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Abstract 

1. The variational properties of living organisms are an important component of current 

evolutionary theory. As a consequence, researchers working on the field of multivariate 

evolution have increasingly used integration and evolvability statistics as a way of captur-

ing the potentially complex patterns of trait association and their effects over evolutionary 

trajectories. Little attention has been paid, however, to the cascading effects that inaccu-

rate estimates of trait covariance have on these widely used evolutionary statistics.  

2. Here, we analyze the relationship between sampling effort and inaccuracy in 

evolvability and integration statistics calculated from 10-trait matrices with varying pat-

terns of covariation and magnitudes of integration. We then extrapolate our initial ap-

proach to different numbers of traits and different magnitudes of integration and estimate 

general equations relating the inaccuracy of the statistics of interest to sampling effort. 

We validate our equations using a dataset of cranial traits, and use them to make sample 

size recommendations.  

3. Our results suggest that highly inaccurate estimates of evolvability and integration 

statistics resulting from small sample sizes are likely common in the literature, given the 

sampling effort necessary to properly estimate them. We also show that patterns of 

covariation have no effect on the sampling properties of these statistics, but overall mag-

nitudes of integration interact with sample size and lead to varying degrees of bias, im-

precision, and inaccuracy. 
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4. Finally, we provide R functions that can be used to calculate recommended sample 

sizes or to simply estimate the level of inaccuracy that should be expected in these statis-

tics, given a sampling design. 

 

 Keywords: multivariate evolution, quantitative genetics, covariance matrices 

 

Introduction  

 Though previous researchers hypothesized on the implications of correlations be-

tween traits for evolution (e.g. Darwin 1859), it was Olson and Miller (1958) who presented 

the hypothesis that traits that are related through function or development may be correlated 

phenotypically and can evolve together - the concept of morphological integration. Olson and 

Miller (1958) suggested that measuring the overall level of phenotypic correlation among 

traits, defined as the magnitude of integration, could provide insights into the underlying as-

sociations among traits and how these associations affect evolution (Olson and Miller 1958). 

The last three decades saw an explosion in interest in quantifying how associations between 

traits affect and reflect evolution (Polly 2005; Goswami 2006; Klingenberg 2008; Marroig et 

al. 2009; Adams & Felice 2014), spurred on by the work of Cheverud (1982) and Lande 

(1979; Lande and Arnold 1983) who placed Olson and Miller’s (1958) ideas within a quanti-

tative genetics framework. This explosion led to a wide variety of different conceptualiza-

tions of integration in the literature. While integration has been defined by some authors 

purely in terms of covariation among traits within populations (e.g. Klingenberg 2008), oth-

ers have described integration as the propensity of a developmental system to produce pheno-

typic covariation in populations (Hallgrimsson et al. 2009). In this latter definition, genetic 

and environmental influences, channeled through developmental processes that influence 

multiple traits, can lead to covariation among traits in a population. Integration of develop-
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mental processes is a feature of individuals, covariation is a feature of populations that results 

from variation in integrated developmental systems. It is this latter definition of integration 

we use here, but note that use of the term integration in statistics that measure phenotypic as-

sociations between traits is unavoidable. 

 

Generally, studies of trait covariation focus on one of two related directions – testing 

a priori hypotheses about developmental or functional relationships among traits (e.g. modu-

larity, the propensity for traits to covary more with traits within a module than between mod-

ules; Klingenberg 2008; Porto et al. 2009; Goswami & Polly 2010) or testing how covariance 

matrices may affect and reflect evolutionary forces and evolutionary change ( Marroig & 

Cheverud 2004; Gratten et al. 2008; Hansen & Houle 2008; Adams & Felice 2014; Goswami 

et al. 2014). While both directions are fundamentally important for our understanding of evo-

lution, the last direction is our focus here. Though considerable effort has been devoted to 

understanding the role of trait covariation in evolution (Ackermann and Cheverud 2000; 

Marroig and Cheverud 2004; Porto et al. 2009; Marroig et al. 2009; Williams 2010; Berner et 

al. 2010; Grabowski et al. 2011; Villmoare et al. 2011; Hansen and Voje 2011;Gómez-Robles 

& Polly 2012; Klingenberg & Marugan-Lobon 2013; Goswami et al. 2014) the statistical is-

sues associated with estimating high dimensional covariance matrices received comparatively 

less attention in evolutionary biology, save for a few notable exceptions (Meyer and Kirkpat-

rick 2008; Haber 2011; Marroig et al. 2012; Houle and Meyer 2015; Adams 2016). As a con-

sequence, most researchers deal with statistical issues a posteriori (e.g., including standard 

error estimates). However, in the presence of bias, true population parameter values can fall 

outside of the confidence interval of sample estimates of the parameter, rendering the results 

meaningless with regards to the original research questions. While unbiased estimators of 

trait variance/covariance are available, most commonly used evolutionary statistics represent 
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statistical transformations of such matrices. Statistical transformations, when applied to unbi-

ased estimators, do not necessarily lead to unbiased estimators of the corresponding statistic 

(Gourieroux & Monfort 1995; Morrisey, 2016). For example, most evolvability statistics are 

based on the distribution of eigenvalues of covariance matrices, which can be substantially 

biased at small samples (Lawley 1956; see Supporting Information).   

