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 

Abstract—In this paper, the concept and definitions of the Fractional Order Moment (FOM) and Fractional Order 

Cumulant (FOC) are proposed, which is based on the fractional derivative of the fractional order Moment-generating 

function and the fractional order Cumulant-generating function of stochastic processes. The moment and cumulant are 

defined on an expanded set from positive integer to the whole positive real. This development not only provides a new 

technology for signal processing, also complements the existing theory in the field. The properties of the FOC have been 

derived, and their uniformity and particularity with the High Order Cumulant are compared and commented. In addition, 

the transformation between the FOM and the FOC are derived and discussed in detail. As one of the applications of the 

new concept to the  and Gaussian processes, a new method of suppressing  and Gaussian noise is proposed. 

Furthermore, a FOC-based parameter estimation algorithm is developed for the non-minimum phase ARMA processes in 

  and/or Gaussian noise. Simulation examples are used to demonstrate the effectiveness of the proposed parameter 

estimation algorithm. 

 

Index Terms— Fractional order cumulant, fractional order moment,  noise, Gaussian noise, parameter estimation of stochastic 

processes. 

 

I. INTRODUCTION 

N traditional research in the area of signal processing, most theories and methods are based on the assumption that the additional 

noise is of Gaussian distribution. Under this assumption, the second-order moment or High Order Cumulant (HOC) has been 

widely used as a signal processing tool with excellent performance. Especially, the properties of linear, semi-invariance and the 

powerful suppression of colored Gaussian noise of HOC, make it an ideal statistical signal processing tool for processes with 

colored Gauss noise[1]. Therefore, HOC greatly promotes the development of signal processing theory and methods.  

Unfortunately, many non-Gaussian noises exist in natural processes in addition to the Gaussian noise [2]. Among them,   

stable distribution noise (for short it will be called noise in the rest of the paper) has the most serious impact on the traditional 

signal processing methods [3]. Due to the infinite variance of the noise, the performance of the traditional second-order moment 

or HOC-based signal processing algorithms deteriorates drastically or even fails in the circumstance where   noise exists [3]. 

Nevertheless, the Fractional Lower Order Moment (FLOM) exists in   stable distribution process [4]. Therefore, FLOM and 

various Fractional Lower Order Statistics (FLOS) operators developed from FLOM, such as Negative Order Statistics (ZOS) [5], 

Covariation [6], Fractional Lower Order Covariance (FLOC) [2], Zero Order Statistics (ZOS) [3, 7, 8], etc. naturally become the 

basic methods of signal processing for   stable distribution processes and have been widely used [9-13]. 

However, there are several major defects of the above FLOS operators. First, FLOS operators are nonlinear operators, which 

make the derivation and theoretical analysis of their signal processing algorithms much more difficult. Second, FLOS operators do 

not have the property of semi-invariant, which makes it impossible to effectively separate signals and noises. Third, the FLOS of 

 stable distribution process is not zero, which indicates that the  noise suppression of FLOS operators is poor and will lead to 

the degradation of signal processing performance.  

Due to the problems stated above, the existing FLOS-based signal processing algorithms strictly limit the additional noise to i.i.d 

  stable distribution process (hereinafter-referred white   noise). When the additional noise is the colored   noise, especially 
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when the additional noise is a mixture of colored   noise and Gauss colored noise with more practical significance, the 

performance of them-based signal processing algorithms will decline sharply, or even fail. 

In recent years, with the rapid development of fractional calculus theory, a novel mathematical tool is available for solving the 

signal processing problems in colored   noise. Fractional calculus extends the traditional integral order calculus operation to any 

non-integral order operation, it is therefore extremely suitable for dealing with the stochastic processes with fractional order 

exponential form of characteristic functions, such as   noise. Based on the fractional calculus theory, for the problems of the 

HOC and FLOS, a new concept of the Fractional Order Cumulant (FOC) is proposed in this paper. By analyzing the properties of 

FOC and the suppression of   noise and Gaussian noise, it is evident that the FOC is very suitable for signal processing in colored 

  and/or Gaussian noise. 

The rest of the paper is organized as follows. Firstly, based on the fractional calculus theory, the definition of the FOC together 

with the definition of the Fractional Order Moment (FOM) is given in Section Ⅱ. Then, the properties of the FOC and the FOM, 

the conversion between the two operators, and the estimation methods of the FOC and the FOM are derived and analyzed in 

Section III. Section IV presents the major properties of the FOC of   and Gaussian processes. In addition, the suppression 

methods of the   and Gauss noise are proposed in this Section. Furthermore, as an application example of FOC in signal 

processing, a FOC-based parameter estimation algorithm for the non-minimum phase ARMA processes in colored   and/or 

Gaussian noise is developed in Section V. Finally, some conclusions are drawn in Section VI. 

II. DEFINITIONS AND ESTIMATIONS OF FOM AND FOC 

For the convenience of the following description, the Caputo fractional order derivative, the sequence derivative rule and the 

definition of fractional Fourier transform are given below as mathematical preliminaries. 

Definition of Caputo fractional order derivative [14]  

 Let ( )f t be a function defined on the interval (a,b) , 0p  ,  inf :
n

n n p


 , t a . Then, the 
thp -order left Caputo fractional 

order derivative is defined as 

  
1

( )1
( ) ( )

( )

n pt
C p n

a t
a

D f t t f d
n p

  
 

  
     (1) 

where, ( )   is the usual gamma function, as defined in [14], 

 
1

0
( ) x tx t e dt


      (2) 

In this paper, the fractional order derivative operator in equation (1) is denoted as ( )C p

a D f t or ( ) /C p p

a d f t dt . When the lower 

limit 0a  , it is denoted as 
( ) ( )pf t , i.e. 

( )

0( ) (p C pf t D f t ）. 

Remark 1. There are several definitions of fractional derivative, such as Riemann-Liouville, Grunwald-Letnikov, etc. These 

definitions each has its own characteristics and can be converted to each other under certain conditions. Take Riemann Liouville 

fractional derivative as an example. It is defined as [14]: 

  
11

( ) ( )
( )

n
t n pRL p

a t n a

d
D f t t f d

n p dt
  

 
 
     ( 3) 

As shown in ( 3), Riemann Liouville fractional derivative is an operation that first performs integration on  
1

( )
n p

t f 
 

  and 

then performs n  order derivative operation. Although this definition has the advantage of close connection with the traditional 

integral calculus, there are still some problems such as the fractional derivative of constant is not zero, and the choice of the initial 

value of fractional derivative is difficult. The Caputo fractional order derivative shown in (1) adopts the definition of first 

differentiation and then integration to better solve these problems, it is therefore especially suitable for engineering applications. 

This is also the main reason that the Caputo fractional order derivative is used in this paper. 

Definition of sequential fractional order derivative [14]  

Let 
C p

a D  is the 
thp -order left Caputo fractional order derivative, then 

 ( ) ( )
pC kp C C p C p

a a a aD f t D D D f t

k times

   (4) 

is the 
thkp -order left Caputo sequential fractional order derivative，with no possibility of confusion, hereinafter-referred 

thkp

-order fractional order derivative. 

Remark 2. For the calculation of Caputo fractional order derivative, ( )C kp

a D f t ， 1, 0 1k p   ，there are two different 

methods: one is to calculate directly by (1) according to the definition, and the other is to calculate by (4) using the sequential 

fractional order derivative method. It should be noted that the results obtained by these two methods are inconsistent. This is due to 
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the definition and properties of ( )C kp

a D f t  itself. Therefore, which method should be used is selected according to the specific 

application [15]. The reason why the sequential fractional order derivative is used in this paper is that the problem we are dealing 

with involves C p

a D  as the basic derivative. Secondly, the Taylor series obtained based on the sequential fractional order derivative 

has the characteristics of power - series of kpx . These greatly facilitate our discussion of the problems involved. 

Definition of Fractional Fourier transform [15]  

If  is continuous and absolutely integrable in interval ( , )  , its fractional Fourier transform is defined as 

  ( ) ( ) ( )( )p p p p

p pF f x E j u x f x dx



    (5) 

where, 
0

( )
( )

( 1)

kp
p p p

p

k

jux
E j u x

kp






 

 , (0 1)p  , is the Mittag-Leffler function [15]. 

