z-scores. These are more strongly influenced by the centres of the feature

distributions than their extremities1; hence, they are weighted towards the majority of galaxies

near the feature distribution means, rather than the minority of outliers. Here (Equation 3.5), f is

the value of an observation in a given feature, f̄ is the mean value of that feature, σ f is its standard

deviation, and Z f is the Z-score of f :

Z f =
f − f̄
σ f

. (3.5)

1Other normalisation techniques, such as the more common min-max normalisation (which maps features to a

consistent numerical range – usually 0 to 1 – based on their minimum and maximum values), are alternatively influenced

more by the extremities of feature distributions. Min-max normalisation is applied in Chapter 4 where, due to my use

of truncation, it yields similar results to the Z-scores used in this chapter.
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Figure 3.2: Left: Histogram showing the distribution of Kelvin et al. (2014a) and Moffett et al. (2016)

morphologies in the sample. The sample is dominated by late-type morphologies. LBS stands for “Little

Blue Spheroid”. Right: The sample, projected onto the u− r versus M∗ plane, with points coloured by their

measured (left panel) and smoothed (right panel) local environmental densities (Σ5). The small grey points

represent those galaxies for which Σ5 is not available; their bias toward lower masses and bluer colours

is apparent. The dashed black line marks the Baldry et al. (2004) distinction between the blue and red

sequences of galaxies.

Table 3.3: Spearman rank-order correlation coefficients for the features used to represent the sample.

Feature M∗ u − r ng R1/2 sSFR

M∗ 1.00

u − r 0.72 1.00

ng 0.35 0.40 1.00

R1/2 0.55 0.25 −0.04 1.00

sSFR −0.61 −0.83 −0.38 −0.19 1.00

Having been standardised, I assume that k-means will now be able to recover clustering structure

in the sample that reflects the astrophysics involved in the formation and evolution of the galaxies

therein. I now assess my feature selection pre-clustering. In Table 3.3, I show the Spearman rank-

order correlation coefficients for pairs of the five features used to represent the sample. I note that

u − r colours are involved in the two strongest correlations of features (with M∗ and sSFR) for the

sample, suggesting redundancy. I opt to retain it, however, to strengthen the bimodal structure of

the data and because it includes information about the dust content of the galaxies in the sample,

which sSFR does not. I expect that strengthening the bimodality will encourage k-means to search

for more clusters within the two peaks of the bimodality at higher values of k. Other correlations

that exist among my selection of features are weaker and do not suggest any further significant

redundancies.
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Table 3.4: Results of a principal component analysis of the sample.

Feature PC1 PC2 PC3 PC4 PC5

M∗ 0.51 −0.28 −0.02 −0.63 −0.51

u − r 0.53 0.15 −0.32 −0.22 0.74

ng 0.37 0.40 0.84 0.07 0.04

R1/2 0.29 −0.80 0.21 0.44 0.19

sSFR −0.49 −0.30 0.39 0.18 0.40

Relative Variance 0.59 0.21 0.12 0.05 0.03

Figure 3.3: The features as functions of the first two principal components of the sample. The axes are

scaled to show the relative variance that each principal component encompasses. I also represent the sam-

ple using scatter points. The size of the sample in this two-dimensional principal component space is

normalised to fit within the area shown. M∗, u − r, and sSFR are most strongly associated with PC1, while

R1/2 is most strongly associated with PC2. ng is evenly balanced between the two, but is most strongly

associated with PC3, which is not shown.

I also conduct a principal component analysis of the sample, to gain insight into its covariance

structure and to anticipate clustering results. The results of this analysis are listed in Table 3.4.

The results reveal that the structure of the sample is dominated by the first principal component

(PC1), which encompasses 59 per cent of the sample’s variance. This indicates that the sample has

an elongated shape in the five-dimensional feature space. PC1 is defined mostly by those features

that reflect aspects of the stellar populations within galaxies (i.e. M∗, u − r, and sSFR), so these

features are expected to most strongly dictate the clusters that k-means finds. R1/2 and ng are most

strongly associated with PC2 (encompassing 21 per cent of the variance in the sample) and PC3

(12 per cent) respectively. Hence, these features are expected to play a role in dictating clusters at

higher values of k, at which the use of additional centroids enables the algorithm to explore subtler,

more local substructures within the sample. These relationships are clearly apparent in Figure 3.3,

which shows the features and sample as functions of the first two principal components.

Finally, I also retrieve environmental data for the galaxies in the sample in order to probe the

role of environment in dictating the clusters I find via its influence on the features. I choose the

surface density Σ5, defined using the projected comoving distance from a galaxy to its fifth-nearest

neighbour, as a measure of local environmental density (via EnvironmentMeasuresv05; Brough
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et al. 2013). This feature is only available for 4, 195 of the 7, 338 galaxies in the sample if I filter

for a SurfaceDensityFlag of 0, which ensures that the fifth-nearest neighbour of a given galaxy

lies within the GAMA survey footprint. Nearly all of the other 3, 143 galaxies in the sample have

a SurfaceDensityFlag of 2, indicating no neighbours within their distance from the survey edge,

meaning they occupy particularly low-density environments.

These 3, 143 galaxies are not evenly distributed in feature space. Most are blue, low-mass, and

have low Sérsic indices, large radii, and high specific star formation rates, consistent with the

Baldry et al. (2006), Bamford et al. (2009), and Peng et al. (2010) findings that such galaxies tend

to occupy lower-density environments. I comment on the consequences of this incompleteness

for my examination of local environmental densities within clusters where relevant in Section 3.3.

Naturally, confidence in conclusions based on this data would be greater were this data available

for the entirety of the sample.

Figure 3.2 shows the sample projected onto the u − r versus M∗ plane. In the left panel, points are

coloured by their measured Σ5, taken directly from EnvironmentMeasuresv05. In the right panel,

the local environmental densities have been smoothed. The smoothing is calculated by taking the

average Σ5 value of each galaxy and its seven nearest neighbours in the full five-dimensional fea-

ture space. This smoothing is applied to clarify the average trend of the five-dimensional clusters

of galaxies in the two-dimensional u − r versus M∗ plane. It is applied in all of the following

environmental analyses in this chapter. This smoothing inhibits the range of Σ5 for the sample in

the right panel compared with the left. The colour bar levels have been set in order to distinguish

galaxies in intermediate-density environments from those in low- and high-density environments.

Both panels show that the sample is dominated by galaxies in low-density environments. The

Baldry et al. (2004) dashed black line, intended as a separator of the blue and red sequences of

galaxies in this feature plane, traces intermediate densities particularly closely.

3.3 Analysis of stable clustering outcomes

I combine stability and compactness (see Section 3.1) to evaluate k-means clusters in the sample,

adapting the approach of Lisboa et al. (2013). I do not assume a value of ktrue (other than k = 2,

corresponding to the bimodality of galaxies), so I trial k-means clustering at k = 2 through k = 15,

initialising 200 times at each k using the Arthur & Vassilvitskii (2007) technique. I first identify

stable values of k, at which there appears to be a clustering structure in the sample, using Vs (a

measure of the strength of association between two clustering outcomes; Equation 3.3). I then

select the optimal outcome at each of the stable values of k by considering compactnesses.

In Figure 3.4, I map the stabilities of outcomes at different values of k. I calculate the median Vs
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Figure 3.4: Left: Stability map of k-means clustering for the sample at k = 2 through k = 15. I calculate

the median Vs of each outcome with respect to all other outcomes at the same k. The distributions of all 200

medians at each k are represented using histograms plotted along each of the horizontal black baselines.

The heights of the histograms are normalised. Additionally, the means of these distributions are shown as

vertical red lines. Outcomes at k = 2, 3, 5, and 6 are particularly stable. Right: Hierarchy tree showing the

interrelation of k = 2, k = 3, k = 5, and k = 6. The text bubbles, representing the clusters, state the number

of galaxies they contain and are ordered by the clusters’ mean u− r colours from reddest at the top to bluest

at the bottom. The opacity of the red lines expresses how closely related connected clusters at different k

are. The dashed black line separates the basic structure of two “superclusters” that is found at all values of

k.

of each individual outcome with respect to all other outcomes at the same k. The distributions of

all 200 medians at each k are represented using histograms plotted along each of the horizontal

black baselines. The heights of the histograms are normalised. Additionally, the means of these

distributions are shown as vertical red lines. There is a gap across all distributions, appearing

to separate two distinct regimes of outcomes. These regimes are demarcated using the vertical

dashed black line at median Vs = 0.9, but I emphasise that this “threshold” is a product of the

sample and may differ for different samples. The key element for distinguishing between stable

and unstable values of k is the gap.

Values of k at which the distributions are concentrated toward higher median Vs (i.e. at which

more outcomes are more consistent) are more stable. The outcomes at k = 2, 3, 5, and 6 stand out

as being particularly stable. All of the outcomes at each of these values of k have median Vs > 0.9,

except for a single outcome at k = 3. The spread of outcomes at k = 6 corresponds to a maximum

difference of ∼ 100 galaxies (∼ 1.5 per cent of the sample) between outcomes.

The outcomes at k = 4 occupy a highly-peaked bimodal distribution, with a slight majority (123)
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at median Vs > 0.9. The outcomes at k = 7 are similarly distributed with 113 at median Vs > 0.9,

but with a larger spread in its secondary peak. While both distributions exhibit stable components,

a significant number of outcomes in each are unstable. I focus presently on those values of k that

are most uniformly stable, and therefore exclude any outcomes from k = 4 and k = 7 from my

analyses of clustering results.

The distributions of outcomes at higher values of k are centred at lower median Vs and have larger

spreads, meaning they are unstable. The additional centroids used by k-means at these higher val-

ues of k are more strongly influenced by the local structure within the sample at initialisation, such

that the algorithm is more likely to converge to locally (rather than globally) optimal outcomes.

The ability of the Arthur & Vassilvitskii (2007) initialisation approach to mitigate the local depen-

dency of k-means becomes weaker as k increases. The spreads of the outcomes for these unstable

values of k correspond to differences of thousands of galaxies between outcomes. The general

trend of decreasing stability at higher k continues beyond the outcomes at k = 15.

From each of the four values of k that I have identified as being most stable, I select as my final,

optimal outcomes for analysis those with the lowest φ (a measure of the compactness of the clusters

in an outcome; Equation 3.2). I refer to these four “best” outcomes as simply k = 2, k = 3, k = 5,

and k = 6. These outcomes at these values of k retain their stability following application of the

bootstrap method to the sample (Section A.2). The stability map that results from clustering for

which u − r colour is omitted as an input feature has the same general structure as Figure 3.4, but

the distributions of outcomes are systematically offset to slightly lower median Vs at each value of

k.

A hierarchy tree, mapping the interrelation of the best outcomes, is shown in Figure 3.4. The

clusters in each outcome are represented by text bubbles which state the number of galaxies that

they contain. The red lines express how closely related clusters at different k are. The opacities

of the lines scale linearly with the fraction of galaxies in clusters at k + 1 that are also found in

clusters at k. Clusters are ordered vertically at each k by the mean u − r colour of the galaxies

they contain, with the reddest clusters at the top and the bluest at the bottom. It should be noted

that outcomes at different values of k are calculated independently of one another, so hierarchy

is not imposed or assumed at any point in the clustering. Despite this, the best outcomes exhibit

a broadly hierarchical structure. Considering them in sequence, clusters at higher values of k

generally emerge as splits of clusters at lower values of k. There is some mixing present, meaning

some clusters at higher values of k contain galaxies from multiple clusters at lower values at k. This

is especially noticeable between k = 3 and k = 5, though it may be exaggerated by the omission

of an outcome at k = 4 from the plot. The highly peaked bimodal distribution of outcomes in

median Vs at k = 4 (Figure 3.4) arises as k-means settles into one of the two splits that must occur

between k = 3 and k = 5. k = 5 is stable and includes both of these splits, so no information is
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Table 3.5: A summary of all of the clusters in outcomes k = 2, 3, 5, and 6. See the main text for an ex-

planation of cluster names. The uncertainties on the centroids are estimated by application of the bootstrap

method to the sample; this estimation is outlined in detail in Section A.2

Cluster NC log10(M∗/M�) u − r log10(ng) log10(R1/2/kpc) log10(sS FR/yr−1) log10(Σ5/Mpc−2) Loss %

Ra2 2, 116 10.02+0.01
−0.01 2.01+0.00

−0.00 0.37+0.00
−0.00 0.51+0.00

−0.00 −11.35+0.01
−0.01 0.16 30

Ba2 5, 222 8.61+0.00
−0.00 1.24+0.00

−0.00 0.06+0.00
−0.00 0.30+0.00

−0.00 −9.58+0.00
−0.00 −0.21 48

Ra3 1, 651 10.07+0.01
−0.01 2.10+0.01

−0.01 0.45+0.01
−0.01 0.47+0.00

−0.00 −11.64+0.04
−0.02 0.23 30

Bb3 3, 070 9.14+0.02
−0.04 1.39+0.01

−0.02 0.04+0.01
−0.01 0.53+0.01

−0.01 −9.80+0.03
−0.02 −0.15 38

Ba3 2, 617 8.21+0.01
−0.01 1.15+0.01

−0.00 0.09+0.01
−0.01 0.09+0.01

−0.01 −9.44+0.00
−0.01 −0.26 57

Rb5 869 10.46+0.02
−0.04 2.23+0.01

−0.00 0.58+0.01
−0.01 0.60+0.02

−0.03 −11.91+0.04
−0.02 0.18 29

Ra5 920 9.19+0.08
−0.08 1.86+0.04

−0.07 0.26+0.01
−0.01 0.18+0.01

−0.01 −11.30+0.20
−0.10 0.29 29

Bc5 1, 312 9.77+0.04
−0.06 1.61+0.03

−0.03 0.10+0.01
−0.01 0.66+0.01

−0.01 −10.03+0.04
−0.03 −0.15 37

Bb5 2, 744 8.64+0.03
−0.03 1.20+0.01

−0.01 −0.01+0.01
−0.01 0.42+0.01

−0.01 −9.50+0.01
−0.01 −0.22 45

Ba5 1, 493 8.12+0.02
−0.03 1.14+0.01

−0.02 0.16+0.02
−0.02 −0.04+0.01

−0.01 −9.41+0.03
−0.03 −0.28 61

Rb6 771 10.50+0.01
−0.05 2.24+0.01

−0.01 0.60+0.01
−0.01 0.63+0.00

−0.03 −11.91+0.03
−0.11 0.17 29

Ra6 790 9.32+0.03
−0.11 1.94+0.01

−0.05 0.26+0.02
−0.03 0.20+0.00

−0.02 −11.69+0.19
−0.03 0.37 27

Bd6 1, 104 9.90+0.13
−0.06 1.68+0.07

−0.03 0.11+0.03
−0.02 0.66+0.01

−0.01 −10.11+0.03
−0.09 −0.12 37

Bc6 952 8.51+0.07
−0.28 1.30+0.02

−0.09 0.36−0.01
−0.10 0.04+0.03

−0.10 −9.67+0.15
−0.03 −0.21 49

Bb6 2, 454 8.79+0.12
−0.06 1.24+0.04

−0.03 0.00+0.03
−0.01 0.47+0.04

−0.02 −9.58+0.04
−0.05 −0.20 41

Ba6 1, 267 7.98+0.15
−0.03 1.06+0.03

−0.01 −0.04+0.04
−0.03 0.06+0.12

−0.06 −9.27+0.01
−0.05 −0.32 65

lost by the exclusion of an outcome at k = 4 from my analyses.

Furthermore, there is a basic structure of two “superclusters” (separated by the dashed black line)

at all values of k, including the simplest partition k = 2. This indicates the strength of the bimodal-

ity in the structure of the sample. As k increases, k-means favours splitting the blue supercluster

apart over the red supercluster, due mostly to its spread in the features and the higher number of

galaxies in the blue supercluster, in conjunction with the “uniform effect” of k-means.

I introduce a preliminary naming scheme for the clusters based on their correlation with colour.

The scheme is intended as a quick way to identify clusters in the various comparisons and analyses

conducted in this section, rather than as a full description or explanation of cluster identities. My

use of this scheme is not intended to imply that colour is entirely responsible for the clustering

outcomes (though it clearly plays a strong role). Cluster names consist of three parts in the format

“XyZ”. The first part, either “R” (for red) or “B” (for blue), corresponds to the supercluster (upper

and lower respectively in the hierarchy tree in Figure 3.4) to which the cluster belongs. The second

letter ranks the cluster by its mean u−r colour in comparison with those of other clusters within the

same supercluster at the same value of k. Rankings begin at “a” for the bluest cluster, and follow

on alphabetically until all clusters within the supercluster are named. The third part, a number,

indicates the outcome (i.e. the value of k) to which the cluster belongs.
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k-means clusters are defined by their centroids. Table 3.5 summarises the clusters in the best

outcomes (k = 2, 3, 5, and 6). Column NC lists the number of galaxies that each cluster contains.

The next five columns contain the cluster centroids as coordinates in each of the input features,

along with uncertainties estimated by application of the bootstrap method to the sample (see Sec-

tion A.2). The final two columns list the “environment centroid” of the clusters (i.e. the mean

smoothed Σ5 of the galaxies they contain; not a feature used in the clustering), and the percent-

age of galaxies lost from each of the clusters due to incompleteness of environmental data (see

Section 3.2). Sorting the clusters by their mean colours means they are also correlated with sSFR

and M∗ in all four outcomes. This is consistent with the expectation that PC1 (with which these

features are most strongly associated) dictates much of the clustering. Siudek et al. (2018b) also

find a strong correlation of their colour-based galaxy classes (via an unsupervised method) with

stellar masses and star formation activity. ng and R1/2 do not correlate as strongly with the clusters

(when sorted by colour), particularly at higher k, indicating that these features only play a role

in dictating clusters as the number of clusters increases. The broad correlations of these features

with the clusters at lower values of k are due to their correlations with the PC1 features. I also find

a correlation of environmental density with the clusters (when sorted by colour), indicative of the

strong role of environment in quenching.

In order to understand cluster structures, I reprise the panels of Figure 3.1. The original histograms

are omitted to avoid visual clutter, especially at higher values of k. Coloured histograms and

coloured contours are used to show the distribution of the clusters in one- and two-dimensional

projections. The contours are drawn to enclose 75 percent of the galaxies in each cluster. This

level is chosen to strike a balance between generality and accuracy, given that clusters are best

characterised by points near their centres. Cluster centroids are plotted as filled circles of the same

colour. The classical dividers are retained for comparison with the clusters.

In the remainder of this section I describe each of the outcomes in detail.

3.3.1 k = 2

The hierarchy tree in Figure 3.4 shows that k = 2 forms the basic structure of two superclusters

into which the clusters at higher values of k may also be divided, indicating the influence of the

bimodality on the clustering. Table 3.5 reveals that the clusters in k = 2 represent two distinct

populations. Ra2, which contains fewer galaxies than Ba2, is made up of galaxies with higher

masses, redder colours, higher Sérsic indices, larger radii, and lower specific star formation rates

on average. This is consistent with established notions of an overall bimodality of galaxies. Cluster

Ra2 has larger uncertainties on its centroid in all features in comparison with those of Ba2 because

it less dense in feature space.
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Figure 3.5: A profile of k = 2. Clusters are represented using coloured histograms and contours, and their

centroids are marked using filled circles of the same colour.
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E S0-Sa Sab-Scd Sd-Irr LBS
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Figure 3.6: Bubble plot comparing k = 2 (left) and k = 3 (right) with the Kelvin et al. (2014a) and Moffett

et al. (2016) morphological classifications. All bubbles containing more than 5 per cent of the galaxies in

the sample are labelled with the number of galaxies that they contain. The dashed black line separates the

two superclusters that k-means finds.

Figure 3.7: The k = 2 (left) and k = 3 (right) clusters, projected onto the u − r versus M∗ plane, with

points coloured by their smoothed local environmental densities (Σ5). The small grey points represent the

remainder of the sample, as well as those galaxies for which Σ5 is not available (including those within the

clusters highlighted in each panel). Cluster names are shown in the bottom right of each panel. The mean

Σ5 of each cluster is shown in the top left of each panel. The dashed black line marks the Baldry et al.

(2004) distinction between the blue and red sequences of galaxies.
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The k = 2 cluster projections in Figure 3.5 are best separated in panels involving u − r, sSFR,

and M∗. These are the features that are most strongly associated with PC1, which dominates the

covariance structure of the sample in feature space and hence dictates much of the clustering. The

k = 2 cluster projections overlap more in panels involving R1/2 and ng, which are more strongly

associated with PC2 and PC3 respectively. These features play a lesser role in the clustering in

k = 2.

Cluster Ra2 spans the classical dividers (dashed black lines) in all panels of Figure 3.5. While

appearing to represent red sequence galaxies (Baldry et al., 2004; Taylor et al., 2015) and passive

(negligible sSFR) galaxies (Table 3.5), it extends well onto the blue sequence (u−r versus M∗) and

star-forming main sequence (sSFR versus M∗). This is because the cluster boundary that k-means

draws between its two centroids is a hyperplane, equidistant from them both and perpendicular

to the line connecting them. The uniform effect of k-means, which produces clusters of similar

sizes, essentially bisects the sample through PC1, along which the two centroids are evenly spaced.

This gives a coarse partition of the sample. More clusters are needed to properly “resolve” the true

structure, including the boundary, of the bimodality of galaxies.

In Figure 3.6, I use bubble plots to visualise agreement between the clusters and the Kelvin et al.

(2014a) and Moffett et al. (2016) morphological classifications. The left-hand plot shows a con-

siderable overlap of morphologies between the two clusters, verifying the relative weakness of ng

and R1/2 in the clustering in k = 2. This effect is also seen in Figure 3.5, which shows that cluster

Ra2 is indiscriminate with respect to Sérsic indices in comparison with the classical divider. The

broad correlation of clusters with morphological types (e.g. that earlier-type morphologies are

more likely to be found in cluster Ra2; Figure 3.6) arises as a result of the correlation of morphol-

ogy with the PC1 features. This effect is apparent in Figure A.7, which shows that the galaxies in

Ra2 have smoother and more concentrated morphologies.

The mean local environmental densities (Table 3.5) of the k = 2 clusters reveal that the galaxies in

Ra2 occupy denser environments on average than those in Ba2. This is mostly a reflection of the

basic correlation of galaxy mass, colour, and star formation activity with environment, due to the

coarse partition of the sample. A greater fraction of galaxies are lost from Ba2 than Ra2, such that

this difference is likely to be underestimated. The panels in Figure 3.7 project the cluster onto the

u − r versus M∗ plane. Points are coloured by their smoothed local environmental densities (Σ5;

see Section 3.2). Ba2 consists mostly of galaxies in low-density environments. There is a gradual

increase of Σ5 with u− r within Ba2. Ra2 exhibits more of a spread in Σ5, but with a preference for

higher-density environments. This suggests that environmental processes are the more common

mechanism by which galaxies acquire redder colours.
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Figure 3.8: A profile of k = 3. Clusters are represented using coloured histograms and contours, and their

centroids are marked using filled circles of the same colour.
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3.3.2 k = 3

The right-hand plot of Figure 3.4 shows that k = 3 is hierarchical with respect to k = 2; only ∼ 6

per cent of the galaxies in the sample do not follow a clean hierarchy between the two outcomes.

Therefore, much of the clustering structure of k = 3 is derived from that of k = 2. The red

supercluster remains relatively unchanged between the two outcomes. Ra3 contains ∼ 76 per

cent of galaxies that Ra2 contains, and Table 3.5 shows that both clusters share similar identities.

The placement of Ra3 with respect to the classical dividers is improved in most panels, particularly

those involving the PC1 features (M∗, u−r, and sSFR), indicating the strength with which they still

dictate the clustering in k = 3. This improvement is enabled by the split of the blue supercluster,

which has evened out the cluster sizes. The uncertainties on the centroid of Ra3 are generally less

than or equal to those of Ba3 and Bb3 except for in sSFR, which is due to the spread in sSFR of

the passive galaxies in Ra3 (see Figure 3.8).

The main change in k = 3 from k = 2 is that k-means splits the blue supercluster apart into

two clusters: Ba3 and Bb3. The split happens due to the larger number of galaxies within the

blue supercluster. The main features that distinguish these clusters are R1/2 and M∗, in which the

centroids (Table 3.5) differ by 1.42σ and 1.03σ respectively (as opposed to the < 0.50σ differences

in other features). Here, σ is the standard deviation of the sample in a given feature. Figure 3.8

shows that the distributions of the clusters are most distinct in these features as well. Ba3 and Bb3

exhibit very similar distributions in ng and sSFR. While differing in mass and size, galaxies in

both Ba3 and Bb3 are generally star-forming and have diffuse light profiles.

The use of an additional centroid has enabled k-means to explore the subtler variance in the

sample (and in particular, in the blue supercluster) that PC2 encompasses. The particularly low

masses and sizes of the galaxies in Ba3 suggest a distinction by k-means between dwarf galaxies

and larger, more massive galaxies in the blue supercluster. Figure 3.6 appears to confirm this,

showing that the more evolved spiral galaxies in the sample are more likely to be found in cluster

Bb3. Figure A.8 shows that the galaxies in Bb3 have more prominent discs. The clusters still

exhibit significant overlap in morphologies and cluster Ra3 is still indiscriminate with respect to

ng, indicating a continuing relative weakness of ng in dictating the clustering at k = 3.

The galaxies in Ra3 occupy denser environments on average than those in either Ba3 or Bb3 (see

Table 3.5). Figure 3.7 shows that clusters Ba3 and Bb3 are similarly distributed in Σ5. Both are

dominated by low-density environments and exhibit tails towards higher-density environments.

For Bb3, galaxies in low-density environments are found at all masses, suggesting that some galax-

ies are able to evolve to higher masses without any significant change in their morphology (see

Figure 3.6) incurred by, for example, major mergers (Barnes, 1992).
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Figure 3.9: A profile of k = 5. Clusters are represented using coloured histograms and contours, and their

centroids are marked using filled circles of the same colour.
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3.3.3 k = 5

k = 5 is not as cleanly hierarchical with respect to k = 3 as k = 3 is with respect to k = 2 (Figure

3.4). There is mixing between the red and blue superclusters and within the blue supercluster,

which involves ∼ 21 per cent of the galaxies in the sample. This indicates that k-means has

probed an alternative structure of the sample in feature space to that which it finds in k = 2 and

k = 3. My exclusion of an outcome from k = 4 due to instability (Figure 3.4) may exaggerate the

apparent mixing. The bimodal stability of outcomes at k = 4 emerges as k-means settles into a

split in either the red or the blue supercluster, rather than splits in both as in k = 5. Both of these

splits must be made in order to achieve stability, suggesting genuine astrophysical differences

between the galaxies occupying these clusters.

The red supercluster is split into two clusters: Ra5 and Rb5. The features that distinguish these

clusters are M∗, R1/2, and ng, with differences of 1.41σ, 1.35σ, and 1.19σ respectively in their

centroids (see Table 3.5). They are also separated in the sSFR versus u − r plane. Rb5 consists

mostly of evolved galaxies with the highest masses and reddest colours in the sample. Enabled

by the use of additional centroids to probe subtler variances in the sample, k-means has also

now made a morphological distinction between galaxies such that Rb5 contains galaxies with the

highest Sérsic indices as well. This is also apparent in Figures 3.10 and A.9, which respectively

show that Rb5 is made up mostly of early-type galaxies and of concentrated, smooth, spheroid-

dominated galaxies.

Ra5 has a weaker cluster identity. While Rb5 mostly contains galaxies from only one cluster in

k = 3, Ra5 contains galaxies from three. Its centroid has larger uncertainties in most features than

those of the other k = 5 clusters (Table 3.5), and it exhibits a large spread in Figure 3.9, spanning

the red and blue sequences and including both star-forming and passive galaxies. The galaxies

Ra5 contains have red colours and low specific star formation rates like those in Rb5, but to a

lesser extent, suggesting that they are not as evolved. Figure 3.10 reveals that it also contains a

range of morphologies, with even E and Sd-Irr galaxies being grouped together. This suggests a

lack of morphological information in my feature selection, despite the role ng is now playing in

dictating cluster Rb5. I also note an apparent inability of k-means to properly distinguish E and

S0-Sa galaxies. Nolte et al. (2018) find a similar inseparability of these morphological classes in

the same sample using a self-organising map for dimensionality reduction.

The blue supercluster is split again in k = 5. The mixing between k = 3 and k = 5 within the blue

supercluster means the clusters in each outcome do not correspond as strongly to one another. The

galaxies in Ba5 and Bb5 have been distinguished from those in Bc5 by their masses, in which their

centroids both differ from that of Bc5 by > 1σ. Ba5 and Bb5 are similar in terms of the colours and

specific star formation rates of the galaxies they contain. The main distinction between them is in
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Figure 3.10: Bubble plot comparing k = 5 (left) and k = 6 (right) with the Kelvin et al. (2014a) and Moffett

et al. (2016) morphological classifications. All bubbles containing more than 5 per cent of the galaxies in

the sample are labelled with the number of galaxies that they contain. The dashed black line separates the

two superclusters that k-means finds.

their sizes (> 1σ). Figure A.9 shows that Bb5 contains more galaxies with extended discs, while

Ba5 contains more galaxies that are compact. Ba5 contains the vast majority of LBS galaxies in

the sample (Figure 3.10), while Bb5 contains a significant number of more evolved spiral galaxies.