 

A few studies have explored the effects of sample size on various evolutionary statis-

tics arising from sample covariance matrices (e.g. Polly 2005; Goswami 2006; Goswami & 

Polly 2010) and have provided us with important insights into the effects of sampling in sta-

tistics measuring the magnitude of morphological integration (Haber 2011). However, there 

is nothing comparable for statistics that quantify the role of covariation in biasing or con-

straining evolution – i.e. evolvability statistics (Hansen & Houle 2008). Likewise, we are not 

aware of any systematic approach to extrapolating sample size recommendations for a wide 

array of study designs, or even approaches that allow researchers to estimate a priori the 

amount of inaccuracy that a certain sampling design would incur. While the statistical issues 

discussed here can seem slight in comparison to the large evolutionary questions being asked, 

how one treats data and interprets analytical results may affect whether the findings are 

meaningful with regards to the original research question (Houle et al. 2011; Grabowski et al. 

2016). 

 

 This study systematically explores the assumption that evolutionary statistics (e.g., 

evolvability, integration) of sample covariance matrices are adequate descriptions of the 

‘true’ population values, and the cascading effect of sampling error on the accuracy of statis-

tics used to quantify evolvability and integration. As our study employs several statistics that 

might not be familiar to researchers outside the field of multivariate evolution, we provide a 
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detailed description of these statistics, together with a preliminary assessment of how sam-

pling error might affect them statistically, as part of our Supplemental Information. Figure 1 

and Table 1 also provide a quick introduction to evolvability and integration statistics, and 

they will also be discussed further below. For further details, see Hansen and Houle (2008) 

and Marroig et al. (2009).  

 

We begin the empirical part of our study by simulating populations under different 

patterns of covariance and different magnitudes of integration. Next, we explore the relation-

ship between sampling effort and accuracy under different numbers of traits and different 

magnitudes of integration. We then validate our model using a dataset of mammalian cranial 

traits. Finally, sample size requirements for reliable estimates of evolutionary statistics are 

suggested based on these findings. We also provide two R functions. Function howmany.R 

allows researchers to calculate the recommended sample sizes for certain level of inaccuracy, 

given any number of traits. Function howInaccurate.R estimates the expected degree of inac-

curacy of a wide variety of sampling designs. 

 

Materials and methods  

Layout of analyses 

 The simulation protocol is broken into four parts. First, we construct sets of simulated 

covariance matrices with known parameter values of evolvability and integration statistics, 

and then use these matrices to describe the effects of sampling error on these statistics. Se-

cond, we break down the results seen in step one by describing how differences in sampling 

effort, in combination with population-level patterns of covariance and magnitudes of inte-

gration, affect evolvability and integration statistics by quantifying the statistics’ bias, impre-

cision and inaccuracy (see below). Third, we repeat step one but encompass a larger array of 
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trait numbers and a broader range of integration magnitudes. Finally, we validate our results 

using a dataset of mammalian cranial traits.  

 

Generating matrices  

 All simulations were performed using two different sets of randomly generated matri-

ces. In the first set, matrices differ only in their pattern of covariation among traits. In the se-

cond set, matrices differ only in their integration magnitudes. To avoid underestimating the 

amount of sampling error associated with each covariance matrix, we filtered all random ma-

trices in terms of their log-eigenvalue distribution. In particular, matrices whose last eigen-

value were exceedingly small were filtered out to prevent an underestimation of the amount 

of sampling error. Details of random matrix generation can be found in the S.I. - Generating 

matrices. 

 The first set of matrices (pattern matrices, PAT-1,PAT-2,PAT-3; see Table 2) corre-

sponds to 10-trait covariance matrices with an average squared correlation coefficient  of 

0.17, corresponding to the mean of the distribution of integration magnitudes observed in a 

large dataset of mammalian cranial traits (Porto et al. 2013).  To better sample the matrix 

space, 1,000 random covariance matrices were generated using the same parameters as above 

and their average simulation results will be presented in this manuscript as belonging to ‘ma-

trix’ PAT 1,000.  

 The second set of matrices (magnitude matrices, MAG-1, MAG-2, MAG-3; see Table 

2) are all modifications of a single random matrix, following Marroig et al. (2012). Briefly, a 

single matrix was generated and posteriorly had its first eigenvalue scaled up or down in such 

a way as to make the three matrices encompass the total distribution of integration magni-

tudes observed in a large dataset of mammalian cranial traits (MAG-1=lower bound, MAG-

2=mean, MAG-3=higher bound; Porto et al., 2013). 
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 It should be noted that the results presented in this manuscript are robust to the meth-

od used to generate the two matrix sets, as other approaches, such as the creation of matrices 

with known patterns of covariance (Marroig et al., 2012), present equivalent results. 

