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Abstract

Neonicotinoids are effective insecticides used on many important arable and horticultural crops. They are 

nicotinic acetylcholine receptor agonists which disrupt the function of insect neurons and cause paral-ysis and 

death. In addition to direct mortality, there are numerous sublethal effects of low doses of

neonicotinoids on bees. We hypothesize that some of these large array of effects could be a consequence of 

epigenetic changes in bees induced by neonicotinoids. We compared whole methylome (BS-seq) and RNA-seq 

libraries of the brains of buff tailed bumblebee Bombus terrestris workers exposed to field re-

alistic doses of the neonicotinoid imidacloprid to libraries from control workers. We found numerous genes 

which show differential expression between neonicotinoid treated bees and control bees, but no differentially 

methylated cytosines in any context. We found CpG methylation to be focused mainly in

exons and associated with highly expressed genes. We discuss the implications of our results for future 

legislation.



Introduction1

Neonicotinoids are effective insecticides used on many important arable and horticultural crops, most2

frequently as seed dressing. They are systemic, meaning they are absorbed by the plant and transported3

to all tissues where they remain active for many weeks or months. This protects all parts of the plant,4

but also means that neonicotinoids are found in the nectar and pollen of flowering crops such as oilseed5

rape, and hence are consumed by bees (Botías et al., 2015). It has also emerged that they are commonly6

found contaminating nectar and pollen of wild flowers growing on arable farmland, providing additional7

exposure of bees and other pollinators (Botías et al., 2015; David et al., 2016).8

Neonicotinoids are nicotinic acetylcholine receptor agonists which disrupt the function of insect neu-9

rons and cause paralysis and death. In addition to direct mortality, laboratory and field studies have10

documented numerous sublethal effects of low doses of neonicotinoids on both honeybees and bumblebees11

(e.g. Whitehorn et al. 2012; Rundlöf et al. 2015, reviewed in Pisa et al. 2015). Sublethal effects at the in-12

dividual level include reduced fecundity of queens, reduced fertility in males, impaired immune response,13

impaired navigation and learning, reduced pollen collection and reduced food consumption. Collectively,14

these effects result in reduced colony growth and colony reproduction performance. The breadth of the15

effects of neonicotinoids on bees suggests that neonicotinoids have multiple modes of action beyond their16

designed direct impact on neurotransmission, for example their impact on immune signalling (Prisco17

et al., 2013).18

We hypothesize that some of these effects could be a consequence of epigenetic changes induced by19

neonicotinoids. Epigenetics is defined as the stable and heritable change in gene expression without any20

change in the DNA sequence (Goldberg et al., 2007). Environmental contaminants have been found to21

affect the epigenetics of a diverse range of animal species from water fleas to polar bears (Head, 2014)22

and include metals, endocrine disrupting compounds, air pollution, persistant organic pollutants and23

pesticides (Vandegehuchte and Janssen, 2014), but much ecotoxicology research is centred on a direct24

link between exposure and response (Head, 2014). Epigenetic changes have the potential to weaken that25

link, with effects possibly manifesting much later in life or in subsequent generations. Thus if pesticide-26

induced epigenetic changes were shown to be heritable in bees this would have implications for future27

ecological risk assessment.28

In social insect research the role of DNA methylation, an epigenetic marker primarily involving the29

addition of a methyl group to a cytosine, has come under increasing scrutiny in recent years (Foret et al.,30

2009; Lyko et al., 2010; Glastad et al., 2013; Amarasinghe et al., 2014; Glastad et al., 2016; Patalano et al.,31

2015; Libbrecht et al., 2016; Standage et al., 2016; Rehan et al., 2016; Glastad et al., 2017; Arsenault et al.,32

2018). Methylation has also been implicated in important effects on the biology of bees, including the33
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control of reproductive status (Kucharski et al., 2008; Amarasinghe et al., 2014) and memory (Biergans34

et al., 2012), behaviours shown to be affected by neonicotinoids (Williams et al., 2015; Stanley et al.,35

2015), although in the case of reproduction the link between methylation and social insect reproduction36

is controversial (Herb et al., 2018; Patalano et al., 2015; Libbrecht et al., 2016). DNA methylation has37

been linked with alternative splicing in a number of insect species (Lyko et al., 2010; Li-Byarlay et al.,38