Bc5 differs from the other two clusters in the blue supercluster, containing relatively massive and

large galaxies with reduced star formation. The intermediate colours of the galaxies in Bc5, and its

location in the colour-mass plane in particular are consistent with previous descriptions of green

valley galaxies (Salim et al., 2007; Schawinski et al., 2014). The low Sérsic indices of the galaxies

in Bc5 in comparison with those of the galaxies in the red supercluster are due to the presence of

prominent discs (see Figures 3.10 and A.9). Bc5 hence contains spiral galaxies at the later stages

of their evolution.

Just as the use of additional centroids has enabled k-means to make finer distinctions between

galaxies in terms of the features are used to describe them, it has also led to a finer view of the role

of environment in influencing the clusters. The galaxies in clusters Ba5, Bb5, Bc5 mostly occupy

low-density environments (Table 3.5 and Figure 3.11). Meanwhile, clusters Ra5 and Rb5 generally

contain galaxies in higher-density environments. Notably, the average local environmental densi-

ties of galaxies in clusters Bc5 and Ra5 differ, despite the fact that these clusters are adjacent in all

panels of Figure 3.9 and span both the blue and red sequences in the left-hand plot in Figure 3.11.

I suggest that these “green valley” clusters, Ra5 and Bc5, each mostly contain galaxies on differ-

ent evolutionary pathways (Peng et al., 2010; Schawinski et al., 2014). The evolution of galaxies
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Figure 3.11: The k = 5 (left) and k = 6 (right) clusters, projected onto the u − r versus M∗ plane, with

points coloured by their smoothed local environmental densities (Σ5). The small grey points represent the

remainder of the sample, as well as those galaxies for which Σ5 is not available (including those within the

clusters highlighted in each panel). Cluster names are shown in the bottom right of each panel. The mean

Σ5 of each cluster is shown in the top left of each panel. The dashed black line marks the Baldry et al.

(2004) distinction between the blue and red sequences of galaxies.
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in Ra5, whose distribution in Σ5 is skewed toward higher densities, is dominated by external pro-

cesses (see Section 1.3.2), which both transform their morphologies and inhibit their star formation

on short timescales. Examples of external processes include major (Barnes, 1992) and minor merg-

ers (Toomre & Toomre, 1972), and ram-pressure stripping (Gunn & Gott, 1972). These processes

are likely to be responsible for the early-type morphologies (Figures 3.10 and A.9), red colours,

and inhibited star formation rates (Figure 3.9) in Ra5. In addition, these processes have previ-

ously been invoked to explain the build-up of the low-mass end of the red sequence by quenching

satellites (Wetzel et al., 2012, 2013; Muzzin et al., 2013).

Cluster Bc5, which is dominated by galaxies in lower-density environments, appears to contain

galaxies that are dominated in their evolution by internal processes (see Section 1.3.1). Internal

processes include feedback from stars (Geach et al., 2014; Hayward & Hopkins, 2017) and AGN

(Croton et al., 2006; Somerville et al., 2008) which drives star-forming gas out of galaxies, and

morphological quenching (Martig et al., 2009), in which bulges at the centre of late-type galaxies

stabilise their discs against collapse and thereby prevent further star formation. The high masses

(Figure 3.9) and prominent bulges (Figure A.9) of the galaxies in Bc5 seem to confirm the domi-

nance of these internal processes, particularly of AGN feedback, in their evolution.

The difference in the morphologies of the galaxies in Ra5 and Bc5 is consistent with Schawinski

et al. (2014), who find a morphological dichotomy of galaxies in the green valley. The spread

in morphologies in Ra5 may arise due to both its large spread in Σ5, and the short timescales of

morphological transformations. The dominance of galaxies with high Σ5 in Rb5 suggests a pref-

erence of external processes for moving galaxies onto the red sequence over time. The additional

presence of galaxies in low-density environments in Rb5 suggests that galaxies evolving mostly

via internal processes will also converge on the red sequence at high masses, though.

3.3.4 k = 6

k = 6 is once again more strongly hierarchical with respect to k = 5 than k = 5 is with respect

to k = 3; ∼ 15 per cent of galaxies mix between k = 5 and k = 6. Clusters are more readily

comparable with those in k = 5, from which most of their structure is derived. The clusters in the

red supercluster retain their identities in terms of their centroids (Table 3.5), distributions (Figure

3.12), and morphologies (Figure 3.10) between k = 5 and k = 6 and remain mostly unchanged.

Similarly, Bd6 matches well with Bc5, as does Bb6 with Bb5.

The main changes between k = 5 and k = 6 are at the blue end of the blue supercluster. Ba6 and

Bc6 both have low masses and small radii. They differ most significantly in ng (1.34σ), appearing

to indicate a morphological distinction between disc-dominated galaxies in Ba6 and spheroid-

dominated galaxies in Bc6. While Figure 3.10 reveals a significant degeneracy of morphological
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Figure 3.12: A profile of k = 6. Clusters are represented using coloured histograms and contours, and their

centroids are marked using filled circles of the same colour.
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classifications in these clusters, the distinction is more apparent in Figure A.10. The classification

degeneracy may arise partially due to the difficulty incurred in visually classifying intrinsically

faint objects. Bc6 contains some potentially spurious spheroid-dominated E galaxies, which could

explain some of the difference in ng between Ba6 and Bc6. Further morphological information in

my feature selection may lead to a clearer distinction between galaxies at the blue end of the blue

supercluster.

Clusters Ba6, Bb6, and Bd6, which all contain discy galaxies (Figures 3.10 and A.10) in mostly

low-density environments (Figure 3.11), appear to form a continuum of galaxy evolution along the

blue sequence. This continuum appears to be dictated by internal processes, given the increase in

mass and bulge prominence along the sequence of consistently low Σ5. The environments of the

galaxies in Bc6 are also low-density, though they have an early-type morphology, suggesting that

they may have formed differently. There is a significant tail of this cluster toward intermediate

densities, suggesting that they may be in the early stages of morphological transformation due to

environmental effects. Their origin and fate is unclear (Schawinski et al., 2009a).

The agreement of the clusters with the classical dividers has improved considerably as k has in-

creased. At k = 6, the clusters align particularly well with established notions of a fundamental

bimodality of galaxies, which is expressed using the dashed black lines in Figure 3.12. Cluster

Ra6 still spans the dividers in some panels, though this may be due to the rapid timescales of the

morphological transformations that the galaxies it contains are likely undergoing, such that they

exhibit a larger spread in the features.

3.4 Summary and conclusions

I report the results of a test of the k-means clustering method as a galaxy classification solution for

the unprecedentedly large surveys of the future and as a tool for exploring feature spaces of high

dimensionalities. It is tested on a redshift- and magnitude-limited pilot sample of 7, 338 galaxies

from the GAMA survey, which is represented using a preliminary selection of five features: stellar

mass, u − r colour, Sérsic index, half-light radius, and specific star formation rate. Analyses of

correlations and covariances between features reveal that stellar mass, u − r colour, and specific

star formation rate dominate much of the structure of the sample in the feature space and hence

dictate much of the clustering. I rescale, truncate, and normalise the sample ahead of clustering

to mitigate a) the influence of outliers on results, and b) bias toward any of the features based on

skewed distributions or large numerical ranges.

I apply the k-means method, which partitions data into k clusters, in the context of a unique cluster

evaluation approach that enables the robust identification of stable clustering structure in spite of
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stochastic effects, including the random initialisations of k-means and bootstrap resampling. My

clustering approach is highly scalable, taking just ∼ 3 minutes per values of k for the present

samples using a single core on a laptop computer. I find that the local galaxy population is stably

divisible into 2, 3, 5, and a maximum of 6 clusters. I select optimal clustering outcomes from each

value of k for analysis, and reach the following conclusions:

1. Clusters in all four of the best outcomes agree with established notions of the bimodality of

galaxies. Agreement improves as k increases. The use of additional centroids to model the

data structure of the sample in feature space enables a more detailed view of the bimodality

via k-means. At higher values of k, there are distinct clusters that appear to follow different

evolutionary pathways through the green valley. While M∗, u − r, and sSFR dictate most

of the clustering structure in all four of the best outcomes, ng and R1/2 play an increasingly

strong role at higher k as k-means uses the additional centroids to explore subtler substruc-

tures in the sample.

2. Though I do not aim to reproduce any existing classification schemes with the clusters,

there is a general agreement of the clusters with the Kelvin et al. (2014a) and Moffett et al.

(2016) Hubble-like morphological classifications of the galaxies in the sample. At low k,

this agreement is mostly due to the correlation of morphology with stellar mass, u−r colour,

and specific star formation rate, which dictate the majority of the clustering. This suggests a

relative lack of morphological information among my feature selection. At higher k, though,

it is found that k-means is able to explore subtler substructures in the sample and make

genuine morphological distinctions between galaxies using Sérsic index. The addition of

further morphological features to my selection is anticipated to improve these distinctions

further.

3. Analysis of the local environmental densities of the galaxies in the clusters in outcomes

k = 5 and k = 6 especially suggests the differential roles of internal and external processes

in galaxy evolution. Those clusters containing more galaxies in high-density environments

also contain more galaxies with early-type morphologies, with their spreads in morphologies

suggesting rapid morphological transformation and their reduced sSFRs indicating quench-

ing. Clusters containing galaxies in low-density environments are found along the whole

blue sequence, such that some galaxies are able to evolve to the highest masses while re-

taining a disc-dominated morphology. Clusters in the blue sequence appear to form an evo-

lutionary continuum, whose galaxies are dominated in their growth by internal processes.

There is an apparent preference for externally driven evolution of low-mass (M∗ < 1010 M�)

galaxies onto the red sequence. An availability of this environmental data for the entirety

of the sample would significantly strengthen these (or alternative) conclusions regarding the

role of environment in the evolution of galaxies.
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I endorse k = 6 as being the most useful outcome for its ability to both capture the broad bi-

modal structure of the galaxy population in feature space and identify finer distinctions within this

bimodality that highlight the differential role of environment in the evolution of galaxies.

While the concurrent use of too many features may lead to undesirable effects such as overfitting

and redundancy, it is clear that my feature selection may be improved by the addition of further

information. The inclusion of morphological features like asymmetry or distance-independent

smoothness (Conselice, 2003), the Gini coefficient (Abraham et al., 2003), or those derived from

two-component fits might yield stronger cluster identities and further disentangle the roles of in-

ternal and external evolutionary processes, particularly with respect to clusters Ra5 and Ra6 which

both contain a spread of morphologies. Wijesinghe et al. (2010) show that morphological infor-

mation from multiple bands of photometry also incorporates information about the distributions

stellar populations within galaxies and how they have evolved. The inclusion of spectroscopic fea-

tures would also improve clustering results and cluster interpretation. In particular, emission-line

diagnostics (Baldwin et al., 1981; Lamareille, 2010) could highlight the role of AGN in galaxy

evolution, and the strength of the 4000 Å break (Poggianti & Barbaro, 1997) could include galaxy

stellar ages in cluster identities. In general, it appears that an optimal feature selection will consist

of a combination of features derived from both photometry and spectroscopy.

My feature selection for the work in this chapter is preliminary, and based mostly on astrophysical

domain knowledge. While some simple statistical consideration is applied (Spearman rank-order

correlations, and a principal component analysis), a variety of other methods are also available (see

e.g. chapter 2 of Aggarwal 2014) for feature selection and feature extraction (i.e. the manufacture

of features) which may further improve clustering results.

The pilot sample is well-characterised by a number of previous studies, facilitating the interpreta-

tion of the clusters that are found, but it is small and limited to low redshifts. While the sample

suffices for an initial test of k-means and my cluster evaluation approach, a more thorough test

would be to apply the framework to a larger sample of galaxies, constituting a more complete rep-

resentation of the diversity of galaxies in the local Universe. SDSS would be particularly suitable

given the wealth of ancillary features available, and especially given, for example, its overlap with

the Galaxy Zoo project which would enable more detailed study of morphologies within clusters.

Furthermore, clustering a sample of galaxies spanning a greater range of redshifts, or a comparison

of clusters in different redshift bins, invites the examination of the evolution of clusters themselves

over cosmic time.

I conclude by emphasising that my cluster evaluation approach is malleable. It may readily be

adapted for use with any algorithm and any sample to identify stable clustering structure. I test

stability against random initialisations and application of the bootstrap method to the sample, but

the approach may also be applied in the context of other Monte Carlo methods.
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Testing a cosmological galaxy
simulation with unsupervised machine
learning

The work presented in this chapter is the subject of a paper that is in preparation for submission to

Monthly Notices of the Royal Astronomical Society. See also the Publications page of the front

matter of this thesis.

In this chapter, I detail the results of a comparison of a sample of simulated galaxies from the

Evolution and Assembly of GaLaxies and their Environments (EAGLE) project (Schaye et al.,

2015; Crain et al., 2015) with a sample of observed galaxies from the GAMA survey (Driver et al.,

2009). Galaxies in both samples are characterised using five features that are relevant to all as-

pects of galaxy evolution: stellar mass, specific dust mass, specific star formation rate, size, and

bulge-to-total ratio. Thus, I aim to probe the structures and distributions of the samples within this

shared five-dimensional feature space, and to offer astrophysical explanations for the similarities

and differences between them. Identifying and quantifying these similarities and differences con-

stitutes a robust, multi-dimensional validation of the EAGLE project. I apply the same clustering

approach as in Chapter 3 – it is described in full in Section 3.1).

The remainder of this chapter proceeds as follows. In Section, 4.1 I outline the collection and

preparation of the data for both of the samples, taking measures to ensure a fair comparison. In

Section 4.2, I present results and consider their implications. Finally, in Section 4.3, I summarise

this chapter and offer conclusions. Where required in this chapter, I assume the (H0, Ωm, ΩΛ)

= (67.77 km s−1 Mpc−1, 0.307, 0.693) cosmology of the Planck Collaboration et al. (2014), as

implemented within the EAGLE simulations.
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4.1 Samples

In this section, I describe the collection and preparation of the data for my two samples. I take the

observed sample as the reference sample, and intend the simulated sample to match it, though in

practice, the samples influence the construction of one another. I represent both samples with the

same (or as close to being the same as is practical) feature set: stellar mass, specific (fractional)

dust mass, specific star formation rate, size, and bulge-to-total ratio.

4.1.1 The GAMA survey

I construct the observational sample of galaxies using data from the third data release (DR3) of

the GAMA survey (Driver et al., 2009, 2011; Liske et al., 2015; Baldry et al., 2018). The survey

as a whole is introduced in Section 3.2. I gather feature data for the GAMA survey sample from

two DR3 data tables: MAGPHYSv06 and BDDecompv02. MAGPHYSv06 contains outputs from the

application of the spectral energy distribution (SED) fitting code MAGPHYS (Da Cunha et al., 2008)

to the self-consistent extinction-corrected matched-aperture photometry listed in LAMBDARCatv01

(Driver et al., 2018). LAMBDARCatv01 was generated by the application of the photometric code

LAMBDAR (Wright et al., 2016) to the reprocessed imaging collated for the Panchromatic Data Re-

lease. MAGPHYS uses template spectra that model the emission of optical light by stars (Bruzual

& Charlot, 2003) and far-infrared light by dust (i.e. attenuated and then reemitted; Charlot &

Fall 2000) in a given galaxy to estimate its SED based on fits of those spectra to input photome-

try. From MAGPHYSv06, I take the median stellar masses (M∗), dust masses (Md), and Gigayear-

timescale specific star formation rates (sSFR) given by the probability density functions of fits

to the LAMBDARCatv01 photometry. The dust masses are converted to specific (fractional) dust

masses (sMd) by dividing by the stellar masses in order to eliminate any linear dependence on

stellar mass.

BDDecompv02 lists outputs from the application of the image analysis codes ProFit (Robotham

et al., 2017) and ProFound (Robotham et al., 2018) to Kilo-Degree Survey (KiDS; de Jong et al.

2015, 2017) r-band images of z < 0.08 galaxies in the three equatorial regions of the GAMA

survey. ProFound, whose functions include sky subtraction and source extraction, was used to

reduce the KiDS images and provide initial estimates of the final BDDecompv02 outputs. ProFit

was then used to optimise these estimates, using both gradient descent and Markov Chain Monte

Carlo samplers in the context of various fits. I take half-light radii (R1/2,l) derived from single-

Sérsic fits, and bulge-to-total light ratios (B/Tl) derived from two-component fits consisting of

a Sérsic bulge and an exponential disc. The half-light radii are converted from arcseconds to

kiloparsecs using flow-corrected redshifts (DistanceFramesv12; Baldry et al. 2012). The z <

0.08 restriction set by the inclusion of feature data from BDDecompv02 matches well with the
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Table 4.1: The bounds that are imposed on the feature data for the inclusion of galaxies in both samples.

They are intended to exclude outliers and long marginal tails from the sample distributions, and thereby

mitigate their influence on the clustering outcomes.

Feature Units Lower Upper

M∗ log10(M�) 9.5 12.0

sMd log10(M∗/Md) −6 −1

sSFR log10(yr−1) −13.00 −8.75

R1/2,l or R1/2,m log10(kpc) −0.3 1.6

B/Tl or B/Tm - 0 1

z = 0 restriction that is explicitly set for the EAGLE sample.

Table 4.1 lists bounds that are imposed upon the feature data for the inclusion of galaxies in both

samples. The intent with these of bounds is to exclude outliers and long marginal tails from the

feature distributions, and thereby mitigate their influence upon the clustering outcomes. This is

more important for the GAMA sample, whose feature data is subject to the influence of observa-

tional noise. Hence, my choices of bounds are guided mostly by the GAMA sample. My choice of

lower stellar mass bound, which is instead guided by the EAGLE sample, is addressed in Section

4.1.2. Imposing these bounds leads to a final GAMA sample of 3, 724 galaxies.

Differences in numerical ranges spanned by the feature distributions within these bounds would

influence the clustering outcomes (see Section 3.1). To mediate these differences, I rescale the

feature data such that each distribution spans the range 0 to 1. This rescaling is based on the

minimum and maximum values of the distributions themselves, rather than the bounds that are

imposed in Table 4.1 (some feature distribution do not extend all of the way to these bounds).

Hence, it equalises the “volumes” of both samples within their feature spaces while also mitigating

any bias of k-means towards any of the features based purely on a larger numerical range.

The environments of the galaxies in the GAMA sample are characterised using surface densities

(Σ5), which are listed in EnvironmentMeasuresv05 (Brough et al., 2013). Σ5 is determined

with respect only to galaxies among what is called “the density defining population” (absolute

r-band magnitudes < −20, with an additional redshift-dependent correction), and with respect

only to galaxies within 1, 000 km s−1 of the galaxy under consideration along the line of sight. It

is calculated using the projected comoving distance to the galaxy’s fifth-nearest neighbour. For

those galaxies with fewer than five neighbours within their distance from the edge of the survey

footprint (d f ), it is calculated using the distance to the farthest available neighbour. For those

galaxies with zero neighbours within d f , it is simply calculated as 1/(πd2
f ). In both of these latter

two special cases, the calculated surface density should be taken as an upper limit.

3, 715 of the 3, 724 galaxies in the GAMA sample are listed in EnvironmentMeasuresv05. Five

68



Chapter 4 Testing a cosmological galaxy simulation

of these galaxies lie within incomplete regions of the GAMA survey footprint; Σ5 was not mea-

sured for these galaxies so they are omitted from the environmental analysis. 1, 037 of these

galaxies have zero neighbours within their distance from the edge of the survey footprint, so their

surface densities are calculated as outlined above and are taken as upper limits. For the remaining

2, 673 of these galaxies, Σ5 is calculated exactly using their fifth-nearest neighbours.

4.1.2 The EAGLE simulations

The Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulations (Schaye

et al., 2015; Crain et al., 2015) are hydrodynamical, cosmological models of the formation and

evolution of galaxies in a flat ΛCDM Universe based on fundametal parameters measured by the

Planck Collaboration et al. (2014): ΩΛ = 0.693, Ωm = 0.307, Ωb = 0.048, and H0 = 67.77 km

s−1 Mpc−1. The outputs of the EAGLE simulations have been publicly released (McAlpine et al.,

2016) and are available at http://virgodb.dur.ac.uk/. The simulations were run using the N-

body Tree-PM smoothed particle hydrodynamics code GADGET3, an earlier version of which was

described by Springel (2005). The updated version of the code that was used to run the EAGLE

simulations featured changes to its hydrodynamics and time-stepping (Schaller et al., 2015), and

its subgrid prescriptions, which model the effects of astrophysical processes (e.g. star formation,

stellar feedback, active galactic nucleus feedback) that operate below the resolution limits of the

simulations. Schaye et al. (2015) described these subgrid prescriptions in full in section 4 of their

paper. The specific details of the subgrid prescriptions, and the resolution limits below which they

were implemented, varied among the EAGLE simulations.

I construct the simulated sample of galaxies using the z = 0 outputs of the RefL0100N1504

simulation. This was one of several fiducial EAGLE simulations (denoted by the prefix “Ref”)

which were run in various volumes using exactly the same subgrid prescriptions and at a stan-

dard resolution. The standard resolution EAGLE simulations were designed to just about re-

solve the Jeans mass and length in the warm component (T ≈ 104 K) of the interstellar medium

(ISM). RefL0100N1504 had a cubic volume of side length 100 comoving Mpc, the largest volume

modelled by the EAGLE simulations. It contained 15043 dark matter particles, each with mass

9.70 × 106 M�, and initialised with the same number of baryonic particles, each with initial mass

1.81 × 106 M�. In addition, the Plummer-equivalent gravitational softening length was set to 2.66

comoving kpc until z = 2.8, and to 0.7 proper kpc (pkpc) after that.

I gather feature data for the EAGLE sample from several of the publicly released data tables.

Stellar masses (M∗) are taken from Aperture. I opt for the stellar masses within 30 pkpc of the

centres of galaxies due to their agreement with observed galaxy stellar mass functions (GSMFs)

(Schaye et al., 2015), including the GAMA survey GSMF (Baldry et al., 2012). Spherical half-
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Figure 4.1: The effect of the addition of observational noise to measurements of sSFR for galaxies in

the EAGLE sample. The upper panel shows the distribution of sSFR for observed galaxies in the GAMA

sample (with Table 4.1 bounds applied). The middle panel shows the distribution of original EAGLE

measurements of sSFR. Simulated galaxies with sSFR = 0 yr−1 are plotted at log10(sS FR/yr−1) = −13.5.

The lower panel shows the distribution of sSFR for simulated galaxies in the EAGLE sample following the

addition of observational noise to the data (see main text). Galaxies with sSFR = 0 yr−1 are set to having

log10(sS FR/yr−1) = −12 before the addition of this noise. The addition of this noise makes the distribution

of sSFR for the EAGLE sample much more readily comparable with that of the GAMA sample.

mass radii (R1/2,m; Furlong et al. 2017), based on these 30 pkpc stellar masses, are taken from

Sizes. Dust masses (Md), derived from restframe submillimetre fluxes calculated with the radia-

tive transfer code SKIRT (Baes et al., 2011; Camps & Baes, 2015), come from DustFit (Camps

et al., 2018). Dust masses are divided by stellar masses to convert them to specific dust masses

(sMd). Bulge-to-total mass ratios (B/Tm) are given by inverting the disc-to-total mass ratios listed

in MorphoKinem (Thob et al., 2019). These ratios are defined kinematically, by doubling the mass

of counter-rotating stars in a given galaxy under the assumption that its bulge does not exhibit any

net rotation (such that it is purely dispersion-supported; e.g. Sheth et al. 2003). A small fraction

of galaxies (∼ 1 per cent) have B/Tm > 1; these galaxies are omitted from the final EAGLE sam-

ple. Finally, specific star formation rates (sSFR) are obtained from Stars by summing the initial

masses of all star particles formed within the central 30 pkpc of galaxies within the last 109 years,

and then dividing those star formation rates by the aforementioned stellar masses.

The aforementioned resolution limits of the EAGLE simulations lead some galaxies in the EA-

GLE sample to have sMd = 0 and/or sSFR = 0 yr−1 (i.e. less than the minimum sMd or

sSFR that the EAGLE simulations can resolve)1. Galaxies with sSFR = 0 yr−1 are plotted at

log10(sS FR/yr−1) = −13.5 in the middle panel of Figure 4.1. Observational measurements of

1Other features are unaffected due to the bounds that are later imposed on the samples (Table 4.1).
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low sMd and low sSFR are instead dominated by noise and exhibit a very different distribution, as

shown for galaxies from the GAMA sample (with Table 4.1 bounds applied) in the upper panel of

Figure 4.1. This difference in the distributions of galaxies at low sSFR (and low sMd; not shown),

which arises simply due to how these features are measured from observations and simulations,

complicates a comparison between the samples because it directly influences the clustering out-

comes. Given that I wish to facilitate a fair comparison between the samples, this difference must

be eliminated.

To do so, I add observational noise to EAGLE measurements of sMd and sSFR. Firstly, median un-

certainties are determined in each of these features from the GAMA sample. Separate medians are

determined at low and high values, either side of log10(sMd) = −3.5 and log10(sS FR/yr−1) = −11

respectively. Separate medians are used as a simple, heuristic way of capturing the variation of

the uncertainties with the features themselves. The low/high value cuts are chosen as the minima

of the observed distributions of these features (for sSFR, see the dashed line in the upper panel

of Figure 4.1). Gaussian scatter is then added to the measurements of sMd and sSFR for galaxies

in the EAGLE sample, with standard deviations given by the observational median uncertainties

and depending on the values of the original simulation measurements relative to the aforemen-

tioned cuts. Galaxies with sMd = 0 and sSFR = 0 yr−1 are set to having log10(sMd) = −4

and log10(sS FR/yr−1) = −12 (i.e. the low-value peaks of the observed feature distributions) re-

spectively before the addition of this Gaussian scatter. For EAGLE sSFR, this process leads to the

distribution seen in the lower panel of Figure 4.1, which is much more readily comparable with the

observed distribution. The distribution of sMd (not shown) is similarly improved by the addition

of observational noise.

The bounds that are imposed for the inclusion of galaxies in the EAGLE sample are listed in Table

4.1. As mentioned in Section 4.1.1, these bounds apply mostly to galaxies in the GAMA sample.

The lower stellar mass bound of 109.5 M� excludes simulated galaxies with unreliable specific star

formation rates and bulge-to-total ratios due to poor sampling of gas and star particles respectively

(figure 11b of Schaye et al. 2015; section 2.2 of Thob et al. 2019). I impose the same lower stellar

mass bound to the GAMA sample in order to ensure a fair comparison, especially as the EAGLE

simulations were calibrated to reproduce observed stellar mass distributions (including that of the

GAMA survey; Baldry et al. 2012; Schaye et al. 2015). As with the GAMA sample, I rescale the

feature data for the EAGLE sample ahead of clustering such that each feature distribution spans

the range 0 to 1. This is both to mitigate the bias of k-means towards features distributed over

larger numerical ranges, and to equalise the volumes of both samples within their feature spaces.

The final EAGLE sample consists of 7, 117 galaxies.

Galaxies in the EAGLE simulations are hosted within structures called haloes. Haloes are analo-

gous to groups of galaxies that are close to one another in the real Universe. The shapes and sizes
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of haloes are defined in terms of the distances between dark matter particles only, but haloes also

comprise all of the other particle types of the EAGLE simulations as well. Gas, star, and black

hole particles are assigned to the same halo as their nearest dark matter particle. Galaxies are

defined as self-bound substructures within haloes, and haloes may contain more than one galaxy.

The galaxy containing the particle with the smallest gravitational potential energy in a given halo

is defined as that halo’s central galaxy. All other galaxies in that same halo are satellites. Halo

assignments, halo masses, and central/satellite designations for the final EAGLE sample are taken

from the public data tables tables FoF and Subhalo.

I acquire full merger trees (Lemson & Springel, 2006; Qu et al., 2017) for all of the galaxies in the

EAGLE sample from the public database. Merger events in the EAGLE simulations are defined in

terms of the exchange of particles between galaxies, between snapshots. Galaxy Y in snapshot 2

is the descendant of galaxy X in snapshot 1 if it, among all other galaxies in snapshot 2, contains

the greatest fraction of particles that galaxy X contained in snapshot 1. Hence, every galaxy at

every snapshot has one descendant in the next snapshot, but may have more than one progenitor

in the previous snapshot; this, over several successive snapshots, yields the hierarchical branching

structure of a galaxy’s merger tree. The main progenitor of a galaxy at a given snapshot is the

galaxy at the previous snapshot lying on the branch (i.e. across all snapshots) with the highest

mass. The main progenitor of a galaxy may be considered as an “earlier version” of that same

galaxy, such that the main branch traces its evolution with time.

