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Abstract 

Autoregressive Integrated Moving Average (ARIMA) Box-Jenkins models combine the autoregressive 

and moving average models to a stationary time series after the appropriate transformation, while the 

nonlinear autoregressive (N.A.R.) or the autoregressive neural network (ARNN) models are of the kind 

of multi-layer perceptron (M.L.P.), which compose an input layer, hidden layer and an output layer. 

Monthly streamflow at the downstream of the Euphrates River (Hindiya Barrage) /Iraq for the period 

January 2000 to December 2019 was modeled utilizing ARIMA and N.A.R. time series models. The 

predicted Box-Jenkins model was ARIMA (1,1,0) (0,1,1), while the predicted artificial neural network 

(N.A.R.) model was (M.L.P. 1-3-1). The results of the study indicate that the traditional Box-Jenkins 

model was more accurate than the N.A.R. model in modeling the monthly streamflow of the studied 

case. Performing a one-step-ahead forecast during the year 2019, the forecast accuracy between the 

forecasted and recorded monthly streamflow for both models was as follows: the Box-Jenkins model 

gave root mean squared error (RMSE = 48.7) and the coefficient of determination (𝑅2 = 0.801), while 

the (NAR) model gave (RMSE =93.4) and  (𝑅2 =  0.269). Future projection of the monthly stream flow 

through the year 2025, utilizing the Box-Jenkins model, indicated the existence of long-term periodicity.  

Keywords: Monthly Stream Flow, Time Series, Box-Jenkins, ANN, and RMSE.  
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 Introduction 

Streamflow is an important issue in the design, operation, and control of many vital projects in the water 

resources and sanitary/environmental engineering specialities; examples are reservoirs storage 

capacity, water treatment plants (W.T.P.s), and wastewater treatment plants (WWTPs). For this reason, 

recorded data of streamflow (hourly, daily, weekly, monthly, and yearly) are required for the optimum 

design, operation, and control of these vital projects. Kawamura (Kawamura 2000) showed that during 

the preliminary studies to design a (W.T.P.), the project engineer must evaluate the potential sources 

of water; one of the elements of this evaluation is the quantity of water required, which is directly related 

to the streamflow of the nearby river (delivering raw water). The importance of streamflow in the design, 

operation, and control of a WWTP is best illustrated by the direct relation between the self-purification 

of rivers to the river streamflow( as shown in the Streeter-Phelps equation) and the direct effect of the 

dilution factor (Metcalf et al. 1980). Monthly streamflow of the Sefidrood river, Iran and Sangeen river, 

Canada were studied and modeled by applying autoregressive (A.R.), moving average (M.A.) models 

and compared with two artificial intelligence(A.I.) approaches, namely, multivariate adaptive regression 

splines(MARS) and gene expression programming(G.E.P.). Results indicate that A.I. models 

outperformed the conventional A.R. and M.A. models (Mehdizadeh et al. 2019). Frausto-Solis, Pita 

(Frausto-Solis et al. 2008) compared (ARIMA) vs (ANN) in forecasting streamflow. Their results indicate 

that (ARIMA) has a higher forecast accuracy than (ANN) methodology. Moeeni, Bonakdari (Moeeni et 

al. 2017), compared the Seasonal Autoregressive Integrated Moving Average (SARIMA) with the 

Artificial Neural Network-Genetic Algorithm (ANN-GA) method in forecasting the monthly streamflow. 