2013; Glastad et al., 2016; Arsenault et al., 2018), and with histone modifications in the ant Camponotus39

floridanus (Glastad et al., 2015). In mammals, methylation on gene promoters leads to a reduction in40

gene expression. The effect of methylation on gene expression in insects is less well understood (Pegoraro41

et al., 2017), though high levels of methylation have been associated with highly and stably expressed42

genes (Foret et al., 2012; Bonasio et al., 2012; Wang et al., 2013), while in honeybees hypomethylated43

genes are associated with caste-specific expression (Elango et al., 2009; Libbrecht et al., 2016; Marshall44

et al., 2019). Gene expression differences due to neonicotinoid exposure have been found in honeyebee45

larval workers, adult workers and queens (Derecka et al., 2013; Aufauvre et al., 2014; Christen et al.,46

2016; Chaimanee et al., 2016; Christen et al., 2018).47

In this study we use whole genome bisulfite sequencing (WGBS/BS-seq) and RNA-seq on brain tissue48

of neonicotinoid exposed and control Bombus terrestris workers in order to elucidate the effects of the49

neonicotinoid imidacloprid on the gene expression and methylation status of bumblebee workers.50
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Materials and Methods51

Beekeeping, experimental design and brain dissection52

Six colonies of Bombus terrestris audax were purchased from Agralan, UK. Each colony contained a53

queen and on average ten workers and a small amount of brood. They were kept in wooden nest boxes54

and maintained under red light at 26◦C and 60% humidity on a diet of 50% v/v glucose/fructose apiary55

solution (Meliose-Roquette, France) and pollen (Percie du set, France) (Amarasinghe et al., 2014). Three56

colonies were used for the RNA-seq experiment and the other three for the BS-seq experiment (Figure57

S1).58

Groups of 5 callow workers born on the same day were reared in Perspex boxes (18.5 cm x 12.5cm59

x 6.5cm). Boxes were then randomly assign to control or treated groups. The control group was fed60

ad libitum with 50% v/v apiary solution for six days whereas the treated group was fed ad libitum61

with a 10ppb imidacloprid (SIGMA-ALDRICH) 50% v/v apiary solution, a field-realistic sub-lethal dose62

(Cresswell, 2011; Blacquière et al., 2012). After a six day chronic exposure period (Cresswell, 2011) the63

bees were anesthetized on ice at 4◦C. The brains were dissected in phosphate buffered saline (PBS) and64

immediately frozen in liquid nitrogen and stored at -80◦C. Their ovaries were checked for development to65

ensure that only non-reproductive workers were used (Amarasinghe et al., 2014; Harrison et al., 2015).66

BS-seq67

Genomic DNA extraction, sequencing and mapping68

Six libraries were prepared (3 colonies, control and treatment). For each colony, 10 boxes were reared69

(5 control and 5 treatment). Each library was generated from 12 pooled brains of non-reproductive70

workers taken at random from the relevant boxes for a total of 72 brains. Genomic DNA was extracted,71

using QIAGEN QIAamp DNA Micro Kit following the manufacturer’s instructions. The concentration of72

genomic DNA was measured using a Qubit R© dsDNA BR Assay Kit (ThermoFisher Scientific, USA) and73

Nanodrop. Sequencing was performed on a HiSeq 2000 machine (Illumina, Inc.) at the Beijing Genomics74

Institute (BGI), generating 100-bp paired-end reads.75

Poor quality reads were removed using fastQC v0.11.2 (Andrews, 2010) and adapters trimmed us-76

ing cutadapt V1.11 (Martin, 2011) and trimmomatic V0.36 (Bolger et al., 2014). Bismark v0.18.177

(Krueger and Andrews, 2011) was used to align the reads to the Bter_1.0 genome (Refseq accession78

no. GCF_000214255.1 (Sadd et al., 2015)), remove PCR artifacts and extract methylation calls in CpG,79

CHH and CHG contexts (where H represents adenine, thymine or cytosine). The cytosine report files80

from Bismark and the B. terrestris annotation file (GCF_000214255.1) were combined using the sqldf81
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RNA-seq93