Finally, I also gather initial masses and formation times of star particles from Stars so that the

SFHs of EAGLE galaxies may be examined. I opt to consider only in-situ star formation (star

particles formed in progenitors on the main branches of their merger trees), as opposed to ex-

situ star formation (star particles formed in progenitors on other branches, which then went on to

merge with main-branch progenitors).

4.2 Results and discussion

4.2.1 Identifying the best clustering outcomes

k-means is susceptible to yielding different, locally optimal clustering outcomes from varying,

random initialisations. To ensure a full exploration of the feature spaces of each of the samples, I

initialise k-means clustering 100 times each at k = 2 through to k = 20. I first determine the best

value of k for each of the samples using stability (measured with Vs). Specifically, I calculate the

median Vs for each of the 100 outcomes at a given value of k with respect to the other 99 outcomes

at the same value of k. Stabilities are illustrated using stability maps (Figure 4.2).
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Figure 4.2: Stability maps, showing the stability of k-means clustering among 100 random initialisatons

at each of k = 2 through to k = 20 for the GAMA sample of observed galaxies (left) and for the EAGLE

sample of simulated galaxies (right). The stability of a set of outcomes at the same k is illustrated by their

distribution in median Vs, which is shown in black for clustering in the original samples (with means shown

by the red markers) and in grey for partitions given by clustering in bootstrapped samples (see main text).

Distributions skewed towards higher values of median V indicate stable values of k, and I select the highest

stable value for each sample as its best. The best outcomes are: k = 5 for the GAMA sample, and k = 7 for

the EAGLE sample.
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The black histograms show the distribution of median Vs values at each k. The grey histograms

are based on partitions given by k-means clustering in bootstrapped samples, generated thusly:

the bootstrap resampling method is applied to the original sample (drawing a new sample, equal

in size to the original sample, with replacement), conduct k-means clustering in the bootstrapped

sample, and use the final centroids to partition the original sample. The black histograms illustrate

stability in spite of different, random initialisations in the original samples. The grey histograms

illustrate stability in spite of random variations of the samples themselves. Both sets generally

exhibit similar behaviour.

Values of k at which the histograms are concentrated toward higher values of median Vs are more

stable; outcomes are more consistently similar. I distinguish two types of histogram: stable his-

tograms have strong peaks at Vs & 0.9, and unstable histograms have multiple peaks of similar

magnitude or a large spread over lower values of median Vs. The grey histograms are systemati-

cally offset from the black histograms towards lower median Vs, particularly at higher values2 of

k. For both samples, the black histograms appear to exhibit a limit in k beyond which there are no

further stable values of k. The grey histograms, with their offset, substantiate this effect.

I select the highest stable values of k as the best because they offer the most detailed partitions

while still capturing reproducible clustering structure. For the GAMA sample, k = 5 is the best.

While the black histogram at k = 10 exhibits a strong peak at high median Vs, its corresponding

grey histogram does not. Clustering at this value of k is not robust to bootstrap resampling of the

GAMA sample, so I consider it unstable overall. For the EAGLE sample, k = 7 is the best. Both

the black and grey histograms exhibit a strong peak at high median Vs this value of k, so clustering

at this value of k is stable and robust. I compare outcomes at two different values of k; identifying

where and why the additional clusters have been determined within the EAGLE sample may reveal

important differences in its structure from that of the GAMA sample.

The final, best outcomes of the 100 at each of these two best values of k are those with the lowest

compactness, which I measure with the sum of within-cluster variances φ. I name the clusters

that constitute these outcomes using two-part notation in the format “XY”; “X” (either “G” or

“E”) denotes the outcome to which the cluster belongs (in terms of the sample within with it was

determined; GAMA or EAGLE), and “Y” (an integer with value 1 ≤ Y ≤ k) denotes the cluster

itself within that outcome. Cluster names are ranked by the average sSFR of the cluster to which

they refer, such that X1 would denote the cluster containing galaxies with the highest average

sSFR for outcome X.
2While the grey histogram at k = 5 for the EAGLE sample unexpectedly has a peak at high median Vs where its

corresponding black histogram does not, it has another peak at lower median Vs, such that both histograms agree that

this value of k is unstable.
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Table 4.2: A summary of the clusters comprising the two best outcomes. The prefixes “G” or “E” in the

cluster names denote the sample (GAMA or EAGLE) within which the cluster was determined. Column

NC contains the numbers of galaxies belonging to each cluster. The remaining entries list the centroid of

each cluster in each of the input features to the clustering.

Cluster NC log10(M∗/M�) log10(sMd) log10(sS FR) log10[(R1/2,l or R1/2,m)/kpc] B/Tl or B/Tm

G1 947 9.86 -2.82 -9.95 0.74 0.11

G2 781 9.91 -2.89 -10.10 0.59 0.68

G3 567 10.54 -3.23 -10.66 0.95 0.25

G4 695 9.97 -3.88 -11.70 0.46 0.55

G5 734 10.72 -4.24 -12.06 0.86 0.73

E1 1,223 9.83 -2.70 -10.07 0.74 0.37

E2 1,433 9.86 -2.90 -10.24 0.62 0.59

E3 1,106 9.79 -3.02 -10.28 0.55 0.84

E4 1,148 10.48 -3.00 -10.35 0.74 0.33

E5 603 10.81 -3.83 -11.20 0.77 0.83

E6 801 10.24 -4.03 -11.78 0.56 0.47

E7 803 9.82 -4.03 -11.81 0.53 0.82

4.2.2 Comparing the outcomes

Table 4.2 offers a summary of the clusters comprising both of the final outcomes in terms of

the input features to the clustering. Figures 4.3 and 4.4 show the distributions of the clusters in

two-dimensional projections of the input feature space. These figures reveal a broad similarity

of the structures of the outcomes. The primary structural characteristic of both outcomes is the

division of their clusters by the star formation activity and dust content of the galaxies they contain,

which are themselves correlated. Clusters from both outcomes line up either along the SFMS,

or along the parallel sequence of passive galaxies (except for E5, see below). This reflects the

well-established bimodal nature of the galaxy population (Baldry et al., 2004; Schawinski et al.,

2014). Subtler distinctions within these two sequences, which differ between the two outcomes,

are driven by the remaining input features. These distinctions include the separation of disc- and

bulge-dominated star-forming galaxies, and the grouping of passive galaxies with different stellar

masses and morphologies.

In order to quantify the similarity of the two clustering outcomes (“G” and “E”), I compare how

their centroids partition the same galaxies. Given that the GAMA sample comprises real galaxies

in the real Universe, I take it as the reference sample with which to compare the partitions. This

is enabled by my choice to cluster both samples within rescaled feature spaces of unit dimensions

(Section 4.1.1). With both clustering outcomes having been determined within an equivalent fea-

ture space, the E centroids may be mapped onto the GAMA sample. The EAGLE-based partition

of the GAMA sample, which I name EG, is then given by assigning GAMA galaxies to their near-
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Figure 4.3: A profile of the best k-means clustering outcome for the GAMA sample of observed galaxies,

consisting of five clusters. Cluster distributions are shown using coloured contours (drawn at a relative

density of 0.25) and histograms, and their centroids using filled, coloured circles. The black markers on the

inside of the R1/2,l axes show the R1/2,m axis limits in the profile of the best clustering outcome (k = 7) for

the EAGLE sample (Figure 4.4).
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Figure 4.4: A profile of the best k-means clustering outcome for the EAGLE sample of simulated galaxies,

consisting of seven clusters. Cluster distributions are shown using coloured contours (drawn at a relative

density of 0.25) and histograms, and their centroids using filled, coloured circles. Note that the axis limits

of R1/2,m differ from those of R1/2,l in the profile of the best clustering outcome (k = 5) for the GAMA

sample (Figure 4.3), due to the tighter distribution of galaxy sizes in the EAGLE sample.
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Table 4.3: A contingency table comparing two partitions of the GAMA sample: G (determined within

the GAMA sample) and EG (determined within the EAGLE sample and mapped onto the GAMA sample;

see main text for further explanation). Entries show the fraction of galaxies in the GAMA sample that are

contained by each combination of G and EG cluster. Entries in bold show combinations which contain the

majority of an individual EG cluster.

EG1 EG2 EG3 EG4 EG5 EG6 EG7

G1 0.17 0.01 0.00 0.07 0.00 0.01 0.00

G2 0.00 0.09 0.09 0.00 0.02 0.00 0.01

G3 0.00 0.00 0.00 0.11 0.01 0.03 0.00

G4 0.00 0.00 0.00 0.00 0.00 0.10 0.09
G5 0.00 0.00 0.00 0.00 0.13 0.05 0.01

est EG centroid3. Differences between G and EG will arise both from global differences between

the GAMA and EAGLE samples and from more local differences between G and E.

Table 4.3 directly compares the partitions, showing the fraction of GAMA galaxies shared by

each combination of G and EG clusters. I use Cramer’s V index to measure the overall agreement

between the two partitions. My use of V in the context of agreement (which is separate from

my use of V in the context of stability; see Sections 3.1 and A.1; Figure 4.2) is denoted with

the symbol Va. For the partitions G and EG, I calculate Va = 0.76. I provide a guide for the

interpretation of Va in Appendix B.1. On the basis of this guide, and in agreement with my more

qualitative assessment above, Va = 0.76 indicates a broad similarity between the two outcomes,

but the possibility of slight differences at the substructure level.

Where the majority of galaxies within an EG cluster is contained within a single G cluster, the

corresponding Table 4.3 entry is highlighted with bold text. This tells us which of the G clusters

each of the E clusters (via the EG clusters) is most strongly related to, in terms of their coverage of

the shared feature space. Given that the E outcome comprises more clusters than the G outcome,

G clusters may be related to more than one E cluster; indeed, there are two such cases in Table 4.3.

The strength of these relationships is measured using the Jaccard (1901) index (J), dividing the

number of GAMA galaxies shared by all of a related set G and EG clusters by the total number of

GAMA galaxies contained by any of them4. I use these related sets to guide the following cluster-

by-cluster comparison of the G and E outcomes, quoting J values as a measure of how well each

of the G clusters has been recovered, and discussing implications of the identities of E clusters for

facilitating an understanding of the evolution of galaxies in their corresponding G clusters.

3Partitions E and EG have the same centroids and the same numerical naming scheme for their clusters, such that

clusters E1 and EG1 have the same exact centroid and span the same region of the shared feature space of both samples.

However, E clusters contain EAGLE galaxies and EG clusters contain GAMA galaxies.
4Alternatively put, this is the intersection of the Venn diagram of a related set of clusters, divided by the union.
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G1, G3, E1, and E4: star-forming disc galaxies

According to Table 4.3, E1 (via EG1) is most closely related to G1, and E4 (via EG4) to G3. These

pairs produce Jaccard indices of J(G1,EG1) = 0.65 and J(G3,EG4) = 0.50 respectively, suggesting

a limited recovery of the observed clusters by their corresponding simulated clusters. However,

combining all four of these clusters for a unified comparison produces a much higher score of

J(G1,G3,EG1,EG4) = 0.88.

My justification for unifying the comparison in this way is two-fold. Firstly, there is significant

overlap between the two related pairs; the vast majority of G1 galaxies that are not contained

by EG1 are instead contained by EG4 (Table 4.3). Secondly, the astrophysical identities of these

clusters are largely similar. All four contain star-forming, dusty, disc-dominated galaxies (Table

4.2 and Figures 4.3 and 4.4). EAGLE has therefore succeeded in reproducing the SFMS at low

and intermediate masses, accurately capturing the growth of the stellar masses of galaxies via star

formation (see also Schaye et al. 2015; Furlong et al. 2015; Clauwens et al. 2018). Shortcomings

at the high-mass end of the SFMS are addressed below.

These clusters divide the SFMSs of their respective samples by stellar mass: G1 and E1 contain

low-mass galaxies, and G3 and E4 contain intermediate- to high-mass galaxies. However, the

relatively low Jaccard indices given by each of these pairs of clusters are instead due to two main

morphological differences between the disc galaxies in each sample. The first difference is the

general offset of EAGLE disc galaxies towards bulgier morphologies: EAGLE galaxies have a

minimum B/Tm of ∼ 0.15 (Figure 4.4), while GAMA galaxies have B/Tl values as low as 0

(Figure 4.3). Hence, EAGLE is unable to reproduce the pure disc galaxies that are observed in the

real Universe. The influence of this offset upon my comparison of G and E is mitigated somewhat

by my choice to rescale the feature distributions pre-clustering (see Section 4.1). Hence, in spite

of this offset, I am still able to directly compare the disciest EAGLE galaxies with the disciest

GAMA galaxies, which is a particular strength of my approach. However, the cause of this offset

leads also to the second difference: while G3 galaxies have more prominent bulges than those

in G1, E4 galaxies have bulges that are as promininent or slightly less prominent than those in

E1. Hence, EAGLE does not accurately reproduce the observed evolution of the morphological

components of disc galaxies with increasing stellar mass along the SFMS.

These morphological differences are caused by the combination of two resolution effects within

EAGLE. Firstly, the spatial resolution of EAGLE (∼ 1 pkpc), set by the Jeans length of the warm

ISM (T ≈ 104 K), leads the discs of EAGLE galaxies to have larger scale heights than the discs

of observed galaxies (Schaye et al., 2015; Trayford et al., 2017; Thob et al., 2019). Hence, the

dynamics of even the disciest EAGLE galaxies are fractionally supported by dispersion, resulting

in their minimum B/Tm of ∼ 0.15. This is also likely to be the cause of the relatively small sizes
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Figure 4.5: The local environmental densities of galaxies in each of the clusters determined within the

GAMA sample. Galaxies are plotted as scatter points in the sSFR versus M∗ plane. The smaller grey points

represent the full GAMA sample and the larger coloured points represent galaxies belonging to particular

clusters, which are plotted in separate panels (see the panel labels; note that the upper-left panel highlights

two clusters together for reasons given in the main text above). The colours of the points show the fifth-

nearest-neighbour surface densities of galaxies, which have been smoothed using the surface densities of

the seven galaxies that are nearest to them in the five-dimensional feature space.

of EAGLE’s disc galaxies in comparison with those of GAMA (Table 4.2, Figures 4.3 and 4.4).

Secondly, the coarse mass resolution of EAGLE’s dark matter particles leads to their spurious scat-

tering with better-resolved star particles, which also contributes dispersion-support (Ludlow et al.,

2020). Hence, improvements to EAGLE’s resolution are needed for more accurate morpholo-

gies among disc galaxies. These improvements, in turn, will beget a more accurate breakdown

of EAGLE’s SFMS. I note that my use of mass-based bulge-to-total ratios for EAGLE galax-

ies, which might be expected to understate the contribution of the disc component (containing

recently formed, low mass-to-light ratio stars) in comparison with light-based bulge-to-total ra-

tios, is unlikely to contribute significantly to this difference in disc galaxy morphologies between

the samples; Scannapieco et al. (2010) find that while bulge-to-total ratios that are defined kine-

matically are systematically higher than those that are defined photometrically, differences in the

mass-to-light ratios between the discs and the bulges of simulated galaxies are small.

The influence of these resolution limits upon the integrated morphologies of EAGLE disc galaxies

diminishes slightly at higher stellar mass and larger half-mass radii, where the radial scales of

their discs dominate over their vertical scales. As a consequence, in comparison with E1 galaxies,

the morphologies of E4 galaxies more closely resemble those of G1 galaxies (i.e. more prominent
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Figure 4.6: A stacked bar chart showing the cluster-average fractional contribution ( fext) of accretion (µ <

0.1), minor mergers (0.1 ≤ µ ≤ 0.25), and major mergers (µ > 0.25) since z = 1 to the z = 0 stellar masses

of galaxies in the EAGLE sample.

discs). Hence, when the E centroids are mapped onto the GAMA sample, some G1 galaxies end up

assigned to EG4 rather than EG1 (Table 4.3). I note that this trend between E1 and E4, of constant

or decreasing bulge prominence, is contrary to what is seen in observations, where is has been

shown that bulge prominence increases along the SFMS (Bluck et al., 2014; McPartland et al.,

2019; Popesso et al., 2019a). Examining whether this trend is recovered with improvements to

resolution will constitute a crucial test of the next generation of cosmological galaxy simulations.

Furthermore, EAGLE fails to capture the observed turn-down of the SFMS at high stellar masses

(see below), which has been linked with this rise in bulge prominence (Cheung et al., 2012; Fang

et al., 2013; Bluck et al., 2014) as part of an internally-driven quenching pathway (Peng et al.,

2010; Schawinski et al., 2014; Moutard et al., 2020).

G2, E2, and E3: bulge-dominated star-forming galaxies

For clusters G2, E2, and E3, I calculate J(G2,EG2,EG3) = 0.82, which indicates good recovery of

the observed cluster by the simulated clusters. Galaxies in these clusters have low stellar masses,

high specific star formation rates and dust masses, and compact, bulge-dominated morphologies

(Table 4.2, Figures 4.3 and 4.4). Of the few G2 galaxies that are not also contained within EG2

and EG3, most are instead contained within EG5 or EG7. This is due to morphological similarities

between E2, E5, and E7 (Figure 4.4).

The matching of two EAGLE clusters to one GAMA cluster arises because of the strong continuum

in the bulge-to-total ratios of low-mass star-forming galaxies in EAGLE (Figure 4.4). k-means

tends to segment continua (see Section 3.1), and so it distinguishes between star-forming EAGLE

galaxies with intermediate (E2) and high (E3) B/Tm along this continuum. The equivalent distri-

bution among star-forming GAMA galaxies is more diffuse (Figure 4.3), and as a result k-means

models it using a single cluster (G2) that has a large spread in B/Tl. Hence, while the coverage

of G2 within the shared feature space has been successfully reproduced by E2 and E3, the use by

k-means of two clusters in EAGLE compared with one cluster in GAMA reveals that EAGLE
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produces too many bulge-dominated galaxies at the mass regime of these clusters. Observational

studies instead show that disc galaxies dominate the stellar mass function at these stellar masses

(Kelvin et al., 2014b; Lange et al., 2015; Moffett et al., 2016). I note that this morphological dif-

ference partially arises from the resolution limitations of EAGLE that were discussed above, and

so improvements to resolution in the next generation of cosmological simulations may mitigate

this difference by yielding discier low-mass galaxies.

Clauwens et al. (2018) proposed three mass-based phases for the evolution of central galaxies

and their morphological components. Their first phase (. 109.5 M�) is characterised by in-situ

star formation that is triggered by merger activity, and yields spheroidal galaxies. In their second

phase (109.5 M� . M∗ . 1010.5 M�), continued in-situ star formation prompts the growth of a

disc. Finally, their third phase (& 1010.5 M�), in which stellar accretion and mergers dominate the

growth of galaxies, results in bulge-dominated galaxies. Clusters E3 and E2 (and by extension

E1) appear to correspond with the transition between the first two of these phases, given that

their low-mass galaxies (the majority of which are centrals; Figure 4.7) exhibit a gradient in their

morphologies (Figure 4.4) and in their merger activity (Figure 4.6). The spread of morphologies

among the low-mass star-forming galaxies contained within G2 provide observational support for

this suggestion.

Low-mass, star-forming, bulge-dominated galaxies, like those captured by E3, have been observed

previously. Kelvin et al. (2014a) and Moffett et al. (2016) distinguished a class of “Little Blue

Spheroids” (LBSs) among z < 0.06 galaxies in the equatorial regions of GAMA using Hubble

classifications. Of the 291 G2 galaxies (of 781 total) for which Hubble classifications exist (due

to the z < 0.06 restriction), only three are LBSs5, while the rest are either ellipticals or early-type

spirals. This mixture of Hubble classifications for G2 galaxies is consistent with their observed

spread in B/Tl, and with the intermediate morphologies of E2 galaxies. The low number of LBSs

in G2 is due in part to the lower stellar mass limit that is imposed upon the GAMA sample (109.5

M�), which means that it is not inclusive to LBSs (Kelvin et al., 2014a; Moffett et al., 2016). Mof-

fett et al. (2019), in an in-depth study of LBSs, find that most exhibit ordered rotation and suggest

that this rotation may come from the accretion of star-forming gas (Graham et al., 2017). This is

in contrast with E3 galaxies, whose high B/Tm values come from their lack of any net rotation

(Thob et al., 2019). Hence, altogether, the identities of E3 and G2 galaxies are not consistent with

those of LBSs.

Schawinski et al. (2009a), by way of Galaxy Zoo morphologies (Lintott et al., 2008, 2011), iden-

tified a class of blue elliptical galaxies (i.e. another potential observational counterpart to E3

galaxies), and suggested starbursts via gas-rich mergers (Mihos & Hernquist, 1994a,b, 1996; Cox

et al., 2008) as the mechanism for their formation. While E3 galaxies are subject to more merger

5The one other confirmed LBS in my sample is contained by cluster G1.
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Figure 4.7: Stellar-to-total mass ratios of galaxies in the EAGLE sample, as a function of their stellar

masses. These ratios are measured within 30 pkpc spherical apertures. Total masses are the sum of the

masses of all of EAGLE’s particle types within the aperture. Central and satellite galaxies are marked using

filled and empty circles respectively. Cluster distributions are shown using coloured contours, and their

centroids in this plane using filled, coloured circles. The percentages in the legend show the fraction of

galaxies within each cluster that are satellites. The high values of the stellar-to-total mass ratios of E6 and

E7 galaxies in Figure 4.7 arise from their accretion as satellites into the outer regions of massive group

haloes.

activity than other galaxies with similar stellar masses (Figure 4.6), they exhibit typical SFMS

specific star formation rates (Table 4.2, Figure 4.4) which indicate that they are generally not star-

bursting. This is in agreement with Moffett et al. (2019), who suggest that the SFHs of LBSs

are relatively constant. It is also consistent with my suggestion that E3 (along with E2 and E1)

captures the transition from the first phase to the second phase of the Clauwens et al. (2018) evo-

lutionary model, in that E3 galaxies appear to have specific star formation rates that are typical of

the second phase.

G4, E6, and E7: satellite galaxies

Table 4.3 shows that E6 and E7 are both most closely related to G4. These clusters contain

galaxies that are passive, with little dust, have low-to-intermediate stellar masses, and exhibit a

spread in their morphologies and sizes (Table 4.2, Figures 4.3 and 4.4). The relatively low Jaccard

index calculated among these clusters, J(G4,EG6,EG7) = 0.63, arises mostly from the inclusion

of low-sSFR G3 galaxies and intermediate-B/Tl G5 galaxies within EG6 (Figures 4.3 and 4.4).

This is driven by the lack of coverage of this region of the feature space by other E clusters. E4 is

confined to high specific star formation rates by EAGLE’s flat and tight SFMS (where the GAMA
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SFMS turns down), and E5 is confined to high bulge-to-total ratios by the high stellar masses of its

galaxies and by their spread in star formation activity (where the GAMA SFMS does not extend

to such high masses and where G5 is uniformly passive; see below). Hence, k-means uses E6 to

model the distribution of EAGLE galaxies within this vacant region of the shared feature space

and, as a result, E6 extends to slightly higher masses than G4. EG7, meanwhile, is almost entirely

contained within the extent of G4 in the shared feature space; hence, the region of the feature

space occupied by low-mass, passive galaxies has been accurately recovered.

The majority of galaxies contained by E6 and E7 are satellites (∼ 75 per cent; Figure 4.7), and

they occupy haloes with a logarithmic mean total mass6 of 1014.0 M�. This is nearly a factor of ten

greater than the logarithmic mean total halo mass of E1-E4 galaxies (1013.2 M�), which contain

star-forming galaxies that span a similar range in stellar masses, and is in agreement with Cochrane

& Best (2018), who link the quenching of EAGLE satellite galaxies to the total masses of their

host haloes. Similarly, Figure 4.5 shows that the observational counterparts of these galaxies, in

cluster G4, tend to inhabit environments of high densities. Overall, this highlights a prominent

external influence upon the evolution of E6, E7, and G4 galaxies, and is consistent with studies

which attribute the quenching of lower-mass galaxies to their environments (Peng et al., 2012;

Wetzel et al., 2012, 2013; Trayford et al., 2016). The morphological diversity among E6, E7, and

G4 galaxies (Figures 4.3 and 4.4) reflects the variety of environmental processes to which they are

subjected (Correa et al., 2017; Smethurst et al., 2017). In addition, it indicates that the quenching

of satellites galaxies is not always accompanied by a morphological transformation, such that

some satellite galaxies retain their discs. Processes that meet this criterion include ram-pressure

stripping (Gunn & Gott, 1972; McCarthy et al., 2008), which removes cold ISM from galaxies

via their interaction with the hot intergalactic media of groups, or starvation (Larson et al., 1980;

Peng et al., 2015), which inhibit the ability of galaxies to accrete new star-forming gas upon their

accretion into group haloes. Furthermore, mergers and accretion, which would be expected to alter

the morphologies of E6 and E7 galaxies (Toomre, 1977; Barnes, 1988, 1992; Walker et al., 1996),

appear to have relatively little influence on their evolution (Figure 4.6) and are hence unlikely to

be involved in their quenching (Weigel et al., 2017).

G5 and E5: high-mass central galaxies

Cluster E5 is most strongly related to cluster G5 (Table 4.3), with both clusters containing par-

ticularly massive and bulge-dominated galaxies (Table 4.2). G5 also includes galaxies with more

intermediate morphologies (Figure 4.3), which E5 does not (Figure 4.4). As a result, when the E

centroids are mapped onto the GAMA sample, some G5 galaxies end up included in cluster EG6

6Measured within a radius from the central of that halo at which the mean enclosed density is 200 times the critical

density of the Universe.
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Figure 4.8: Black-hole-to-total mass ratios of galaxies in the EAGLE sample, as a function of their stellar

masses. These ratios are measured within 5 pkpc spherical apertures. Total masses are the sum of the

masses of all of EAGLE’s particle types within the aperture. Cluster distributions are shown using coloured

contours, and their centroids in this plane using filled, coloured circles.

instead (see also above), and I calculate a relatively low Jaccard index of J(G5,EG5) = 0.59.

Another important difference between G5 and E5 is that while G5 is made up purely of passive

galaxies, 45 per cent of E5 galaxies are unexpectedly (in the context of their stellar masses and

morphologies) star-forming (sSFR > 10−11 yr−1). These star-forming galaxies generally do not

correspond with those in G3 (Table 4.3), which encompasses the high-mass end of the GAMA

SFMS, because the E5 star-forming galaxies have more concentrated morphologies and higher

stellar masses. Hence, EAGLE produces a subpopulation of high-mass, bulge-dominated, star-

forming galaxies that are not observed in the real Universe. The same subpopulation has previously

been identified through the use of non-parametric morphological features by Bignone et al. (2020)

and a variety of morphological and kinematic diagnostics by Thob et al. (2019). In addition,

Trayford et al. (2015) identified a similar subpopulation of galaxies on the basis of their colours

and their stellar masses.

At the stellar masses of E5 galaxies, where the EAGLE SFMS remains flat, the GAMA SFMS

turns down. This reduction in the star formation activity of observed galaxies at high stellar

masses has been linked with an increase in their central densities (Cheung et al., 2012; Fang et al.,

2013; Bluck et al., 2014) and is attributed to the growth of the central supermassive black holes

(SMBHs) of galaxies (Häring & Rix, 2004) which can provide feedback that removes or heats

star forming gas (Bower et al., 2006; Croton et al., 2006; Hopkins et al., 2006; Springel et al.,

2006; Schawinski et al., 2006, 2007, 2009b). The lack of a turndown in the SFMS of the EAGLE

sample, and the uniformly passive galaxies in G5, suggest that this feedback is insufficiently potent
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in EAGLE (Trayford et al., 2015; Rosito et al., 2018). In addition, galaxies with stellar and halo

masses typical of those galaxies in clusters G5 and E5 are expected to have gas that they accrete

virially shocked to high temperatures, which would also act to maintain their passivity. However,

the inability of cosmological simulations to reliably prevent this gas from cooling (Somerville &

Davé, 2015) may also be partially responsible for the high-mass star-forming galaxies in EAGLE.

I note that while improvements to simulation resolution (see above) may reproduce the observed

growth of bulges within galaxies as they evolve along the SFMS, it is not expected that this will

also recover their associated reduction in star formation.

The majority of E5 galaxies are centrals (74 per cent; Figure 4.7), and they occupy large haloes

with a logarithmic average total mass of 1013.6 M�. Similarly, G5 galaxies have high nearest-

neighbour surface densities (Figure 4.5), which suggests that they are surrounded by satellites.

Star-forming and passive E5 galaxies have similar halo masses, differing by less than 0.2 dex on

average, and passive E5 galaxies are only 10 per cent more likely to be centrals than their star-

forming counterparts, such that E5 galaxies in general seem to inhabit the same environments.