Their results confirm that the (SARIMA) model have much more accuracy than the ANN-GA model in 

short-term and long-term forecasting. Joodavi, Izady (Joodavi et al. 2020) presented a methodology 

based on the combination of numerical groundwater flow simulations and reservoir operation 

optimization models to develop an optimization model for the management of the off-stream Bar-

Reservoir operation (Iran), taking into account the lake bed seepage and the random inflow to the 

reservoir, the there planned objective was to satisfy water demand for a total amount of 12 million (m3/ 

year) for drinking and industrial purposes. A two-stage time series model for the monthly flows of the 

Lim River basin in South-Eastern Europe for the period 1950-2012 was carried out by Stojković, Plavšić 

(Stojković et al. 2020). The model took into consideration climate change and consisted of several 

components (Trend, Long-term Periodicity, Seasonality, and the Stochastic component). It was 

designed to estimate future water availability. Water demand of any city varies according to the variation 

of climatic variables (Zubaidi et al. 2020a, 2020b, 2020c), such as rainfall, temperature, humidity, and 

evaporation (Zubaidi et al. 2019a, 2019b, 2020d, 2020e). Niu and Feng (Feng & Niu 2021) proposed a 

hybrid artificial neural network model enhanced by the addition of cooperation search algorithm for 

nonlinear river streamflow time series forecasting. Mohammadi et al. (2020) developed (novel robust 

models) to improve the accuracy of daily streamflow time series modeling. Niu and Feng (2021) 

evaluated the performance of five artificial intelligence models in forecasting the daily streamflow time 

series. Adnan,Liang (Adnan et al. 2020) evaluated the abilities of 3 models to predict monthly 

streamflow; they are Group Method of Data Handling-Neural Networks (GMDH-NN), Dynamic Evolving 
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Neural-Fuzzy Inference System (DENFIS), and Multivariate Adaptive Regression Spline (MARS) 

methods. Peng, Wen (Peng et al. 2020) developed a  monthly streamflow prediction models  Based on 

the( Random Forest Algorithm) and (Phase Space Reconstruction Theory). Khazaei, Zahabiyoun 

(Khazaei et al. 2020), simulated daily runoff correlated to weather generators utilizing the LARS‐WG 

model. Avand and Moradi (Avand & Moradi 2020), used machine learning models(including LARS‐

WG), remote sensing, and G.I.S. to study the effects of changing climatic variables and land uses on 

flood probability. 

To the best of the authors' knowledge, this is the first time that statistical modeling models were built 

for monthly streamflow at the Euphrates River (Hindiya Barrage) in Iraq. Generally, this paper aims at; 

firstly investigating the monthly streamflow at downstream of the Euphrates River (Hindiya Barrage) 

/Iraq for the period January 2000 to December 2018. Secondly, building a Box-Jenkins ARIMA 

forecasting model for the data recorded during the above period, checking its adequacy and proving its 

goodness of fit. Then, performing a one-step-ahead forecast during the year 2019 (12 months). Thirdly, 

train, test and validate the above-recorded data using the multi-layer perceptron (M.L.P.) and feed-

forward neural network (F.N.N.). Then performing a one-step-ahead forecast during the year 2019 (12 

months). Finally, compare the forecast accuracy for the two methods relying on the root mean squared 

error (RMSE) and the coefficient of determination (𝑅2). Average monthly streamflow data at the 

downstream of the Euphrates River (Hindiya Barrage) /Iraq for the period January 2000 to December 

2019 were selected as a case study (these data were obtained from the Ministry of Water Resources/Al-

Mussaib Water Resources Directorate/Iraq). The data for the period 2000-2018 was adopted in model 

building and that during 2019 were adopted for calculating model forecast accuracy.  

Fig. 1 is an aerial view (Google Earth) of the study area with (Latitude 32º43ʹ01ʺ N, Longitude 44º16ʹ01ʺ 

E). 