 

Simulation approach 

 The simulation involved four main steps. The first step was to simulate a population 

based on each covariance matrix (PAT1, etc.). The second step was to calculate the parameter 

values of each statistic based on the known population covariance matrix. The third step was 

to calculate covariance matrices based on differing sample sizes of “individuals” drawn from 

the main population. The final step was to calculate the statistics of interest for each of the 

sampled matrices and compare the values of each to the known parameter values. 

 To make simulated populations in step one, 10,000 individuals were drawn from a 

multivariate normal distribution based on the simulated matrices with null mean. These 

10,000 individuals are meant to be the effective size of a natural population from which sam-

ples can be drawn. Samples were taken from this population following the simulation routine 

described below.  

 For each sample size capable of producing full rank matrices, a sample of that number 

of individuals was drawn from the population, a covariance matrix was estimated, and then 

each statistic was calculated. This was repeated 100 times and the values were saved. Then 

the sample size was increased by 1 and the whole procedure was repeated again. The mean 

value of the statistics at each sample size was considered the best estimate of the statistic at 

that sample size, and 95% confidence intervals were calculated around this best estimate 

based the standard error of the iterations. Here, the confidence intervals are showing the 

range of the statistic that 95% of the repeated samples will fall in. They also provide the 95% 
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confidence interval in which studies at that particular sample size would predict the parame-

ter value to be.  

 

 An additional step is needed to calculate the evolvability statistics that is not present 

when calculating r2. Because these statistics rely on the average response of covariance ma-

trices to simulated selection vectors, random selection vectors were created by drawing from 

a random normal distribution with a mean of 0 and a standard deviation of 1, normalized to 

unit length, and then applied to the covariance matrix for each sample using the equations in 

Table 1 (Hansen and Houle 2008) to calculate the statistic of interest. The mean values for 

each statistic were calculated by repeating this procedure 1,000 times and taking the mean 

value of the repetitions (Hansen and Houle 2008). Since matrix inversion in highly multidi-

mensional systems is a time consuming step in the calculations, the results for mean condi-

tional evolvability and mean integration presented for ‘matrix’ PAT 1,000 were produced us-

ing analytical approximations from Hansen and Houle (2008), rather than the simulation ap-

proach.  For all other matrices, all statistics were calculated using the simulation approach. 

 

Quantifying error 

 We quantify three different aspects of error: bias, imprecision, and inaccuracy. Bias is 

the difference between the expected value of a parameter and the true parameter value. Im-

precision is the distance of repeated measurements to each other and can be described as var-

iance of an estimate and reflected in standard errors or confidence intervals. Inaccuracy is the 

distance of a measured value to its parameter value, and takes into account both bias and im-

precision. The metric of inaccuracy used here is the mean squared distance of the estimate 

from the parameter, and as described here has the following relationship: 
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Inaccuracy=Imprecision +Bias2 

(Equation 1) 

 

 Although we calculated these three metrics here, we will only report our inaccuracy 

metric in a figure. Imprecision and bias in the statistics described in this manuscript can be 

observed in our plots of the simulation results. To allow for comparison between sets of re-

sults and evolvability and integration statistics, inaccuracy was scaled by the square of its pa-

rameter value. Inaccuracy can therefore be thought of as a proportion of the squared mean. 

Since it is particularly useful to place measurements of inaccuracy in the context of 

between-species variation in these statistics, the squared coefficient of variation (CV2) of 

each statistic in a large sample of mammals are also reported in this manuscript (Porto et al. 

2013). The reasoning to do so is simple. If the statistics included here vary considerably 

across species, one might be willing to accept a larger amount of inaccuracy when estimating 

them, as that inaccuracy is unlikely to lead a researcher to different conclusions. If these sta-

tistics are very similar across species, on the other hand, one might want these statistics to be 

estimated more accurately. 

 

 All simulations were run in the R statistical programming language (R Development 

Core Team 2011) using programs written by the authors (see associated Dryad package for 

the R codes). The simulations were run on the parallel computational resource Lifeportal 

(Formerly Bioportal; Kumar et al. 2009) at the University of Oslo. Rank was tested using the 

“rank.condition” function of the “corpcor” package (Schaefer et al. 2012).  
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Expanding the usefulness of the simulations 

 Determining adequate sample size for studies of multivariate evolution requires rec-

ommendations that can be extrapolated across studies with different designs. So far, all anal-

yses were made under the assumption that a researcher is studying 10 traits with specific 

magnitudes of integration. In the attempt of making these results more general, the same sim-

ulation protocol described above was used to estimate the relationship between inaccuracy 

and sampling effort under different numbers of traits (from 10 to 100) and different magni-

tudes of morphological integration (MI;  varying from 0.02 to 0.5). For each MI and trait 

number, a power function of the form axb was fitted to the simulation data, relating sampling 

effort to inaccuracy. Symbolic regressions were then used to search for models that describe 

the relationship between the exponent (b), the constant (a) and our variables (MI and number 

of traits) using Eureqa (Schmidt and Lipson 2013). Symbolic regressions search the mathe-

matical space to find models that best fit a given dataset, while taking into account both the 

accuracy of the model and its simplicity. In our case, symbolic regressions were run until the 

model’s mean absolute error flatlined. Whenever more than one adequate model were found, 

models were chosen based on complexity, with simple models being favored against more 

complex ones. These models were then embedded in two R codes: (1) one that can be used to 

calculate the recommended sampling effort necessary to achieve a certain level of inaccuracy 

in the statistic of interest (howmany.R); (2) and another that estimates the level of inaccuracy 

that would be observed in evolutionary statistics, given a sampling design (howInaccurate.R).  

