
  
 

 

ORIGIN, TRANSPORT AND BURIAL OF 
ORGANIC MATTER IN THE WHITTARD 

CANYON, NORTH-EAST ATLANTIC 
A thesis submitted in partial fulfilment of the requirements of Liverpool John 

Moores University for the degree of Doctor of Philosophy 
  

NOVEMBER, 2020 
CATHERINE ELIZABETH KERSHAW 

 



i 
 

CONTENTS 
 

List of tables…………………………………………….…………………………………….…………………………………………………iii  

List of figures………………………………………….…………………………………….…………………………………………………..iv 

Abstract………………………………………….…………………………………….…………………………………………………………viii 

Declaration………………………………………….…………………………………….……………………………………………………..xi 

Acknowledgments………………………………………….…………………………………….………………………………………….xii 

 

 

Chapter 1: Submarine canyons ....................................................................................................... 1 

1.1 Introduction ...........................................................................................................................1 

1.1.1 Submarine carbon and ecosystems ............................................................................... 2 

1.1.2 Submarine canyon stresses ........................................................................................... 4 

1.2 General aims and rationale ....................................................................................................5 

1.3 Study site ...............................................................................................................................6 

1.4 Data collection .....................................................................................................................15 

1.4.1 Cruise strategy ............................................................................................................ 15 

1.4.2 Sampling and data methods ........................................................................................ 15 

Chapter 2: Geomorphology .......................................................................................................... 24 

2.1 Canyon morphology .............................................................................................................24 

2.1.1 Bathymetric mapping .................................................................................................. 26 

2.2 Aims .....................................................................................................................................27 

2.3 Methods ...............................................................................................................................28 

2.4 Results ..................................................................................................................................31 

2.4.1 Slope angle .................................................................................................................. 33 

2.4.2 Terrain ruggedness ...................................................................................................... 34 

2.4.3 Cruise photography and observations......................................................................... 36 

2.5 Discussion ............................................................................................................................37 

Chapter 3: Sedimentology ............................................................................................................ 38 

3.1 Deep-sea sediments .............................................................................................................38 

3.2 Aims .....................................................................................................................................42 

3.3 Methods ...............................................................................................................................43 

3.3.1 Grain size distribution analysis .................................................................................... 43 



ii 
 

3.3.2 Statistical analysis ....................................................................................................... 45 

3.4 Results ..................................................................................................................................48 

3.4.1 Granulometric properties ............................................................................................ 48 

3.4.2 End-member analysis .................................................................................................. 63 

3.5 Discussion ............................................................................................................................69 

Chapter 4: Marine biogeochemistry ............................................................................................. 74 

4.1 Marine carbon ......................................................................................................................74 

4.1.1 Molar C/N ratio ........................................................................................................... 79 

4.1.2 Bulk stable isotopes .................................................................................................... 81 

4.2 Aims .....................................................................................................................................86 

4.3 Methods ...............................................................................................................................86 

4.3.1 Elemental carbon and nitrogen analysis ..................................................................... 86 

4.3.2 Stable isotope analysis ................................................................................................ 88 

4.3.3 Statistical analysis ....................................................................................................... 91 

4.4 Results ..................................................................................................................................93 

4.4.1 Elemental carbon and nitrogen ................................................................................... 93 

4.4.2 Surficial stable isotopes δ13C‰, δ15N‰ .................................................................... 108 

4.5 Discussion ..........................................................................................................................112 

Chapter 5: Synthesis ................................................................................................................... 123 

5.1.1 Methods .................................................................................................................... 123 

5.1.2 Results ....................................................................................................................... 126 

5.1.3 Discussion.................................................................................................................. 133 

5.2 Overall conclusions ............................................................................................................139 

5.3 Further work ......................................................................................................................139 

 

 

References…………………………………………………………………………………………………………………………………….142 

Appendix……………………………………………………………………………………………………………………………………… 160

   

 
 
 



iii 
 

LIST OF TABLES 
 

 

Table 1:1 Core sites targeted across 9 branches of the Whittard Canyon with longitude and latitude. 