RNA extraction and Illumina sequencing94

Eighteen libraries were prepared (three colonies, three replicates per colony, two conditions). For each95

colony, 6 boxes were reared (3 control and 3 treatment). Each library was generated from 3 pooled96

brains of non-reproductive workers taken from the relevant boxes, for a total of 54 brains. Total RNA97

was isolated utilizing the GenElute Mammalian Total RNA Miniprep Kit. DNA and RNAase activity98

was eliminated using (Sigma-Aldrich DNase I treatment kit) following the manufacturer’s instruction.99

RNA concentration and integrity were determined by Bioanalyzer using the RNA Nano Kit (Agilent100

Technologies). From each sample we isolated an average of 0.8 mg of RNA. Two samples appeared101

degraded and were not used. Nine control and seven treated samples were prepared and sequenced102

on HiSeq 200 (Illumina, Inc.) at Beijing Genomics Institute (BGI) and 100-bp paired-end reads were103

generated.104

BGI removed adaptor sequences, contamination and low-quality reads from raw data. Base calling105

and quality scoring of the raw reads were visualized using fastQC v 0.11.2 (Andrews, 2010). The clean106

reads for each sample were aligned to the reference genome Bter_1.0 genome (Refseq accession no.107

GCF_000214255.1 (Sadd et al., 2015)) using Hisat2 v2.0.4 (Kim et al., 2015) with default parameters.108

The output sam file was sorted and converted to a bam file using samtools (Li et al., 2009). Aligned109

reads were assembled and quantified using the assembler stringtie v1.3.3b (Pertea et al., 2015).110

Differential gene expression analysis111

A table of raw counts was generated using a Python script112

(https://github.com/gpertea/stringtie/blob/master/prepDE) and analysed using DESeq2 (Love113

4

82 library (Grothendieck, 2017) in R v3.4.0 (R Core Team, 2014) to generate the distribution of methylated

83 Cs over genomic features. Cytosines with less than 10X coverage were excluded. For each cytosine the 84 

proportion of methylation reads over total reads was calculated.

85 Methylation differences between treatments

86 Differential methylation analysis was performed using methylKit (Akalin et al., 2012). Bismark cytosine 87 

reports were filtered to exclude loci with extreme low or high coverage (< 10 or > 500 reads) and those 88 not 

covered in all samples. A mixture of binomial model (Cheng and Zhu, 2014) was used to make per-

89 loci methylation status calls and only loci identified as methylated in at least one sample were tested. A 90 

logistic regression test was applied using overdispersion correction, controlling for colony as a covariate, 91 

and adjusting p-values for multiple testing using the SLIM method. A minimum change in methylation

92 between treatments of 10% was used to filter results.



et al., 2014) in R v3.4.0 (R Core Team, 2014) to estimate differentially expressed genes using an114

FDR-adjusted p-value threshold of 0.05 and controlling for colony effects. Genes with less than 10115

reads were discarded from analysis. The normalized read counts were log2 transformed. The quality116

of replicates was assessed by plotting read counts of samples against one another and assessing the117

dispersion and presence of any artefacts between samples (Rich et al., 2018). A principal-component118

analysis was performed to visualize diversity between samples within treatment and between condition.119

GO term enrichment and KEGG analysis120

A list of GO terms for the bumblebee were made by annotating the transcriptome using trinotate (default121

settings) (Hébert et al., 2016) and blast2GO (against RefSeq) (Conesa et al., 2005). These lists were122

combined, using the pipeline implemented in Amar et al. 2014 with a K value of 1. A hypergeometric test123

was applied and significant GO terms identified after BH correction (p corrected < 0.05) (Benjamini and124

Hochberg, 1995) using GOstats (Falcon and Gentleman, 2007), with all RNA features in the bumblebee125

genome used as a background (GCF_000214255.1). We filtered these to only those terms present in126

three or more DEGs and used REVIGO (Supek et al., 2011) to cluster and visualise enriched GO terms,127

selecting the whole UniProt database and SimRel semantic similarity measure.128

The clusterprofiler R package (version 3.8.1) (Yu et al., 2012) identified differentially expressed genes129

associated with KEGG pathways using the whole UniProt database. A hypergeometric test was applied130

and significant KEGG pathways were identified after BH correction (qvalue < 0.05) (Benjamini and131

Hochberg, 1995).132
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Results133

Methylation analysis134

The overall sequence alignment rate was 67.21% 1.53% (mean standard deviation). The proportion of135

methylated cytosine reads calculated by Bismark were 0.53% 0.05% for CpGs, 0.37% 0.05% for CHGs,136