 

 To illustrate the sensitivity of the statistics of interest to changes in the number of 

traits and MI, 3D surfaces that relate recommended sampling effort, number of traits and MI 

were also generated using the howInaccurate function.  
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Validating the model  

   The strength of the models generated above depend on how well they predict real-world 

values for under-sampled species. Thus, it is particularly important for us to validate our 

model by testing whether the amount of inaccuracy in each statistic, as predicted by the equa-

tions in the R code, corresponds to what would be observed in real-world applications. To do 

so, we selected two genera of mammals that had more than two hundred individuals meas-

ured for 30 cranial traits - Callithrix and Monodelphis - (Marroig and Cheverud 2001; Porto 

et al 2015) and used them to test our models. There are two main reasons for choosing these 

two genera. First, due to their high sample sizes, we had accurate estimates of the evolvability 

and integration statistics for both genera. Second, they represent a broad range of integration 

magnitudes among mammals, with values of 0.08 and 0.27 for  (Table 2), respectively (Por-

to et al. 2013). While individual trait pairs can have r2 values higher than 0.27, it is rarely the 

case that a truly multivariate system will have values much higher than that for average 

squared correlation coefficients, and such systems would have such low underlying dimen-

sionality that statistical bias would likely be small. Here, inaccuracies as predicted by our 

models were compared to inaccuracies obtained by bootstrap resampling their corresponding 

skull database while varying sample sizes. The main advantage of bootstrap is that it does not 

require any assumption of normality (Efron 1982) and produces results that would be equiva-

lent to a situation in which someone under-sampled a particular species. The fit of inaccuracy 

predictions to the inaccuracies of the bootstrapped data was evaluated in terms of  good-

ness-of-fit (as implemented in Schmidt and Lipson (2013)). Goodness-of-fit values above 0.9 

were seen as the model fitting the data adequately. Values between 0.5 and 0.9 were consid-

ered minimally acceptable, but had their biases highlighted. Values below 0.5 were consid-

ered poor fit. 
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Results 

Effects of sampling error on integration statistics 

 Moving from smaller to larger sample size generally has a large effect on the statistical 

measures of integration included here ( , and mean integration) for all simulated matrices 

(Fig. 2). The best estimates of all integration statistics are biased upward at small sample siz-

es for the two matrices with low to moderate levels of integration (MAG-1,MAG-2), with the 

statistic becoming generally unbiased for the matrix with the highest level of integration 

(MAG-3) for  (Fig. 2B ). Mean integration (Figs. 2C, D) is biased upward for all the matri-

ces at small sample sizes, and at the smallest the estimate does not contain the parameter val-

ue. This effect decreases (i.e. less individuals are needed to reach a point where the confi-

dence interval contains the parameter) with increasing integration.  

 

 Imprecision increases with increasing the level of integration for  (Fig. 2B). At the 

smallest sample sizes,  estimates for MAG-3 can differ from each other by a factor of 3 to 4 

times. Even at the highest sample size, there is considerable imprecision in these statistics. 

On the other hand, imprecision in mean integration is not significantly affected by the overall 

magnitude of integration (Fig. 2D). 

 

 Changes in the pattern of covariation do not appear to significantly affect integration 

statistics, with all best estimates for each matrix falling within the 95% confidence interval of 

the other matrices, at any sample size (Fig. 2).  
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Effects of sampling error on evolvability statistics 

 The mean respondability results (Fig. 3B) suggest a slight positive bias at the smallest 

sample sizes given little to moderate integration (MAG-1,MAG-2), with the statistic becom-

ing generally unbiased for the matrix with the highest level of integration (MAG-3). Impreci-

sion greatly increases with increased level of integration. Changing the pattern of covariation 

does not appear to affect the statistic, with all four PAT-matrices being indistinguishable in 

their sampling properties (Fig. 3A).  

 

  The mean evolvability plots for all seven matrices (PAT+MAG; Fig. 3C,D) indicate 

that this statistic has virtually zero sampling bias under any pattern of covariation and magni-

tude of integration. However, imprecision is stronger for matrices with high overall level of 

integration (MAG-3). At the smallest sample sizes, mean evolvability 95% confidence inter-

vals for MAG-3 includes values that differ from each other by a factor of 3 to 4 times. At 

small sample sizes and given a matrix with little or moderate integration, mean flexibility 

(Fig 4A,B) is negatively biased, but bias is diminished substantially as integration level in-

creases (MAG-3). Like mean evolvability, imprecision is highest in more integrated matrices 

(MAG-3), diminishing in MAG-1. Changing the pattern of covariation has slight to no effect 

on mean flexibility results (Fig. 4A), with best estimates for one matrix falling within the 

95% confidence interval of the other matrices at any sample size.  