Figure 4.8 shows that, in comparison with galaxies in other clusters, the inner masses of E5 galax-

ies are dominated by their SMBHs. E5 SMBHs also have high accretion rates, which drive the

active galactic nucleus (AGN) feedback that they provide to their host galaxies (Schaye et al.,

2015; Crain et al., 2015). Passive and star-forming E5 galaxies differ only slightly (. 0.2 dex)

in their SMBH masses and accretion rates. In accordance with the findings of Qu et al. (2017)

and Clauwens et al. (2018) at high stellar masses, I find a significant external contribution to the

growth of E5 galaxies (∼ 25 per cent; Figure 4.6). Overall, star-forming and passive E5 galaxies

are generally equivalent in terms of these ancillary features.

In Figure 4.9, I trace the evolution of the gas content and star formation activity of star-forming and

passive E5 galaxies separately over the past 4 Gyr. Passive E5 galaxies resembled star-forming

E5 galaxies in terms of both of these features ∼ 4 Gyr ago. The star-formation activity of E5

galaxies is directly dependent upon their gas content, with passive E5 galaxies quenching (i.e.

passing below 10−11 yr−1) ∼ 2 Gyr ago. I attribute this quenching to the removal of the ISM

of passive E5 galaxies by AGN feedback (Schawinski et al., 2009b; Davies et al., 2019, 2020b).

Star-forming E5 galaxies, on the other hand, have remained consistent in terms of their gas content

and star formation activity throughout the past 4 Gyr, and are generally neither star-bursting nor

rejuvenating. I do not find a corresponding divide in the evolution of the halo masses and SMBH

masses of star-forming and passive E5 galaxies, even when tracing this evolution back further to

particularly early times (∼ 12 Gyr ago). This is in contrast with Davies et al. (2020a), who show

that present day star formation activity of central galaxies is linked with the assembly histories

of their surrounding haloes, with the haloes of passive galaxies having assembled earlier. I do

find that star-forming E5 galaxies are subject to their last major merger an average of 0.5 Gyr
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Figure 4.9: Mean gas-to-total mass ratios (within 30 pkpc apertures; upper panel) and specific star for-

mation rates (lower panel) of star-forming (blue) and passive (red) E5 galaxies over the last 4 Gyr. Total

masses are the sum of the masses of all of EAGLE’s particle types within the aperture. The shaded regions

shows the 16th and 84th percentiles of these evolving distributions. The star-forming and passive E5 galax-

ies shown (100 each) are those that have specific star formation rates closest to 10−10 yr−1 and 10−12 yr−1

respectively. The time resolution of the upper panel corresponds directly with EAGLE’s snapshots; in the

lower panel, it is 200 Myr.

more recently than passive E5 galaxies7 (at average lookback times of ∼ 4.5 Gyr and ∼ 5.0 Gyr

respectively), but it is clear that further analysis of the assembly histories of star-forming and

passive E5 galaxies is needed to better understand differences in their evolution. The disagreement

of my results with Davies et al. (2020a) may be partially influenced by two factors: while I examine

the average evolution of many different galaxies in terms of their haloes and SMBHs, Davies et al.

(2020a) examine modified resimulations of the same galaxy; and while Davies et al. (2020a)

focus their analysis and discussion on central galaxies, my cluster E5 also includes some satellite

galaxies. I note that Figure 4.9 also shows that morphological quenching (Martig et al., 2009)

does not constitute a significant quenching pathway in EAGLE; while passive early-type galaxies

that retain their gas supplies have been observed (Martig et al., 2013), passive E5 galaxies are

distinguished from their star-forming counterparts by their lack of gas.

Figure 4.10 shows examples of forward-modelled optical images of galaxies in E5, split by their

star formation activity. These images were generated by Trayford et al. (2017) using the radiative

transfer code SKIRT (Baes et al., 2011; Camps & Baes, 2015). Both star-forming and passive

E5 galaxies have apparent dense cores, which reflect their high B/Tm values. However, some

star-forming E5 galaxies also exhibit extended, clumpy discs, which are the sites of ongoing star

7I note, though, that this measurement is limited by the time-resolution of the merger trees, which corresponds

directly with EAGLE’s snapshots.
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Figure 4.10: Example images of galaxies in E5, separated by their star formation activity. These mock

three-colour optical images, cropped to a scale of 30 pkpc, were prepared by Trayford et al. (2017) using

the radiative transfer code SKIRT (Baes et al., 2011; Camps & Baes, 2015). The star-forming and passive

E5 galaxies shown are those that have specific star formation rates closest to 10−10 yr−1 and 10−12 yr−1

respectively. The SFHs in this figure have a

Figure 4.11: Example images of galaxies in G5. These three-colour giH images, with scales of ∼ 30 kpc,

were prepared by Moffett et al. (2016) using photometry from SDSS and from the VISTA Kilo-Degree

Infrared Galaxy Survey (Sutherland et al., 2015). The galaxies shown are those within G5 that are closest

to its centroid.
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formation, and dust lanes, demonstrating the retention of their ISM. Example images of G5 galax-

ies (Figure 4.11), meanwhile, show that while some have discs, they are uniformly smooth and do

not exhibit any substructures. Thus, these images confirm that the presence of a dense core does

not appear to be as strongly linked with internally-driven quenching in EAGLE as it is in obser-

vations (Peng et al., 2010; Cheung et al., 2012; Fang et al., 2013; Bluck et al., 2014; Schawinski

et al., 2014). A preliminary investigation found that clear visual difference between star-forming

and passive E5 galaxies is not captured by any of the available morphological and kinematic

features calculated by Thob et al. (2019). I note, though, that even with the benefit of a morpho-

logical or kinematic feature that could distinguish between star-forming and passive E5 galaxies,

star-forming E5 galaxies would still stand out as an unrealistic subpopulation.

4.3 Summary and conclusions

In this chapter, I present a novel method for the multi-dimensional validation of cosmological

galaxy simulations against observations. The method is built around the use of clustering. Specif-

ically, I use the k-means clustering algorithm to partition a sample of 3, 724 observed galaxies

from the GAMA survey and a sample of 7, 117 simulated galaxies from the EAGLE models.

Clustering is conducted within a five-dimensional feature space, common to both samples and de-

fined by: stellar masses, specific (fractional) dust masses, specific star formation rates, half-light

radii, and bulge-to-total ratios. The feature space is rescaled ahead of the clustering to ensure

that the different numerical ranges of each of the features do not artificially bias the clustering.

Clustering outcomes are validated with respect to their stabilities, to ensure that the outcomes are

reproducible, and their compactnesses, which is a general aim of clustering. I find that the GAMA

sample is best partitioned into five clusters, and the EAGLE sample into seven clusters (Figure

4.2). In order to compare these outcomes, I map the clusters determined within EAGLE onto the

GAMA sample. By doing this, I can quantitatively examine how successful EAGLE has been

in reproducing GAMA galaxies on a subpopulation level, and connect the properties of galaxies

contained by equivalent clusters. Thusly, I make the following conclusions:

1. Comparing the GAMA clusters with a partition of the GAMA sample that is based on the

EAGLE clusters (Table 4.3), I calculate Va = 0.76. This, on the basis of Appendix B.1,

indicates agreement between the two clustering outcomes in terms of their broader structures

(i.e. the overall bimodality of galaxies), but differences between them at the substructure

level that are expressed by individual clusters.

2. A particular strength of my approach is that features do not need to correspond to one an-

other exactly in terms of their definitions. Though there is an offset between the morpholog-

ical bulge-to-total ratios that I use for the GAMA sample and the kinematic bulge-to-total
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ratios that I use for the EAGLE sample, a combination of my use of clustering with my

choice to rescale the shared feature space of the samples means that I am still able to com-

pare the disciest GAMA galaxies with the disciest EAGLE galaxies. The offset between the

sizes of the largest galaxies in each sample is similarly mitigated in terms of its influence

upon the clustering outcomes.

3. While EAGLE successfully captures the growth of the stellar masses of SFMS galaxies, it

does not capture the observed growth of their morphological components. While the bulge-

to-total ratios of GAMA galaxies increase along the SFMS (Figure 4.3), those of EAGLE

galaxies remain the constant or decrease slightly (Figure 4.4). This is due to limitations of

the resolution of EAGLE, which mean that low-mass galaxies exhibit excess dispersion sup-

port. Examining whether the observed trend is recovered with improvements to resolution

will constitute a crucial test of the next generation of cosmological galaxy simulations.

4. EAGLE produces more low-mass, star-forming, bulge-dominated galaxies than are ob-

served in the GAMA sample (Figures 4.3 and 4.4), such that they are modelled with two

clusters rather than one. The resolution of EAGLE is likely to be at least partially responsi-

ble for this difference. Mergers appear to be significant in the formation of the galaxies in

these clusters (Figure 4.6), consistent with previous results from the literature.

5. There are two clusters within the EAGLE sample in which the majority of galaxies are

satellites in massive haloes (Figure 4.7). By comparison with a single cluster in the GAMA

sample, they accurately capture the influence of external processes on galaxies in groups,

particularly at lower stellar masses (Table 4.3). Discrepancies at higher stellar masses are

driven by the lack of a turndown in EAGLE’s SFMS, such that satellite quenching ap-

pears to extend to slightly higher stellar masses in EAGLE than is observed. The spread

of morphologies among the galaxies in these clusters (Figs 4.3, and 4.4) indicates that their

quenching is not always accompanied by a morphological transformation, and is therefore

most likely to be due to processes like ram-pressure stripping and starvation.

6. While EAGLE recovers the high-mass, passive, spheroids that are observed in the GAMA

sample, they are grouped in a cluster with a subpopulation of high-mass, star-forming,

bulge-dominated galaxies that are not seen in the real Universe (Figures 4.3 and 4.4). These

simulated star-forming and passive galaxies differ in their present day gas content (Figure

4.9) and in their visual appearances (Figure 4.10), and suggest that AGN feedback is not

potent enough to remove the gas from those galaxies that are still star-forming. Otherwise,

the assembly histories of the star-forming galaxies cannot be distinguished from those of

the passive galaxies; it is clear that a specific study of differences their evolutionary pasts is

required to explain the present day differences in their star formation activity.
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This chapter has demonstrated the utility of clustering for the multi-dimensional validation of

simulations against observations, and its ability to highlight particular features, and regions of the

shared feature space, for analysis. EAGLE reproduces the global structure of the GAMA sample,

but exhibits notable differences at more local scales. These differences are attributed to specific

aspects of the EAGLE simulations (their resolution and their AGN feedback prescription), thus

providing clear targets for improvement in the next generation of cosmological galaxy simulations.

I emphasise that my approach may readily be adapted for use with any clustering algorithm, with

prototype- and model-based algorithms being the most natural options.

My approach also has the potential to link observable features (such as those used in this chapter)

with features that cannot be directly observed, and are hence only available for measurement

in simulations. An example of such a feature is the gravitational binding energy of the halo of

a central galaxy, which sets the threshold that AGN feedback must exceed in order to be able

to expel gas from a galaxy (Davies et al., 2019, 2020b; Oppenheimer et al., 2020). Clustering

within feature spaces that are defined by features like this, which are more directly linked with

the processes involved in galaxy evolution, would be expected to produce outcomes that more

closely trace the influence of these processes. The subsequent mapping of these outcomes onto

observable features space would then facilitate and understanding of how these “hidden” features

are connected to the observable features via evolutionary processes.
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Synergies between low- and
intermediate-redshift galaxy
populations revealed with unsupervised
machine learning

The work presented in this chapter and in Appendix C is the subject of a paper that has been

submitted to Monthly Notices of the Royal Astronomical Society. See also the Publications page

of the front matter of this thesis.

In this chapter, I describe work that builds on that of Siudek et al. (2018b), which is described

in Section 2.3. I adapt the approach of Siudek et al. (2018b) to compare samples of galaxies at

two different redshifts. The aim is to uncover substructures within the established bimodality,

to examine similarities and differences between these substructures at two cosmic epochs, and

to interpret these similarities and differences in the context of galaxy evolution. My sample of

galaxies at low redshift (z ∼ 0.06) is drawn from the second edition of the GALEX-SDSS-WISE

Legacy Catalogue (GSWLC-2; Salim et al. 2018), and my sample of galaxies at intermediate red-

shift (z ∼ 0.65) is based on the VIPERS sample of Siudek et al. (2018b). I prepare the samples

carefully to ensure a fair comparison of galaxies from different cosmic epochs and different sur-

veys, and to mitigate methodological influences on the clustering outcomes. I also adjust the input

features, defining nine neighbouring rest-frame colours that, together, represent the shapes of the

UV-through-NIR SEDs of the galaxies in the samples.

This chapter proceeds as follows. In Section 5.1, I characterise the samples, the data I use to

represent and analyse the galaxies that they contain (including the estimation of their SEDs), and
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the measures that I take to ensure a fair comparison between them. In Section 5.2, I explain the

Discriminative Latent Mixture (DLM) model and how Subspace Expectation-Maximisation (SEM)

algorithm implements it, and I describe the feature space within which I cluster my samples. In

Section 5.3, I present the outcomes of the clustering, and in Section 5.4, I offer my interpretation

thereof. Finally, in Section 5.5, I summarise and conclude this chapter. This chapter is supple-

mented by Appendix C, in which I explore aspects of the use of SEM (Sections C.1 and C.3), detail

my smoothing of GSWLC-2 galaxy colours (Section C.2), and highlight an AGN trend among

GSWLC-2 clusters (Section C.4). Where required in this chapter, I assume a (H0, Ωm, ΩΛ) = (70

km s−1 Mpc−1, 0.3, 0.7) cosmology.

5.1 Samples

5.1.1 GALEX-SDSS-WISE Legacy Catalogue 2

The second edition of the GALEX-SDSS-WISE Legacy Catalogue (GSWLC-2; Salim et al. 2016,

2018) was assembled using Data Release 10 (DR10; Ahn et al. 2014) of SDSS. GSWLC-2 aimed

to characterise the star formation activity and dust content of galaxies in the local Universe. It

contains all SDSS DR10 galaxies that meet the following criteria:

• apparent r-band petrosian magnitudes < 18,

• spectroscopic redshifts within the range 0.01 < z < 0.3,

• lie within the Galaxy Evolution Explorer (GALEX) (Martin et al., 2005; Morrissey et al.,

2007) observation footprint, whether they were detected by GALEX or not.

The lower redshift limit was imposed to exclude foreground stars, and particularly close galaxies

with potentially unreliable photometry and/or distance estimates. Retaining galaxies that were not

actually detected by GALEX itself preserves the optical selection of SDSS. In all, these criteria

select 659, 229 SDSS DR10 galaxies.

u-, g-, r-, i-, and z-band optical photometry for galaxies in GSWLC-2 was drawn from SDSS.

modelMag magnitudes, which are based on profile fits, were selected due to the accuracy of their

colours. These modelMag magnitudes were corrected for extinction due to Milky Way dust using

the empirical Yuan et al. (2013) coefficients.

The SDSS optical photometry was supplemented with near- (NUV) and far-UV (FUV) photom-

etry from GALEX’s final data release (GR6/7). GALEX conducted surveys at varying depths:
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an All-sky Imaging Survey (which observed several targets per orbit), a Medium Imaging Survey

(one target per orbit), and a Deep Imaging Survey (several orbits per target). These surveys were

nested, such that it is possible for a galaxy to have been observed at more than one depth (although

an observation of a galaxy at a given depth does not guarantee an observation of the same galaxy

at shallower depths). Here, the UV photometry for galaxies in GSWLC-2 based on the deepest

available observation of each galaxy (catalogue GSWLC-X2) is used. Salim et al. (2016) applied

corrections to mitigate systematic offsets between the SDSS and GALEX photometry, which arose

mostly due to the blending of sources in GALEX’s low-resolution images. Peek & Schiminovich

(2013) corrections for extinction due to Milky Way dust were applied to the UV photometry. UV

photometry in at least one of GALEX’s two bands (almost always NUV if just one) is available

for 65 per cent of GSWLC-2 galaxies, and for 80 per cent of the galaxies in the final GSWLC-2

sample (see below).

Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) observations at 12 and 22 µm

(channels W3 and W4 respectively) were used to provide mid-IR (MIR) photometry for GSWLC-

2 galaxies. Salim et al. (2018) opted for unWISE (Lang et al., 2016) forced photometry, which was

based directly on SDSS source positions and profiles. MIR photometry in at least one of channels

W3 and W4 is available for 78 per cent of GSWLC-2 galaxies, and for 87 per cent of the galaxies

in the final GSWLC-2 sample (see below).

GSWLC-2 rest-frame SEDs

The rest-frame SEDs of GSWLC-2 galaxies were estimated using the Code Investigating GALaxy

Emission (CIGALE; Noll et al. 2009; Boquien et al. 2019). Synthetic spectra generated by CIGALE

were validated against the available observed UV-through-optical photometry in order to constrain

the SEDs. Details of this fitting procedure are described at length in Salim et al. (2016, 2018); here,

I offer a brief summary.

Synthetic spectra were generated using Bruzual & Charlot (2003) simple stellar population tem-

plates, based on a Chabrier (2003) initial mass function and with metallicities of log10(Z) = −2.4,

−2.1, −1.7 (∼ Z�), or −1.3. These templates were combined with Myr-resolution SFHs consist-

ing of two exponentially declining episodes of star formation, which produce an old and a young

population. Absorption of stellar emission by dust was implemented via a Noll et al. (2009) gen-

eralisation of the Calzetti et al. (2000) attenuation curve, modified to allow its slope to vary and to

add a UV bump (see section 3.4 of Salim et al. 2018).

The SED estimation was additionally constrained by the galaxy’s total IR luminosity (i.e. match-

ing the energy absorbed by the dust in that galaxy with the energy it re-emits; see section 3.2 of

Salim et al. 2018). Total IR luminosities were derived from the 22 µm WISE photometry (if avail-
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able, 12 µm if not) using Chary & Elbaz (2001) templates, further corrected based on Herschel

(Valiante et al., 2016) IR photometry (see section 3.1 of Salim et al. 2018). The overall quality of

fit was measured by its reduced chi-squared value (χ2
r ).

Astrophysical features including rest-frame absolute magnitudes, colour excesses [E(B−V)], stel-

lar masses (M∗), stellar metallicities (Z), mass-weighted stellar ages (MWS A), and specific star

formation rates [sSFR (SED)] were derived from the full ensemble of possible synthetic spectra

via a Bayesian approach (Salim et al., 2007). The likelihood of the fit of each synthetic spectrum

to the photometry of each galaxy was used to generate a probability density function for each

feature, with the likelihood-weighted means of the functions being quoted as the best estimates of

the features, and the likelihood-weighted standard deviations as the errors.

Final low-redshift sample

The final GSWLC-2 sample is subject to the following selections. Firstly, only galaxies whose

best-fitting CIGALE SEDs produce χ2
r <= 11.07 (i.e. the mean plus two standard deviations of

the logarithmic GSWLC-2 distribution in χ2
r ) are retained, in order to omit particularly poorly

constrained fits. Spectroscopic redshifts are limited to the range 0.02 < z < 0.08, and stellar

masses (as estimated via Bayesian analysis of the synthetic CIGALE spectra) to > 109.5 M�. These

two restrictions ensure completeness above the imposed stellar mass limit. Finally, broad-line

AGN are removed by asserting flag sed = 0. The final GSWLC-2 sample has a median redshift

of 0.06 and contains 177, 362 galaxies.

Brinchmann et al. (2004) specific star formation rates [sSFR (ind.)] and 4000 Å break strengths

[D(4000)] are invoked as additional, CIGALE-independent indicators of the stellar populations in

GSWLC-2 galaxies. The SFRs sum two components: a spectroscopic fibre SFR, and a photo-

metric SFR outside the fibre, given by an optical SED fit (Salim et al., 2007). The fibre SFR is

given by either a Hα calibration (Charlot & Longhetti, 2001) or, in the case of spectra that have

a contribution from an AGN, a D(4000)-based estimate (itself calibrated on the emission lines

of pure star-forming galaxies). These SFRs are then normalised by photometrically-determined

stellar masses to give sSFR (ind.). The timescale probed by sSFR (ind.) lies between the 10 Myr

timescale of the Hα-calibrated fibre SFRs, and the 1 Gyr timescale of optical SED-based SFRs

(Salim et al., 2016). The D(4000) measurements apply to fibre region only. Both of these features

are available for 97 per cent of the galaxies in the GSWLC-2 sample.

Sérsic indices (ng) and circularised half-light radii (R1/2) for the galaxies in the GSWLC-2 sample

are obtained from catalogues assembled by Simard et al. (2011). Both were derived from fits of

singular Sérsic (1963, 1968) profiles to r-band images of galaxies in SDSS. The Sérsic indices

have minimum and maximum allowed values of 0.5 and 8 respectively. Sérsic indices and half-
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light radii are available for 96.2 per cent of the galaxies in the final GSWLC-2 sample. Simard

et al. (2011) r-band bulge-to-total ratios (B/Tr) are also used for these galaxies, which were based

on fits consisting of two components: a Sérsic bulge (fixed at an index of 4) and an exponential

disc. Local environmental densities, available for 92.1 per cent of GSWLC-2 galaxies, come from

Baldry et al. (2006). They averaged the surface densities of SDSS galaxies with respect to their

fourth- and fifth-nearest density-defining neighbour within 1, 000 km s−1 along the line of sight.

Local overdensities (δ) are calculated using δ = (Σ− Σ̄)/Σ̄, where Σ is the local surface density and

Σ̄ the average surface density of the sample.

5.1.2 VIPERS

The VIMOS Public Extragalactic Redshift Survey (VIPERS; Guzzo et al. 2014; Garilli et al. 2014;

Scodeggio et al. 2018) aimed to match the statistical fidelity of low-redshift surveys like SDSS, but

at intermediate redshifts (z ∼ 0.7). The survey was conducted using the VIMOS spectrograph (Le

Fèvre et al., 2003) of the European Southern Observatory’s Very Large Telescope. Its targeting was

based on the Canada-France-Hawaii Telescope Legacy Survey Wide (CFHTLS-Wide) photometric

catalogue1, with objects qualifying for VIPERS if they had extinction-corrected i-band magnitudes

iAB < 22.5. An additional ugri colour cut was applied to remove low-redshift (z . 0.5) galaxies

from the survey (Guzzo et al., 2014). PDR2, the second and final public data release of VIPERS,

comprises spectroscopy for 97, 414 objects (Scodeggio et al., 2018). 52, 114 of these objects

(51, 522 galaxies and 592 broad-line AGN) have “secure” (> 99 % confidence) redshifts. This

secure-redshift sample was the subject of the Siudek et al. (2018b) study, and is the basis of my

present VIPERS sample.

Photometry for this sample was taken from a catalogue prepared by Moutard et al. (2016a). The

CFHTLS-Wide photometric catalogue (i.e., the basis of the targeting for VIPERS) provided op-

tical photometry for this sample in u∗, g, r, i, and z bands. Moutard et al. (2016a) derived total

magnitudes for the galaxies in this sample by rescaling their isophotal magnitudes. These isopho-

tal magnitudes were chosen for the accuracy of their colours with a view to photometric redshift

estimation; this choice now benefits the SED estimation as well.

Like for the GSWLC-2 sample, UV photometry came from GALEX. Moutard et al. (2016a) sup-

plemented existing Deep Imaging Survey observations of VIPERS galaxies with deep GALEX

observations of their own in order to improve UV coverage within the VIPERS footprint. Cover-

age is complete in the W1 field of VIPERS, but not in the W4 field (see figure 1 of Moutard et al.

2016a). UV photometry was then measured using a Bayesian approach with the u∗-band profiles

of galaxies as priors (Conseil et al., 2011), which mitigated the confusion of sources due to their

1http://www.cfht.hawaii.edu/Science/CFHLS
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blended UV profiles. UV photometry in at least one of GALEX’s two bands (almost always NUV

if just one) is available for 52 per cent of galaxies in the Siudek et al. (2018b) sample and in the

final VIPERS sample (see below).

Near-IR (NIR) Ks-band photometry came from a dedicated CFHT WIRCam (Puget et al., 2004)

follow-up survey of VIPERS galaxies (Moutard et al., 2016a). This Ks-band photometry was vali-

dated against NIR photometry from the VISTA Deep Extragalactic Observations (VIDEO) survey

(Jarvis et al., 2013), exhibiting good agreement. VIDEO survey Z, Y , J, H, and Ks NIR photome-

try is also taken for the sample where available (11 per cent of the Siudek et al. 2018b sample, 10

per cent of the final VIPERS sample; see below). CFHT Ks-band photometry is available for 91

per cent of galaxies in the Siudek et al. (2018b) sample, and for 93 per cent of galaxies in the final

VIPERS sample (see below).

VIPERS rest-frame SEDs

The SEDs of VIPERS galaxies are estimated via a full fit of synthetic CIGALE spectra to the avail-

able UV-through-NIR photometry. This differs slightly from the method used for the GSWLC-2,

whose NIR SEDs were constrained not by their shapes but simply by their total IR luminosities

(Section 5.1.1). While the same stellar templates (Bruzual & Charlot 2003, with Chabrier 2003

initial mass functions and metallicities of 0.004, 0.008, 0.02, or 0.05) are used for VIPERS as were

used for GSWLC-2 , the SFHs are adjusted to reflect the change in cosmic epoch between samples

and to account for the possibility of very recent bursts of star formation2. Astrophysical features

are derived for VIPERS galaxies using the same Bayesian approach as for GSWLC-2 galaxies

(see Section 5.1.1).

Final intermediate-redshift sample

The following selections are made to yield the final VIPERS sample: galaxies are kept if the χ2
r

of their best-fitting CIGALE SED has a value less than or equal to the mean plus two standard

deviations (= 18.85) of the overall logarithmic VIPERS distribution. Spectroscopic redshifts are

restricted to being within the range 0.5 < z < 0.8, balancing my intent to define a co-eval pop-

ulation of galaxies against the need to keep the sample as large as possible. Like the GSWLC-2

sample, stellar masses are limited to > 109.5 M� with a view to mass completeness (though see

Sections 5.3.4 and 5.4.2, where I discuss shortcomings). Broad-line AGN and serendipitous sec-

ondary spectral sources are removed using zflag < 10. Ultimately, this gives a final VIPERS

2Consequences of this adjustment are discussed in Section 5.3.4; the properties of most VIPERS galaxies appear

accurate, except for those of a subpopulation of passive VIPERS galaxies.
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sample consisting of 31, 889 galaxies, with a median redshift of 0.65.

Emission-line SFRs, which are independent of the CIGALE SED estimation, were calculated from

the [OII] λ3727 forbidden doublet fluxes of the galaxies in the VIPERS sample using the calibra-

tion (which includes empirical stellar-mass-based corrections) of Gilbank et al. (2010, 2011a,b).

These [OII] λ3727 fluxes are available for 27, 537 of the galaxies in the VIPERS sample, and they

probe short timescales of star formation (∼ 10 Myr). These [OII] SFRs are normalised by the

CIGALE stellar masses to yield specific star formation rates3 [sSFR (ind.)]. D(4000) was measured

from VIPERS spectra by Garilli et al. (2014), using the same Balogh et al. (1999) method as was

used for SDSS (Brinchmann et al., 2004). Sérsic indices and circularised half-light radii for the

galaxies in the VIPERS sample are given by Krywult et al. (2017), who fitted the i-band light

distributions of galaxies with single Sérsic (1963, 1968) profiles. These features are available for

96.2 per cent of the galaxies in the final VIPERS sample. The Sérsic indices are winsorised to

values of 0.5 and 8 in order to match the GSWLC-2 sample. The overdensities of 91.7 per cent

VIPERS galaxies were derived by Cucciati et al. (2017), based on fifth-nearest neighbour surface

densities.

5.2 Clustering method

I apply the Subspace Expectation-Maximisation algorithm, which estimates the parameters of the

Discriminative Latent Mixture model. Bouveyron & Brunet (2012) offer full, rigorous, mathemat-

ical derivations of both the Discriminative Latent Mixture model and the Subspace Expectation-

Maximisation algorithm in their paper (where it is called the Fisher-EM algorithm)4; here, I offer

brief summaries of the model (Section 5.2.1), and of its implementation via the algorithm (Section

5.2.2). In Section 5.2.3, I discuss some additional relevant practicalities to the use of the model

and algorithm, and in Section 5.2.4, I describe the shared feature space within which I cluster the

two samples.

5.2.1 The Discriminative Latent Mixture model

The Discriminative Latent Mixture (DLM) model is a clustering approach that incorporates di-

mensionality reduction on the fly to determine a frugal fit to the structure of an input sample,

which is assumed to consist of k clusters. Selection of the value of k is discussed in Section 5.2.3.
3My use of stellar masses given by CIGALE means that these sSFR (ind.) estimates are not entirely independent of

CIGALE, however CIGALE’s stellar masses are expected be consistent with those estimated via other methods, given that

stellar mass estimates are generally quite robust (Bell & de Jong, 2001).
4Note that I have renamed their algorithm for this thesis to offer a clearer indication of how aspects of the algorithm

work.
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Figure 5.1: A simple demonstration of the principles behind subspace clustering. Here, a sample consisting

of two clusters (represented by the two blue ellipses) is represented in a two-dimensional full space defined

by features f1 and f2. Matrix M enables the transformation of the sample to a one-dimensional subspace,

defined by latent feature fl, in which the two clusters are easily discriminated.