0.38% 0.07% for CHHs and 0.4% 0.06% for CNs or CHNs ((H = A, C, or T). While insect methylation137

levels are often low (Glastad et al., 2017) these methylation levels are lower even than in the honey bee,138

Apis mellifera, estimated at ~1% at the genome level using similar metrics (Feng et al., 2010; Bewick139

et al., 2017). In a CpG context, across all samples, 0.15% 0.03 % of loci with a minimum coverage140

of 10 reads were considered methylated by the mixture of binomial model. The distribution of CpG141

methylation shows a mild bimodal distribution with the vast majority of sites being not or only modestly142

methylated and a few fully methylated (Figure S2 A). Methylated CpGs are more abundant in coding143

regions (seven fold) and exons (five fold) than introns (Figure 1 A). Non-CpG per-loci methylation levels144

were reported as less than 0.001% by the mixture of binomial model. This, in conjunction with the145

uniformity of non-CpG methylation across genomic features (Figure 1 B,C), led to the conclusion that146

such levels were indistinguishable from error and as such were excluded from subsequent analysis.147

Methylation differences between control and neonicotinoid treated samples148

In total 4,424,986 loci were analysed using the mixture of binomial model, which subsequently identified149

6,080 sites to test. No differentially methylated loci were identified using logistic regression at a q-value of150

0.05 or 0.1. MethylKit includes an option to pool replicates into single control/treatment samples and use151

Fisher’s exact test; using this approach we identified a small number of differentially methylated CpGs152

at q-value < 0.1, including loci within histone-lysine N-methyltransferase 2C, histone acetyltransferase153

p300, CXXC1 (a transcriptional activator that binds to unmethylated CpGs), and genes involved with154

axon formation (supplementary data, diff_meth_fisher).155

Expression analysis156

Alignment rate to the genome was 93.6% (92.1 to 94.1) and after filtering a total of 10,772 genes were157

analysed. All libraries from the same treatment showed low variation in their gene expression patterns158

(Figure S3, S4).159

Differential expression160

A total of 405 genes were differentially expressed: 192 genes upregulated and 213 downregulated in161

neonicotinoid samples compared to controls (see supplementary data: differentially_expressed_genes).162
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Figure 1: Methylated Cs distribution. Average proportion of methylation reads SD per CpG (A), CHG
(B) and CHH (C) positions over genomic features. Control samples in black and Neo treated samples in
grey.

Four cytochrome P450 (CYP) genes were differentially expressed, two upregulated and two downreg-163

ulated. Upregulated genes in neonicotinoid treated bees also include apyrase that hydrolyzes ATP to164

AMP, the neuropeptide receptor pyrokinin-1 receptor and ionotropic receptor 25a that is involved in165

circadian clock resetting in Drosophila (Chen et al., 2015). Downregulated genes include neurexin, in-166

volved in synaptic formation and maintenance, peptide methionine sulfoxide reductase, involved in repair167

of oxidation-damaged proteins, and a number of genes related to photoreceptor function. Three genes168

belonging to the homeotic box gene (Hox) family were downregulated in neonicotinoid treated bees.169

lethal(2)essential for life (Efl21) displayed the highest down regulation. We found 105 enriched biologi-170

cal process GO terms (BH corrected p < 0.05) associated with differential gene expression (supplementary171

data: expression_GO), subsequently clustered using REVIGO to 58 terms (Figure S5). Many of the most172

significantly enriched terms were associated with energy reserve metabolism. Also enriched were terms173

associated with apoptotic processes, apoptotic cell clearance, immune effector processes, cell death and174

response to chemical stimulus. No KEGG pathways were over represented for differentially expressed175

genes (q < 0.05).176
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DNA methylation - Expression correlation177

We calculated the average percentage of methylated reads per gene for the most differentially expressed178

genes (log2 fold-change > 0.5 or < -0.5) and non-differentially expressed genes (Figure 2), fitting a179

generalized linear model (GLM) with a quasi binomial error distribution with treatment (control vs180

neonicotinoid) and expression state (DEG vs. non-DEG) as independent variables. There was no signif-181

icant interactions between the independent variables (interaction model versus main effects only model:182

χ2 = -0.014, d.f. = 1, p = 0.82). For CpGs, non-differentially expressed genes had more methylation183

than differentially expressed genes (z1,19673=4.641, p<0.001). There was no significant treatment effect184

on methylation levels (z1,19673=-0.772, p=0.692).185

Figure 2: Average percentage of methylated CpG per gene. Differentially expressed genes (DEG) and
non differentially expressed genes (nonDEG) are plotted separately. Dots represent genes.