 

Figure 1: Aerial view of Hindiya Barrage. 
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 Material and methods  

 Univariate Box-Jenkins ARIMA Family of Time Series Models 

A time series of a finite number of successive observations consisting of the data 

Y1,Y2.…,Yt−1,Yt,Yt+1,.…,Yn is called a univariate time series. Autoregressive Integrated Moving 

Average (ARIMA) models describe a collection of t ime series models that can be very simple or 

complicated (Brown & Mac Berthouex 2002). A seasonal ARIMA model for Yt is written as (Geurts 

1977): 

𝜃(𝐵)𝜑(𝐵𝑠)(𝛻𝑑 𝛻𝑆
𝐷𝑌𝑡

𝜆 − µ) = 𝜃(𝐵)𝜓(𝐵𝑆)𝑎𝑡                                        (1) 

where, 𝑌𝑡
𝜆 represent some appropriate transformation of 𝑌𝑡, 𝑡 is the discrete-time, S is the seasonal 

length (equals12 for monthly data), 𝐵 is backshift operator defined by B𝑌𝑡= 𝑌𝑡−1 and 𝐵𝑆𝑌𝑡 = 𝑌𝑡−𝑆, µ  is 

the mean level of the series, usually taken as the average of the 𝑊𝑡series (if D+d> 0, often  µ ≅ 0), 𝑎𝑡 

is normally independently distributed white noise series (no autocorrelation) (with mean = 0 and 

variance = 𝜎𝑎
2, it is written as N.I.D. (0, 𝜎𝑎

2 ). 

Ø (B)  =  1 − ∅1B − ∅2𝐵2 … … … … − ∅𝑃𝐵𝑃                                  (2) 

Where Ø (B) is a non-seasonal autoregressive (A.R.) operator of order (P). 

ɸ (𝐵𝑆)  = 1 − ɸ 1𝐵𝑆 − ɸ 2𝐵2𝑆 … … … … − ɸ 𝑃𝐵𝑃𝑆                          (3) 

where ɸ (𝐵𝑆) is the seasonal A.R. operator of order (P), ∇𝑑 = non-seasonal differencing operator of order 

(d) to produce non-seasonal stationarity (trend removal), usually d = 0, 1 or 2, ∇𝑆
𝐷 = seasonal differencing 

operator of order (D) to produce seasonal stationarity (seasonality removal), usually D= 0, 1 or 2. 

θ (B)    =  1 − θ1B − θ2B2 … … … … − θ𝑞B𝑞                                 (4) 

where θ (B) = non-seasonal moving average (MA) operator of order(q). 

ψ (𝐵𝑆)  =  1 − ψ1𝐵𝑆 − ψ2𝐵2𝑆 … … … … − ψ𝑄𝐵𝑄𝑆                            (5) 

where ψ (𝐵𝑆) = seasonal (M.A.) operator of order (Q), and 𝑊𝑡 = stationary time series formed by non-

seasonal and/or seasonal differencing of 𝑌𝑡
𝜆 time-series. Autoregressive Integrated Moving Average 

(ARIMA) models (Box et al. 2015) can handle the problem of statistical modeling of any time-dependent 

phenomenon, including model building, forecasting and diagnostic checking, taking into account 

stationarity, missing data, outlier observations, intervention, normality, and independence of residuals. 

A stationary time series is defined as a time series without trend and seasonality i.e. with zero mean 

and small variance (Box et al. 2015). For the precise explanation of the three steps of model building 

(identification, estimation, and diagnostic check), the interested reader may refer to (Ljung & Box 1978; 
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Ang & Tang 2007). The above three steps of Box – Jenkins ARIMA modeling (model building, 

forecasting and diagnostic checking )can be easily executed using IBM SPSS version 20 software 

(Yaffee & McGee 2000).  

 Artificial Neural Network (ANN) Models 

The recommended modeling procedure here, according to the published literature (Faraway & Chatfield 

1998; Tealab et al. 2017), is the nonlinear autoregressive (N.A.R.) or the autoregressive neural network 

(ARNN). It is of the kind of multi-layer perceptron (M.L.P.), which composes an input layer, hidden layer 

and an output layer. The input layer holds the target vector (time series), while the output layer computes 

the estimator vector (time series). The hidden and output layers are governed by an activation function, 

which may be defined by a (logistic, tanh, softmax…), and a weight function (uniform and Gaussian). 

Fig. 2 is a schematic representation of a perceptron learning process. 