 

 Finally, for mean conditional evolvability, all MAG-matrices (Fig. 4C,D) show strong 

negative bias in the best estimates at small sample sizes to the extent that the confidence in-

terval does not contain the parameter until around 30-40 individuals for the matrix with a low 

level of integration (MAG-1). Changes in the pattern of covariation has little to no effect on 
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this statistic, with best estimates for one PAT-matrix falling within the 95% confidence inter-

val of the other three matrices, especially at high sample sizes (Fig.4C).  

 

 Not surprisingly, increasing sample size decreases the level of imprecision for all 

evolvability and integration statistics included here, regardless of magnitude or pattern of 

covariation. A summary of the effects of sampling error and level on integration over bias 

and imprecision estimates for each statistic can be found in Table 3. 

 

Inaccuracy in evolvability and integration statistics 

For the integration statistics, increasing the magnitude of integration decreases inac-

curacy (Fig 5A, B). The matrix with the highest magnitude of integration (MAG-3) is esti-

mated more accurately than the least integrated ones, even when the latter are estimated with 

three times as many ‘individuals’. This is true regardless of the integration statistic being 

used. The level of inaccuracy observed for the  statistic in matrices MAG-2 and MAG-3 is 

smaller than the squared coefficient of variation of this statistic among mammals (CV2; Porto 

et al. 2013) at any sample size. The opposite is true for matrix MAG-1. For the mean integra-

tion statistic, most matrices present values above the CV2 at some sample size. 

 

 The mean respondability and mean evolvability results (Fig 5C,D) show that the level 

of inaccuracy varies with the magnitude of integration, though substantial convergence 

among all matrices is observed at the smallest sample sizes. Contrary to integration statistics, 

inaccuracy in mean respondability and mean evolvability is highest in matrices with moderate 

to high magnitude of integration (MAG-2,MAG-3), owing to the high imprecision previously 

observed.  The level of inaccuracy observed for these statistics tend to be smaller than their 

CV2 among mammals, except at the smallest sample sizes. 
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 For mean flexibility (Fig. 5E), the most integrated matrix is the most accurate (MAG-

3) at small sample sizes, and inaccuracy is inversely related to the magnitude of integration. 

The level of inaccuracy observed for this statistic tends to be smaller than CV2 of this statistic 

among mammals, at any sample size.  

 

 Finally, for mean conditional evolvability (Fig. 5F), the magnitude of integration does 

not affect the level of inaccuracy, with all three matrices presenting the exact same sampling 

behavior. The level of inaccuracy observed for this statistic is smaller than CV2 of this statis-

tic among mammals at any sample size. 

  

Expanding the usefulness of the simulations 

 Figure 6 illustrates the sampling effort necessary for obtaining, at most, 0.05 inaccuracy 

in the statistics of interest, given a particular number of traits (from 10 to100) and a particular 

level of morphological integration (measured as , from 0.02 to 0.5). It’s worth noting that 

sampling effort here is illustrated as the ratio between the number of individuals and the 

number of traits. This was done for illustrative purposes only. The R code used to generate 

these plots, which contains the equations resulting from the symbolic regressions, can be 

found in the associated Dryad package. 

 

 Four major features of the sampling properties of these statistics are worth highlight-

ing. Firstly, only mean conditional evolvability requires similar sampling effort, regardless of 

the integration magnitude. Second, increasing the number of traits causes all statistics to re-

quire a proportionally smaller number of individuals to be measured (even though the number 

of individuals is still higher in absolute terms). Third, integration statistics tend to be more 

sensitive to change in the level of morphological integration and trait number than 
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evolvability statistics, as evidenced by their higher multipliers. Finally, integration statistics 

require exponentially higher sampling effort at low integration magnitudes, while 

evolvability and respondability require larger sampling effort at high integration magnitudes. 

 

Validating the model 

 Figure 7 illustrates the fit of the inaccuracies as predicted by the models resulting from 

the symbolic regressions when compared to the inaccuracies estimated based on bootstrap 

resampling a database of 30 cranial traits for two species of mammals with different integra-

tion magnitudes. With the exception of mean integration and mean flexibility in 

Monodelphis, all other statistics present acceptable estimates of  goodness of fit when con-

strained to be within the bounds in which the models were generated (Table 4). A total of 

75% of the models also produce acceptable estimates of goodness of fit when extrapolated for 

the whole range of bootstrap resamples. The model fit for Callithrix was, on average, higher 

than Monodelphis. Only the model for mean flexibility tended to significantly underestimate 

the amount of inaccuracy (Figure 7). It should be noted that the sample sizes for statistics that 

require matrix inversion were constrained to the range Number of Individuals>Number of 

Traits. 