As the basis of the research on the FOM and FOC, the fractional order Moment-generating function should be defined first. 

Definition of fractional order Moment-generating function 

Let fractional order probability density function of random variable x  is ( )f x , then define that 

  ( ) ( ) ( ) ( )p p p p p p

p p pu E j u x f x dx E E j u x



     (6) 

is the fractional order Moment-generating function (fractional order characteristic function) of variable x . 

Definition of fractional order Cumulant-generating function 

By (0) 1p   and the continuity of ( )p u , if  0  , s.t. u  , then ( ) 0p u  . So the fractional order 

Cumulant-generating function ( )p u  is defined as the logarithm of the fractional order Moment-generating function ( )p u  of 

random variable x , i.e. 

 ( ) ln ( )p pu u     (7) 

 After defining the above functions, we are now ready to define FOM and FOC. 

A. Definitions of FOM and FOC 

1. Definitions of FOM and FOC of single random variable 

Take the generalized fractional Taylor series expansion [15, 16] for ( )p u  at 0u  , then 

 
 
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0

( ) (0)
1

kp
kp

p p

k

u
u

kp





  
 

   (8) 

where 0 1p  , k is a positive integer,
0

( )

0(0) ( )
u

kp C kp

p pD u


   , and by equation(6), then 
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  (9) 

Substituting (9) into (8), yields 

 
 

 

0

0

( ) [ ]
1

1
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kp kp

p

k

kp kp
kp

k

u
u j E X
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






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 
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  (10) 

where ( ) (0)kp kp kp kp

pm E X j     . 

Definition: Define 0 0[ ] ( )kp kp kp C kp

x p um E X j D u

   , 0 1p  , k is an integer, as the
thkp -order Fractional Order Moment 

(FOM) of the single random variable X .  

Especially, in the above definition, when 1k  , i.e. p pm E X    , is called the pM  mean value of the single random variable. 

Similar to the above, take the generalized fractional Taylor series expansion for ( )p u in(7) at 0u  , then 

( )f x
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  (11) 

where, ( )

0 0
(0) ln ( )kp kp kp kp C kp

p p u
C j j D u 


    . 

Definition Define ( )

0 0
(0)kp kp C kp kp

p u
C j D


  , 0 1p  , k is an integer, as the

thkp -order Fractional Order Cumulant (FOC) of 

the single random variable. 

2. Definitions of FOM and FOC of multiple random variables 

Let  1 2, , , kf x x x be the fractional joint probability density function of k  real-value random variables 1 2, , , kx x x . Then, the 

k dimension fractional joint Moment-generating function can be denoted as: 

   

 

1 2 1 1 2 2

1 2 1 1 2 2 1

, , , (( ) ) (( ) ) (( ) )

, , , (( ) ) (( ) ) (( ) )( ) ( )

p p p

p k p p p k k

p p p p p

k p p p k k k

u u u E E ju x E ju x E ju x

f x x x E ju x E ju x E ju x dx dx
  

  

 

   
  (12) 

The
thkp -order fractional partial derivative in (12) respect to 1, , ku u is 

 

 

0 1 0 1 1 2 2

1 1

1 2 1 1 2 2

, , (( ) ) (( ) ) (( ) )

(( ) ) (( ) ) (( ) )

C kp C kp p p p

p k p p p k k

p p p p

k k

kp p p p p p p

k p p p k k

u u E ju x E ju x E ju x
E

u u u u

j E x x x E ju x E ju x E ju x

    
  

     



  (13) 

where 0 1p  , k is an integer in (12), (13). 

By using a similar function to the definition in (10), the 
thkp -order FOM of the real-value random variables 1, , kx x is defined 

as 

  
1

1 1

1

0

1

( , , )

, , |
k

kp kp p p p p

k k

kp

p kkp

u up p

k

m mom x x E x x

u u
j

u u



  

    

 


 
L

L L

L

L

  (14) 

Similarly, the k  dimension fractional joint Cumulant-generating function  1, ,p ku u is denoted as 

    1 1, , ln , ,p k p ku u u u       (15) 

Also, by using a similar function to that in (11), the 
thkp -order FOC of the real-value random variables 1 2, , , kx x x is defined as 

 
1

0 1

1 0

1

, ,
, , |

k

C kp

p kkp kp p p kp

k u up p

k

u u
C cum x x j

u u



  

 
     

  (16) 

3. Definitions of FOM and FOC of continuous stationary stochastic process 

Let  ( ),x t t T  be the stationary stochastic process. The random vector 
 1 1( ), ( ), , ( )

T

kX x t x t x t    
 is obtained by 

sampling  ( )x t  at any k  sample instant 1 1, , , kt t t   
. Referring to the definition of FOM and FOC of multiple random 

variables, its 
thkp -order FOM and 

thkp -order FOC are respectively defined as  

1 2 1 1 1( , , , ) ( ), ( ), , ( )kp kp p p p

k km mom x t x t x t     
   L @ L   (17) 

1 2 1 1 1( , , , ) ( ), ( ), , ( )kp kp p p p

k kC cum x t x t x t     
      (18) 

Remark 3. By the definitions of FOM and FOC above, it is clear that while 1p  , the FOM and FOC can be transformed into the 

traditional High Order Moment (HOM) and HOC respectively. Therefore, the FOM and FOC fill the gaps between the integer 

orders of the HOM and HOC, and extends the order definitions from positive integer to the complete positive real field. Just 

because of the introduction of fractional order, the FOM and FOC have the added properties that the HOM and HOC do not possess. 

These properties enable some new methods (will be described latter) for signal processing. 
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Furthermore, it is noteworthy that FOM (FOC) changes the integer order of HOM (HOC) into fractional order, which 

causes a little increase of the computational complexity. However, It is believed that for the great benefit of improved 

property that brought by the FOC, paying the cost of a little extra computing load is really worth. 

B. Conversion between FOM and FOC 

By the definitions of the k  dimension fractional joint Moment-generating function and the k  dimension fractional joint 

Cumulant-generating function, then 

    1 , ,

1 2, , , p ku u

p ku u u e


    (19) 

Take multi-dimensional fractional Taylor series expansion [16] at both sides of equation (19) respectively, and compare the 

same power coefficients of 
1 2

p p p

ku u uL  at both sides of the equation, the conversion between the FOM and FOC can be obtained as 

follows, 

 

1

1

( ) ( )
q

m

m

q
kp kp

m

m
I I

mom I cum I






  
U

  (20) 

 

1

-j ( 1)

1

( ) e ( 1)! ( )
q

m

m

q
kp q kp

m

m
I I

cum I q mom I








  
U

  (21) 

where, (1,2, , )I k is the set of indices of the components of random vector  1 2, , , kX x x x , k  is the dimension of random 

vector. 
1 2( ) , , ,kp kp p p p

kmon I mon x x x    , 
1 2( ) , , ,kp kp p p p

kcom I com x x x    , 0 1p  . Set mI  as the unordered collection of set 

I . q  is the number of partitions of mI and takes number 1,2, , k . 

1

q

m

m

I I






U

 denotes the sum of the functions corresponding to all 

mI . The derivation of equations (20) and (21) is detailed in Appendix 1. 

For the convenience of description, equation (20) is called Fractional Cumulant to Moment (FC-M) formula, and equation (21) is 

called Fractional Moment to Cumulant (FM-C) formula. 

Here, we take 4

1 2 3 4, , ,p p p p pcom x x x x    calculation as an example to illustrate the specific application of the above FM-C formula. 

If  1 2 2 4, , ,X x x x x , then 4k  , (1,2,3,4)I  . I  can be divided into the following four classifications: 

1mI  : 1q  , I  remains as 1 subset. There is only one case, i.e.  1, 2,3, 4 . 

2mI  : 2q  , I  is divided into 2 subsets. There are 7 cases, i.e.   1 2,3, 4 ,   2 1,3, 4 ,   3 1, 2, 4 ,   4 1, 2,3 ,  1, 2 3, 4 , 

  1,3 2, 4 ,   1, 4 2,3 . 