Canyon branches are colour coded Purple (Western Branch), Pink (Western Middle Branch), Yellow 

(Acesta Branch), Green (Eastern Middle Branch), Cream (Intersection), Magenta (Eastern Mid 2), 

Brown (Eastern Branch), Blue (Explorer Canyon) and Red (Main Channel). ....................................... 17 

Table 3:1 Down core mean values with standard deviations of granulometric properties of particles 

from 9 branches of the Whittard Canyon. Canyon branches are colour coded Purple (Western 

Branch), Pink (Western Middle Branch), Yellow (Acesta Branch), Green (Eastern Middle Branch), 

Cream (Intersection), Magenta (Eastern Mid 2), Brown (Eastern Branch), Blue (Explorer Canyon) and 

Red (Main Channel). N = number of sections, where 10 where not met. ........................................... 51 

Table 4:1 Diagnostic indices δ13C ‰ for primary organic matter sources in the marine environment.

 ............................................................................................................................................................ 83 

Table 4:2 Surficial values for elemental properties of particles from 9 branches of the Whittard 

Canyon. Canyon branches are colour coded Purple (Western Branch), Pink (Western Middle Branch) 

Yellow (Acesta Branch), Green (Eastern Middle Branch), Cream (Intersection), Magenta (Eastern Mid 

2), Brown (Eastern Branch), Blue (Explorer Canyon) and Red (Main). ................................................ 98 

Table 4:3 Down core mean values with standard deviations for elemental properties of particles 

from 9 branches of the Whittard Canyon. Canyon branches are colour coded Purple (Western 

Branch), Pink (Western Middle Branch) Yellow (Acesta Branch), Green (Eastern Middle Branch), 

Cream (Intersection), Magenta (Eastern Mid 2), Brown (Eastern Branch), Blue (Explorer Canyon) and 

Red (Main). N =10 samples unless otherwise stated. ......................................................................... 99 

Table 4:4 Mean surficial values of stable isotopes (δ13C‰, δ15N‰) from 9 branches of the Whittard 

Canyon. Canyon branches are colour coded Purple (Western Branch), Pink (Western Middle Branch) 

Yellow (Acesta Branch), Green (Eastern Middle Branch), Cream (Intersection), Magenta (Eastern Mid 

2), Brown (Eastern Branch), Blue (Explorer Canyon) and Red (Main channel). All data are presented 

in units (‰) relative to the international standard reference (Pee Dee Belemnite for δ 13C and 

Atmospheric Nitrogen for δ 15N). ...................................................................................................... 109 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

LIST OF FIGURES 
 

Figure 1:1 Global distribution of large submarine canyons, as classified by Harris and Whiteway 

(2011). Active continental margins are labelled in red, passive margins in green (figure courtesy of 

Harris and Baker, 2012). ....................................................................................................................... 2 

Figure 1:2 Targeted sites where known nepheloid layers have occurred (Wilson et al., 2015). Clear 

stars are where no enhanced nepheloid layers where found; White stars are where dilute nepheloid 

layers were found; Yellow stars are where enhanced nepheloid layers were found. Bathymetry data 

from Esri, Garmin, GEBCO, NOAA, NGDC and other contributors. (Inset map) Sidescan sonar map of 

the Whittard Canyon and proximal part of the Whittard Channel and adjacent slopes, showing all the 

stations used for this paper. Bathymetry courtesy of the RRS James Cook Cruise JC35, 7-19 Jun 2009 

and RRS James Cook cruise JC125 13 Aug-09 Sept 2015. Projected coordinates (WGS84). ................ 11 

Figure 1:3 (Inset) Location map of the Whittard Canyon along the Celtic Margin, Bay of Biscay. 

Bathymetry data from Esri, Garmin, GEBCO, NOAA, NGDC and other contributors. (Main map) 

Sidescan sonar map of the Whittard Canyon and proximal part of the Whittard Channel and adjacent 

slopes, showing all the stations used for this paper. Bathymetry data courtesy of Esri, Garmin, 

GEBCO, NOAA, NGDC and RRS James Cook cruise JC35, 7-19 Jun 2009 and RRS James Cook cruise 

JC125 13 Aug-09 Sept 2015. Projected coordinates (WGS84). ........................................................... 19 

Figure 1:4 ROV Holland deployed during CE16006 (Kershaw, 2016). ................................................. 20 

Figure 2:1 Map image of slope angle with areas in green greater than 20°. Slope angles of 0-20° 

characterise thalwegs and upper canyon reaches. Canyon walls are characterised by steeper slopes 

reaching 60-80°, calculated within ARCMAP using the Benthic Terrain Modeler 3.0 plugin............... 33 

Figure 2:2 Vector ruggedness measure terrain attributes calculated within ARCMAP using the 