The key premise of the DLM model is thus: a sample represented in a D-dimensional space that

is defined by observed features actually occupies an intrinsic d-dimensional subspace (d < D;

the “empty space phenomenon”; Scott & Thompson 1983) that is defined by unobserved, latent

features. Hence, the clustering structure of the sample should be fitted in this intrinsic subspace.

The subspace has two important properties in the context of the DLM model. Firstly, of all possible

d-dimensional subspaces, it is the one that best discriminates the k clusters in the sample. The

model assumes 1 ≤ d ≤ k − 1: that k clusters may be distinguished in k − 1 dimensions or

fewer (see Section 5.2.3 for further explanation). Secondly, the subspace is linearly related to the

full D-dimensional space, such that the unobserved, latent features are linear combinations of the

observed features. Hence there exists a matrix M, common to all of the k clusters, that enables

the transformation of the sample between the full space and the subspace. This transformation

matrix is constrained by the condition that the basis vectors of the subspace must be orthonormal.

Estimation of the transformation matrix M is explained in Section 5.2.2. Selection of the value

of d is explained in Section 5.2.3. Figure 5.1 demonstrates these two important properties of the

subspace.

The DLM model assumes that the sample is distributed among a mixture of k Gaussian density

functions within the discriminative latent subspace. The functions, each of which corresponds to

a cluster, are defined by three parameters: a mean vector (µk), a covariance matrix (Σk), and a

scalar relative mixture proportion (πk). The matrix M enables the transformation of these param-

eters back to the full space. For the covariances, this includes the addition of Gaussian “noise”

(δk; unique to each of the clusters), which is defined as non-discriminative structure that exists in

the full space but not in the subspace. While Σk captures the cluster covariances inside the dis-

criminative latent subspace, δk captures the cluster covariances outside the subspace. Full space

covariances are the sum of both. Estimation of the cluster means, covariances, and noise terms is

discussed in Section 5.2.2.
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Implementation of the DLM model hence requires the estimation of the following parameters:

• k − 1 relative mixture proportions (πk; given that one cluster has a proportion of 1);

• kd parameters for the mean vectors (µk) in the subspace;

• kd(d + 1)/2 parameters for the covariance matrices (Σk) in the subspace (fewer than kd2

parameters because covariance matrices are symmetric);

• d(D− (d+1)/2) parameters for the transformation matrix M (the number of free parameters,

given the constraint that the basis vectors of the subspace must be orthonormal);

• k noise terms (δk; given that this non-discriminative structure is Gaussian and spherical

and may therefore by parametrised by a single value in reference to the Gaussian density

function estimated for each cluster).

The total number of parameters (qDLM) is most strongly influenced by the value of d. The maxi-

mum qDLM at a certain combination of D and k is given by setting d to its maximum value of k− 1

(based on the aforementioned assumption that k clusters may be distinguished in k− 1 dimensions

or fewer). qDLM is smaller than the number of parameters that must be estimated for a Gaussian

Mixture Model in the full space (qGMM), especially if d << D. qGMM is given by the sum of k − 1

relative mixture proportions, kD parameters for the mean vectors, and kD(D + 1)/2 parameters for

the covariance matrices.

Parameter qDLM may be further reduced by imposing additional constraints upon the DLM model.

For example, the covariance matrices (Σk) may be assumed to be the same for all Gaussians (Σ;

the Gaussians all have the same shape). Alternatively, they may be assumed to be diagonal (αk, j,

where the subscript j indicates a different variance in each dimension of the subspace), meaning

the latent features that define the subspace are uncorrelated. These diagonal covariance matrices

may then also be assumed to be isotropic (αk; spherical Gaussians in the subspace), the same for all

Gaussians (α j), or both (α). The noise terms (δk) may be assumed to be the same for all Gaussians

(δ) as well. Constraints like these may be imposed to speed up the clustering, in anticipation of a

particular clustering structure, or (as in my case) to compare fits of models of varying complexities

(see also Section 5.2.3). The various combinations of these constraints on the covariance matrices

and noise terms yield 11 submodels of the full Σk, δk DLM model. They are listed in full in table

1 of Bouveyron & Brunet (2012) (and listed partially in Table 5.1 of this chapter).
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5.2.2 The Subspace Expectation-Maximisation algorithm

The Subspace Expectation-Maximisation algorithm (SEM) estimates the parameters (πk, µk, Σk, M,

δk) of the DLM model, fitting a sample of N observations, observed in a D-dimensional space (the

“full” space, defined by D observed features), with k Gaussian density functions in a d-dimensional

discriminative latent subspace (1 ≤ d ≤ k − 1). SEM comprises the following steps:

0. Initialisation: k starting points are selected from within the extent of the sample in the full

space;

1. Expectation (E): transform the parameters of the mixture of Gaussians to the full space, and

calculate the probability of each observation having originated from each Gaussian;

2. Subspace (S; based on discriminant analysis): using the observation probabilities, find the

subspace that best separates the Gaussians;

3. Maximisation (M): update the parameters of the mixture of Gaussians (including non-

discriminative structure, termed “noise”) within the subspace.

The Expectation, Subspace, and Maximisation steps are iterated such that SEM improves its esti-

mates of the DLM model parameters as it proceeds. SEM is slow to run on my large samples and,

unlike traditional Expectation-Maximisation algorithms, does not always converge perfectly (such

that there are no changes between successive iterations; due to the Subspace step). I therefore

terminate SEM at the completion of 25 iterations; changes between iterations become negligible

well before this number (see Section C.1). The final output of SEM is a series of k probabilities

for each of the observations: probabilities of each observation having originated from each of the

k Gaussians. Final cluster labels are given by assigning each observation to the Gaussian with the

highest probability of having originated it.

While successive iterations of SEM improve its estimates of the DLM model parameters, these

estimates improve only towards local maxima in their likelihood functions. SEM is hence run

with varying initialisations, which may intuitively be considered as “exploring the surfaces” of

the likelihood functions of the model parameters. This encourages optimisation towards different

local maxima and, hopefully among these, the global maximum, which corresponds to the very

best estimates of the DLM model parameters.

Initialisation techniques may be as simple as a uniform random selection of k observations from

the sample. I opt to use the k-means algorithm (MacQueen, 1967; Lloyd, 1982), which imple-

ments a simple centroid-based clustering approach, to generate initialisations for SEM. k-means is

an Expectation-Maximixation algorithm and, like SEM, only optimises to local maxima. I there-

fore initialise k-means itself 100 times in the hope of encouraging optimisation towards the global
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maximum of its objective function (which measures how separated the clusters are). Use of vary-

ing initialisations provided by a heuristic like k-means leads to “pre-optimisation” of SEM because

the separated centroids are likely to span the full extent of the sample in its full space. This facili-

tates improvement of SEM’s estimates of the DLM model parameters towards the global maximum

of their likelihood functions. Following this initialisation, SEM proceeds to the Subspace step, in

which it finds the subspace that best separates the final k-means clusters, and to the Maximisation

step, in which it fits the observations with a mixture of Gaussians within this subspace. SEM then

loops back around to the Expectaton step and begins iterating proper.

The Expectation step uses the parameters estimated in the Maximisation step (πk, µk, Σk, δk) to

calculate the conditional probability of each observation having originated from each of the k

Gaussians. These parameters are transformed from the subspace, within which they are estimated

in the Maximisation step, to the full space using matrix M, found in the Subspace step.

The Subspace step finds the d-dimensional discriminative latent subspace that best separates the

new partition calculated in the Expectation step. Bouveyron & Brunet (2012) base this step on

discriminant analysis, which finds the linear combination of the input features that maximises the

ratio of the scatter between clusters to the scatter within clusters. Similar principles have been

applied for the visualisation of multi-dimensional clusters as well (e.g. Lisboa et al. 2008). These

scatters are weighted by the probabilities calculated in the Expectation step. A constraint of the

DLM model is that the d basis vectors that define the subspace must be orthonormal, which is not

necessarily a property of the d basis vectors that linear discriminant analysis provides. Bouveyron

& Brunet (2012) assert this constraint by applying the orthonormal discriminant vector method

(Okada & Tomita, 1985). The orthonormal discriminant vector method uses linear discriminant

analysis to find the d basis vectors in succession while also ensuring the orthonormality of each

new basis vector with respect to all of those that have already been calculated. The first basis

vector, which is free of this constraint, is given by the direct application of linear discriminant

analysis to the sample in the full space. The d orthonormal basis vectors constitute the columns

of M, the matrix that enables the transformation of the sample between the full space and the

subspace.

The Maximisation step updates the estimates of the means, covariances, and relative mixture pro-

portions (πk, µk, Σk) of the k Gaussians in order to maximise the likelihood of the fit. These

estimates are measured within the subspace found in the Subspace step, and are weighted by the

probabilities calculated in the Expectation step. This step also updates the estimates of the noise

terms (δk), which is given by the differences between the full-space variances (again weighted by

the probabilities calculated in the Expectation step) and the newly updated subspace variances.
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5.2.3 Practicalities

I do not presume a DLM submodel or value of k with which to fit the samples. Instead, I conduct a

search over all of the DLM submodels and over a range of values of k to determine the best-fitting

combination. Three of the DLM submodels (α j, δk; α j, δ; α, δk) are not available for use in the

version of SEM5 that I use for the fitting. This reduces the total number of available submodels

from 12 (including the full Σk, δk model) to nine.

I identify the best-fitting combination of DLM submodel and value of k by using the Integrated

Completed Likelihood criterion (ICL; Biernacki et al. 2000):

ICL = ln(L) −
qDLM

2
ln(N) − [−ΣN

i=1 Σk
l=1 zi,l ln(pi,l)], (5.1)

where L is the likelihood of the fit, pi,l is the probability of observation i belonging to cluster

l, and zi,l denotes cluster membership, taking a value of 1 when pi,l = max(pi,:) and a value

of 0 otherwise. The ICL is closely related to the popular Bayesian Information criterion (BIC;

Schwarz 1978). While both the BIC and ICL criteria penalise the likelihood using the number of

parameters used for the fit (to avoid over-fitting), the ICL criterion also rewards separated clusters

(a general aim of clustering). The combination of submodel and k that returns the highest ICL

score is deemed the the best fit.

The dimensionality of the discriminative latent subspace is constrained by the number of clusters

being fitted: 1 ≤ d ≤ k − 1. The maximal d = k − 1 case may intuitively be understood as setting

the origin of the subspace at one of the k cluster centres so that the full-space vectors to each of

the remaining k − 1 cluster centres define the basis vectors of the subspace. If multiple clusters

lie along the same direction in the full space, the number of basis vectors needed to define the

subspace is reduced. In my application of SEM, I hold d at its maximum value of k − 1. This is

recommended by Bouveyron & Brunet (2012) to avoid omitting any discriminative structure from

the subspace and to ease convergence of SEM (which may become unstable or fail to converge

if d is too small in comparison with k and/or D). Hence, the maximum value of k in my model

selection search is 9 (set by d = 8, given D = 9).

5.2.4 Input features to the clustering

The fitting of the clustering structures of both of the samples is conducted within a nine-dimensional

feature space defined by nine colours. These colours are calculated not from the observed photom-

etry that is used as input to the SED fitting, but from rest-frame magnitudes estimated by CIGALE.
5Version 1.5.1, for the R statistical computing environment.
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This ensures homogeneity among the input features, and that the feature space is defined by rest-

frame colours (which is more difficult to ensure using colours calculated directly from observed

photometry). In addition, the SED estimation can infer the rest-frame magnitudes of galaxies in

bands for which there is no observed photometry. The full list of rest-frame colours used for the

clustering is: FUV − NUV , NUV − u, u − g, g − i, i − r, r − z, z − J, J − H, and H − Ks. These

rest-frame colours are intended to represent the shape of each galaxy’s UV-through-NIR SED, and

to remove the influence of the intrinsic brightnesses of the galaxies on the clustering outcomes.

The rest-frame magnitudes of GSWLC-2 galaxies (but not VIPERS galaxies) are subject to some

smoothing (see Section C.2). In addition, the rest-frame NIR colours of GSWLC-2 galaxies were

inferred from UV and optical photometry (given the lack of input NIR photometry). Use of the

term “colour” from this point forward in this chapter is intended in reference to these rest-frame

colours, as estimated by CIGALE.

These colours differ from those used by Siudek et al. (2018b); they used rest-frame colours defined

with reference to the rest-frame i-band magnitudes of galaxies (FUV − i, NUV − i, etc.), also with

the aim of removing the influence of galaxy intrinsic brightnesses on their clustering outcomes.

However, their UV colours, defined across the largest distances in wavelength among their fea-

tures, exhibited large spreads (up to a factor of 10 larger than the spreads of other colours) and

dictated much of their clustering. Preliminary tests of clustering with these i-band based colours

for my present, carefully prepared samples confirmed this. The αk, j and αk, j submodels achieved

the highest ICL scores for these i-band colours, but gave only relatively crude segmentations of

the samples (see also Section C.3). My colours, defined using magnitudes in filters at neighbour-

ing effective wavelengths, mitigate this effect and encourage SEM to converge to more detailed

partitions (although, as shown in Figure 5.2, bluer colours are still most important).

5.3 Results

5.3.1 SEM submodel selection

As outlined in Section 5.2.3, I conduct a search for the best-fitting SEM submodel and number of

clusters for both of the samples. I identify the best-fitting combination using the ICL criterion,

which penalises the likelihood using the number of parameters of the submodel while favouring

separated clusters. Table 5.1 lists ICL scores reported for both samples. The uncertainties on these

scores, which span the full variation over 100 initialisations, show that SEM is extremely stable and

self-consistent. The best-fitting combinations for each sample are highlighted using bold text. I

briefly describe patterns of behaviour of the various submodels, including the large spread in ICL

scores, in Section C.3. Despite it registering the highest score for the GSWLC-2 sample, I reject
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Table 5.1: Integrated Completed Likelihood (ICL) scores reported by my search over all possible combi-

nations of submodel (see Section 5.2.1 for further explanation) and k for both samples. The uncertainties

span the full range of ICL scores registered over 100 initialisations for each combination. As mentioned in

Section 5.2.3, only nine of the 12 submodels are available in the version of SEM that I use for my fitting. The

score of the best-fitting combinations are highlighted using bold text. While submodel Σ, δ produces the

highest score for the GSWLC-2 sample (at k = 9), I reject it for reasons given in Section C.3. Blank entries

correspond to combinations for which SEM did not converge (see Section C.3). The entries listed in this

table are subject to the multipliers at the right-hand side of each section. The ICL scores for the GSWLC-2

sample are systematically higher than those for the VIPERS sample because it contains more galaxies.

Submodel

Σk, δk Σk, δ Σ, δk Σ, δ αk, j, δk αk, j, δ αk, δk αk, δ α, δ

G
SW

L
C

-2

k = 2 1.8 ± 0.0 1.5 ± 0.0 0.4 ± 0.0 -6.2 ± 0.0 1.8 ± 0.0 -4.7 ± 0.0 1.8 ± 0.0 -4.7 ± 0.0 -6.2 ± 0.0

×105

k = 3 8.2 ± 0.0 7.8 ± 0.0 -141.0 ± 0.0 0.0 ± 0.0 3.8 ± 0.0 -5.1 ± 0.0 3.7 ± 0.0 -5.3 ± 0.0 -4.5 ± 0.0

k = 4 11.7 ± 0.0 11.3 ± 0.0 2.7 ± 0.0 5.2 ± 0.0 4.9 ± 0.0 -4.2 ± 0.0 -3.8 ± 0.0

k = 5 13.4 ± 1.4 13.4 ± 0.2 -46.2 ± 51.5 8.7 ± 0.4 6.7 ± 1.0 6.0 ± 0.0 -2.2 ± 0.0 -5.7 ± 1.3

k = 6 16.7 ± 0.0 9.4 ± 0.0 13.0 ± 0.1 6.8 ± 0.0 0.7 ± 0.0 -5.2 ± 0.0

k = 7 17.9 ± 0.2 11.8 ± 2.0 14.2 ± 1.6 7.2 ± 0.0 2.3 ± 0.0 -5.6 ± 0.0

k = 8 16.3 ± 1.3 8.1 ± 0.0 1.1 ± 0.0 -5.7 ± 0.0

k = 9 17.1 ± 0.0 18.1 ± 0.9 8.0 ± 0.0 3.9 ± 0.0 -6.0 ± 0.0

V
IP

E
R

S

k = 2 2.1 ± 0.0 4.3 ± 0.0 -8.4 ± 0.0 -8.0 ± 0.0 -8.0 ± 0.0 -8.4 ± 0.0

×104

k = 3 11.1 ± 0.0 -421.0 ± 0.0 -0.4 ± 0.0 -4.7 ± 0.0 6.8 ± 0.0 -5.3 ± 0.0 -7.9 ± 0.0

k = 4 -294.0 ± 0.0 8.3 ± 0.0 -6.7 ± 0.0 8.3 ± 0.0 -7.4 ± 0.0 -9.0 ± 0.0

k = 5 32.9 ± 0.0 32.4 ± 0.0 15.6 ± 0.0 16.3 ± 0.2 10.5 ± 0.0 -2.9 ± 0.0 -7.0 ± 0.0

k = 6 20.9 ± 1.5 23.6 ± 0.0 13.0 ± 0.0 2.9 ± 0.0 -3.8 ± 0.1

k = 7 41.8 ± 0.1 26.4 ± 2.3 15.9 ± 0.8 7.1 ± 0.4 -6.7 ± 0.0

k = 8 14.6 ± 0.0 3.2 ± 0.0 -10.8 ± 0.0

k = 9 12.5 ± 0.0 -10.8 ± 0.0
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Figure 5.2: The relative importance of each of the input features to the clustering. “F” stands for FUV, and

“N” for NUV. The mutual information (see Section 5.3.2 and Equation 5.2) of each of the input features

with respect to the cluster labels has been normalised by the sum across all of the input features for each

sample.

the k = 9, Σ, δ combination due to its inclusion of empty clusters (explained further also in Section

C.3).

Both samples are best partitioned into seven clusters, within a six-dimensional discriminative la-

tent subspace. The Gaussian density functions representing the clusters are each characterised by

their own unique, full covariance matrices (Σk); the clusters each have different shapes, and the

use of full covariance matrices indicates correlations (as expected) among the input features within

the subspaces. While the best-fitting submodel for the GSWLC-2 sample uses unique noise terms

for each cluster (δk), the best-fitting submodel for the VIPERS sample does not (δ), owing to the

smoother distribution of the VIPERS sample in the feature space (see e.g. Figure 5.3). Submod-

els Σk, δk and Σk, δ report similar ICL scores and produce similar clustering structures in general

and may therefore readily be compared with one another (see also Section C.3). That SEM has

converged to highlighting these closely related submodels as being optimal for describing both

samples is encouraging, and gives me confidence that I am conducting a fair comparison.

5.3.2 Feature importance

In Figure 5.2, I show the relative importance of each input feature to the clustering. Specifically, I

calculate the mutual information (MI) between each input feature and the output cluster labels:

MI( f , l) = DKL(p f ,l||p f pl). (5.2)

Here, DKL is the Kullback-Leibler divergence (Kullback & Leibler 1951; also known as the rel-

ative entropy) between the joint probability distribution of input feature f and output label l, and

their independent distributions. For Figure 5.2, MI f ,l is normalised by its sum across all input

features to give a relative value.
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The lines in Figure 5.2 are broadly similar, indicating that, on the whole, SEM uses the nine features

in a similar way to determine its best partitions. This is further confirmed by noting that the

subspaces within which SEM determined these best partitions have the same dimensionality (6) for

both samples. The lines are especially consistent among the optical colours, which is expected

given that optical photometry is ubiquitously available for galaxies in both samples. Altogether,

the optical regime is the most important to the clustering. Individually, colours from the UV region

of the SEDs of the galaxies in both samples are most strongly related to the output cluster labels.

This highlights, as expected, the star formation activity and the dust content of galaxies as major

influences on the shapes of their UV-through-NIR SEDs.

UV colours are slightly more important for the clustering in the GSWLC-2 sample, which reflects

the increased UV coverage of its galaxies by GALEX (80 per cent, as opposed to 52 per cent for the

VIPERS sample). NIR colours are less important for distinguishing clusters within the GSWLC-2

sample than within the VIPERS sample, which is likely due to their having been inferred purely

from UV and optical input photometry6. This is in contrast with the galaxies in the VIPERS

sample, whose NIR SEDs (more important to the clustering) were instead constrained by Ks-

band photometry. For galaxies with incomplete photometry, the array of templates and synthetic

spectra with which CIGALE may fit them is reduced, leading to reduced variation in the shapes of

their SEDs. In addition, the rest-frame magnitudes (and hence, rest-frame colours) that CIGALE

must infer from photometry at other wavelengths have larger uncertainties. Hence, availability

of photometry with which to constrain the SEDs of galaxies is advantageous to the clustering.

Nevertheless, Figure 5.2 shows that, for the most part, SEM uses the features similarly to model

both samples despite slight differences in this availability, which is driven mostly by the ubiquitous

availability of optical photometry for both samples.

5.3.3 Clustering structures

Table 5.2 profiles the clusters determined within each of the samples. Features are derived both

from the same SEDs as the colours used for the clustering and from ancillary sources (see Sections

5.1.1 and 5.1.2). Clusters are named using two-part notation that will be used throughout the

remainder of this chapter. The prefixes “G” or “V” denote clusters determined within the GSWLC-

2 and VIPERS samples respectively. Clusters names have been ordered by their mean NUV − r

colours for ease of reference (see Table 5.2). I invoke the information in Table 5.2 when relevant

throughout the following sections.

Figure 5.3 shows projections of the samples onto the two principal dimensions of their respec-

6While the Two Micron All-Sky Survey (Skrutskie et al., 2006) has NIR photometry for ∼ 50 per cent of GSWLC-2

galaxies, it is shallow and would not have provided strong constraints upon their NIR SEDs.
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Table 5.2: Profiles, in terms of averages, of the clusters determined within each of the samples. See the

main text for an explanation of the cluster naming scheme. Cluster means are listed in columns NUV − r

and r − Ks. For the remaining features, which are less directly linked to the clustering, I opt for medians

to mitigate the potential influence of outliers on the cluster profiles. Column “%” lists the percentage of

galaxies contained within each cluster for each sample. The data in the next seven columns [NUV − r to

log10(sS FR/yr−1) (SED)] originates from the same CIGALE SEDs as the rest-frame colours that were used

as inputs to the clustering. Features listed in this table include colour excesses [E(B − V)], stellar masses

(M∗), stellar metallicities (Z), mass-weighted stellar ages (MWS A), and specific star formation rates (sSFR).

I list sSFRs both determined by CIGALE (SED; averaged over 100 Myr timescales) and determined from

galaxy spectra (and hence independent of CIGALE; ind.; see Sections 5.1.1 and 5.1.2). Medians marked with

asterisks have unexpected values given their corresponding NUV − r colour and are discussed in Section

5.3.4.

Cluster % NUV − r r − Ks E(B − V) log10(M∗/M�) log10(Z) log10(MWS A/Myr) log10(sS FR/yr−1) log10(sS FR/yr−1)

(SED) (ind.)

G1 24.0 2.39 0.42 0.11 9.90 −2.22 3.80 −9.87 −9.87

G2 15.2 3.29 0.91 0.20 10.26 −1.81 3.85 −10.02 −10.19

G3 17.3 3.51 0.78 0.14 10.37 −2.11 3.89 −10.38 −10.47

G4 8.5 4.31 1.16 0.13 10.70 −1.75 3.92 −10.87 −11.22

G5 9.7 5.07 0.67 0.22 10.35 −2.30 3.90 −10.78 −11.97

G6 11.3 5.24 0.78 0.08 10.57 −2.11 3.93 −11.92 −11.93

G7 14.0 5.27 0.73 0.11 10.54 −2.20 3.93 −11.85 −12.02

V1 26.8 1.86 0.25 0.01 9.87 −2.12 3.52 −9.34 −9.25

V2 18.4 2.17 0.60 0.02 10.14 −1.90 3.55 −9.22 −9.34

V3 9.3 2.62 0.75 0.05 10.10 −1.40 3.52 −8.99 −9.35

V4 18.5 3.26 1.05 0.12 10.67 −1.80 3.58 −9.71 −9.92

V5 5.2 4.75 0.91 *0.15 10.61 *−1.51 *3.52 *−9.43 −10.09

V6 10.3 4.81 0.90 *0.15 10.69 *−1.86 *3.61 *−9.90 −10.29

V7 11.5 4.86 0.96 0.02 10.91 −2.05 3.74 −11.27 −10.42

tive six-dimensional discriminative subspaces. These projections, which offer direct views of the

structures of the clustering outcomes, are determined uniquely for each sample by SEM: the axes

of the two plots do not correspond exactly to one another. Nevertheless, these projections are

broadly similar in terms of the shapes of the overall samples within them. Both samples exhibit a

continuum, running from the lower right to the upper left of each plot, which has been segmented

by SEM. In addition, both samples exhibit a cluster which extends into the sparser region to the

upper right of each plot. This overall similarity gives me confidence in the success of the mea-

sures that were taken to ensure a fair comparison between samples at different redshifts and from

different surveys (see Sections 5.1.1 and 5.1.2). In addition, it reinforces my conclusion that SEM

has overall used the input features similarly for both samples in spite of slight differences in the

availability of photometry between them (Section 5.3.2). The subtler differences between clusters

in these projections are subject to the distributions of galaxies within the shapes of their respective

samples. I comment on these differences where relevant in Section 5.3.4. Cluster colours in the

plots in this chapter, like their names, are assigned based on their mean NUV − r colours.

I break down the analysis of the clusters using the colour bimodality of galaxies. The colour bi-
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Figure 5.3: Projections of both samples onto the two dimensions that best separate their clusters. The axes

of each plot are determined by SEM and are unique to each sample (as indicated by their labels; e.g. S G1

represents the first axis of the subspace of the GSWLC-2 sample). but the resultant projections are mostly

similar nonetheless. The distributions of clusters within this plane are shown using coloured, filled contours

(drawn at a relative density of 0.4), and the coloured, circular markers show their means. The perpendicular

black lines at the lower right of each plot show the extent to which the y-axis has been stretched relative to

the x-axis to yield the projections as shown. The vectors at the upper right of each plot show the projections

of the two input features that correlate most strongly with the axes of these projections.
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Figure 5.4: Colour-colour plots of the samples. Colours are derived from CIGALE SED estimation. The

distributions of clusters are shown using coloured, filled contours (drawn at a relative density of 0.4), and the

coloured, circular markers show their means. The black line in each plot (inspired by Moutard et al. 2016b;

see main text) marks the boundary between star-forming galaxies (below the line) and passive galaxies

(above the line).

modality is a steady property the galaxy population throughout cosmic time, having been observed

among galaxies with redshifts as high as 4 (Wuyts et al., 2007; Williams et al., 2009; Ilbert et al.,

2010, 2013). Hence, it may be used to separate clusters of star-forming galaxies (on the blue peak)

from clusters of passive galaxies (on the red peak) in a way that is independent of redshift.

This separation is marked by the black lines in Figure 5.4. The NUV − r − Ks colour-colour

plane (Arnouts et al., 2013; Moutard et al., 2016b) is a useful tool with which to probe galaxy

subpopulations due to its ability to separate star-forming (low NUV − r), passive (high NUV − r),

and also dusty (high r − Ks) galaxies. It has been applied in several studies of galaxy evolution

using data from VIPERS (e.g. Fritz et al. 2014; Davidzon et al. 2016; Moutard et al. 2016b;

Siudek et al. 2017, 2018b; Vergani et al. 2018). The form of the black lines is inspired by Fritz

et al. (2014) and Moutard et al. (2016b); they are placed independently in each panel, without

reference to the positions of the clusters, to simply demarcate the star-forming and passive regions

of the NUV − r − Ks plane. Clusters whose means then lie below the black line in each plot are

selected as blue, star-forming clusters, and clusters whose means then lie above the black lines

are selected as red, passive clusters. As a result, both samples break down into four blue clusters

and three red clusters. Deviations of the structures of the clusters from this simple blue/red (star-

forming/passive) division that I enforce will highlight limitations of a purely binary view of the

galaxy population.