3mI  : 3q  , I  is divided into 3 subsets. There are 6 cases, i.e.    1 2 3, 4 ,    1 3 2, 4 ,    1 4 2,3 ,    2 3 1, 4 ,

   2 4 1,3 ,    3 4 1, 2 .  

4mI  : 4q  , I  is divided into 4 subsets. There is only one case, i.e.     1 2 3 4 .  

Substituting all the above cases into the FM-C formula, then 
4 4 3 3

1 2 3 4 1 2 3 4 1 2 3 4 2 1 3 4

3 3 2 2

3 1 2 4 4 1 2 3 1 2 3 4

2

1 3

( , , , ) ( , , , ) ( ) ( , , ) ( ) ( , , )

( ) ( , , ) ( ) ( , , ) ( , ) ( , )

( ,

p p p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p

p p p

cum x x x x mom x x x x mom x mom x x x mom x mom x x x

mom x mom x x x mom x mom x x x mom x x mom x x

mom x x

  

  

 2 2 2 2

2 4 1 4 2 3 1 2 3 4

2 2

1 3 2 4 1 4 2 3

2

2 3 1 4 2 4

) ( , ) ( , ) ( , ) 2 ( ) ( ) ( , )

2 ( ) ( ) ( , ) 2 ( ) ( ) ( , )

2 ( ) ( ) ( , ) 2 ( ) ( )

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p

p p p p p p p p p p p

mom x x mom x x mom x x mom x mom x mom x x

mom x mom x mom x x mom x mom x mom x x

mom x mom x mom x x mom x mom x

 

 

  2

1 3

2

3 4 1 2 1 2 3 4

( , )

2 ( ) ( ) ( , ) 6 ( ) ( ) ( ) ( )

p p p

p p p p p p p p p p p p p p p

mom x x

mom x mom x mom x x mom x mom x mom x mom x 

  

  ( 22) 

As shown in equation( 22), in general, the above FM-C formula is relatively complex. While the order of FOC increases further, 

the computational complexity will increase significantly. And the same is true for FC-M formula. However, for the zero- pM mean 

stationary stochastic processes, due to ( ) 0p

imom x  , ( ) 0p p

icum x  , 1, ,i k L . The above FM-C and FC-M formulas can be 

simplified as follows: 
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1

1

( ) ( )
q

m e

m

q
kp kp

m

m
I I I

mom I cum I




 

  
U

  ( 23) 

 

1

( 1)

1

( ) ( 1) ( 1)! ( )
q

m e

m

q
kp q kp

m

m
I I I

cum I q mom I






 

   
U

  ( 24) 

where, m eI I I 
 
is a subset with no size-one elements in set I . 

Still take the 4 p -th order FOC calculation as an example. While ( ) 0p

imom x  , equation ( 22) can be simplified as 

4 4 2 2

1 2 3 4 1 2 3 4 1 2 3 4

2 2 2 2

1 3 2 4 1 4 2 3

( , , , ) ( , , , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p

cum x x x x mom x x x x mom x x mom x x

mom x x mom x x mom x x mom x x

 

 
  ( 25) 

Since any non-zero- pM  mean stationary stochastic process can be transformed into zero- pM  mean process simply by de-zero-
pM  mean processing, equations ( 23) and ( 24) are very useful to simplify the calculation of FM-C and FC-M. 

C. Estimation of FOC 

When the fractional order Moment-generating function of the stochastic process is known, the FOC of any order can be obtained 

directly by the definition. However, in practical applications the fractional order Moment-generating function of the stochastic 

processes is generally unknown. In this case, we can only obtain the FOM and FOC by estimation. Using an estimation method for 

mathematical expectation and the FM-C conversion formula, we developed an estimation method for FOM and FOC of any order 

as follows. 

Let the stationary stochastic process ( )x n  has up to 2 thkp -order FOM. Because the FOM of stochastic processes is defined by 

the form of mathematical expectation, i.e. 1 2 1 2( , , , ) ( )kp p p p p p p

k kmon x x x E x x x , the mean squared uniform estimation of 
thkp

-order FOM of ( )x n  is 

 

1 2 1 1 1

1 1

1

ˆ ( , , , )= ( ) ( ) ( )

1
= ( ) ( ) ( )

kp p p p

k k

N
p p p

k

n

m E x t x t x t

x n x n x n
N



    

 

 







   

 
  (26) 

where, 1 1( , , )kMax    . While the FOM estimation of each order of ( )x n  is obtained, the corresponding FOC estimation can 

be obtained by the FM-C conversion formula. 

The definitions of the FOM and FOC, relations between the FOC and the HOC, as well as the conversion between the FOM and 

FOC are presented or derived in this section. Some important properties of both the FOM and FOC will be derived in the next 

section.  

III. PROPERTIES OF FOM AND FOC 

Five important properties of the FOM and FOC are derived according to their definitions and the fractional derivative feature, 

and presented as follows. The proofs of the five properties are given in the Appendix 2.  

Property 1 

If 1 2, , , ka a a  are arbitrary constants and  1 2( ) , , , kX k x x x  is a random variable, then 

 
1 1 1 1, , , ,kp p p kp p p

k k k kmom a x a x a a mom x x         (27) 

 
1 1 1 1, , , ,mpkp p p p

k k k kcum a x a x a a cum x x         (28) 

Property 2 

The FOM and FOC are symmetric in their arguments, i.e. 

 
11 , , , ,

k

kp p p kp p p

k i imom x x mom x x         (29) 

 
11 , , , ,

k

kp p p kp p p

k i icum x x cum x x         (30) 

where, 1, , ki i  are arbitrary different permutations of 1, ,k . 

Property 3 

If a subset of the set of random variables  ix  is independent of the rest subsets, then 

 
1 , , 0kp p p

kcum x x      (31) 

But normally, 
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1 , , 0kp p p

kmom x x      (32) 

Property 4  

If the random variables  1, , kx x  are independent of the random variables  1, , ky y , then 

 
   1 1

1 1

, ,

, , , ,

p pkp

k k

kp p p kp p p

k k

cum x y x y

cum x x cum y y

  
 

       

  (33) 

But, generally, 

 
   1 1

1 1

, ,

, , , ,

p pkp

k k

kp p p kp p p

k k

mom x y x y

mom x x mom y y

  
 

       

  (34) 

This property of the FOC is referred to semi-invariant, which implies that the FOC of the sum of two statistically independent 

stochastic processes equals the sum of the FOCs of the individual stochastic process. But, this is not true for FOM. 

Property 5 

If a  is an arbitrary constant, 1k  , then 

  1 2 1 2, , , , , ,
pkp p p kp p p p

k kcum x a x x cum x x x       
  (35) 

Equation (35) means that FOC is blind to any additive constants. But this feature does not apply to the FOM, i.e. 

  1 2 1 2, , , , ,
pkp p p kp p p p

k kmom x a x x mom x x x       
  (36) 

IV. SUPPRESSION OF FOC FOR   AND GAUSSIAN DISTRIBUTIONS 

In consideration of the importance of Symmetric   Stable ( S S ) distribution process in signal processing theory and 

applications, we focus on the properties of FOC of S S  process. Based on these properties, a method for suppressing S S  

distribution process is proposed in this section. Firstly, the definition of the fractional order characteristic function of S S  

distribution random variable X  is given as below [3]. 

 
( ) exp{ | | }e u jau u   

  (37) 

where,  a a     is the location parameter,  0 2    is the characteristic exponent,
 

 0    is the dispersion 

parameter. 

In equation (37), while 2  ,  stable distribution degenerates to Gaussian distribution, i.e. Gaussian distribution is a special 

case of  stable distribution. 

Theorem 1  

Let random variable ~X S S , m  , and    ( ) exp{ | | }=exp exp | | ( ) ( )e au jau u jau u u u 

        . Then, the 

thkp -order FOC of X is 

acording to (u) part

acording t

0, 0 and not an integer, or 1 integer
0 , 1

( 1) j , ; particularly, while =1, it can be simplified to .
, 1

, 0 and not an integer
a

C kp kp

kp kp m and
kp

C kp kp j
a kp

kp


 

    





    
 

       
   

o (u) part

  (38) 

The proof is given in Appendix 3. 