The nonlinear autoregressive model of order p, N.A.R. (p), is defined as: 

𝑌𝑡 = ℎ(𝑌𝑡−1, … … , 𝑌𝑡−𝑝) + 𝜀𝑡                                      (6) 

Where ℎ(. ) is a nonlinear function; it is assumed that (𝜀𝑡) is a sequence of random independent 

variables and identically distributed with zero mean and a finite variance 𝜎2. The autoregressive neural 

network (ARNN), is a feed-forward network that constitutes a nonlinear approximation ℎ (∙), which is 

defined as: 

𝑌𝑡̂ =  ℎ̂(𝑌𝑡−1, … . , 𝑌𝑡−𝑝)                                                                (7) 

𝑌𝑡̂ =  𝛽0 +  ∑ 𝛽𝑖𝑓
𝐼
𝑖=1 (𝛼𝑖 + ∑ 𝜔𝑖𝑗𝑌𝑡−𝑗

𝑝
𝑗=1 )                              (8) 

Where 𝑓(. ) function is the activation function and  

Figure 2: Perceptron learning process 
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θ = (𝛽0, 𝛽1, … … , 𝛽𝑞 , 𝛼1, … . . , 𝛼𝑞 , 𝜔11, … . 𝜔𝑞𝑛) is the parameter vector of the neural network, which is 

calculated by minimizing the sum of squared errors: 

𝑆𝑆𝐸 = ∑ (𝑌𝑡 − 𝑌𝑡̂)
2𝑛

𝑡=1                                                              (9) 

Where 𝑌𝑡̂ is the estimator of the target variable 𝑌𝑡. The recorded data (for the purpose of analysis) is 

divided into three portions, 𝑁1, 𝑁2 and 𝑁3. 𝑁1of the data are used for training. 𝑁2 are used for data 

validation to check the prediction accuracy for the model selection. 𝑁3 of the data are employed for the 

out-of-sample predictions(forecasts) by the calibrated model. The smallest number of RMSEs for the 

validation data becomes a desirable model (Kajitani et al. 2005). During the training stage, several 

algorithms were adopted for optimization and truncating the iterations(cycles) after reaching the 

specified error criteria, strictly speaking, Broyden-Fletcher-Goldfarb-Shanno(BFGS), Scaled Conjugate 

and Gradient Descent algorithms (Bishop 1995; Becerikli et al. 2003). The model that gives the 

maximum correlation coefficient(R) and the minimum sum of squared errors (S.S.E.) will be relied on in 

the analysis (KİŞİ & Sciences 2005). The above modeling procedure was performed and analyzed in 

this research adopting STATISTICA version 12 software. 

 Forecasting       

After model building, it is necessary to make a one-step-ahead-forecast. To check the forecasting 

accuracy; several formulas are calculated and checked according to the forecast accuracy, these are 

[coefficient of determination (𝑅2), root mean squared error (RMSE), mean absolute error (M.A.E.), mean 

absolute percentage error (MAPE), maximum absolute error (MaxAE), and maximum absolute 

percentage error (MaxAPE). The above formulas can be found in any statistical textbook. For example, 

to define (RMSE) and 𝑅2, then: 

RMSE  =√∑ (𝑌𝑡−𝐹𝑡)2𝑁
𝑡=1

𝑁
                                                                  (10) 

𝑅2 = 1- 
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                                                                         (11) 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑌𝑡 − 𝐹𝑡)2𝑁
𝑡=1  = ∑ (𝐸𝑡)2𝑁

𝑡=1                                     (12) 

𝑆𝑆𝑡𝑜𝑡 =∑ (𝑌𝑡 − 𝑌̅)2𝑁
𝑡=1                                                          (13) 