None of the clusters determined within either of the samples are confined in their extent to just
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the green valley (i.e. to just intermediate NUV − r colours in Figure 5.4). This seems consistent

with the notion that the green valley does not represent a single, unique, or excess subpopulation

of galaxies, but instead encompasses a diverse array of galaxies that are transitioning from star-

forming to quenched (Smethurst et al., 2015; Moutard et al., 2016b). By implication, this also

suggests that there is more than one evolutionary pathway of galaxies through the green valley

(Faber et al., 2007; Fritz et al., 2014; Schawinski et al., 2014). Previous studies (Baldry et al.,

2004; Taylor et al., 2015) have suggested that the green valley comprises the overlapping tails of

the red and blue peaks of the colour bimodality; Krywult et al. (in prep.), fitting the UV-through-

optical bimodality with two Gaussian density functions in narrows stellar mass and redshift bins,

show that this constitutes a particularly accurate description of the colour distribution of galaxies.

Clusters G4 and V4, which are closest to the green valley, are most strongly associated with the

high-mass end of the blue peak of the colour bimodality.

The blue peak of the bimodality corresponds closely with the SFMS, which is the tight correlation

between the SFRs and the stellar masses of actively star-forming galaxies. The SFMS, like the

bimodality, is ubiquitous throughout cosmic time (Speagle et al., 2014). It has a lower normali-

sation with decreasing redshift; this cosmological decline of star formation (Madau et al., 1996;

Madau & Dickinson, 2014; Driver et al., 2018) is visible as a vertical offset between the samples

in Figure 5.4. In this chapter, the terms “blue peak” and “SFMS” are synonymous, and I use them

interchangeably.

The stronger NUV−r split between star-forming and passive VIPERS clusters in comparison with

those of GSWLC-2 (Figure 5.4, and also visible in Figure 5.3) is likely to result from two factors.

First is the difference in the rest-frame wavelength coverage of GALEX photometry for the two

samples; some rest-frame UV emission is redshifted out of the bandwidths of GALEX’s filters

at z ∼ 0.65. Second is the difference in the completeness of UV photometry for each sample.

GALEX observations exist for ∼ 80 per cent of galaxies in clusters G1-4. This proportion falls to

∼ 55 per cent in clusters G5-7, but this is expected given that these galaxies would be fainter in

the UV regime. Meanwhile, ∼ 65 per cent of V1, V2, and V4 galaxies were observed by GALEX.

Interestingly, only ∼ 20 per cent of galaxies in V3 have observed UV photometry, which may be a

part of the reason for its separation from the other star-forming VIPERS clusters. Passive VIPERS

clusters are ∼ 25 per cent complete in observed UV photometry. Together, these factors mean that

low levels of UV emission from more evolved VIPERS galaxies with more intermediate colours

are likely to be missed. On the other hand, Figure 5.2 shows that rest-frame NUV − u colours are

similarly important to the clustering structures of both samples, with NUV emission expected to

be a particularly accurate tracer of star formation (Salim, 2014).
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Table 5.3: Profiles, in terms of averages of ancillary features, of the clusters determined within each of the

samples. See the main text for an explanation of the cluster naming scheme. I list the median values of

the galaxies that the clusters contain for each of the features. Column “%” lists the percentage of galaxies

contained within each cluster for each sample. Features listed in this table include Sérsic indices (ng),

half-light radii (R1/2), and environmental overdensities (δ). The data is drawn from ancillary sources (see

Sections 5.1.1 and 5.1.2).

Cluster % ng log10(R1/2/kpc) log10(1 + δ)

G1 24.0 1.04 0.57 0.40

G2 15.2 1.34 0.50 0.51

G3 17.3 1.57 0.55 0.55

G4 8.5 2.38 0.61 0.59

G5 9.7 4.09 0.40 0.85

G6 11.3 4.18 0.45 0.80

G7 14.0 4.25 0.44 0.83

V1 26.8 0.92 0.49 0.29

V2 18.4 0.95 0.48 0.29

V3 9.3 1.11 0.50 0.36

V4 18.5 1.53 0.55 0.35

V5 5.2 3.31 0.42 0.40

V6 10.3 3.29 0.40 0.40

V7 11.5 3.40 0.43 0.43

5.3.4 Cluster identities

Clusters of star-forming galaxies

My NUV − r−Ks cut (Section 5.3.3) yields the following blue, star-forming clusters: G1, G2, G3,

and G4 for the GSWLC-2 sample; and V1, V2, V3, and V4 for the VIPERS sample. Though G4

also contains a significant number of galaxies with green or red NUV − r colours (i.e. such that

they are already quenching or quenched), I analyse it in this section due to apparent connections

with other clusters on the SFMS (see also Section 5.4.1). Figure 5.5 shows that the SEDs of G4

galaxies tend to more closely resemble those of actively star-forming galaxies, being flatter in the

UV regime (e.g. G3 galaxies) than those of typically passive galaxies (e.g. G5 galaxies). Hence,

in terms of the influence of their evolution on the shapes of their SEDs, G4 galaxies are more

closely related to G1-3 galaxies than G5-7 galaxies, despite some G4 galaxies being quenched.

Given that the SFMS is a smooth continuum, it is important where possible to establish why SEM

has distinguished clusters within it, and to interpret the significance of these distinctions in terms

of galaxy evolution. The position of a galaxy along the NUV − r − Ks SFMS (Figure 5.4) is

governed by a combination of its stellar mass and its dust content (Moutard et al., 2016a,b). The

lobe at high r − Ks, which preferentially consists of edge on galaxies, is known to capture the
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Figure 5.5: A comparison of the shapes of the mean (± standard deviation) estimated SEDs of galaxies in

clusters G3, G4, and G5. Clusters G3 and G5 are chosen as they neighbour G4 in terms of their average

NUV − r colour. The estimated SEDs of individual galaxies are normalised by their r-band magnitudes

(the effective wavelength of which is marked by a dashed black line) before the mean estimated SEDs are

calculated. The y-axis applies to the mean SED of G5; those of G3 and G4 are vertically offset by −1 and

−2 respectively to more clearly show the differences in their shapes.

excess reddening of high-mass star-forming galaxies (Arnouts et al., 2013), but it is more difficult

to disentangle this combination of stellar mass and dust elsewhere within the SFMS. Hence, there

is an overlap of star-forming clusters in Figure 5.4. In Figure 5.3, though, these clusters are more

clearly separated.

G1 and V1 capture similar subpopulations of galaxies. Both clusters contain the galaxies with the

bluest colours and the lowest masses (Figure 5.4, Table 5.2) within their respective samples; star-

forming galaxies at relatively early stages of their evolution. The remaining star-forming clusters

have higher masses and lie further along the SFMSs of each sample.

Clusters G2 and G3 overlap with one another in the left-panel of Figure 5.4, as do clusters V2

and V3 in the right-hand panel of the same figure. Figure 5.3 shows that G2 and V3 both extend

away from the main continua within the subspace projections of their respective samples. The

feature vector projections in Figure 5.3 show that the galaxies in these clusters have particularly

red FUV − NUV colours in comparison with other SFMS clusters. However, the astrophysical

meaning behind this is unclear. CIGALE alternately attributes this reddening to high colour ex-

cesses for galaxies in G2 and to higher metallicities for galaxies in V3 (Table 5.2), suggesting that

it has not fully resolved the degeneracy between the influences of dust and metallicity upon the

colours of these galaxies. However, CIGALE is consistent in assigning G2 and V3 galaxies similar

stellar masses and mass-weighted stellar ages to G3 and V2 galaxies (Table 5.2), which occupy

similar regions of the NUV − r − Ks plane. Stellar mass estimates are not strongly affected by an

inability to resolve this degeneracy between the influences of dust and metallicity (e.g. Bell & de

Jong 2001). Clusters G3 and V2, lying on the main continua in Figure 5.3, seem to be intermediate

between clusters G1 and G4, and V1 and V4 respectively.

The star-forming clusters along the SFMS of the GSWLC-2 sample exhibit a gradient in their star
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Figure 5.6: Smoothed kernel density estimates in D(4000) (left, logarithmically distributed) and local

environmental density (right) for each of the clusters from both outcomes. Here, D(4000) was measured

from the spectra of galaxies (Brinchmann et al., 2004; Garilli et al., 2014) using a method introduced by

Balogh et al. (1999), and is hence independent of CIGALE’s estimated SEDs. For both samples, these

overdensities are based on fifth-nearest neighbour surface densities (Baldry et al., 2006; Cucciati et al.,

2017).

formation activity. Taking their increasing average stellar masses as a point of reference, clusters

G1-4 exhibit a corresponding increase in their average NUV − r colours (Table 5.2, Figure 5.4).

decrease in their average sSFRs (both SED and ind.; Table 5.2), and increase in their average

D(4000) (Figure 5.6). High-mass galaxies in the GSWLC-2 sample do not form stars as readily

as low-mass galaxies. This gradient is weaker for clusters V1-3 (particularly with regard to their

median sSFRs; Table 5.2), though I note that clusters V2 and V3 have lower average stellar masses

than G2 and G3. It is only in V4 that a rise in average stellar mass is accompanied by a decrease

in average sSFR, and an increase in D(4000).

The large median sizes and low-to-intermediate median Sérsic indices of star-forming clusters

from both samples indicate that they are dominated by disc galaxies (Table 5.3). Clusters G1-4

exhibit a rise in their median ng to intermediate values along their SFMSs, indicating increasingly

concentrated morphologies among their galaxies. In Figure 5.7, these clusters form morphological

sequences that are separate from the distributions of passive clusters in the same plane. The

sequence of V1-4 is not as strong as that of G1-4; again, it is only in V4 that a significant change

is seen, with the higher stellar masses of its galaxies met with intermediate Sérsic indices.

While there are slight trends in the median local environmental overdensities of the star-forming

clusters in both samples (Table 5.3), Figure 5.6 shows that their distributions thereof have very

large spreads and exhibit a great deal of overlap with the distributions of other SFMS clusters

from the same sample. Therefore, the reduction in the star formation activity of SFMS galaxies at
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Figure 5.7: Sérsic index versus stellar mass for the galaxies in the samples. Sérsic indices were determined

by Simard et al. (2011) for the GSWLC-2 sample, and Krywult et al. (2017) for the VIPERS sample. The

distributions of clusters are shown using coloured, filled contours (drawn at a relative density of 0.4), and

the coloured, circular markers show their medians. The Sérsic indices of the galaxies in the VIPERS sample

have been winsorised to values of 0.5 and 8 in order to match the limits of the GSWLC-2 sample.

higher masses cannot be attributed to mainly environmental causes for either sample.

Clusters of passive galaxies

The red, passive clusters, selected using the NUV − r − Ks plots in Figure 5.4, are: G5, G6, and

G7 for the GSWLC-2 sample, and V5, V6, and V7 for the VIPERS sample. The input colour

that best separates the passive clusters in both samples is FUV − NUV . For G5-7, this separation

appears to have captured the higher sSFRs and lower masses of G5 galaxies, and differences in the

metallicities of G6 and G7 galaxies (Table 5.2). V7 has been distinguished due to the high masses

and low sSFRs of its galaxies. However, CIGALE’s estimation of the astrophysical properties of

V5 and V6 galaxies is less reliable (see below). In general, galaxies in the passive clusters are

offset to redder NUV − u colours than those in the SFMS clusters (see above).

Galaxies in clusters G6, G7, and V7 are alike with respect to most features. They share high

stellar masses, low sSFRs, large D(4000) (Figure 5.6), and early-type morphologies (Table 5.2),

all of which are typical of canonically passive galaxies. CIGALE attributes the difference in the

FUV − NUV colours of G6 and G7 galaxies (i.e., the feature that best separates these clusters) to

their metallicity distributions. While G6 peaks strongly at Z ∼ −2.1, G7 is split evenly between

peaks at Z ∼ 2.1 and Z ∼ −2.4. The metallicities of passive GSWLC-2 galaxies are discretised

by the input Bruzual & Charlot (2003) grid, and due to a lack of any input NIR photometry
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Figure 5.8: A comparison of the shapes of the mean (± standard deviation) estimated SEDs of galaxies

in clusters V5, V6, and V7. The estimated SEDs of individual galaxies are normalised by their r-band

magnitudes (the effective wavelength of which is marked by a dashed black line) before the mean estimated

SEDs are calculated. The y-axis applies to the mean SED of V7; those of V5 and V6 are vertically offset

by −1 and −2 respectively to more clearly show the differences in their shapes.

during their SED estimation (see Section C.2); with more precise metallicities, their distributions

might overlap more. V7 also has low metallicities in comparison with other clusters determined

in its sample. These sub-solar metallicities are unexpected for high-mass passive galaxies (e.g

Gallazzi et al. 2006), indicating difficulties of breaking the age-dust-metallicity degeneracy with

photometry alone, and suggesting that these metallicities are not entirely reliable. Altogether

though, these clusters contain the oldest, most evolved galaxies among their respective samples: a

subpopulation that is in place at the epoch of the VIPERS sample.

Galaxies in cluster G5, while also passive and early-type, have lower stellar masses than those in

clusters G6 and G7. I also note a difference between their median sSFRs, as reported by CIGALE

(SED) and by the independent Brinchmann et al. (2004) calibration (ind.; Table 5.2). I suggest that

G5 is likely to contain post-starburst galaxies (PSBs; Wild et al. 2009), and that this difference in

sSFRs is likely to arise due to the different timescales probed by these two measures (see Section 7

of Salim et al. 2016). While the fibre component of sSFR (ind.) is a more instantaneous measure of

star formation activity (∼ 10 Myr, being based on Hα emission), CIGALE averages star formation

over a longer period of time (100 Myr, to match the timescale of UV emission as a tracer of star

formation). Hence, even if the tail of a declining central burst of star formation activity is not

captured by sSFR (ind.), it may still be captured by sSFR (SED). The spheroidal morphologies

(Figure 5.7, Table 5.3) and the slight enhancement in the local environmental densities of G5

galaxies are suggestive of an external influence upon their evolution (see Section 5.4.2), which is

consistent with previous studies which link PSBs with mergers (Zabludoff et al., 1996; Yang et al.,

2008; Almaini et al., 2017).

Clusters V5 and V6 present conflicting identities in terms of features estimated by CIGALE (Table

5.2). While their galaxies have very similar stellar masses and morphologies to those in V7 (Table

5.3), they have unusually high colour excesses and metallicities and, in turn, high sSFR (SED).

This is in contrast with sSFR (ind.) and observed D(4000) of these galaxies (Table 5.2, Figure
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5.6), which show that they are indeed passive. The large spread in D(4000) of V5 may be due

to some minor contamination of the cluster by star forming galaxies; its NUV − r − Ks contour

extends below the black line in Figure 5.4, into the region containing dusty star-forming galaxies.

This may also have driven its median E(B − V) to a higher value.

The inability of CIGALE to properly resolve the age-dust-metallicity degeneracy for V5 and V6

galaxies is due to the shapes of the UV regions of their SEDs. Figure 5.8 shows that galaxies

in clusters V5 and V6 have steeper average UV SEDs than those in cluster V7. In order to ex-

plain the red UV colours (especially FUV − NUV) of these galaxies, CIGALE has invoked high

colour excesses and metallicities rather than low sSFR (SED). This appears to be a consequence

of CIGALE’s two-burst SFHs, which may not be a realistic description of the SFHs of most passive

VIPERS galaxies. These SFHs were adjusted for the epoch of the VIPERS sample by setting the

formation time of the old population to 6.5 Gyr ago instead of 10 Gyr, and including the possi-

bility of a particularly recent burst of star formation (< 50 Myr). However, a trial of the use of

a gradual 1 Gyr quenching episode instead led to improvements in the quality of fit of passive

SEDs, which produce low sSFR, to the photometry of the majority of V5 and V6 galaxies. Hence,

it seems that further adjustments to CIGALE’s SFH prescription are required when applying it at

higher redshifts7.

Galaxies contained within the passive clusters of the VIPERS sample tend to have higher stellar

masses than those contained within the passive clusters of the GSWLC-2 sample (Table 5.2). The

downsizing of the galaxy population (Cowie et al., 1988; Cimatti et al., 2006; Cattaneo et al.,

2008) means that fewer passive galaxies with low stellar masses are expected to be observed at

higher redshifts. However, stellar mass incompleteness of the VIPERS sample is likely to be a

more significant factor in explaining this result. Davidzon et al. (2013) show that, even at its lower

redshift limit of z = 0.5, the VIPERS sample is incomplete in passive galaxies below ∼ 1010

M�. Furthermore, their completeness threshold increases with redshift to 1010.75 M� at my upper

limit of z = 0.8, and thus skews the clusters of passive VIPERS galaxies towards higher stellar

masses8. Hence, where the GSWLC-2 sample has two lobes of passive galaxies in Figure 5.3 (see

also Section C.2), which differ in average stellar mass by ∼ 0.5 dex, the VIPERS sample has only

one. Though the VIPERS sample does contain some passive galaxies with low stellar masses (e.g.

Figure 5.7), they are not substantial enough in number for SEM to model them with a dedicated

cluster (i.e. like G5).

Passive clusters in both samples have high Sérsic indices and compact sizes (Table 5.3), indicat-

ing that their galaxies mostly have spheroid-dominated morphologies. As noted previously, they

7LePhare (Ilbert et al., 2006) SED estimation for the same galaxies (Moutard et al., 2016b; Siudek et al., 2018b),

which used a single declining exponential for its SFHs, reported lower colour excesses and metallicities, and hence,

lower sSFR.
8Star-forming galaxies and clusters are affected to a much lesser degree.

117



Chapter 5 Synergies between redshifts

occupy separate regions of the plots in Figure 5.7 to their respective SFMS clusters. Figure 5.7

also shows that the ng distributions for passive clusters are highly consistent with one another,

indicating a strong morphological homogeneity among their galaxies. While the passive clusters

in the GSWLC-2 sample exhibit a slight offset to higher density environments in comparison with

star-forming GSWLC-2 clusters, the environments of passive VIPERS clusters are consistent with

those of star-forming VIPERS clusters. This difference between the two samples is, in part, ex-

pected, due to the emergence of environments of especially high densities over cosmic time (e.g.

Marinoni et al. 2008; Kovač et al. 2010; Fossati et al. 2017). However, factors such as spectro-

scopic fibre collisions and the aforementioned incompleteness of passive VIPERS galaxies may

also reduce the completeness of VIPERS at especially high densities. I note that this incomplete-

ness does not appear to have strongly affected clusters elsewhere in the feature space (Figure 5.3).

5.4 Discussion

My clusters have been determined on the basis of the rest-frame colours of galaxies alone, which

mostly express their star formation activity and dust content. In this section, I aim to discern what

the trends of these purely colour-based clusters with other, ancillary features (revealed in Section

5.3) may say about the evolutionary histories of their constituent galaxies.

5.4.1 Internally driven evolution

Both sets of star-forming clusters – G1-4 and V1-4 – form clear morphological sequences in Figure

5.7. This implies an evolutionary pathway that connects the clusters in each set, and that acts at the

epochs of both samples. In Figure 5.9, I examine the bulge-to-total ratios of GSWLC-2 galaxies

(no such data exists for VIPERS). The G1-4 sequence is apparent here as well, capturing the rising

prominences of the bulges of their galaxies. It does not extend to the highest B/Tr values, despite

G4 also containing some quenching and quenched galaxies. which indicates that G1-4 galaxies

retain dominant disc components as they evolve, and that some G1-4 galaxies become passive

without fully transforming their morphologies. The changing morphological bulge-disc balance

appears to be captured also in the large spread in D(4000) of G4 galaxies in particular (Figure

5.6). The overlapping environmental distributions of star-forming clusters in both samples (Figure

5.6), suggests that the evolutionary pathway that begets these morphological sequences of gradual

bulge growth is more likely to be due to internal processes. I assume that the interpretation in this

paragraph applies to galaxies in V1-4 as well.

Bar-driven inflows of star-forming gas (Sheth et al., 2005) are internal processes that act over long

timescales, and are likely to be involved in this gradual evolution of galaxies along the SFMS.
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Figure 5.9: Bulge-to-total ratio (B/Tr) versus stellar mass for the galaxies in the GSWLC-2 sample. Here,

the subscript “r” denotes the r-band photometry from which the ratios were derived (Simard et al. 2011;

based on two-component fits). The distributions of clusters are shown using coloured, filled contours (drawn

at a relative density of 0.4), and the coloured, circular markers show their means.

These inflows are commonly invoked to explain the formation of dynamically cold “pseudobulges”

rather than the dynamically hot “classical” (ncl & 2) bulges that the Simard et al. (2011) two-

component fits assume (Kormendy & Kennicutt, 2004; Fisher & Drory, 2008; Mishra et al., 2017).

However, an increase in the prominence of pseudobulges would nonetheless be expected to be

captured by the single-component fits which yield the Sérsic indices in Table 5.3 and in Figure 5.7.

Internal processes such as the inward movement of clumps of newly formed stars from unstable

discs during earlier epochs (such that the bulge is in place at later times; e.g. Elmegreen et al.

2008b; Bournaud et al. 2011; Tonini et al. 2016) may instead lead to the formation of a classical

bulge, but these processes act over much shorter timescales and are less likely to lead to the

gradual trend in bulge prominence along the SFMS. I do not rule out that SFMS galaxies may

have undergone major and/or minor mergers or clump migration in their pasts; some have high

total ng values, which may be capturing classical bulges formed as a result of merger activity or

clump migration. Instead, I proffer that mergers do not contribute to their growth as they evolve

along the SFMS (see also Section 5.4.2). It has been shown, for example, that the remnant of a

gas-rich merger can reform a disc and continue to form stars, thus rejoining the SFMS (Hopkins

et al., 2009a,b).

The decline in the sSFRs of galaxies along the sequences G1-4 and V1-4 suggests that their mor-

phologies are also linked with an inhibition of their star formation. This could be due to the pre-

vention of the collapse of gas clouds within the disc by the deep gravitational potential of the bulge

(“morphological quenching’; Martig et al. 2009). It is more likely, though, that the prominence of

the bulge among these galaxies is a marker of nuclear activity within them. More massive bulges
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host more massive black holes at their centres (Häring & Rix, 2004), which in turn supply more

radiative feedback to their surrounding galaxies. This feedback can heat or eject gas in the discs

of the galaxies from which stars are formed and, as a result, inhibit star formation within these

galaxies (Croton et al., 2006; McCarthy et al., 2010; Gabor et al., 2011; Vergani et al., 2018). In

addition, the stronger inhibition of star formation in G4 and V4 galaxies (the former of which also

contains some quenching and quenched galaxies) may be tied to their exceeding the “transition

mass” (∼ 1010.5 M� at z ∼ 0; Kauffmann et al. 2003b), above which the inflow or subsequent cool-

ing of star-forming gas is prevented by the heating of galaxy’s halo by nuclear activity (Dekel &

Birnboim, 2006; Kereš et al., 2009; Moutard et al., 2020). I explore the possibility of the influence

of AGN among G1-4 in Section C.4, finding that galaxies in all four clusters, and especially those

in G4, are likely to contain low-ionisation nuclear emission-line regions.

In all, this connection between the bulges and the SFRs of galaxies within the star-forming clusters

of both samples implies that these galaxies evolve along the SFMS (in tandem with its downward

movement over cosmic time), and that this evolutionary pathway is governed chiefly by internal

processes that act over long timescales (Schawinski et al., 2014; Ilbert et al., 2015; Moutard et al.,

2016b; Pacifici et al., 2016; Popesso et al., 2019a). At the highest masses, this pathway leads (as

revealed by G4 in particular) off the tip of the SFMS, yielding a subpopulation of red, passive

galaxies which retain a disc. I suggest that this is due to the prevention of the accretion of new

gas with which to form stars by nuclear activity (Gabor et al., 2011; Moutard et al., 2020). This

connection between the bulges and the star formation activity of SFMS galaxies has previously

been established (Cheung et al., 2012; Fang et al., 2013; Bluck et al., 2014; Cano-Dı́az et al., 2019;

McPartland et al., 2019), but in my case it emerges purely from my clustering of galaxy colours,

with morphologies invoked post-clustering for evaluation.

Clusters V1-3 all have low stellar masses and high sSFRs. There does not appear to be a strong

trend between these two features for these clusters, which may be tied to their morphologies; all

three also have very low median ng, such that they appear to be very strongly disc-dominated.

In the context of the internally-driven evolutionary pathway that I propose, this suggests that the

bulges and/or supermassive black holes of V1-3 galaxies have not yet grown to the extent that they

can affect star formation in the discs surrounding them. This would be consistent with Fang et al.

(2013) and Bluck et al. (2014), who find that bulges must exceed a threshold in mass or central

density before they become associated with quenching. For V4, a rise to higher median M∗ is met

with a rise to intermediate median ng and a fall to lower sSFRs, suggesting that this threshold bulge

mass has been achieved in some V4 galaxies. Hence, the rising prevalence of bulges grown by

internal processes over cosmic time (e.g. Bruce et al. 2012; Gu et al. 2019) seems to be linked to

the cosmic decline of cosmic star formation activity and the downsizing of the galaxy population.

Given the long timescales over which these internal processes act, the gradual growth of V1-4

galaxies to higher masses and more prominent bulges would be expected to eventually lead to the
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more evolved distribution of galaxies that is captured by clusters G1-4 by the present day, which

are assumed to be their descendants.

5.4.2 Satellite quenching at low redshifts

The uniformly high Sérsic indices of galaxies in clusters G5-7 and V5-7 imply a strong link be-

tween their concentrated morphologies and their passiveness. At high masses, this link is likely to

include a contribution from the internally-driven evolutionary pathway that I propose in Section

5.4.1, in which the growth of the bulges of galaxies ultimately leads to the quenching of star for-

mation. Cluster V7 in particular, containing VIPERS galaxies with the highest masses, seems to

align well with the sequence of clusters V1-4 in Figure 5.7, such that it could be an extension of

this evolutionary pathway, consisting of the oldest galaxies with the most prominent bulges. This

is in agreement with previous studies which find that the inner stellar density of galaxies is a suc-

cessful predictor of its having been quenched (Bell, 2008; Cheung et al., 2012; Fang et al., 2013;

Bluck et al., 2014), with the favoured explanation being the heating or ejection of star-forming gas

by feedback from the supermassive black hole, whose mass scales with the inner stellar density.

However, other passive clusters are separated from their respective sequences of star-forming clus-

ters in Figure 5.7. Clusters G7, G6, and in particular G5 (the latter containing the lowest-mass

passive galaxies in the GSWLC-2 sample) have high median ng in comparison with other clusters

centred at similar stellar masses (G2, G3). This separation, clearer towards lower stellar masses,

invites the interpretation that their galaxies are subject to alternative and/or additional processes as

they evolve. That these clusters contain those GSWLC-2 galaxies that occupy the highest-density

environments (Figure 5.6) suggests an influence of external processes. Hence, I suspect that a sig-

nificant proportion of galaxies among G5-7 are low-mass satellite galaxies (occupying the halos of

more massive central galaxies), and are subject to external processes (Ilbert et al., 2010; Muzzin

et al., 2013; Moutard et al., 2018). I note that no such separation or environmental offset is seen

for V5-7, which I attribute to the incompleteness of low-mass passive galaxies in the VIPERS

sample, which would also be expected to trace high-density environments. Hence, the following

discussion on the influence of external processes upon satellite galaxies is conducted with refer-

ence to G5-7 only. However, I note that external processes may influence the evolution of z ∼ 0.65

galaxies that have stellar masses below the minimum of 109.5 M� that I impose.

Mergers and gravitational interactions, more common in environments of higher densities (Ren-

zini, 1999; Tonini et al., 2016), are external processes which can increase the Sérsic indices of the

galaxies involved (Naab & Trujillo, 2006; Aceves et al., 2006; Fisher & Drory, 2008). The precise

morphology of a merger remnant, while generally early-type, is dependent upon the configuration

of the merger (Toomre, 1977; Barnes, 1988, 1992; Walker et al., 1996). Major mergers are capable
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of destroying the discs of late-type galaxies, while minor mergers can instead simply promote the

formation of a classical bulge within a disc that remains mostly intact. In addition, gravitational

interactions between galaxies as they pass by one another (“harassment”) can gradually change

their morphologies from disc- to spheroid-dominated (Moore et al., 1996; Smith et al., 2015). Fig-

ure 5.9 shows a range of bulge-to-total ratios among galaxies in G5-7, which may be capturing

this varying degree to which mergers and gravitational interactions can disrupt the morphologies

of their progenitors over time. While most of these galaxies are strongly spheroid-dominated,

others (while still having high Sérsic indices which indicate the presence of bulge) retain a disc

component (with B/Tr values as low as ∼ 0.3).

Whether these processes are also responsible for the quenching of G5-7 galaxies is unclear. Grav-

itational interactions between merging galaxies can induce central starbursts which rapidly ex-

haust their supplies of star-forming gas (i.e. like the PSB candidates that I suggest comprise G5),

and/or can catalyse nuclear activity which inhibits any further star formation (Mihos & Hernquist,

1994a,b, 1996; Di Matteo et al., 2005; Springel et al., 2005a,c). Hence, a post-merger remnant

is in fact quenched by internal processes (i.e. exhaustion of its fuel, or supermassive black hole

feedback; see also above). However, a sufficiently gas-rich major merger may lead its remnant

to form with a disc and continue forming stars (Barnes, 2002; Hopkins et al., 2009a,b, 2010). In

addition, a merger remnant may eventually accrete new gas such that it can form a new disc begin

a new episode of star formation (Salim & Rich, 2010; Gabor et al., 2011). Generally, mergers

cannot be unequivocally linked with the quenching of galaxies (see also Weigel et al. 2017), and

so it is more likely that galaxies are quenched mainly by other processes.