By using the same proof method of Theorem 1, it can be proved that the above conclusions are also applicable to ( ) ~x t S S  

stochastic processes. 

Remark 4. As shown in Theorem 1, for any stochastic process, ( ) ~x t S S , whether it is white or colored, its 
thkp

-order FOC 

equals zero when kp  . This means the FOC can completely cancel the effect of the   noise in theory. This is a great 

significance for signal processing in  noise, for which details will be discussed in Section VI. Besides, since Gaussian 

distribution is a special case of   stable distribution for =2 , this conclusion is still valid for the Gauss distribution process. 

Interestingly, if we take =2 , the second item on the right hand side of equation (38) coincides with the property that the 
thk

-order ( 2k  ) HOC of Gauss noise is zero. Therefore, this property of HOC is a special case of Theorem 1. 
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V. THE RELATIONSHIP AND DIFFERENCE BETWEEN FOC AND HOC AND FLOS 

From the definition and properties of FOC and the suppression method for   noise, it can be observed that although FOC 

operators have many similarities with the well-known HOC and FLOS operators, there are still many fundamental differences. 

Table 1 below concisely shows the characteristics, the main differences and relationships among FOC operators and HOC and 

FLOS operators. 
TABLE I 

MAIN SIMILARITIES AND DIFFERENCES AMONG FOC AND HOC AND FLOS 

 FOC HOC FLOS 

Definition 
Fractional order derivative of fractional 

order Cumulant-generating function 

Integer order derivative of 

Cumulant-generating function 
Stochastic process theory 

Domain of definition 

The definition domain is the whole 

positive real number domain, but for the 

  stable distribution process, the 

definition domain is kp  . 

The definition domain is only the positive 

integer domain, and it does not exist for   

( 0 2  ) stable distribution process. 

For the   stable distribution 

process, its definition domain is 

p  [3] 

Application area 
Can be used to solve signal processing 

problems in  and/or Gaussian noise 

Cannot be used to solve signal processing 

problems in  noise 

Can be used to solve the signal 

processing problems in  and/or 

Gaussian noise 

Linear characteristic Possesses Linear and Semi-invariant Possesses Linear and Semi-invariant 
Does not possess linear and 

Semi-invariant 

Noise suppression 
It can suppress both colored or white   

and Gauss noise. 

Only colored or white Gaussian noise can 

be suppressed 

Neither   nor Gauss noise is 

zero. 

Algorithmic complexity 
It-based signal processing method is 

simple and easy to analyze and calculate. 

It-based signal processing method is simple 

and easy to analyze and calculate. 

Signal processing method is 

complex 

Theoretical analysis Convenient for theoretical analysis Convenient for theoretical analysis Theoretical analysis is difficult. 

 

As shown in Table I, the main problem of the famous HOC operator is that it cannot be used in the signal processing in  noise. 

This is due to the variance of  noise is infinite. Although FLOS operator can be used in the signal processing in  noise, its 

non-linear and non- semi-invariant properties will make it-based signal processing methods complex, and even hardly deal with 

the signal processing problems in colored  noise. Compare with HOC and FLOS, the FOC operator proposed in this paper is 

truly suitable for signal processing in  and/or Gaussian noise because of its properties of linear, semi-invariant and blind of 

and Gaussian noise. This can be seen more clearly from the derivation process of the FOC-based parameter estimation algorithm 

of the ARMA model in the next section. 

VI. A FOC-BASED PARAMETER ESTIMATION OF NON-MINIMUM PHASE ARMA MODEL 

The theoretical research in the literature shows that many stationary stochastic processes can be represented by ARMA 

model. It is very important to estimate the ARMA model parameters of a real life stationary random signal by using the noisy 

data from sensing elements. This technology has been widely used in real life applications, such as the signals of sonar, radar, 

plasma physics, biomedicine, seismic data processing, image reconstruction, harmonic retrieval, time delay estimation, 

adaptive filtering, array processing, and blind equalization, etc. [17]. Recently, based on HOC operator, some ARMA model 

parameter estimation methods in Gaussian noise were proposed [17-20]. But this kind of methods cannot solve the problem 

of model parameter estimation in   noise. In references [4, 5], FLOS operator was used to solve this problem. However, due 

to the limitations of the properties of FLOS operator, these methods can only be applied to the minimum phase ARMA 

models in white   noise. For the parameter estimation of non-minimum phase ARMA model in colored   noise, the 

relevant research has not been reported. In this section, we take this problem as an example to demonstrate the effectiveness 

of the FOC-based method proposed in this paper. 

As mentioned above, HOC is a special case of FOC while 1p  , and they have similar properties except that HOC cannot be 

used for signal processing in   noise. Therefore, the derivation process of signal processing methods based on FOC and HOC 

must have many similarities. In practice, most HOC-based signal processing methods can be improved to FOC-based methods to 

enhance the suppression ability to   noise. This is another important advantage of FOC operator. In order to make this more 

clearly, in this section, referring to the derivation process of the HOC-based SVD-TLS method of AR parameter estimation[17] and 

the HOC-based q  slice method of MA parameter estimation[17], the FOC-based ARMA parameter estimation method is 

proposed. 
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A. Model assumptions 

Considering a Single Input and Single Output (SISO) Linear and Time-Invariant(LTI) stochastic process that can be described 

by the following ARMA ( ,p q ) model[18]: 

 
0 0

( ) ( ) ( ) ( )
p q

i j

a i x n i b j e n j
 

      (39) 

where, ( )a i  and ( )b i  are the model parameters of the AR and MA parts respectively, ( )x n  is the noiseless system output, ( )e n  is 

the system input. 

The transfer function of the system is 

 

1 2

1 2

1 2
01 2

1
( ) ( )

1

q

q i

p
ip

b z b z b z
H z h i z

a z a z a z

   


  


   
 

   
   (40) 

In practice, ( )x n  is often corrupted by the additive noise ( )n . Thus, the observed output is 

 ( ) ( ) ( )y n x n n    (41) 

Combining (40) and (41) yields 

 
0

( ) ( ) ( ) ( )
i

y n h n i e i n




     (42) 

The following assumptions are made in the modeling: 

[AS1] The order ( ,p q ) of the ARMA model is known. 

[AS2] The input ( )e n  is an unobservable, zero- pM  mean, independent and identically distributed (i.i.d.) non-stable distribution 

process, with at least one finite, non-zero 
thkp -order FOC ke , 2k  . 

[AS3] The system is causal, linear time invariant, exponentially stable and non-minimum phase, i.e. in the complex Z domain, the 

poles of the transfer function (z)H  lie inside the unit circle and at least one zero lies outside the unit circle. 

[AS4] The additive noise ( )n  is an unobservable colored Gaussian and/or   stable distribution process with known 

characteristic exponent (0 2)   . The Gaussian noise,   noise and ( )e n  are independent of each other. 

[AS5] (0) (0) 1a b  ; this fixes the inherent scale ambiguity. 

There are two major differences between the model assumption in this paper and in the reference [18] as follows: 

1. In [AS2], this paper changes the input ( )e n  with at least one finite, non-zero cumulant [18] to with at least one finite, non-zero 

thkp -order FOC. This is necessary to ensure the establishment of FOC-based model parameter estimation algorithm, where the 

zero mean changed to zero- pM  mean in order to simplify the calculation of FOC of signals. While 1p  , this assumption 

degenerates to the assumption of ( )e n  in reference [18]. 

2. Another difference is the assumption of the additional noise ( )n . In reference[18], ( )n  is assumed to be colored Gaussian 

process. But in this paper, it is assumed to be colored Gaussian and/or   stable distribution process with characteristic exponent

(0 2)   . It is precisely because of the existence of colored   noise that HOC method cannot be used. Furthermore, because 

FLOS method does not have the semi-invariant property and FLOS of colored   noise is not zero, it cannot be used either to solve 

this problem. At present, there is no solution to this kind of signal processing problem. However, FOC method proposed in this 

paper is very suitable for solving it. 