To have a more fine scale understanding of the correlation between methylation and expression, we186

plotted mean proportion of methylation per gene against ranked expression level (log10fpkm per gene)187

in 100 bins (from low to high) (Figure 3) fitting a linear model with treatment and expression level as188

independent variables. There was no significant interaction between expression’s and treatment’s effects189

on methylation (interaction model versus main effects only model: F1,189 = 1.0347, p = 0.3104). We190

found a significant association between expression and methylation (F1,189 = 281.654, p = < 2 x 10-16).191

Neonicotinoid treated bees had comparable levels of CpG methylation to control bees (F1,189 = 1.8125,192

p = 0.1798).193
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Figure 3: The proportion of methylated CpGs is plotted against gene expression rank. One hundred "bins"
of progressively increasing level of expression were generated and genes with similar level of expression
have been grouped in the same bin. Solid lines represent control samples and dotted lines neonicotinoid
treated samples. The grey shading represents 95% confidence intervals.

Discussion194

We found numerous genes which show differential expression between bees treated with field realistic doses195

of the neonicotinoid imidacloprid and control bees. We found CpG methylation to be focused in exons,196

and high CpG methylation was associated with highly expressed genes, but no differentially methylated197

loci were detected between treatments. Non-differentially expressed genes had higher methylation levels198

than differentially expressed genes.199

Four cytochrome P450 (CYP) genes were identified as differentially expressed, in line with other stud-200

ies assessing the impact of insecticides on honeybees (Shi et al., 2017; Li et al., 2017; Derecka et al., 2013;201

Wu et al., 2017; Christen et al., 2018). Two were upregulated (CYP6k1 and 4c3) and two downregulated202

(28d1 and 9e2). CYP6, 9 and 28 genes are linked to xenobiotic metabolism and resistance to insecticides203

(Feyereisen, 2006) and CYP6 genes specifically have been found to be upregulated in honeybees after204

treatment with sublethal doses of the neonicotinoid Thiamethoxam (Shi et al., 2017), as has CYP4C1205

after treatment with the neonicotinoid Clothianidin (Christen et al., 2018). The CYP9Q subfamily were206

recently shown to be responsible for bee sensitivity to neonicotinoids (Manjon et al., 2018).207

The identification of differentially expressed genes associated with synaptic transmission (supplemen-208

tary data: expression_GO) is to be expected, given that we used brain tissue and given the known target209
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effects of neonicotinoids. The identification of a downregulated neurexin gene aligns with the results of210

Shi et al. (2017). The effect seen here on metabolic pathways has also been found in honeybees, with GO211

term enrichment for catabolic carbohydrate and lipid metabolism (Christen et al., 2018). These authors212

suggested that due to the intensive energy demands of the brain, negative effects on metabolic pathways213

could affect brain function and therefore behaviour. During the review period a further study was pub-214

lished examining gene expression changes in B. terrestris after exposure to neonicotinoids, again showing215

changes in carbohydrate and lipid metabolism (Colgan et al., 2019). Efl21, the most downregulated216

gene identified, has been found to be involved in foraging behaviour in bees (Hernández et al., 2012), a217

potential genetic link to the findings of Mommaerts et al. (2009). Impaired foraging has implications for218

pollination, reproduction and overall colony survival. Downregulation of carbohydrate metabolism path-219

ways has also been shown in honeybee larvae (Derecka et al., 2013; Wu et al., 2017). Also downregulated220

were three hox genes. This may be indicative of an impaired immune system, as hox genes have been221

found to play a role in invertebrate innate immune responses (Uvell and Engström, 2007; Irazoqui et al.,222

2008). Hox genes have been found to be downregulated in response to insecticide treatment in honeybees223

(Aufauvre et al., 2014). The bumblebee visual system may also be impacted by imidacloprid treatment,224

given the downregulation of genes such as protein scarlet, protein glass and ninaC.225