 

Discussion 

 What sample size is needed to adequately estimate a covariance matrix and calculate 

accurate evolvability and integration statistics? Based on the findings here, calculating accu-

rate estimates of these statistics involves considering not only the sample size, but also the 

true magnitude of integration of the population, and the statistic of interest. Estimating a pop-

ulation covariance matrix based on a sample size of 40 individuals, which is commonly cited 

as the minimum requirement since Cheverud’s (1988) classic analysis, can be too few to ac-
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curately estimate a number of the metrics tested here because of substantial bias and/or lack 

of precision of these metrics. This is especially true now that there is increased use of semi-

landmarks to characterize morphology and some of these statistics are being used in the con-

text of gene expression data (see Ayroles et al. 2009), all of which entail measuring hundreds 

or even thousands of traits. In particular, the field would largely benefit from abandoning the 

notion of a universal minimum sample size, instead favoring careful consideration of the 

sampling properties of these statistics. The reason for this can be seen on the results for one 

matrix, MAG-1, with a parameter mean integration (Hansen & Houle 2008) value of 0.53. 

Given a sample of 40 individuals, this statistic is positively biased to up to around 20% of the 

parameter value. This upward bias would be separate from the imprecision at that sample 

size, which falls somewhere around 8% of the parameter value. Together this means that, on 

average, the best estimate of mean integration has a 95% confidence interval of 0.55 - 0.72. 

Note that the confidence interval does not even contain the parameter value of 0.53. This sit-

uation, with the confidence interval not containing the known parameter value due to bias in 

the statistic at small sample sizes, occurred for a number of the statistics included here for a 

range of patterns of covariation and magnitudes of integration. 

 

Effects of sampling error - is bias pervasive? 

 As all matrices here become full rank when the number of individuals is one more than 

the number of traits (Table 2), the major source of inaccuracy in calculated evolvability and 

integration statistics is sampling error in the estimated covariance matrix. Bias seems to be 

pervasive among the evolvability and integration statistics (Table 3). As mentioned above, 

the 95% confidence intervals of some statistics explored here (mean conditional evolvability, 

mean flexibility, and mean integration) may only contain the parameter value at larger sample 

sizes. This observation indicates that, although consistent (i.e., they converge at the parameter 
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value at higher sample sizes), these estimators are highly biased. These three statistics de-

serve, therefore, extra attention in any study attempting to estimate their mean values in high 

dimensional systems (e.g. Hansen et al. 2003a; Marroig et al. 2009; Roseman et al. 2010; 

Grabowski 2013). It’s important to emphasize that imprecision is as important a source of 

inaccuracy for all statistics as is bias. Imprecision, however, can be partially taken into ac-

count by a posteriori uncertainty estimates (such as standard errors). 

 

 It should also be noted that sampling error is particularly relevant to the extent that it 

influences our ability to detect significant differences in the parameter values of integration 

and evolvability statistics between two or more species. In a comparative framework, the 

amount of inaccuracy one should be willing to accept depends on how different the parameter 

values are between the groups of interest. Our results comparing the coefficient of variation 

of these statistics across mammals (CV2) with their sampling inaccuracy suggest that re-

searchers wanting to compare these statistics among very diverse groups might be less strin-

gent in sampling. For these groups, evolvability and integration statistics vary between 

groups to a greater extent than between samples at most sample sizes. On other hand, if a 

comparison is being made between groups with very similar parameter values for these statis-

tics (e.g. among primates, Grabowski et al. 2011), more attention to sampling is advised. 

Since the true parameter values can never be known a priori, an approach that takes into ac-

count the sampling properties of these statistics, both prior to the study (e.g. via the sample 

size suggestions given here) and after results were obtained (e.g., standard errors), is advisa-

ble.  
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Effects of population-level patterns of covariation and magnitudes of integration 

 In general, changing patterns of covariation does not substantially affect bias, impreci-

sion or inaccuracy of all statistics. This is not to imply that changes in patterns of integration 

are not important to evolution. Rather, the results presented here suggest that patterns of inte-

gration do not significantly affect the sampling properties of V/CV matrices, as long as the 

distribution of eigenvalues is contained within a certain range (see Supporting Information).   

On the other hand, as the magnitude of integration of the population increases, bias, impreci-

sion and inaccuracy of statistics change considerably, with each statistic behaving in a differ-

ent way. The main contrast in behavior is found between integration statistics, on one side, 

and mean evolvability plus mean respondability on the other. Inaccuracy in integration statis-

tics is negatively correlated to the magnitude of integration and, is, therefore, lower at higher 

integration magnitudes. Inaccuracy in mean evolvability and in mean respondability, on the 

other hand, is positively correlated to the magnitude of integration and is, therefore, higher at 

lower integration magnitudes. In other words, certain statistics are most accurately estimated 

in the exact same conditions as other statistics are most inaccurately estimated. Since infor-

mation about integration magnitudes can rarely be known a priori, researchers should take 

into account both scenarios (low and high integration) when using our R code to make sam-

ple size recommendations.  