B. FOC-based Yuel-Walker function of ARMA model 

Take the 
thkp -order ( , 2kp k  ) FOC of ( )y n ， by Properties 4 and Theorem 1, then 

1 2 1 1 1

1 1 1 1

1 1 1 1

1

( , , , ) [ ( ), ( ), , ( )]

[ ( ) ( ), ( ) ( ), , ( ) ( )]

= [ ( ), ( ), , ( )]+ [ ( ), ( ), , ( )]

= [ ( ), ( ),

kP kP

ky k ky k

kP

ky k k

kP kP

kx k k k

kP

kx

C m m m cum y n y n m y n m

cum x n n x n m n m x n m n m

cum x n x n m x n m cum n n m n m

cum x n x n m



  

  

 

 

 

  

       

   

 1, ( )]kx n m 

  (43) 

This shows that the additional noise ( )n (whether ( )n  is   and/or Gaussian，colored or white) can be completely 

suppressed by using 
thkp -order FOC. 

By the stability of ( )y n , 
2 2

2 2( ) ( )P P

y yC m C m  . This means that 2 thp -order FOC
2

2 ( )P

yC m contains only the amplitude 
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information of ( )H z without the phase information. Therefore, it cannot be used for solving the non-minimum phase model 

parameter estimation problem. For the FOC-based non-minimum phase model parameter estimation problem, we have the 

following theorem. 

Theorem 2 

Let the LTI system ( )H z  be as shown in (40). The input ( )e n  is an unobservable, zero- pM mean, i.i.d. non-stable process, 

FOC of ( )e n is finite and non-zero, and (1) 0H  . Then, the amplitude and phase of the LTI system ( )H z  can be recovered, up to 

a sign and linear phase ambiguities, from one of the 
thkp -order( 2k  , kp  ) FOC of the output. 

Theorem 2 can be proven using the similar method in the reference[19]. 

By using the similar method in reference[17], substituting (42) into (43) and let 2k  , yields 

1 2

1 2

1 2 1 1 1

0 0 1 1 1 1 -1 -1

0 0 0

0 1 1 1 -1

0 0 0

( , , , ) [ ( ), ( ), , ( )]

( ) ( ), ( ) ( ), , ( ) ( )

( ) ( ) ( )

k

k

kP kP

ky k ky k

kP

kx k k k

i i i

kP

k k ke

i i i

C m m m cum y n y n m y n m

cum h n i e i h n m i e i h n m i e i

h n i h n m i h n m i cum e

 

  



  

  



  

  

 
      

  

     

  

    0 1 -1( ), ( ), , ( )ki e i e i

  (44) 

By assumption [AS2], it is obtained, 

  0 1 1

0 1 -1

0, =0
( ), ( ), , ( )

ke kkP

ke k

i i i
cum e i e i e i

    
 
0 ot her s

  (45) 

Thus, (44) can be written as, 

 
1 2 1 1 1

0

( , , , ) ( ) ( ) ( )kP

ky k ke k

i

C m m m h i h i m h i m


 



     (46) 

Let 1m m , 2m n , 3 1 0km m     in (46), we have 

 
2

0

( , ) ( , ,0, ,0)

( ) ( ) ( )

kP kP

ky ky

k

ke

i

C m n C m n

h i h i m h i n








  
  (47) 

On the other hand, by the definition of the impulse response, we also have 

 
0 0

( ) ( ) ( ) ( ) ( ) ( 1, , )
p q

j j

a j h n j b j n j b n n q
 

        (48) 

Substituting (48) into (47), yields 

2

0 0 0

2

0

( ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

p p
kP k

ky ke

j i j

k

ke

i

a j C m j n h i h i n a j h i m j

h i h i n b i m








  






    

  

  



  (49) 

Considering ( ) 0b i m   for m q and 0i  , one has 

 
0

( ) ( , ) 0
p

kP

ky

i

a i C m i n


    (50) 

where m q and n  are arbitrary integers. Equation (50) is the 
thkp -order FOC-based Yuel-Walker function of the ARMA model. 

C. Parameter estimation of ARMA model 

The formula (46), (47), (48), (49) and (50) are the basic equations for deriving the FOC-based ARMA parameter estimation 

method. It is noteworthy that the mathematical expression form of the above equations is similar to that of the HOC-based ARMA 

parameter estimation method. Therefore, we can derivative the FOC-based ARMA parameter estimation method by using the 

similar method which based on HOC[17, 18]. 

1. FOC-based TLS-SVD method for AR parameter estimation of ARMA model 

Let 1, ,m q q p    ， , ,n q p q   and 3k  in (50), then 
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( 1 , ) ( +2 , ) ( , )

( 1 , ) ( +2 , ) ( , )

( , ) ( 1, ) ( 1, )

( , ) ( 1, ) ( 1, )

kp kp kp

ky ky ky

kp kp kp

ky ky ky

kp kp kp

ky ky ky

kP kP kp

ky ky ky

C q p q p C q p q p C q q p

C q p q C q p q C q q

C q q p C q q p C q p q p

C q q C q q C q p q

      
 
 
   
 
 
 

      
 
 
    

( 1, )

( )
( 1, )

( 1)

( , )
(1)

( , )

kp

ky

kp

ky

kp

ky

kp

ky

C q q p

a p
C q q

a p

C q p q p
a

C q p q

  
 
 

   
   
     
   

    
   

 
  

  (51) 

or more compactly as 

 
kp

kyC A B    (52) 

As equation (52) has a similar form to the extended Yuel-walker function in reference[18], with the similar proof method to that 

in[18], it can be proved that matrix 
kp

kyC  is of full rank. 

It is noteworthy that in(52), because the fractional order operation is used, the elements in matrix 
kp

kyC  and vector b  may be 

plural. Due to that the solution of the equation  ( ) ( 1) (1)
T

A a p a p a   must be real, by operating the real part of both 

sides of equation(52), that is, taking 

  Re Re( )kp

kyC A B    (53) 

the calculation of the equation will be simplified. Since the real part operation of the matrix does not affect the rank of the 

matrix, the matrix  Re kp

kyC  is still full rank. 

Let ep p , eq q , e eq p q p   , 1N q p  and 2N q , the following set of equations is constructed. 

1 1 1

2 2 2

1 1 1

2 2 2

( 1, ) ( , ) ( 1 , )

( 1, ) ( , ) ( 1 , )

Re

( , ) ( 1, ) ( , )

( , ) ( 1, ) ( , )

kp kp kp

ky e ky e ky e e

kp kp kp

ky e ky e ky e e

kp kp kp

ky e e ky e e ky e

kp kp kP

ky e e ky e e ky e

C q N C q N C q p N

C q N C q N C q p N

C q p N C q p N C q N

C q p N C q p N C q N

   


   




  

  

1

(1)
0

( )e

a

a p

 
 
 

  
  

     
  
       

  
   

  (54) 

or more compactly as 

 Re 0kp

e eA   C   (55) 

Take SVD operation of the augmented matrix  Re kp

eC , and arrange the singular values in descending order, i.e. 

2 2 2

1 2 ep     , then 

  Re =kp

e U V C   (56) 

where, 2 2 2

1 2, , ,
epdiag        , U and V  are left and right singular vectors of matrix  Re C kp

eC , respectively. 

Because the rank of matrix  Re C kp

eC  is p , take the optimal linear approximation for matrix  Re C kp

eC  by the rank of p , i.e. 

let 



 12 

 
1

( ) 2

1 1

( )
ep pp

p i i

j j j

j i

S   
 



 

    (57) 

where,  ( , ), ( 1, ), , ( , )
Ti

j v i k v i k v i p k    , 
2

j is the j th singular value of the singular value matrix  . 