Where: N = the number of months to be forecasted in the future (normally 12), 𝑌𝑡= observed(recorded) 

stream flow at month t (𝑚3/s), 𝐹𝑡 = forecasted streamflow at month t (𝑚3/s), 𝑌̅ = average of observed 

values (𝑚3/s), 𝐹̅ = average of forecasted values (𝑚3/s), 𝐸𝑡 = Error (residual) at time t (𝑚3/s), These 

accuracy formulas are calculated and updated from the same recommended software, IBM SPSS 

version 20 and STATISTICA version 12. 
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 Results and discussion 

Applying the Box-Jenkins modeling procedure to the recorded data, using IBM SPSS version 20 

software referring to the route (Analyze/Forecasting/Create Models/Expert Modeler), the best-fit model 

relying on the Root Mean Squared Error (RMSE) criteria was:  ARIMA (1,1,0) (0,1,1). 

The appropriate equation was: 

(1 + 0.174𝐵)∇1 ∇12
1 𝑙𝑛𝑌𝑡̂ = (1 − 0.951𝐵12)𝑎𝑡                    (14) 

The original data suggested a natural logarithmic transformation to enhance the normality of residuals. 

The above model gave ( 𝑅2 = 0.844), (RMSE = 42.049) and Ljung-Box Q(18) = 21.906 with degrees of 

freedom(DF) = 16, also the significance of Q was(14.6%>5%) indicating that residuals from the model 

were uncorrelated(random). Figure 3 depicts the autocorrelation function(ACF) and partial 

autocorrelation function(PACF) of the residuals. Figure 4 depicts the normal probability paper of the 

residuals. 

Figure 3: ACF and PACF of the residuals 

Figure 4: Normal probability paper of the residuals 
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From the above figures, it is evident that the residuals are normally independently distributed. Figure 5 

describes the predicted values of the streamflow time series together with the recorded values. It states 

that there was a clear, strong correlation between predicted and recorded values.   

Figure 6 depicts the forecasted monthly streamflow for the 12 months during 2019, together with the 

recorded values. The calculated (RMSE = 48.7) and the calculated  (𝑅2 =  0.801).  

Applying the (ANN) modeling procedure to the above data using the STATISTICA version 12 software, 

referring to the route (Data Mining/Neural Networks/Time Series(Regression)), taking into consideration 

that the recorded data was considered as the Target, the input layer was taken as the Target with a lag 

of specified length, the input layer data were classified as (70% Training+15% Test +15% Validation) 

randomly. The results in the output layer will be compared with the target. Table (1) lists the statistics 

of the predicted ANN models for different lags between (1-12), noting that (one cycle of seasonality = 

12 months). 

Figure 5: Box-Jenkins ARIMA model predicted time series vs recorded time series for the period 2000-

2018. 

Figure 6: Recorded vs. Forecasted (by Box-Jenkins) monthly stream flow during 2019. 
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Table 1: Showing statistics of the predicted ANN models. 

Lag 
Predicted 

Model 
Training 

(R) 
Test 
(R) 

Validation 
(R) 

Training 
(S.S.E.) 

Test 
(S.S.E.) 

Validation 
(S.S.E.) 