 

Sample size recommendations 

 Given what is currently known as the upper and lower boundaries of integration magni-

tudes, our results suggest that a sample size of 108 individuals is adequate to meet the 0.05 

cutoff for inaccuracy for all statistics explored here between 10-20 traits. Importantly, though 

the absolute number of individuals required to meet the cutoff generally increases given a 

larger number of traits for all statistics, the relative sampling effort (NIndividualsNTraits) goes 
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down considerably as the number of traits increases. The overall reduction of this relative 

sampling effort as the number of traits increases is particularly interesting as it’s driven by a 

drastic increase in both bias and imprecision, given a reduction in the number of traits.  

 There is wide variation in the number of individuals required to meet this criterion for 

the statistics explored here given differences in magnitudes of integration and the number of 

traits (Fig. 6). The 108 individuals mentioned above is driven by the mean r2 statistic given a 

matrix of 20 traits with a low parameter value for  (=0.05). It is important to note that this  

value is exactly what was found for the cranial traits of modern humans and bats in recent 

analyses (Marroig et al. 2009; Porto et al. 2013), making the case that such values can poten-

tially be found in empirical analyses. Mean flexibility seems to require a particularly low 

number of individuals, but this is also the statistic for which our models fit the worst. Caution 

is advised when using recommendations for mean flexibility based on the attached R code 

and larger sample sizes are likely warranted. 

 

 Here,  and mean conditional evolvability emerge as the most sensitive of all statistics 

(as seen by their high multipliers, Fig. 6).  Most of the time, these statistics can be used as 

reference for sampling effort, meaning that as long as they are well estimated, other statistics 

should be too.  

 

Larger context and general conclusions 

 Studies that use multivariate data to provide information about evolvability and integra-

tion of populations rely on accurate estimates of trait covariance. So far, little attention has 

been paid to how sensitive these summary statistics are to changes in sampling effort. Over-

all, the results of our analysis suggest that small sample sizes lead to inadequate, even if un-

biased, estimates of population covariance, and this can lead to inaccurate and biased esti-
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mates of evolvability and integration statistics.  Importantly, our results also suggest that one 

can predict the amount of inaccuracy that would be expected for these statistics, given a sam-

pling design, and here we provide researchers with tools to allow for an a priori assessment 

of inaccuracy and thus formulate the best sampling designs for their research questions. 
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List of Supporting Information 

 

1) howmany. R    

Function howmany.R allows researchers to calculate the recommended sample sizes for cer-

tain levels of inaccuracy in integration and evolvability statistics, given any number of traits.  

 

2) howInaccurate.R 

Function howInaccurate.R estimates the expected degree of inaccuracy in integration and 

evolvability statistics for a wide variety of sampling designs. 

 

3) Supporting Information_final.pdf 

Discussion regarding the statistical sources of inaccuracy in integration and evolvability sta-

tistics. We also provide some details of the simulation procedure used throughout the manu-

script. 
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Tables  

Table 1: Statistics, symbols, and their meanings in this analysis. From Hansen and Houle 

(2008) except where noted. 

 

 
Statistic 

 

 
Symbol 

 

 
Equation 

 

 
Definition 

 

Magnitude of integration  r2 

 

 

 

Average of squared correlations 
among traits (Cheverud et al. 

1989) 

Mean integration i 

 
1 - E[  

 

Average relative degree to which 
evolvability is reduced due to 

conditioning on other traits over a 
large number of random direc-

tions 

Mean respondability r 

 

 

 

Average length of the predicted 
response to selection and 

measures how rapidly a popula-
tion can respond to selection. 

Mean flexibility f 

 
 

E[ Θ] 

 

Average cosine of angle between 
direction of selection and re-

sponse vector over a large number 
of random directions (Marroig et 

al. 2009). 

Mean evolvability e 

 

E[  

 

Average length of the multivariate 
response in the direction of selec-

tion for a given P over a large 
number of random directions. 

Mean conditional  
evolvability 

c 

 
 

E[  

 

Average length of the multivariate 
response in the direction of selec-
tion for a given P when all other 
traits are not allowed to change 
over a large number of random 

directions 
 

r=correlation coefficient;  =selection gradient; P=phenotypic V/CV matrix;  = selection 

response; Θ=angle between the selection gradient and selection response 

 

Table 2: Matrices, number of traits in each, magnitude of integration (r2), and individual 

number where sample matrix computed from this 'parameter' matrix becomes full rank. 
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Matrix 
Number of 

traits Description 
Magnitude of 
Integration Full rank 

MAG-1 10 
Matrix with low magnitude 
of integration and the same 

pattern as other MAGs 
0.07 11 

MAG-2 10 

Matrix with intermediate 
magnitude of integration and 

the same pattern as other 
MAGs 

0.17 11 

MAG-3 10 

Matrix with high 
magnitude of integration and

the same pattern as other 
MAGs 

0.50 11 

PAT-1 10 
Matrix with intermediate 

magnitude of integration and
random pattern 

0.17 11 

PAT-2 10 
Matrix with intermediate 

magnitude of integration and
random pattern 

0.17 11 

PAT-3 10 
Matrix with intermediate 

magnitude of integration and
random pattern 

0.17 11 

PAT 1,000 10 
Average of the results ob-

tained for 1,000 PAT-
matrices 

0.17 11 

Monodelphis 30 
30 skull traits from a sample 

of 
0.27 31 

    
Monodelphis from Porto et 

al. (2015) 
    

Callithrix 30 
30 skull traits from a sample 

of  
0.08 31 

    Callithrix  from     

    
Marroig and Cheverud 

(2001) 
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Table 3- Summary of the effects of reduced sampling (Reducing Nind) and increased integra-

tion magnitude (Increasing r2) over bias and imprecision estimates for each statistic.   