Calculate the inverse of matrix
( )pS . Considering the first component of vector eA  is 1, let  ˆ ˆ ˆ ˆ(1), (2), , ( )

T
A a a a p , the 

estimation of the unknown parameter vector Â can be calculate by 

 
( ) ( )ˆ( ) ( 1,1) / (1,1) ( 1,2, , )p pa i S i S i p      (58) 

2. FOC-based Q-slice method for MA parameters estimation of ARMA model 

By using the AR parameter estimation Â  obtained previously construct the fitting error function ( , )kf m n , 

 
0

ˆ( , ) ( ) ( , )
p

kP

k ky

j

f m n a j C m j n


   (59) 

By equation (49), then 

 2

0

( , ) ( ) ( ) ( )k

k ke

i

f m n h i h i n b i m






     (60) 

As shown in (60), due to that ke ,  ( )b i , and  ( )h i are all real numbers, the fitting error function ( , )kf m n  is a real number 

sequence. Thus, equation (59) can also be simplified equivalently to 

 
0

ˆ( , ) ( ) Re ( , )
p

kP

k ky

j

f m n a j C m j n


     (61) 

In equation (61), let m q , then 

 
0

ˆ( , ) ( )Re ( , ) ( ) ( )
p

kP

k ky ke

j

f q n a j C q j n h n b q


       (62) 

In equation (62), let 0n  , and notice that (0) 1h  , then 

 
0

ˆ( ,0) ( )Re ( ,0) ( )
p

C kP

k ky ke

j

f q a j C q j b q


       (63) 

By the model assumptions, ( ) 0b q   and divide (62) by (63), yields 

0

0

ˆ( ) Re ( , )
( , )

( ) 0,1,
( ,0)

ˆ( ) Re ( ,0)

p
kP

ky

jk

p
kPk
ky

j

a j C q j n
f q n

h n n
f q

a j C q j





  
  

  




  (64) 

After ( )h i  is obtained, MA parameters can be calculated by equation (48), i.e. 

 
0

ˆ( ) ( ) ( ) 1, , )
n

i

b n a i h n i n q


   （   (65) 

where, ( ) 0h   ( 0  ) . 

Remark 5 

1. By comparing the traditional HOC-based SVD-TLS and Q-slice with the FOC-based method proposed in this paper it is 

shown that the difference between them is only the difference of the statistical operators used. Because the FOC and HOC have 

similar properties, the discussion on the performance of SVD-TLS and Q-slice algorithms in [17, 18] is also suitable to this 

algorithm. And, the modified Q-slice algorithm proposed in [18] can also be transformed into FOC-based Q-slice algorithm. 

2. In the above method, the order of ARMA is assumed to be known. For the unknown order of ARMA model, as the same 

reason above, the order determination method of ARMA model proposed in[20] can also be transformed into FOC-based method. 

3. The derivation process of FOC-based parameter estimation method for ARMA model shows that it is feasible to transform 

HOC-based signal processing method to FOC-based method. This method not only simplifies the research process of FOC-based 

signal processing algorithms, also effectively improve the robustness of the original algorithms by using this modification. 

D. The consistency of ARMA model parameters estimation 

In this sub-section, we discuss the consistency of FOC-based ARMA model parameter estimation proposed in this paper. By the 

parameter estimation equations of ARMA model presented above, it is obvious that the parameter estimates ˆ( )a i  and ˆ( )b i  are 

measurable functions of 
3 ( )p

XC . Therefore, the ARMA parameter estimation of FOC-based method will themselves be consistent, 
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since 
3ˆ ( )p

XC  is measurable function of consistent estimators. 

Consistency of the 3rd
-order HOC estimation has been studied in reference[19], and a similar work can also be seen in reference 

[21]. In this paper, we will further discuss the consistency of 3 thp -order FOC estimators on this basis. 

Theorem 3 

If the input r.p.
 
 ( )e k of LTI system satisfies 

[AS6] ( ) 0p pmon e k    , 

[AS7]
 

       2 3 4 6

1, , ,p p p p

e e e eC C C C L  

[AS8]

 0

( )
k

h k




  , 

then, the 3 thp -order FOC estimators 
3

1 2
ˆ ( , )p

XC    of the system output r.p.  ( )x k  converge in probability to 
3

1 2( , )p

XC    as 

N  . 

The proof is given in Appendix 4. 

In the ARMA parameter estimation method proposed in this paper, by the assumption [AS1] to [AS5], 
3 3

1 2 1 2( , ) ( , )p p

y XC C     

(see equation (43)), and Theorem 3, 
3

1 2
ˆ ( , )p

yC    are the consistent estimators of 
3

1 2( , )p

XC   . Further, by the estimation equations 

of ˆ ( )Na k and ˆ ( )Nb k , both ˆ ( )Na k  and ˆ ( )Nb k  are measurable functions of 
3

1 2
ˆ ( , )p

yC   , ˆ ( )Na k and ˆ ( )Nb k are the consistent 

estimators. 

VII. SIMULATION EXAMPLES 

In this section, we validate the model parameter estimation performance of the new FOC based TLS-SVD and Q-slice method 

by simulation experiments. In reference [17], various common signal models in practical application were discussed. And it 

focused on one of the typical non minimum phase ARMA model with all pass factors, simulated and compared the performance of 

a variety of 3th-order HOC-based model parameter estimation methods in colored Gaussian noise. This model is also used in many 

literatures such as reference [18]. In order to facilitate comparison, this model is used in this section. 

The simulation model is as follow[17]: 

( ) 1.30 ( 1) 1.05 ( 2) 0.325 ( 3) ( ) 2.95 ( 1) 1.90 ( 2)x k x k x k x k e k e k e k             (66) 

The noisy observation output of system is 

 ( ) ( ) ( )y k x k k    (67) 

In this model, the two zeros are 2.0  and 0.95 , and the three poles are 0.4 0.7 j and 0.5 respectively. The model input ( )e n is 

drawn from an i.i.d., zero- pM mean, single-sided exponential distribution with variance, 
2 1e  . Obviously, because ( )e n  is 

asymmetric distribution,  3

3 1 2, 0p

eC m m  。 ( )k  is zero- pM mean colored S S  and/or Gaussian noise. The white S S  noise is 

generated as that in the reference[22], where the characteristic index of the S S noise are set as 1.6  . The colored S S noise is 

generated by the S S  noise through a band-pass filter. And, the Signal to Noise Ratio (SNR) is calculated by the Generalized 

SNR (GSNR) [2], which is defined as 

 
2

1

1
10log ( )

N

k

GSNR s k
N 

 
  

 
   (68) 

All the noisy observation sequence, colored S S  noise and colored Gaussian noise are processed by pM mean value 

subtraction. The additive noise ( )k is chosen as a colored S S noise, a colored Gaussian noise, and a mixed noise of colored 

S S and colored Gaussian noise in the following examples respectively. In all examples, assume that the order p , q  of the model 

and the characteristic index   of S S  noise are known. 

For the parameter estimation method for AR and MA part, the 3 thp -order FOC based SVD-TLS and Q-slice method proposed in 

this paper are used respectively. The simulation sequence is generated by the above method with 4096N  .  