Several external processes have been proposed to explain the quenching of star-forming galaxies as

they become satellites. Examples include ram-pressure stripping (Gunn & Gott, 1972; McCarthy

et al., 2008), thermal evaporation (Cowie & Songaila, 1977; Nipoti & Binney, 2007), and viscous

stripping (Nulsen, 1982; Kraft et al., 2017), all of which invoke the removal of the cold ISM of a

galaxy via its hydrodynamical interaction with the hot IGM of high-density environments as the

reason for quenching. These processes are correlated with the velocity of a galaxy as it travels

through its environment, and generally quench galaxies quickly. Gas may also be removed from

the extended halo of a galaxy at the outskirts of a dense environment, by the gravitational influ-

ence of that environment as a whole (“strangulation” or “starvation”; Larson et al. 1980; Peng et al.

2015). The galaxy then quenches slowly by exhausting any remaining gas in its disc. The balance

of these processes is not yet known (Bahé & McCarthy, 2015; Peng et al., 2015; Smethurst et al.,

2017). Recent studies, though, advocate for a general “delayed-then-rapid” quenching pathway

(Wetzel et al., 2012, 2013; Muzzin et al., 2014; Moutard et al., 2018). Galaxies initially quench

slowly at the outskirts of the environment, then quickly as they approach its core, where the con-

ditions for the aforementioned hydrodynamical interactions are expected. This delay could also

explain the large spreads in the environmental distributions among all of the clusters in Figure 5.6.
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Figure 5.10: Half-light radius versus stellar mass for the galaxies in the samples. Circularised half-light

radii are calculated from single Sérsic fits by Simard et al. (2011) for the GSWLC-2 sample, and Krywult

et al. (2017) for the VIPERS sample. The distributions of clusters are shown using coloured, filled contours

(drawn at a relative density of 0.4), and the coloured, circular markers show their medians.

These quenching processes are, in turn, unlikely to be responsible for the strongly spheroid-

dominated morphologies of low-mass passive galaxies (Bekki et al., 2002; Boselli et al., 2009;

Zinger et al., 2018). Hence, I suggest that the strong overlap between low-mass passive galaxies

and spheroids appears to be a product of environment, which drives quenching and morphological

transformation separately (Poggianti et al., 1999). In addition, it implies that the quenching of

galaxies precedes, or at least be simultaneous to, their morphological transformation (Schawin-

ski et al., 2014; Woo et al., 2017). While the merger of two gas-rich, star-forming galaxies may

produce a rejuvenated remnant, mergers between passive progenitors will invariably produce pas-

sive remnants with increasingly spheroidal morphologies, ranging from lenticular galaxies with

classical bulges (Mishra et al., 2017, 2018, 2019) through to pure spheroids.

5.4.3 Clusters in the size-mass plane

Figure 5.10 shows the size-mass distribution of the clusters in each of the samples. The stellar

masses originate from the same CIGALE SEDs that were used to generate the colours with which

the galaxies are represented for the clustering. The half-light radii of these galaxies are based on

fits of single Sérsic profiles to their light distributions (see Sections 5.1.1 and 5.1.2). The size of

a galaxy, in the context of its stellar mass and its morphology, is another important record of its

assembly history. The positions and distributions of both sets of clusters in these plots match well

with broader blue versus red, and early- versus late-type distinctions made in the same (or similar)
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plane(s) by other studies (Shen et al., 2003; van der Wel et al., 2014; Lange et al., 2015).

The most significant difference between the two plots in Figure 5.10 is the absence of compact

massive galaxies in the GSWLC-2 sample in comparison with the VIPERS sample. The canonical

explanation for the growth of these galaxies is ongoing minor merger activity and accretion (Naab

et al., 2009; Hopkins et al., 2010). The resultant shift between the passive VIPERS clusters and

the passive GSWLC-2 clusters is approximately in accordance with the expected redshift evolution

of the size-mass relation for early-type, passive galaxies (van Dokkum et al., 2015), though the

mass-incompleteness of passive VIPERS galaxies means that this shift is unlikely to have been

captured accurately in this chapter. The large overlap of G4 and V4 with their respective passive

clusters in Figure 5.10 seems to support the additional “late-track” (late with respect to cosmic

time rather than to morphology) of galaxy evolution proposed by Barro et al. (2013) to yield disc-

dominated passive galaxies (Ilbert et al. 2010; Carollo et al. 2013; Schawinski et al. 2014). Both

sets of SFMS clusters are similarly distributed, capturing the minimal evolution of the sizes of

star-forming galaxies between their two redshifts (Lilly et al., 1998; van der Wel et al., 2014).

5.5 Summary and conclusions

I present results from the application of the SEM clustering algorithm to samples of galaxies at

low (z ∼ 0.06, from GSWLC-2) and intermediate (z ∼ 0.65, from VIPERS) redshifts. Galaxies

are represented using nine UV-through-NIR broadband rest-frame colours, derived from fits of

ensembles of synthetic spectra to observed photometry with CIGALE. My aims, following Siudek

et al. (2018b), were to use unsupervised machine learning to search within these colours for sub-

structures to the established colour bimodality of galaxies, and to understand the evolution of

subpopulations of galaxies in terms of these colours over cosmic time. An advantage of SEM is

its incorporation of dimensionality reduction on the fly, which ensures that it determines clusters

using only the most important and discriminative information encoded within the input features. I

summarise my results as follows:

1. My cluster evaluation search reveals that both of the samples are best partitioned into seven

clusters (Table 5.1). In addition, the best-fitting submodels to each of the samples, identified

independently, are closely related, both allowing variation in the shapes of clusters and

differing only in their treatment of “noise” among the input features. For both samples,

these seven clusters break down into four star-forming clusters and three passive clusters

(Figure 5.4).

2. The lack of a cluster in either partition that is confined in its extent to just the green valley

(Figure 5.4) rules the green valley out as containing a singular, monolithic population of
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galaxies (e.g. Baldry et al. 2004; Taylor et al. 2015; Krywult et al., in prep.). This also

confirms that there is more than one evolutionary pathway of galaxies through the green

valley (e.g. Faber et al. 2007; Fritz et al. 2014; Schawinski et al. 2014; Smethurst et al.

2015; Moutard et al. 2016b).

3. Overall, SEM uses the nine rest-frame colours similarly to determine the partitions (Figure

5.2), reducing the dimensionality of the feature space to 6 in both cases. Altogether, optical

colours are most important to the clustering; individually, UV colours are. The availability

of photometry with which to constrain the SEDs of galaxies is advantageous to the clus-

tering. UV colours are slightly more important to the clustering in the GSWLC-2 sample,

which has more GALEX coverage than the VIPERS sample. Similarly, the lack of any

NIR coverage for the GSWLC-2 sample means that NIR colours are less important to its

clustering. However, given the broader overall similarity between the clustering structures

of the samples (Figure 5.3), it appears that clustering (a statistical method) combined with

SED estimation (which can infer rest-frame magnitudes from incomplete photometry) has

enabled a partial “filling of the gaps” of missing data in both samples.

4. Star-forming clusters in both samples form clear morphological sequences (Figure 5.7). The

correlation between their median Sérsic indices and their median stellar masses captures the

growth of the bulges of their galaxies along the SFMS (Figure 5.9). At the highest masses,

this growth corresponds with a drop in specific star formation rates. Hence, the quenching of

high-mass galaxies is influenced by their inner stellar densities, above a certain threshold,

which appears to be linked with nuclear activity (Figure C.4). The retention of discs by

the highest-mass galaxies along this morphological sequence indicates that some galaxies

quench without fully transforming their morphologies. The lack of a strong trend of these

clusters with local environmental overdensity (Figure 5.6) suggests that this evolutionary

pathway is dominated by internal processes. This pathway, prominent at the epochs of both

samples, appears consistent with “mass quenching’, as proposed by Peng et al. (2010). It is

expected that the long timescales involved would ultimately lead the VIPERS star-forming

clusters to resemble the GSWLC-2 star-forming clusters by the present day.

5. Galaxies in passive clusters in both samples have uniformly high Sérsic indices, indicating

a fundamental link between centrally-concentrated morphologies and passiveness (Figure

5.7). Passive clusters in the low-redshift sample are separated from their respective se-

quence of star-forming clusters, particularly towards lower stellar masses (Figures 5.7 and

5.9). This separation is assumed to originate from the influence of alternative or additional

processes to those that dictate the evolution of actively star-forming galaxies. Invoking

the offset of these low-redshift passive clusters to high local environmental overdensities

(Figure 5.6), I suggest that some of their galaxies are low-mass satellites, and subject to

external processes. The homogeneity of their early-type morphologies implies that their
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quenching precedes, or is at least simultaneous to, their morphological transformation. In

all, this pathway appears consistent with “environment quenching” (Peng et al., 2010). This

morphological separation is not as apparent for the passive clusters in the VIPERS sample

(Figure 5.7), which is mainly due to incompleteness of low-mass passive galaxies (which

would also be expected to trace high-density environments). Hence, I am prohibited from

commenting on the prevalence of this evolutionary pathway at intermediate redshifts.

This work confirms the existence of two distinct evolutionary pathways of galaxies through the

green valley (Poggianti et al., 1999; Faber et al., 2007; Peng et al., 2010; Barro et al., 2013; Fritz

et al., 2014; Schawinski et al., 2014; Moutard et al., 2016b). In addition, these pathways, including

their effects on the morphologies of galaxies, appear to be strongly encoded within their SEDs, as

estimated from broadband photometry. This invites further investigation of the extent to which a

galaxy’s assembly history may be discerned purely from its SED.

The use of further ancillary features would be instrumental in substantiating and constraining these

pathways. A wealth of such features are available for the GSWLC-2 sample, due to its basis in

SDSS. Examples include Galaxy Zoo 2 morphologies (Willett et al., 2013) which include bar and

merger classifications, and Yang et al. (2007) group memberships to enable a distinction between

central and satellite galaxies. A more detailed analysis of the low-redshift sample in this manner

is reserved for a future study. The GAMA survey (Driver et al., 2009) could provide an alternative

low-redshift sample, given its panchromatic data release (Driver et al., 2016) and its rich library of

value-added catalogues (Baldry et al., 2018). The upcoming Deep Extragalactic VIsible Legacy

Survey (DEVILS; Davies et al. 2018), which aims to improve completeness at 0.3 < z < 1.0, could

be the basis for an improved intermediate-redshift sample upon its completion. Furthermore,

the Legacy Survey of Space and Time (Ivezić et al., 2019), which will provide galaxy colours

and morphologies together, constitutes a particularly promising foundation for a future follow-up

study.

The incompleteness of low-mass passive galaxies at intermediate redshifts would be alleviated by

moving to deeper surveys such as G10-COSMOS (Andrews et al., 2017) and 3D-HST (Momcheva

et al., 2016), both of which also have panchromatic photometric data releases. This would enable

an examination of environment quenching at earlier epochs, and of its proposed increase in preva-

lence at lower redshifts (Fossati et al., 2017; Moutard et al., 2018; Papovich et al., 2018). Surveys

like this could also extend the comparison to redshifts as high as z ∼ 2, thus facilitating the con-

straint of the changing balance of evolutionary pathways, informed by clustering of rest-frame

colours, over a greater extent of cosmic time.
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Summary, conclusions, and future
prospects

The work presented in this thesis has explored the use of clustering algorithms for study of galaxy

evolution. I will begin this chapter by summarising the results and discussion of this thesis thus

far.

In Chapter 1, I reviewed the field of galaxy evolution. I covered the advances made by observa-

tional campaigns, including the emergence of a rudimentary empirical picture of galaxy evolution

on the basis of feature distributions revealed by survey astronomy. I listed theoretical processes

that are used to explain the properties of galaxies, and also explained the importance of cosmol-

ogy as a factor in their development. I visited the progress made by cosmological simulations, and

concluded by arguing that multi-dimensional feature spaces must be explored in order to better

constrain the interplay of processes that direct galaxy evolution. In Chapter 2, I reviewed machine

learning, focusing on clustering and dimensionality reduction and on prior uses of these techniques

in the research of galaxy evolution. In addition, I made the case for my use of particular algorithms

in Chapters 3-5.

In Chapter 3 and Appendix A, I clustered a pilot sample of galaxies from the GAMA survey using

the k-means method. Galaxies were represented by five features: stellar masses, u − r colours,

Sérsic indices, half-light radii, and specific star formation rates. Clustering was conducted with a

unique stability-based cluster evaluation framework, which highlighted outcomes consisting of 2,

3, 5, and 6 clusters as being stable. At k = 2 and k = 3, the structures of outcomes were dictated by

the colours and star formation activity of galaxies. At k = 5 and k = 6, the sizes and Sérsic indices

of galaxies became more important to the clustering. These four outcomes formed a hierarchical

structure, dominated at all four levels by a split into two “superclusters” which corresponded with
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established notions of bimodalities and/or dichotomies of galaxies in terms of their morphologies

and colours. This correspondence was increasingly accurate at higher values of k. There was a

broad agreement of these four outcomes with Hubble-like morphological classifications, and it

was suggested that this agreement might be improved by the addition of further morphological

information to the feature set. Outcomes at k = 5 and k = 6 highlighted the differential role of

environment in the evolution of galaxies on their passage through the green valley. Among the

four stable outcomes, the k = 6 outcome was designated as being optimal as it offered the most

detailed and astrophysically meaningful partition while still being highly reproducible.

In Chapter 4 and Appendix B, I developed the approach of Chapter 3 in order to test the cosmolog-

ical, hydrodynamical EAGLE simulations against the GAMA survey. Clustering was conducted

within a five-dimensional feature space shared by both samples. The cluster evaluation framework

highlighted a k = 5 outcome as being optimal for the simulated galaxies, and a k = 7 outcome

for the observed galaxies. These outcomes returned an agreement score of Va = 0.76, indicat-

ing broad structural similarity, but notable differences in their substructures. These outcomes

were then compared on a cluster-by-cluster basis by mapping the clusters determined using EA-

GLE galaxies onto the GAMA galaxies, which was enabled by the use of a shared feature space.

This comparison revealed that the growth of the central bulges of EAGLE galaxies during their

evolution along the star-forming main sequence is unrealistic, that EAGLE contains too many

low-mass spheroid-dominated galaxies, and that EAGLE produces a subpopulation of high-mass,

disc-dominated, star-forming galaxies that do not exist in the GAMA sample. These discrepancies

were attributed chiefly to limitations in the resolution of EAGLE, and to insufficiently powerful

AGN feedback at high stellar masses.

In Chapter 5 and Appendix C, I compared the clustering structures of samples of galaxies at low

(z ∼ 0.06) and intermediate redshifts (z ∼ 0.67), from GSWLC-2 and VIPERS respectively.

The input features to the clustering were nine rest-frame UV-through-NIR colours. I switched

to the Subspace Expectation-Maximisation algorithm for clustering, which incorporates adaptive

dimensionality reduction as it iterates. A search over various combinations of submodels and

values of k showed that both samples were best fit by seven-cluster partitions, which (in both

cases) broke down into four clusters of mainly star-forming galaxies, and three of mainly passive

galaxies, and none confined to just the green valley. Star-forming clusters at both epochs exhibited

clear morphological trends along the star-forming main sequences of both samples, indicating a

link between the central stellar densities of galaxies and their quenching. This trend was also, at

low redshifts, linked with an increase in AGN activity. Galaxies in passive clusters in both samples

had uniformly high Sérsic indices, suggesting that they follow an alternative evolutionary pathway.

Evidence at low redshifts suggests that external processes are involved; mass-incompleteness of

the VIPERS sample prohibits the generalisation of this conclusion to intermediate redshifts.
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To conclude this thesis, I return to the main questions that I posed at the start of Chapter 1, and

comment on how my work addresses them.

What place does clustering, and by extension unsupervised machine learning in general,
have among the arsenal of methods used in future studies of galaxy evolution?

The results presented in this thesis demonstrate that clustering is a useful method for the analysis

of galaxies and their evolution. Use of prototype- and model-based clustering methods leads to

clusters that are readily interpretable in terms of their identities. In addition, clustering outcomes

from all three of Chapters 3, 4, and 5 can be clearly connected with the evolutionary contexts of

galaxies that they contained. The stability-based cluster evaluation approach employed in Chapters

3 and 4 facilitates the robust discovery of reproducible clustering structures in feature spaces of

high dimensionalities, and may readily be adapted for use with clustering methods other than

the k-means method, which may be appropriate for other studies. The utility of this evaluation

approach for the multi-dimensional validation of simulations is proven by its ability to highlight

specific discrepancies between the EAGLE and GAMA samples of Chapter 4, which can then

be attributed directly to particular limitations of the EAGLE simulations. Chapter 5 shows that

a combination of clustering and dimensionality reduction are effective in extracting astrophysical

information from the SEDs of galaxies, including morphological distinctions between galaxies that

would typically be grouped together on the basis of their colours. Hence, unsupervised machine

learning techniques are well-poised to assist in the handling of data corresponding to the large

numbers of galaxies that will be observed by future large-scale photometric surveys.

Can clustering in feature spaces of high dimensionalities reveal substructures to the estab-
lished dichotomies, or bimodalities, of galaxies?

The broader, global structures of all of the clustering outcomes determined in this thesis corre-

spond well with established notions of dichotomies and bimodalities of galaxies, indicating that

these dichotomies and bimodalities are a fundamental characteristic of the overall galaxy popoula-

tion. However, individual clusters single out subpopulations of galaxies that offer a more detailed

view of the relationships between the features used to describe galaxies. Clusters from outcomes

in Chapter 3 (Bd6) and 5 (G4) include clusters that contained some passive but disc-dominated

galaxies. These clusters are more closely associated with the star-forming main sequence than with

other clusters of passive galaxies. This suggests that red peak of the colour bimodality does not

represent a monolithic subpopulation of galaxies, but that it is partially built up by contributions

from different pathways, including galaxies that come from the high-mass end of the star-forming

main sequence. In both of Chapters 3 and 4, low-mass star-forming galaxies are distinguished by
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the clustering as being either bulge-dominated or disc-dominated, suggesting differing formation

mechanisms among galaxies that exhibit similar levels of star formation activity. That the bulge-

dominated subpopulation is not distinguished in Chapter 5 likely arises from their similarity in

star formation activity with their disc-dominated counterparts. This implies that the most detailed

partitions will emerge from the use of a mixture of features which captures various characteristics

of the galaxies that they describe.

If so, can these substructures be used to constrain the balance of theoretical processes that
have been proposed as driving galaxy evolution?

Outcomes from all three of Chapters 3, 4, and 5 segment the star-forming main sequence of galax-

ies in a similar manner, capturing an increase in the inner stellar densities of galaxies with in-

creasing stellar mass. This increase is, again in all three cases (except for the simulated sample in

Chapter 4), accompanied by a decrease in star formation activity – the observed turn-down of the

star-forming main sequence. In Chapter 5, this increase is also accompanied by an increase in ac-

tive galactic nucleus emission. This suggests that the evolution of galaxies along the star-forming

main sequence is regulated by active galactic nucleus feedback, for which the inner stellar densi-

ties of galaxies are a marker. Clusters of low-mass passive galaxies in Chapters 3 and 4 exhibit

a spread in the Sérsic indices and bulge-to-total ratios of their galaxies respectively. Galaxies in

passive clusters from the outcomes in Chapter 5 have uniformly high Sérsic indices, but exhibit

a spread in their bulge-to-total ratios at low redshift. These results imply a gradual transforma-

tion of the morphologies of the galaxies contained by these clusters following their quenching.

This, in tandem with their likelihood of occupying environments of high densities, suggests that

their evolution, generally as satellites, is dictated by external processes, with the action of strip-

ping processes followed by successive minor mergers a possible scenario. Hence, in general, the

clusters that comprise the various outcomes determined in this thesis can be linked with different

evolutionary pathways and with different processes.

6.1 Future prospects

The ends of Chapters 3, 4, and 5 include suggestions for future work that are made on the basis

of the work presented in each of those chapters. Here, I make suggestions for future work on the

basis of concepts visited throughout this thesis as a whole.

It was suggested at the end of Chapter 4 that machine learning techniques would be useful for

linking “hidden” features, measurable only in simulations, with observable features. Here, I build

upon this suggestion to explain how this approach might be used to constrain the evolutionary
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pathways of galaxies in groups. The influence of external processes upon galaxies in group en-

vironments depends upon their situation and motion with respect to the group as a whole and

to one another. This information may be described theoretically using a six-dimensional phase

space, consisting of three position components and three velocity components. Observationally,

only two of these dimensions are available, as part of what is called a “projected phase space”

(Gill et al., 2005; Oman et al., 2013; Oman & Hudson, 2016) which is defined by perpendicu-

lar separations and line-of-sight velocities of galaxies. Exploration of the six-dimensional phase

space is possible through the use of cosmological galaxy simulations. Semi-analytic models are

particularly appropriate: dark-matter only simulations may be used to derive the positions and

velocities of galaxies, and analytical prescriptions may be used to predict subsequent evolution-

ary outcomes. In addition, the variation of these analytical prescriptions could then grant insight

into balance of processes acting in groups, via their validation against the properties of observed

galaxies. Projected phases spaces containing observed galaxies, meanwhile, have previously been

used to distinguish infalling galaxies from embedded group members. However, the linking of

full six-dimensional phase spaces with two-dimensional projected phase spaces could be further

facilitated though the use of machine learning techniques, and especially clustering methods. This

would be by clustering galaxies in six dimensions, with a view to distinguishing galaxies at var-

ious stages of infall, including “splashback galaxies” (at large radii after having passed through

the group centre), and subgroups of galaxies that have been pre-processed together. Then, the

distributions of these clusters could be examined in two dimensions to provide a comprehensive

map with which to probe the evolution of observed group galaxies (from large-scale surveys like

SDSS or the Hyper Suprime-Cam Subaru Strategic Programme; Aihara et al. 2018a,b). Hence,

this approach could be important in the validation of the stripping-then-transformation scenario

proposed in Chapter 5 by helping to constrain the relative timescales of these two processes.

The morphological features that have been used in thesis, both as inputs to the clustering and for

the interpretation of cluster identities, have been monochromatic. It has, however, been shown that

quantitative morphological features (and especially Sérsic indices) are dependent upon the effec-

tive wavelength of the filter through which they are measured (Kelvin et al., 2012; Häußler et al.,

2013; Vika et al., 2013). As a result, Vulcani et al. (2014) and Vika et al. (2015) manufactured a

feature,N , which, as the ratio between Sérsic indices in two different filters, enabled a better sep-

aration of early-type galaxies over monochromatic Sérsic indices. Machine learning techniques

enable the simultaneous combination of Sérsic indices measured through yet more filters, with the

potential of offering a finer view of the multi-wavelength morphologies of galaxies. Dimensional-

ity techniques would be particularly appropriate for condensing this multi-wavelength information

into a smaller set of summary features. Figure 6.1 shows exploratory two-dimensional projec-

tions, determined using uniform manifold approximation and projection (McInnes et al., 2018), of

a 10-dimensional subsample (5, 606 galaxies) of Chapter 3’s pilot GAMA sample. Galaxies are
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Figure 6.1: Two-dimensional projections, via uniform manifold approximation and projection (McInnes

et al., 2018), of a 10-dimensional (multi-wavelength Sérsic indices and absolute magnitudes, see main text)

sample of galaxies from the GAMA survey. Points are coloured (except in the upper left panel) with respect

to certain ancillary features, according to the inset colour bars. Note that the Sérsic indices used to colour

points in the upper right panel are measured in the r band; the symbol ng is used for consistency with

notation in the rest of this thesis. In addition, some outlier points have been omitted from the lower right

panel in order to ensure representative coverage of N values by the colour bar.
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represented in the 10-dimensional feature space by u-, g-, r-, i-, and z-band absolute magnitudes

and Sérsic indices, via Kelvin et al. (2012). The projections show that the subsample has a non-

linear structure in 10 dimensions, but also that it follows a clear sequence. The panels containing

coloured points show that there is more structure within this 10-dimensional feature space than

can be captured by monochromatic Sérsic indices, u − r colours, and N . The manufacture of fur-

ther multi-wavelength morphological features from this 10-dimensional feature space through the

use of dimensionality reduction could hence promote a better understanding of the growth of the

structural components of galaxies.
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Appendix to Chapter 3

A.1 Stability Simulation

To demonstrate the use of stability for selecting good values of k, I set up a simple simulation (Fig-

ure A.1). 5, 000 data points are distributed equally over five two-dimensional Gaussian functions,

centred at the vertices of a unit regular pentagon. The standard deviations of the distributions

(σ = 0.3) are set such that they overlap slightly. The value of ktrue for this simulation is 5. I run

k-means with k = 4, 5, and 6. I initialise 200 times at each k using the Arthur & Vassilvitskii

(2007) technique. Cluster names in this section consist of three parts in the format “XYZ”. The

first part, either “A” or “B”, corresponds to a particular outcome to which the cluster belongs, and

is used to identify outcomes in the figures in this section. The second part, a number, corresponds

to the individual cluster, also shown in the figures. The third part, another number, indicates the

value of k at which the outcome was found.

Figure A.2 shows two examples of the outcomes found at k = 4 < ktrue. In both cases, k-means

Figure A.1: On the left-hand side I display the simple two-dimensional simulation, containing five true

clusters. See the main text for information on how it is generated. Points are coloured by their truth labels;

all points with the same colour belong to the same true cluster, whose centroid is marked out by a large

filled circle, also of the same colour.
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Table A.1: Contingency table, comparing outcomes A and B generated at k = 4 and shown in Figure A.2.

Cluster B14 B24 B34 B44

A14 330 0 830 0

A24 0 946 0 194

A34 808 0 1 839

A44 0 245 807 0

Figure A.2: Examples of k-means clustering at k = 4 < ktrue. The algorithm has merged the purple and

blue true clusters in outcome A on the left, and the yellow and green true clusters in outcome B on the

right. The k-means centres are marked by filled white circles. The boundaries between k-means clusters

are marked by straight black lines.

merges two true clusters: purple and blue in outcome A on the left, and yellow and green in

outcome B on the right. These mergers have affected the accuracy of the neighbouring k-means

clusters as well in that they suffer from contamination (in terms of the true cluster structure). Table

A.1, a contingency table (a.k.a. a cross-tabulation), shows that the outcomes are only weakly

associated with one another. The chi-squared value (Equation 3.4) for these two outcomes (A and

B), calculated using the contingency table, is 6, 617.95. From this, using Equation 3.3, I calculate

Vs = 0.66 (with N = 5, 000 and k = 4).

Figure A.3 shows two examples of the outcomes found when k = 5 = ktrue. While they appear

identical, they actually differ by four points (see contingency Table A.1, which shows the near-

perfect association between the two outcomes). k-means has succeeded in finding the five true

clusters in both outcomes. While is not impossible that k-meansmight find an alternative structure

in the simulation at k = 5 given more initialisations, the rate at which it would do so would be

so low (less than at most 0.5 per cent given Figure A.3) that k = 5 would still stand out as being

particularly stable. For these two k = 5 outcomes (A and B), I calculate χ2 = 19, 960.03 and (with

N = 5, 000, k = 5) Vs = 0.999.

Figure A.4 shows two examples of the outcomes found at k = 6 > ktrue. The algorithm has split a

true cluster in both cases: green in outcome A on the left, and yellow in outcome B on the right.

The splits appear to have a lesser effect on neighbouring k-means clusters than the mergers at

k = 4, in that there is less contamination overall. Contingency Table A.3 reveals that the outcomes

are more strongly associated with one another than those outcomes found at k = 4, as the split in
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Table A.2: Contingency table, comparing outcomes A and B generated at k = 5 and shown in Figure A.3.

Cluster B15 B25 B35 B45 B55

A15 0 985 0 0 0

A25 0 3 0 0 1, 005

A35 0 0 0 993 0

A45 0 0 1, 013 1 0

A55 1, 000 0 0 0 0

Figure A.3: Examples of k-means clustering at k = ktrue = 5. The algorithm has correctly found the five

true clusters in both outcomes A and B, which differ by only 4 points. The k-means centres are marked by

filled white circles. The boundaries between k-means clusters are marked by straight black lines.

one outcome fits more cleanly into a whole cluster in the other. For these two k = 6 outcomes (A

and B), I calculate χ2 = 18, 017.03 and (with N = 5, 000, k = 6) Vs = 0.85.