No differentially methylated loci between control and treatment were identified using a logistic re-226

gression model, and we suggest that if acute neonicotinoid exposure does alter methylation status in B.227

terrestris it is subtle and the data reported here may be underpowered to detect it due to low per-sample228

coverage. A small number of differentially methylated loci were identified by pooling replicates and using229

Fisher’s exact test (supplementary data: diff_meth_fisher), but unlike logistic regression this approach230

cannot control for covariates and the results should be treated with caution. Using this approach a CpG231

loci in CXXC-type zinc finger protein 1 was identified as hypermethylated in neonicotinoid-treated bees;232

this gene also was upregulated in that group. In mammals, CXXC1 is a transcriptional activator that233

binds to unmethylated CpGs to regulate gene expression (Shin Voo et al., 2000). Other loci identified234

by pooling were located within histone acetyltransferase p300 and histone-lysine N-methyltransferase 2C.235

These findings raise the possibility that neonicotinoids may have a more detectable effect over a longer236

period through a cascade of epigenetic processes. A study on the effects of imidacloprid on bumblebees237

found no effect on mortality or reproduction over 11 weeks using 10 ppb when workers were not required238

to forage for food, while 20 ppb affected mortality and foraging was impaired at both doses (Mommaerts239

et al., 2009). It may therefore be that a higher dose or longer exposure time might have a detectable240

impact on CpG methylation, and further work investigating chronic rather than acute exposure to im-241

idacloprid at different doses would be valuable. Also worthy of investigation is the potential effect on242

epigenetic processes other than DNA methylation, such as histone modification, which has been found243
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to have a similar, but non-redundant, association with gene expression in the ant Camponotus floridanus244

(Glastad et al., 2015).245

We found patterns of CpG methylation to be in line with other insect species. It is mainly focused246

in exons (Glastad et al., 2017), and high CpG methylation was associated with highly expressed genes247

(Figure 3) (Arsenault et al., 2018; Bonasio et al., 2012; Glastad et al., 2013; Libbrecht et al., 2016;248

Patalano et al., 2015; Wang et al., 2013), and non-differentially expressed genes showed higher levels of249

methylation (Glastad et al., 2013, 2016; Libbrecht et al., 2016; Sarda et al., 2012). As well as inducing no250

changes in methylation at individual loci, neonicotinoids appear to have no effect on overall levels of CpG251

methylation (see Figures 2 and 3). This failure to identify methylation differences between experimental252

groups is consistent with findings of robust methylation between castes in various insects (Hunt et al.,253

2010) but contrasts with studies finding differences resulting from removal of maternal care (Arsenault254

et al., 2018), or within castes with differing reproductive status (Marshall et al., 2019).255

Non-CpG methylation plays a role in gene silencing in flowering plants (Stroud et al., 2014) and to256

a lesser extent, in mammals (Dyachenko et al., 2010). In this study, while we identified a very small257

number of loci showing methylation in CHG/CHH contexts we could not exclude the possibility that258

much of it was noise, as bisulfite sequencing is prone to false positives from sources such as incomplete259

bisulfite conversion, miscalled bases and SNPs. Overall, we conclude that there is no notable methylation260

of non-CpG cytosines in B. terrestris, as with the honeybee (Lyko et al., 2010) and Nasonia vitripennis261

(Wang et al., 2013). In contrast to the preponderance of CpG methylation in exons, we found that262

CHH and CHG methylation was uniformly spread throughout genes (Figure 1) a pattern which would263

be consistent with the idea that there is no significant methylation in these contexts.264

Recently, it has become clear that epigenetics can play a role in the interplay between man-made265

chemicals and natural ecosystems, and their constituent species (Vandegehuchte and Janssen, 2014).266

Hymenopteran insects (ants, bees and wasps) are ideal models to study this. They are both strongly267

affected by man-made chemicals and are important emerging models for epigenetics, with a number of268

species with relatively small genomes showing a confirmed role for methylation in their biology (Glastad269

et al., 2011; Weiner and Toth, 2012; Welch and Lister, 2014; Yan et al., 2014).270

However, on the evidence of this study, imidacloprid does not appear to have epigenetic effects, at271

least through DNA methylation. This finding is important in the context of future legislation for pesticide272

control, as it is evidence suggesting a potential lack of transgenerational effects on B. terrestris with the273

use of imidacloprid.274
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