A. Example 1 

Take 100 times Monte Carlo experiments in colored   noise, colored Gaussian noise, colored   and Gaussian noise 

respectively. The arithmetic mean and their associated standard deviations (in the bracket) for the estimates of the parameters 

during GSNR (SNR) changes from 0dB  to 20dB  in 10dB  interval are shown in Table II, Table III and Table IV respectively. Due 
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to that the HOC can only be used in parameter estimation in colored Gaussian noise, for convenience of comparison, the parameter 

estimation results of HOC-based SVD-TLS and Q-slice method methods are also shown in Table III (shown in shadows). 
TABLE II 

ARITHMETIC MEAN AND STANDARD DEVIATIONS OF ESTIMATES OF ARMA PARAMETERS IN COLORED   NOISE 

        True value 

 

GSNR 

 

(1)= -1.30a   (3)= -0.325a  (1)= -2.95b
 

(2)= 1.90b
 

0dB  
-1.8475 

(0.4697) 

1.7651 

(0.4071) 

0.4887 

(0.3103) 

1.0122 

(3.9895) 

4.5241 

(4.0247) 

10dB  
-1.1610 

(0.1796) 

0.7342 

(0.1823) 

-0.4225 

(0.1592) 

-3.8543 

(3.6429) 

2.6379 

(3.4547) 

20dB  
-1.1738 

(0.1813) 

0.7871 

(0.1593) 

-0.4186 

(0.1523) 

-3.4218 

(3.2127) 

2.5272 

(3.2428) 

TABLE III 

ARITHMETIC MEAN AND STANDARD DEVIATIONS OF ESTIMATES OF ARMA PARAMETERS IN COLORED GAUSSIAN NOISE 

        True value 

 

GSNR 

 

(1)= -1.30a   (3)= -0.325a  (1)= -2.95b
 

(2)= 1.90b
 

0dB  

-1.8475 

(0.3697) 

1.7651 

(0.3071) 

0.4887 

(0.3203) 

1.0122 

(3.7467) 

4.5241 

(3.8775) 

-1.7463 

(0.3234) 

1.4352 

(0.2741) 

0.1324 

(0.3004) 

0.9858 

(3.5421) 

4.2543 

(3.7465) 

10dB  

-1.1720 

(0.1707) 

0.8025 

(0.1564) 

-0.4125 

(0.1581) 

-3.4125 

(3.1213) 

2.5312 

(2.9862) 

-1.1942 

(0.1476) 

0.8731 

(0.1516) 

-0.2882 

(0.1402) 

-3.2475 

(2.9167) 

2.4547 

(2.8293) 

20dB  

-1.1843 

(0.1635) 

0.8231 

(0.1486) 

-0.4053 

(0.1469) 

-3.2639 

(2.8201) 

2.3401 

(2.8846) 

-1.2065 

(0.1392) 

0.9113 

(0.1372) 

-0.3067 

(0.1193) 

-3.1326 

(2.7681) 

2.2846 

(2.7384) 

TABLE IV 

ARITHMETIC MEAN AND STANDARD DEVIATIONS OF ESTIMATES OF ARMA PARAMETERS IN COLORED  NOISE AND GAUSSIAN NOISE 

        True value 

 

GSNR 

 

(1)= -1.30a   (3)= -0.325a  (1)= -2.95b
 

(2)= 1.90b
 

0dB  
-1.9324 

(0.4965) 

1.8516 

(0.4213) 

0.5787 

(0.3537) 

1.1323 

(4.0162) 

4.7562 

(4.2237) 

10dB  
-1.1471 

(0.1863) 

0.6972 

(0.1842) 

-0.4268 

(0.1611) 

-3.9753 

(3.7265) 

2.7069 

(3.5359) 

20dB  
-1.1589 

(0.1825) 

0.7271 

(0.1608) 

-0.4207 

(0.1562) 

-3.5468 

(3.5253) 

2.6842 

(3.4329) 

 

(2)=1.05a

(2)=1.05a

(2)=1.05a
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As shown from Table II to Table IV, the FOC-based method can well estimate the parameters of non-minimum phase ARMA 

model whether in colored  noise, colored Gaussian noise, or the mixed noise of colored   and Gaussian noise. This fully 

reflects the robustness of the proposed FOC method to suppress the colored   noise and Gaussian noise. In addition, with the 

increase of GSNR, the standard deviations decrease gradually, which is obviously reasonable. Moreover, in the pure Gaussian 

noise, the accuracy of HOC-based method is slightly higher than FOC-based method. This is because the estimation of HOC is 

based on integer exponential operation, while the estimation of FOC is based on fractional exponential operation. In this regard, we 

believe that this is the price that must be paid for the robustness of the algorithm. 

B. Example 2 

In order to better show the estimation performance of the algorithm proposed in this paper under different p  and GSNR 

selections, we change p  from 0.1 to 1 in 0.1 interval, i.e. kp  from 0.3 to 3, and change GSNR from 0dB  to 20dB  in 1dB  

interval, and take 100 times Monte Carlo experiments in colored   noise at every point. The graph plotting the standard deviations 

of (1)a  to (2)b change with GSNR and kp  is shown in Figure I. 

 

 

 

 
FIGURE I  STANDARD DEVIATIONS CURVE WITH P AND GSNR 

The results clearly show that when 0.6kp  , the standard deviations of each parameter estimation increases rapidly, which 

shows that kp  should not be chosen too small. And when 0.6 kp   , the standard deviations are small and change gently, so the 

kp  in this range should be chosen. When kp  , the standard deviations increase rapidly, which is consistent with the conclusion 

in Theorem 1. In addition, it can be seen from Figure 1 that when 5GSNR dB , the standard deviations of each parameter 

estimation increases significantly. Later, with the GSNR increasing, the standard deviations gradually decrease. When 

10GSNR dB , the standard deviations basically stabilize, which is obviously reasonable. 

VIII. CONCLUSIONS 

In this paper, a new concept of the FOC is proposed and its properties are derived. A parameter estimation algorithm for the 

non-minimum-phase ARMA processes is developed based on the proposed FOC. The main conclusions from this work are drawn 

as follows. 
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1. The proposed FOM and FOC filled the gap between the integer orders of the HOM and HOC, and extended the order 

definitions from positive integer to the complete positive real field. This further improves the signal processing theory. 

2. The most significant difference between FOC and HOC is that FOC can be used for solving the signal processing problems in 

  noise, but HOC cannot. Comparing with FLOS, FOC possesses the linear and semi-invariant properties, but FLOS does not. 

Moreover, for   and Gaussian noise, whether they are colored or white, their FOC is zero, but their FLOM is not. Thus, FOC can 

be effectively used for signal processing in colored   and/or Gaussian noise, but FLOS can hardly be used. 

3. In addition to the above main differences with HOC, FOC has similar properties to HOC, which determine that most existing 

HOC-based signal processing algorithms can be transformed into FOC-based algorithms. This will significantly simplify the 

research of FOC-based signal processing algorithms. The application example of FOC given in section VI fully demonstrates this. 

APPENDICES 

Appendix 1: Conversion between the FOM and FOC 

By the definition of k -dimension fractional joint Moment-generating function and Cumulant-generating function, then 

    1 , ,

1 2, , , p ku u

p ku u u e


    (A1) 

Take multi-dimensional Taylor series expansion [16] at the left side of equation (A1), then 

   

 

1

1

1 2 1 1 2

0 1
0

1 2 1 2 0

1 2

1
, , , , , ,

(1 )

, , ,

k

k

qp

p k k p k

q k
u u

p p p
p p p

p p p k p kp p p u u

k

u u u u u u u u
qp u u

E u E u E u u u u
u u u




  

  

    
      

      

      
     

       


L

L

L L L

L L

  (A2) 

Similarly, take multi-dimensional Taylor series expansion [16] at the right side of equation (A1), then  

   

 

1 1

1

1

1

, , , ,

1

0 1
0

, ,

1 2 0

1 2

1

(1 )

p k p k

k

p k

k

qp

u u u u

k

q k
u u

p p p
u up p p

p p p k u up p p

k

e u u e
qp u u

E u E u E u e
u u u


 


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

  

    
    

      

      
     

       


L L

L

L

L

L

L

  (A3) 

By comparing the coefficients of 
1 2

p p p

ku u u  in equations (A2) and (A3), then 

   1

0 01 1

, ,

0 1 0

1 1

, ,
, 1, 2,

p k

u u u uk k

C kp u uC kp
p k

p p p p

k k

u u e
k

u u u u     

  
 

   L L

LL
L

L L
  (A4) 

By equation (A4) and the definitions of the FOM and FOC of multiple random variables, the Fractional Cumulant to Moment 

(FC-M) conversion formula as shown in equation (20) can be written as, 

 

1

1

( ) ( )
q

m

m

q
kp kp

m

m
I I

mom I cum I






  
U

  (A5) 

By the above FC-M formula and simple algebraic operation, we can directly obtain the conversion function of Fractional order 

Moment to Cumulant (FM-C) conversion formula as shown in equation (21), 

 

1

( 1)

1

( ) ( 1) ( 1)! ( )
q

m

m

q
kp q kp

m

m
I I

cum I q mom I








   
U

  (A6) 

 

Appendix 2: Proof of Property 1 to Property 5 

Proof of Property 1: 

By the properties of the moment and mathematical expectation, proof of (27) is straightforward. 