Training 
algorithm 

1 MLP 1-3-1 0.560163 0.651468 0.898259 4257.256 3018.890 821.1875 BFGS 4 

2 MLP 2-6-1 0.544030 0.435790 0.868627 5330.841 4504.276 2921.298 BFGS 2 

3 MLP 3-2-1 0.601277 0.735790 0.860533 3917.588 2356.384 919.7809 BFGS 35 

4 MLP 4-8-1 0.616656 0.756074 0.867327 3765.428 2182.703 864.7852 BFGS 34 

5 MLP 5-5-1 0.518009 0.519080 0.816368 4448.370 4219.433 1246.969 BFGS 3 

6 MLP 6-2-1 0.614488 0.729865 0.800189 3755.190 2356.035 1026.629 BFGS 41 

7 MLP 7-7-1 0.662119 0.706750 0.796674 3394.344 2612.846 1170.198 BFGS 35 

8 MLP 8-3-1 0.657709 0.637734 0.784143 3426.545 3208.390 1128.715 BFGS 38 

9 M.L.P. 9-6-1 0.548164 0.650932 0.846927 4201.155 2708.997 909.2035 BFGS 7 

10 MLP 10-4-1 0.498419 0.499938 0.743900 4498.307 3813.725 1191.457 BFGS 5 

11 MLP 11-6-1 0.533244 0.475782 0.759208 4305.496 3775.697 1342.761 BFGS 7 

12 MLP 12-8-1 0.494050 0.656991 0.723700 4364.795 2680.175 1302.532 BFGS 3 

Table 1 reflects the fact that all predicted models are not strongly correlated with the (Target), indicating 

a small coefficient of determination ( 𝑅2). It is evident from table 1 that the maximum (R) and the 

minimum S.S.E. (validation stage) occurred at lag 1(M.L.P. 1-3-1); for this, it is selected as the best 

model. The notation (M.L.P. 1-3-1), for example, refers to a multi-layer perceptron with 1 (number of 

inputs), 3 (number of hidden units), and 1(number of outputs); also, the notation BFGS 4 refers to the 

Broyden-Fletcher-Goldfarb-Shanno training algorithm with 4 cycles of iteration. Fig. 7 is a time-series 

graph that compares the prediction of the model at lag 1(M.L.P. 1-3-1) with the recorded data (Target). 

Figure 8 compares the (Target) streamflow Q (x-axis) with the output streamflow from the selected ANN 

model (y-axis). It is evident from Figures 7 and 8 that the predictions are not strongly correlated to the 

original(recorded) data, as prescribed in table 1. The ANN time series model gave(RMSE = 84.63) and 

( 𝑅2 = 0.365), indicating that it is less efficient than the Box-Jenkins time series model predicted above 

(which gave RMSE = 42.049 and  𝑅2 = 0.844). Figure 9 depicts the forecasted monthly streamflow for 

the 12 months during 2019(by the ANN time series model), together with the recorded values. The 

calculated (RMSE = 93.4) and the calculated  (𝑅2 = 0.269). From this figure, it is evident that the ANN 

model does not simulate the seasonality of the recorded data. Figures (6) and (9) give an indication that 

Box-Jenkins models are competent in simulating seasonality, which is not the case for ANN models. 

Comparing the forecast accuracy (RMSE and 𝑅2) for the (ANN) model during 2019 with that resulted 

from the Box-Jenkins model; it is evident that the latter is more accurate. This result is in accordance 

with the results documented by other authors (Moeeni et al. 2017; Mehdizadeh et al. 2019). Figure 10 

illustrates the future forecasts resulting from the Box-Jenkins model mentioned above by equations (14) 

and (15) together with the recorded and fit monthly streamflow for the period 2000-2018. The Long-

term Periodicity is clearly observed; this is in accordance with (Stojković et al. 2020). 
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Figure 7: Predictions of the ANN model (MLP 1-3-1) compared to the recorded data for the period 2000-2018. 

Figure 9: Recorded vs. Forecasted (by ANN) monthly stream flow during 2019. 

Figure 8: Comparison between the target and the output streamflow for the ANN model (MLP 1-3-1). 
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 Conclusion 

From the results of the study, it can be concluded that the Box-Jenkins model was more accurate than 

the (ANN) model in forecasting future monthly streamflow downstream of the Euphrates River (Hindiya 

Barrage)/Iraq for the period 2000-2019, that (ANN) model was not able to simulate seasonality, which 

was not the case for Box-Jenkins model. Future forecast of monthly streamflow by Box-Jenkins models 

indicates the existence of some long-period trend in the form of Long-term Periodicity, which already 

exists in the recorded data. It is advisable to study the monthly streamflow in terms of the climatic 

variables through multiple regression and apply the same modeling procedure, i.e., the Box-Jenkins 

(Transfer Function models) and the ANN (Regression models), also the Support Vector Regression and 

the Random Forest analysis may be adopted in the future studies.  
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