Statistic   Bias  Imprecision 

    Reducing Nind Increasing r2  Reducing Nind Increasing r2 

r2    ↑ ↓  ↑ ↑ 

Integration   ↑ ↓  ↑  

Respondability   ↑ ↓  ↑ ↑ 

Evolvability      ↑ ↑ 

Flexibility   ↑(-) ↓  ↑ ↑ 

Conditional Evolvability   ↑(-)   ↑  

↑=increase; ↓=decrease;↑(-)=increase (negative bias); ------- neutral effect 
 

 

Table 4: Overall fit of our models to the bootstrap resamples from a large dataset of cranial 

traits measured in two species of mammals with different integration magnitudes (Porto et al 

2013). The overall fit is illustrated for each statistic as the r2 goodness-of-fit of the model to 

the data. The overall fit is reported for two ranges. Total range includes data points outside 

the range in which the models were generated (Nind= 5-180). Limited range only includes the 

data points within the range in which the models were generated (i.e., the range in which ma-

trices are full rank; Nind=31-180). The Limited range overall goodness-of-fit is only reported 

for models that were considered to have poor fit in the Total range. 

 

Statistic Monodelphis Callithrix 

  Total Range Limited Total Range Limited 

r2 <0.5 0.55 0.81 
 

Integration <0.5 <0.5 0.88   

Respondability 0.92   0.75 0.91 
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Evolvability 0.97   0.79   

Flexibility <0.5 <0.5 0.5   

Conditional Evolvability 0.83   0.98   

 

 

Figure legends 

 

Fig. 1: Modified from Hansen and Houle (2008) Fig. 1. Graphic shows the response (∆z) of a 

population (open circle) when selection (β) is on two integrated traits. Respondability is the 

length of the predicted response to selection. Evolvability (e) is measured as the length (mag-

nitude) of the projection of the response vector on the selection vector, and reveals the magni-

tude of the evolutionary response in the direction of selection. Conditional evolvability (c) is 

the length (magnitude) of the hypothetical response to selection (closed circle) when the re-

sponse cannot deviate from the direction of selection. Integration (i) reveals the relative re-

duction in evolvability due to stabilizing selection. Finally, flexibility (f) is the cosine of the 

angle between the selection and response vectors. 

 

Fig. 2: Best estimates (symbols) and 95% confidence intervals (lines) for Mean r2 and Mean 

Integration using subsets ranging from 11-150 individuals from a simulated population of 

10,000. Results are shown for populations with different patterns of integration (PAT) or dif-

ferent magnitudes of integration (MAG). 

 

Fig. 3: Best estimates (symbols) and 95% confidence intervals (lines) for Mean 

Respondability and Mean Evolvability using subsets ranging from 11-150 individuals from a 

simulated population of 10,000. Results are shown for populations with different patterns of 
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integration (PAT) or different magnitudes of integration (MAG). 

 

Fig. 4: Best estimates (symbols) and 95% confidence intervals (lines) for Mean Flexibility 

and Mean Conditional Evolvability using subsets ranging from 11-150 individuals from a 

simulated population of 10,000. Results are shown for populations with different patterns of 

integration (PAT) or different magnitudes of integration (MAG). 

 

Fig. 5: Plots of inaccuracy for evolvability and integration statistics at sample sizes from 11-

150 for all 7 simulated population covariance matrices (PAT+MAG). Matrices PAT and 

MAG-2 were pooled together for simplicity, as their values are broadly the same. The 

squared coefficient of variation of each statistic (CV2) among dozens of species of mammals 

(Porto et al. 2013) are shown as dashed lines. 

 

Fig.6: 3D surface plots illustrating the recommended sampling effort necessary to obtain at 

most 0.05 inaccuracy in the statistics of interest, given different numbers of traits and differ-

ent population-level magnitudes of integration (level of MI). Sampling effort is measured, in 

the 3D plots, as the ratio between the number of individuals sampled and the number of traits 

measured (for illustrative purposes only).  

 

Fig. 7: Plots of inaccuracy for evolvability and integration statistics estimated based on boot-

strap resamples from a large dataset of cranial traits measured in two species of mammals 

with different integration magnitudes (Porto et al 2013). The amount of inaccuracy that 

would be predicted by our models, in each species, is shown as a solid line. The overall fit of 

our models to the bootstrap resamples can be seen in Table 4. 
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