By the definition of the FOC and the operation properties of the sequential fractional order derivative [15], then 
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 
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p p p k k k

p p

k

u up p p
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1 0
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k
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k
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u u

a a cum x x



 




 

   

  (B1) 

Equation (28) is then proved. 

QED 

Proof of Property 2: 

1. By the properties of the moment and mathematical expectation, equation (29) can be easily proved. 

2. Let  1 , , kx xX , then the cumulant-generating function of X
 
can be written as 

   

 
1 1 2 2

1 1 1 2 2, ln (( ) ) (( ) ) (( ) )

ln (( ) ) (( ) ) (( ) )
k k

p p p

X k p p p k k

p p p

p i i p i i p i i

u u E E ju x E ju x E ju x

E E ju x E ju x E ju x

 


  (B2) 

where, 1, , ki i is a permutation of1,2, , k . Thus, by the definition of the FOC, equation (30) is proved. 

QED 

Proof of Property 3: 

By Property 2, the FOC is symmetric in their arguments. So, without loss of generality assume that 1( , , )ix x are independent of

1( , , )i kx x , then 

   

    
   
   

1 1 1 2 2

1 1 1 1

1 1 1 1

1 1

, , ln (( ) ) (( ) ) (( ) )

ln (( ) ) (( ) ) (( ) ) (( ) )

ln (( ) ) (( ) ) ln (( ) ) (( ) )

, , , ,

p p p

X k p p p k k

p p p p

p p i i p i p k k

p p p p

p p i i p i p k k

X i X i k

u u E E ju x E ju x E ju x

E E ju x E ju x E E ju x E ju x

E E ju x E ju x E E ju x E ju x

u u u u







 



 

  

  (B3) 

Thus, 

     0 1 0 1 0 1

1 1 1

, , , , , ,
0

C kp C kp C kp

X k X i X i k

p p p p p p

k k k

u u u u u u

u u u u u u

     
  

     
  (B4) 

Equation (31) is then proved. 

But, 

      1 1 1, , , , , ,X k X i X i ku u u u u u      (B5) 

Then 

     0 1 10 1

1 1

, , , ,, ,
C kpC kp

X i X i kX k

p p p p

k k

u u u uu u

u u u u

      


   
  (B6) 

Due to that    1 1, , , ,X i X i ku u u u   contains the variables 1, , ku u , the fractional partial derivatives of (B6) are then 

nonzero generally. 

QED 

Proof of Property 4: 

1. Let  1 , , kx xX , 1[ , , ]ky yY ,  1 1, , k kx y x y    Z X Y . 

By using the independence of X  and Y , and the properties of Mittag-Leffler function[15], the cumulant-generating function of

Z can be written as follows: 
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   

 

   
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p p p p
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u u E E ju x y E ju x y

E E ju x E ju y E ju x E ju y

E E ju x E ju x E E ju y E ju y

u u u u

   



 

  

  (B7) 

By the definition of the FOC and (B7), equation (33) can be proved. 

2. By the properties of the moment and mathematical expectation, (34) can be proved. 

QED 

Proof of Property 5: 

Let 1 2[ , , , ]kx x xX , 1 2[ a, , , ]kx y y Y , then 

 

    
1 2 1 1

1 1 1

( , , , ) ln (( ( )) ) (( ) )

ln (( ) ) (( ) ) ln
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u u u E E ju x a E ju x

E E ju x E ju x E E ju a

  

  
 

  (B8) 

Furthermore, while 2k   

 

      

1 2

1 2
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0 1 2
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|
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u u up p
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pC kpC kp p p
pp p k kkp

u u up p p p

k k

kp p p p

k

cum x a x x

u u u
j

u u

E E ju aE E ju x E ju x
j

u u u u

cum x x x



   



   

 
 

 


 

    
  

     

   

  (B9) 

Thus, equation (35) is proved. 

But, due to 

    1 2 1 2, , ,
p pkp p p p p

k kmom x a x x E x a x x     
   

  (B10) 

It is obvious, because p  is fraction, while 0a  , then 

  1 2 1 2, , , , ,
pkp p p kp p p p

k kmom x a x x mom x x x       
  (B11) 

Thus, the equation (36) is proved. 

QED 

 

Appendix 3: Proof of Theorem 1 

Proof: 

By equation (37), the cumulant-generating function of the S S -stable distribution can be written as 

 
   ln

| |

e eu u

jau u 

    

 
  (C1) 

Due to the integral domain of the fractional derivative operator 0

C pD  used in this paper is [0, ]u , the 
thkp -order FOC of 

random variable X ( ( , , )X S a   ) is 

     
0

( )

0 0 0(0)
u

kp kp kp kp C kp kp C kp kp C kp

eC j j D jau u j D jau j D u  


            (C2) 

While 0 1kp  , the first item of equation (C2) is  

  
0

1

0 0

(2)
( ) 0

(2 )u

kp C kp kp kp

u

ja
j D jau j u

kp

  




 

 
  (C3) 

While 1kp  , by the properties of Caputo fractional derivative, the first item of equation (C2) is 

  
00 0

u

kp C kpj D jau


    (C4) 

While 1kp  , the first item of equation (C2) is 

  1

0uj D jau a

    (C5) 
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When kp  is not an integer, the second item of equation (C2) can be written as, 

 

 

 

 
 

0 0

0

1

1

0

kp C kp
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



 










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



  


  


 

 

  (C6) 

While =kp  , 

   0 (1 )kp kp kp

uj D u j   

       (C7) 

When kp  satisfies 1 kp m  
 
and is an integer, we have 

 
 

 
 ( )

0 0

1
| | 0

1

kp

kp kp m m kp

u u

j
j D u D u

m p

 
 






  

 

  
  

   
  (C8) 

Thus, consolidate (C3) to (C8), we have equation (38). 

QED 

 

Appendix 4: Proof of Theorem 3 

Proof: 

By the assumptions [AS6]to [AS8], the system output sequence ( )x k  satisfies that 

1.
 

( ) 0p

xC   , i.e. the system output sequence ( )x k  is zero pM  mean. 

2.        2 3 4 6

1, , ,p p p p

x x x xC C C C L , and they are absolutely sum-able. 

So 
3

1 2( , )p

xC    can be estimated by the following equation. 

 3

1 2 1 2

0

1ˆ ( , ) ( ) ( ) ( )
N

p p p p
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C x k x k x k
N



   




     (D1) 

where, 1 2Max( , )    

Due to that ( )x k  is weak- stationary with arbitrary fractional order, take expectation for both sides of equation (D1), then 

 3 3

1 2 1 2 1 2

0

1 1ˆ ( , ) ( ) ( ) ( ) ( , )
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So that 
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Thus, 
3

1 2
ˆ ( , )p

xC    is an asymptotically unbiased estimator of 
3

1 2( , )p

xC   . 

Next, we calculate the estimated variance of 
3

1 2
ˆ ( , )p

xC   . 
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  (D4) 

In equation (D4), due to that ( )x k  is zero pM  mean, by the FC-M function (20) and let 1 2k k k  , change the double sum of 

equation (D4) into single sum, then 
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   3 6 3 3 2 4 2 2 2
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where, the subscript j  in  
j

  indicates that the item obtained by FC-M function has j  terms, which are the same order of FOC 

but different variables in   .  
j

  indicates the sum of these j  terms. 

Clearly, by 
3 ( )p

xC  , 
4 ( )p

xC  , 
6

1( )p

xC L  ，and they are absolutely summable, the expressions in brackets of equation (D5) are 

absolutely summable. Therefore, the operation order of lim
N

 and 




  can be interchanged. Further, because 
2

0
N

N k

N





 
 , 

 3

1 2
ˆVar ( , ) 0p

x
N

C  
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  in equation (D5). 

Combining (D3) with (D5), and the fact that mean square convergence must be convergence in probability, implies that 
3

1 2
ˆ ( , )p

xC    converges in probability to 
3

1 2( , )p

xC    as N  . 

QED 
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