I summarise these results using a stability map (Figure A.5). I reemphasise that the key element

of this plot for distinguishing stable and unstable values of k is the gap across all distributions in

median Vs. The distribution of outcomes at k = 5, showing that all 200 initialisations converged

to the same stable outcome (within 4 points), is clearly indicative of the true structure of the

simulation. The distributions of outcomes at k = 4 and k = 6, indicating that they are unstable,

reflect that there is no objectively correct way to divide the five true clusters into four or six given

the symmetry of the simulation. The distribution at k = 6 is narrower because splits affect the

accuracy of the other k-means clusters less than mergers. With the benefit of knowing the true

structure of the simulation, The k = 6 splits could be remerged and achieve a better approximation

to the k = 5 outcomes than if the k = 4 merges were split. For more complicated samples,

involving more features, this effect would be more difficult to discover and exploit.

Given that the same outcome may arise several times over a large number of initialisations, one

may opt to select the modal outcome as the most optimal instead of that with the lowest φ. In

practice, I find that one criterion implies the other; the most compact clusters tend to emerge

most often anyway (thanks to my choice of initialisation technique). I retain φ as my criterion for

optimal clustering at given values of k.
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Table A.3: Contingency table, comparing outcomes A and B generated at k = 6 and shown in Figure A.4.

Cluster B16 B26 B36 B46 B56 B66

A16 0 0 658 0 0 8

A26 1 988 0 0 0 0

A36 258 0 0 0 0 658

A46 0 1 0 0 954 0

A56 148 3 0 844 0 0

A66 34 4 338 0 37 31

Figure A.4: Examples of k-means clustering at k = 6 > ktrue. The algorithm has split the green true cluster

in the example on the left, and the yellow true cluster in the example on the right. The k-means centres

are marked by filled white circles. The boundaries between k-means clusters are marked by straight black

lines.

Figure A.5: Stability map of k-means clustering for the simulated data set at k = 4, 5, and 6. I calculate

the median Vs of each outcome with respect to all other outcomes at the same k. The distributions of all 200

medians at each k are represented using histograms plotted along each of the horizontal black baselines.

The heights of the histograms are normalised. Additionally, the means of these distributions are shown

as vertical red lines. The outcome at k = 5 stands out as being particularly stable, indicative of the true

structure of the simulation.
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Figure A.6: Stability map of k-means clustering for the bootstrapped pilot sample at k = 2 through k = 15.

I calculate the median Vs of each outcome with respect to all other outcomes at the same k. The distributions

of all 7, 338 medians at each k are represented using histograms plotted along each of the horizontal black

baselines. The heights of the histograms are normalised. Additionally, the means of these are distributions

as vertical red lines. Outcomes at k = 2, 3, 5, and 6 remain most stable following application of the bootstrap

method to the pilot sample.

A.2 Bootstrap experiment

In order to estimate the uncertainties on the centroids reported in Table 3.5, I apply the bootstrap

method to the pilot sample of galaxies. The method resamples the original sample with replace-

ment, such that the same galaxy may be selected more than once. A total of 7, 338 observations are

selected in this manner. I run k-means once on this new sample, retaining the centroids, and then

partition the original sample according to these centroids. This whole process is itself repeated

7, 338 times. The stability map for the bootstrap experiment is shown in Figure A.6.

The distributions of outcomes at all values of k are shifted to lower stabilities following application

of the bootstrap method. This is in comparison with the distributions generated purely from the

original sample, shown in Figure 3.4. Outcomes at k = 2, 3, 5, and 6 remain the most stable

in Figure A.6, though outcomes at k = 6 exhibit a more significant reduction in stability than

outcomes at k = 2, 3, and 5 due to the increased local dependency of k-means with a higher

numbers of centres. Outcomes at k = 4 retain their bimodal structure in stability. The distribution

of outcomes at k = 7, which exhibited a stable component in Figure 3.4, is now uniformly unstable

to the same extent as the distributions at higher values of k, justifying the exclusion of outcomes

from k = 7 from the analyses in Section 3.3.

For the uncertainties in Table 3.5, I calculate the 16th and 84th percentiles of the 7, 338 centroids,
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in each of the five features. From these, I subtract the original k-means centroids.

A.3 Postage Stamps

Here I present example postage stamps of galaxies in each of the clusters in each of the clustering

outcomes in Chapter 3. The three-colour stamps are made using r- and g-band imaging from the

Kilo-Degree Survey (de Jong et al., 2013), and a mean of the two bands as the central colour

channel. The stamps enclose each galaxy to 2.5 times its Kron radius. The examples shown are

those that are best represented by the cluster centroids; they are nearest to the centroids in the

five-dimensional feature space.
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Figure A.7: Example postage stamps of galaxies in each of the clusters in k = 2. The dashed black line

separates the two superclusters that k-means finds. See Section 3.3.1 for discussion.

140



Appendix A Appendix to Chapter 3

Figure A.8: Example postage stamps of galaxies in each of the clusters in k = 3. The dashed black line

separates the two superclusters that k-means finds. See Section 3.3.2 for discussion.
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Figure A.9: Example postage stamps of galaxies in each of the clusters in k = 5. The dashed black line

separates the two superclusters that k-means finds. See Section 3.3.3 for discussion.
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Figure A.10: Example postage stamps of galaxies in each of the clusters in k = 6. The dashed black line

separates the two superclusters that k-means finds. See Section 3.3.4 for discussion.
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Appendix to Chapter 4

B.1 Measuring agreement between clustering outcomes using Va

I use Cramer’s V index in two separate contexts in Chapter 4. The first context, denoted by

the symbol Vs, is the identification of values of k at which k-means clustering outcomes are

stable for both of our samples (see Section 3.1). Values of k are judged to be stable if their

distributions in median Vs peak strongly at a value close to 1 (see Figs. 3.4 and 4.2). A guide to the

interpretation of Vs is provided in Section A.1. The second context, denoted by the symbol Va, is

the measurement of the agreement between different clustering outcomes, potentially consisting of

different numbers of clusters. Specifically, I measure the agreement between outcomes determined

within the GAMA and EAGLE samples in terms of how their centroids partition the GAMA

sample. For this comparison, I measure Va = 0.75. In this appendix, I provide a guide to the

interpretation of Va.

For a sample of N observations, partitioned into kX clusters by outcome X and into kY clusters by

outcome Y, Va is calculated thusly:

Va =

√
χ2

N ·min(kX − 1, kY − 1)
. (B.1)

Here, χ2 is the chi-squared value for outcomes X and Y, calculated from a kX × kY contingency

table and given by:

χ2
X,Y =

∑
x,y

(ox,y − ex,y)2

ex,y
. (B.2)
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Here, ex,y represents the expected number or fraction of observations shared by clusters x and y

(equal for all combinations of x and y, given a null hypothesis of independence of X and Y) and

ox,y represents the actual observed number or fraction. In general, the value of Va rises with the

extent to which clusters from one outcome correspond to clusters from another, such as if two

clusters from outcome Y map exactly onto one cluster from outcome X.

In the remainder of this appendix I analyse pairs of partitions, determined within a simple two-

dimensional data set, that yield a range of values of Va. The data set is a projection of Chapter 4’s

five-dimensional GAMA sample of 3, 724 galaxies onto its M∗ and sS FR axes, and it is shown

in panel (a) of Figure B.1. The data set is rescaled ahead of partitioning such that each of its two

axes spans the range 0 to 1. The basis of the analysis in this section is a k = 5 reference partition

of this data set. Its borders are shown in blue in panel (b) of Figure B.1. This reference partition

is generated via a run of k-means with k = 5 that is initialised using the Arthur & Vassilvitskii

(2007) technique.

In panels (c)-(h), I plot a series of k = 7 partitions (red) for visual comparison with the k = 5

reference partition (blue). The Va value that each k = 7 partition yields with respect to the k = 5

partition is shown above its respective panel. The methods used to generate these k = 7 partitions

are listed in Table B.1. These methods are contrived purely to generate a range of Va values, with

a view to building an intuition for the level of agreement that each value captures. In addition,

clustering cannot naturally produce outcomes that would yield the highest and lowest values of Va

shown in this appendix (see below). Hence, some of the k = 7 partitions are artificially generated.

This appendix is intended mostly to facilitate the interpretation of results that we present in Section

4.2, but its conclusions are also readily generalisable to pairs of clustering outcomes with any two

k values. I do not attempt to astrophysically interpret the partitions in this appendix in detail.

Instead, I consider only their visual appearances in the sS FR versus M∗ plane, and their Va values

with respect to the k = reference partition (shown above each panel). Hence, the panels in Figure

B.1 do not includes axis labels and ticks.

Lower values of Va are given by the divergence of the structures of the k = 7 partitions from that

of the k = 5 reference partition. The k = 7 partitions in panels (c)-(f) all generally capture the

bimodal structure of the underlying data like the k = 5 partition does, but those in panels (g) and

(h) do not. Hence, values of Va above ∼ 0.75 indicate agreement between partitions in terms of

broad, global structures. However, the k = 7 partitions in panels (d)-(f) exhibit some differences

from the k = 5 partition at the substructure level, with the extent of these differences increases with

decreasing Va. For panels (d) and (e), this corresponds with a change in initialisation technique;

while the k = 7 partition in panel (d) is generated following the initialisation of k-means with

the Arthur & Vassilvitskii (2007) technique, the one in panel (e) is generated instead following

initialisation using a uniform random selection of points from the data set. Uniformly random
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Figure B.1: Comparisons of partitions that yield a range of values of Va. In panel (a), I show a projection

of the GAMA sample (see Section 4.1.1) onto its M∗ and sS FR axes. In panel (b), I show a reference

k = 5 partition (blue) determined within this projection. Panels (c)-(h) show k = 7 partitions (red), also

determined within this projection, that yield a range of Va values with respect to the k = 5 reference partition

(blue). Their Va values are shown above their respective panels. I focus on the visual appearances of the

partitions in this figure, rather on any astrophysical interpretation; hence, axis ticks and labels are omitted

from the panels. Note that the k = 5 partition is not visible in panel (c) because its borders are covered

perfectly by those of the k = 7 partition.

Table B.1: A summary of the methods used to generate each of the k = 7 partitions shown in panels (c)-(h)

of Figure B.1. Included are the values of Va that they yield with respect to the k = 5 reference partition. The

k = 5 reference partition is generated via a run of k-means with k = 5 and Arthur & Vassilvitskii (2007)

initialisation.

Figure B.1 Panel Va Method

(c) 1.00 Splitting of two k = 5 reference clusters

(d) 0.93 k-means with k = 7 and Arthur & Vassilvitskii (2007) initialisation

(e) 0.81 k-means with k = 7 and uniform random initialisation

(f) 0.76
k-means with k = 7 and Arthur & Vassilvitskii (2007) initialisation within the

EAGLE M∗ versus sS FR plane, mapped onto the GAMA M∗ versus sS FR plane

(g) 0.67
Voronoi tessellation about a uniform random selection of points in the GAMA M∗
versus sS FR plane

(h) 0.48
Voronoi tessellation about a uniform random selection of points in the GAMA M∗
versus sS FR plane
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initialisation is less likely to produce globally optimal outcomes. The k = 7 partition in panel (f)

is generated via a run of k-means within the projection of our EAGLE sample onto its M∗ and

sS FR axes, with the centroids mapped onto the GAMA projection.

The k = 7 partition in panel (c) produces Va = 1 with respect to the k = 5 partition, indicating

perfect agreement (i.e. that each of its clusters corresponds to exactly one k = 5 cluster). k-means

cannot naturally determine two outcomes with different k that yield Va = 1.0 in continuous data

because its minimisation of within-cluster variances means that the cluster centres would tend to

be spread evenly throughout the data set. As a result, the “extra” clusters determined as part of a

k = 7 outcome tend to occupy more space than a single cluster from a k = 5 outcome. Hence, the

k = 7 partition in panel (c) was generated artificially, by splitting two of the k = 5 clusters. The

k = 7 partitions shown in panels (g) and (h) are also unrealistic in that their clusters have highly

disparate shapes and sizes, which k-means is unlikely to produce. Hence, in order to produce

these two partitions which particularly low Va values, “centroids” were selected from the input

data set uniformly at random, and assigned points to their nearest centroid selected in this manner

(i.e. Voronoi tessellation).
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C.1 Iterations of SEM

In Figure C.1, I show ICL scores reported at each of up to 25 iterations by various combinations of

submodel and k for the GSWLC-2 sample. These ‘iteration profiles’ are mostly quite flat; hence,

25 iterations are more than sufficient for allowing SEM to stabilise to an outcome. In addition, the

bulk of the clustering structure appears to be determined during the k-means initialisation step,

which spreads the cluster centres out ahead of the first iteration. The ICL criterion rewards sepa-

rated clusters, so k-means initialisations are particularly well suited to yielding useful clustering

outcomes. Trials of the use of uniform random initialisations resulted in more combinations of

submodels and k failing to converge.

Variations in the ICL values reported by individual combinations of submodel and k over suc-

cessive iterations arise due to the Subspace step of SEM, in which the subspace within which the

clusters are to be modelled is found. Hence, the updating of the model parameters during the

Maximisation step is indirectly related to the probabilities calculated in the Expectation step. For

traditional EM algorithms, these steps are directly related and thereby guarantee convergence. The

large changes between successive iterations exhibited by some combinations (e.g. Σ, δk, k = 9)

are most often due to the emptying of clusters; a reduction in the number of clusters used by SEM

leads, in these cases, to a sudden increase in ICL.

C.2 Smoothing of feature data for the GSWLC-2 sample

Preliminary tests revealed that a truncated, bimodal substructure among passive galaxies within

the nine-dimensional colour space representing the GSWLC-2 sample (see the left-hand plot of
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Figure C.1: ICL scores reported at iterations 1 through 25 by various combinations of submodel and k for

the GSWLC-2 sample. For each submodel, I show the value of k which yields the highest ICL score. These

iteration profiles are generally quite flat, indicating that SEM quickly converges to a stable outcome. The

large changes exhibited by Σ, δk, k = 9 are due to the emptying of clusters as it iterates.

Figure C.2: The effect of my smoothing on the distribution of GSWLC-2 galaxies in the passive region of

the NUV − r − Ks colour-colour plane. Substructures in the distribution of galaxies within this region are

preserved post-smoothing.

Figure C.2; also visible in Figure 5.3) led to an inability of SEM to converge for the majority of

submodels and values of k. This truncated bimodal substructure is due to the lack of input NIR

photometry to the CIGALE SED estimation of GSWLC-2 galaxies, such that their NIR SEDs must

be inferred from UV and optical photometry. This, in turn, leads to poorly constrained, discretised

metallicities: galaxies at r−Ks . 0.67 peak strongly at log10(Z) ∼ −2.4, and those at r−Ks & 0.67

at log10(Z) ∼ −2.1. The NIR SEDs of VIPERS galaxies, on the other hand, are constrained by

Ks-band photometry and hence have slightly more freedom to vary. This smooths their colour and

metallicity distributions.

I hence opt to apply a small level of Gaussian smoothing to the GSWLC-2 distributions of the

rest-frame absolute magnitudes reported by CIGALE. The smoothing scale for the rest-frame ab-

solute magnitude of a given galaxy is given by its Bayesian error. These errors are winsorised at

the mean value of the logarithmic distribution of errors (i.e. errors larger than the mean value are

set to the mean value). This winsorisation ensures that the smoothing scale is kept small enough

to avoid the potential loss of astrophysically meaningful substructures, while still enabling SEM

149



Appendix C Appendix to Chapter 5

to converge more readily. The absolute rest-frame magnitude most affected by this smoothing is

FUV , whose errors are winsorised at a maximum value of 0.25 (all other magnitudes have a max-

imum error < 0.1 after winsorisation). The right-hand plot of Figure C.2 demonstrates the effect

of my smoothing, showing that the bimodality in the colours of passive galaxies is retained post-

smoothing. While this bimodality is likely to be an artefact, trends in the astrophysical features of

galaxies between its peaks are still likely to be genuine (see also Section 5.3.4).

C.3 Behaviour of the various submodels of SEM for the samples

My model selection approach considers ICL scores for 72 different combinations of submodel and

k for each of the samples. The comparison of these 72 combinations is simplified greatly by the

realisation that several submodels exhibit consistent patterns of behaviour across all values of k.

SEM is unable to converge to an outcome for several combinations of submodel and k. The most

common diagnosis made by SEM in the case of non-convergence is that a cluster has become empty

(i.e., that it no longer contains galaxies). Table 5.1 shows that several submodels are unable to

converge beyond a maximum value of k, suggesting a limit to their ability to properly partition the

samples. Alternatively, submodels that converge at k, but fail to converge at k− 1 and k + 1 appear

to be striking a ‘sweet spot’ in terms of this ability. Different combinations are generally very

consistent with respect to convergence, converging for either all or none of the 100 initialisations.

Given their flexibility and their high levels of parametrisation, the Σk, δk and Σk, δ submodels offer

the greatest promise among all of the SEM submodels for yielding detailed and astrophysically

meaningful partitions of the samples. The outcomes they produce are similar; they exhibit near-

identical trends in their ICL scores for k = 2 through k = 5 for the GSWLC-2 sample in Table

5.1. They differ only in their treatment of the noise terms, which appears to be a minor detail in

comparison with their shared use of full, unique covariance matrices. Outcomes at higher values

of k generally consist of splits of clusters present in outcomes at lower values of k.

Submodels featuring non-unique covariance matrices for the Gaussian density functions represent-

ing the clusters (i.e. submodels with Σ and α, such that they all have the same shape) consistently

produce clusters with highly disparate sizes. Some clusters are large, containing 30 to 60 per cent

of the galaxies in the samples each (and each often spanning both blue and red galaxies); others are

empty or nearly empty, containing . 1 per cent of the galaxies in the samples each. Nearly-empty

clusters appear to capture small, undesirable artefacts in the structure of the samples within their

input feature spaces. While it is unclear why SEM registers a valid ICL score for these outcomes

when they include empty clusters (often cited as a cause for the failure of SEM; see above), it is

clear that these submodels are too crude to return more than a very broad partition of the samples,
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Figure C.3: Examples of the clustering structures determined by αk, j and αk submodels for the GSWLC-2

sample, shown in the NUV − r − Ks colour-colour plane. The combination of submodel and k for each

outcome is shown to the lower-right of each plot. Individual galaxies are coloured in accordance with the

cluster to which they belong. The choice of colours in this figure is not intended to imply any trends within

or between plots. The horizontal striping pattern exhibited by these examples in these plots, which is a

general property of αk, j- and αk-based outcomes, indicates segmentation mainly along a single axis.

and that their outcomes are limited in their capacity for astrophysical interpretation. All of this

is also true for the Σ, δ clustering outcome at k = 9 for the GSWLC-2 sample, which achieved

the highest ICL score in my model selection search despite including empty and nearly-empty

clusters. For these reasons, I reject this outcome for analysis.

A general property of clustering outcomes reported by submodels which assume diagonal co-

variance matrices (αk, j, αk) for the Gaussian density functions within the discriminative latent

subspace is that they segment the samples principally along a single dimension. Representative

examples of their clustering structures are shown in Figure C.3, revealing that this single dimen-

sion is most strongly associated with the UV colours among the 9 input features, with little-to-no

distinction made between galaxies based on their NIR colours. I note that these submodels scored

highest when I tested clustering of the samples using i-band magnitudes of galaxies as a reference

point for defining colours (as in Siudek et al. 2018b; see also Section 5.2.4), producing the same

striping pattern within the NUV − r − Ks plane. While this simple segmentation does correspond

broadly with incremental changes in the star formation activity of galaxies within the samples,

other submodels (with Σk) return more detailed partitions and achieve higher ICL scores anyway.
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The large spread in the ICL scores reported in Table 5.1 arises directly from a large spread in

the log-likelihood values of the fits. This large spread in the log-likelihood values arises, in turn,

primarily from a 1/δk coefficient in the log-likelihood function of DLM model (which may be

seen in full in appendix 2 of Bouveyron & Brunet 2012). Submodels which yield very large but

negative log-likelihood (and hence, ICL) values tend to have very small δk values for most (if

not all) of their clusters; usually 0.001, which is the floor that SEM imposes upon the value of δk.

Very small values of δk produce very large, positive values of 1/δk, and (via a −1/2 coefficient

of the log-likelihood function) very large, negative values of the log-likelihood and, thus, of the

ICL criterion. The addition of this especially low-variance “noise” to subspace Gaussians leads to

highly peaked full space Gaussians which are unlikely to reflect the more continuous distributions

of both samples (see Figure 5.3).

C.4 Active galactic nuclei

In this section, I examine the emission-line properties of star-forming galaxies in the GSWLC-2

sample, with a view to establishing the influence of active galactic nuclei upon their evolution.

Figure C.4 shows the distributions of clusters G1-4 within the emission-line classification diagram

of Lamareille (2010) – the region labels and boundaries are explained in the caption of Figure C.4.

This diagram is chosen with a view to its applicability to galaxies at higher redshifts as well. The

equivalent widths of the relevant emission lines were determined by Brinchmann et al. (2004), and

are available for 94 per cent of the galaxies in G1-4. Spectroscopy of these emission lines exists for

VIPERS galaxies as well (Garilli et al., 2014), but only for 34 per cent of them, such that I would

not be confident in the significance of any trend of the VIPERS clusters within the Lamareille

(2010) diagram. I note, however, that the few VIPERS galaxies for which this spectroscopy does

exist tend to lie within the ‘SF’ region of the plot, above the ‘Comp.’ region (i.e. as in figure 10

of Siudek et al. 2018b). Hence, I tentatively suggest a minimal influence of active galactic nuclei

upon their current evolution, but reiterate that more data is needed to confirm this.

Clusters G1-4 are all centred upon the ‘Comp.’ region of Figure C.4, indicating that galactic

nuclei are prevalent throughout them. G4 in particular extends well into the ‘LINERs’ region

of the diagram. Given the enhancement in the Sérsic indices of G4 galaxies over those belong-

ing to G1-3 (Table 5.3 and Figure 5.7), this is consistent with previous studies which find that

low-ionisation nuclear emission-line regions are more common in galaxies with earlier-type mor-

phologies (Heckman, 1980). In addition, this increase in nuclear activity for G4 galaxies coincides

with their decrease in sS FR in comparison with G1-3 galaxies (Table 5.2), validating the sugges-

tion that the supermassive black hole is involved in the quenching of these galaxies (Croton et al.,

2006; Vergani et al., 2018; Moutard et al., 2020).
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Figure C.4: A diagram for the classification of emission-line galaxies (Lamareille, 2010) in the GSWLC-2

sample. Different regions, labelled and demarcated by black lines, correspond to different types of galaxy:

‘Sy2’ to type II Seyfert galaxies, ‘SF’ to purely star-forming galaxies, ’SF/Sy2’ to a mixture of type II

Seyfert and star-forming galaxies, ‘LINERs’ to galaxies containing low-ionisation nuclear emission-line

regions, and ‘Comp.’ to a mixture of LINERs and star-forming galaxies. The distributions of clusters are

shown using coloured, filled contours (drawn at a relative density of 0.4), and the coloured, circular markers

show their medians.

153



Bibliography

Abell G. O., 1958, The Astrophysical Journal Supplement Series, 3, 211

Abell G. O., Corwin Jr. H. G., Olowin R. P., 1989, The Astrophysical Journal Supplement Series,

70, 1

Abraham R. G., van den Bergh S., Nair P., 2003, The Astrophysical Journal, 588, 218

Aceves H., Velázquez H., Cruz F., 2006, Monthly Notices of the Royal Astronomical Society, 373,

632

Aggarwal C. C., 2014, Data Classification: Algorithms and Applications. Chapman & Hall/CRC

Aguirre A., Hernquist L., Schaye J., Weinberg D. H., Katz N., Gardner J., 2001, The Astrophysical

Journal, 560, 599

Ahn C. P., et al., 2014, The Astrophysical Journal Supplement Series, 211, 17

Aihara H., et al., 2018a, Publications of the Astronomical Society of Japan, 70, S4

Aihara H., et al., 2018b, Publications of the Astronomical Society of Japan, 70, S8

Almaini O., et al., 2017, Monthly Notices of the Royal Astronomical Society, 472, 1401

Alpher R. A., Bethe H., Gamow G., 1948, Physical Review, 73, 803

Andrews S. K., Driver S. P., Davies L. J. M., Kafle P. R., Robotham A. S. G., Wright A. H., 2017,

Monthly Notices of the Royal Astronomical Society, 464, 1569

Antonucci R., 1993, Annual Review of Astronomy and Astrophysics, 31, 473

Aristotle, 350BC, Meteorology
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Walcher J., Groves B., Budavári T., Dale D., 2011, Astrophysics and Space Science, 331, 1

Walker I. R., Mihos J. C., Hernquist L., 1996, The Astrophysical Journal, 460, 121

Walmsley M., et al., 2020, Monthly Notices of the Royal Astronomical Society, 491, 1554

Ward Jr. J. H., 1963, Journal of the American Statistical Association, 58, 236

Weigel A. K., et al., 2017, The Astrophysical Journal, 845, 145

Weinberger R., et al., 2017, Monthly Notices of the Royal Astronomical Society, 465, 3291

Weiner B. J., et al., 2009, The Astrophysical Journal, 692, 187

Werbos P., 1975, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. Harvard University

Wetzel A. R., Tinker J. L., Conroy C., 2012, Monthly Notices of the Royal Astronomical Society,

424, 232

Wetzel A. R., Tinker J. L., Conroy C., van den Bosch F. C., 2013, Monthly Notices of the Royal

Astronomical Society, 432, 336

Wetzel A. R., Deason A. J., Garrison-Kimmel S., 2015, The Astrophysical Journal, 807, 49

Whitaker K. E., et al., 2015, The Astrophysical Journal Letters, 811, L12

White S. D. M., Rees M. J., 1978, Monthly Notices of the Royal Astronomical Society, 183, 341

Wijesinghe D. B., Hopkins A. M., Kelly B. C., Welikala N., Connolly A. J., 2010, Monthly Notices

of the Royal Astronomical Society, 404, 2077

Wild V., Hewett P. C., 2005, Monthly Notices of the Royal Astronomical Society, 358, 1083

Wild V., Kauffmann G., Heckman T., Charlot S., Lemson G., Brinchmann J., Reichard T., Pasquali

A., 2007, Monthly Notices of the Royal Astronomical Society, 381, 543

183

http://dx.doi.org/10.1038/s42254-019-0127-2
https://ui.adsabs.harvard.edu/abs/2020NatRP...2...42V
http://dx.doi.org/10.1103/RevModPhys.77.207
https://ui.adsabs.harvard.edu/abs/2005RvMP...77..207V
http://dx.doi.org/10.1093/mnras/stu632
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.1340V
http://dx.doi.org/10.3847/2041-8213/aae68b
https://ui.adsabs.harvard.edu/abs/2018ApJ...866L..25V
http://dx.doi.org/10.1086/318344
https://ui.adsabs.harvard.edu/abs/2001ApJ...547..172W
http://dx.doi.org/10.1088/2041-8205/751/2/L44
https://ui.adsabs.harvard.edu/abs/2012ApJ...751L..44W
http://dx.doi.org/10.1007/s10509-010-0458-z
https://ui.adsabs.harvard.edu/abs/2011Ap&SS.331....1W
http://dx.doi.org/10.1086/176956
https://ui.adsabs.harvard.edu/abs/1996ApJ...460..121W
http://dx.doi.org/10.1093/mnras/stz2816
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.1554W
http://dx.doi.org/10.3847/1538-4357/aa8097
https://ui.adsabs.harvard.edu/abs/2017ApJ...845..145W
http://dx.doi.org/10.1093/mnras/stw2944
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.3291W
http://dx.doi.org/10.1088/0004-637X/692/1/187
https://ui.adsabs.harvard.edu/abs/2009ApJ...692..187W
http://dx.doi.org/10.1111/j.1365-2966.2012.21188.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.424..232W
http://dx.doi.org/10.1093/mnras/stt469
http://dx.doi.org/10.1093/mnras/stt469
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..336W
http://dx.doi.org/10.1088/0004-637X/807/1/49
https://ui.adsabs.harvard.edu/abs/2015ApJ...807...49W
http://dx.doi.org/10.1088/2041-8205/811/1/L12
https://ui.adsabs.harvard.edu/abs/2015ApJ...811L..12W
http://dx.doi.org/10.1093/mnras/183.3.341
https://ui.adsabs.harvard.edu/abs/1978MNRAS.183..341W
http://dx.doi.org/10.1111/j.1365-2966.2010.16424.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16424.x
http://adsabs.harvard.edu/abs/2010MNRAS.404.2077W
http://dx.doi.org/10.1111/j.1365-2966.2005.08844.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.358.1083W
http://dx.doi.org/10.1111/j.1365-2966.2007.12256.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.381..543W


Bibliography

Wild V., Walcher C. J., Johansson P. H., Tresse L., Charlot S., Pollo A., Le Fèvre O., de Ravel L.,
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“So this marks the end of my doctorate,

And I hope that my claims are all accurate.

If they’re not I will sob

Before getting a job

At a limerick-writing conglomerate.”

- Alfred Lawrence Athelstan Champion
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