Benthic Terrain Modeler 3.0 plugin. VRM values recorded in the canyon reach >0.6. ....................... 34 

Figure 2:3 Vector ruggedness measure (VRM), as per Sappington's method (2007), for sites across all 

Whittard Canyon branches, where high-resolution bathymetry data was available. The graph 

highlights the variability of ruggedness across sites, with the highest ruggedness value observed at 

the Intersection (CE14009 event 25, all depths) and another large peak at the Eastern branch 

(CE16006-002-PSH05-1297.81).  The lowest reading was recorded within the main channel at 4010m 

(JC126-063-MC-4010m) indicating lowest variability in terrain. R-squared linear correlation 

coefficient on analysis revealed no significant linear relationship between depth and vector 

ruggedness measure. .......................................................................................................................... 35 

Figure 2:4 ROV photography and shipboard observations: (A) Western Middle Branch: CE16006-087-

PSH02-781.13m. ROV observations: flat, sparse, sea pen Pennatulacea. (B) Acesta Branch: CE16006-

033-PSHO8-780m. ROV observations: flat, sparse. (C) Eastern Middle Branch: CE16006-022-PSH06-

731.38m. ROV observations: sandy ridge, Cladorhiza sponge and Brachyura crab. (D) Eastern Middle 

2 Branch: CE16006-056-PSH05-1845m and CE16006-056-PSH07-1845m. ROV observations: Flat area 

with sandy ripples. (E) Eastern Branch: CE16006-002-PSH05-1297.81m. ROV observations: easy 

penetration, poor visibility. Nearby area (>0.1km) characterised by a steep bedded wall and dense 

coral. (F) (G) (H) Eastern Branch: CE16006-042-PSH02-1620m. ROV observations: vertical chalky cliff, 

with stepped edges and overhangs before sloping out to flatter sandier area, where the core was 

taken. Images courtesy of CE16006 cruise.......................................................................................... 36 

Figure 3:1 (A, B) Surface plot and scatter diagram of the grain size of the first-centimetre section 

across sites. Sediments mainly consist of fine particles, with grain size generally less than 60 µm (Φ 

4, silt). Very fine sand observed at the Eastern branch CE14009-005-450 (Folk and Ward Method 

mean MG  111.56µm (Φ 4 to 3, silt and very fine sand). Fine sand to medium sand observed at the 

file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200923


v 
 

Eastern Middle 2 site CE16006-056-PSH05-1845m (Φ 3 to 2, 187.67µm) However, an additional core 

was taken at the same site, recorded a surficial mean GS reading of 19.9µm. One-way ANOVA on 

ranks analysis revealed a significant spatial change in the surficial grain size distribution across the 

branches (p= 0.038). Most sites, excluding the Western and Eastern branches, significantly deviated 

from the mean grain size of the Eastern Middle 2 branch. Surficial grain size negatively correlated 

with depth (rs [48] = -0.322, p = 0.029). (C, D) Surface plot and scatter diagram of mean grain size 

down core across sites. Sediments mainly consist of fine particles, with the grain size generally less 

than 60 µm (Φ 4, silt). However, at the Eastern branch CE14009-005-450, an average down core 

particle size of 112.11µm was recorded. Numbers are events. .......................................................... 53 

Figure 3:2 (A) Surface plot of down core mean sorting across sites. Sediments consist of very poorly 

and extremely poorly sorted sediments, within the range of 2-6 σG. (B) Scatter diagram of the range 

of mean down core sorting across all branches with depth. The largest ranges observed at the Acesta 

and Eastern branches. The most poorly sorted site was within the Explorer branch. The most sorted, 

yet still classified as poorly sorted was within the Eastern branch. R-squared linear correlation 

coefficient revealed no significant linear relationship between depth and sorting. One-way ANOVA 

on ranks analysis showed that there was a significant difference in sorting across the branches (p = 

0.43). Dunn-Bonferroni post-hoc analysis revealed that there was a significant difference in sorting 

between some branches. Numbers are events................................................................................... 54 

Figure 3:3 (A) Surface plot of down core mean skewness across sites. Sediments mainly consist of 

negatively skewed sediments. (B) The most positively skewed site was in the Eastern sites JC125-

109-PSH03-570.5m and PSH05 (-0.6 SKG). However, at the Eastern branch CE14009-005-681, an 

average down core of near-symmetrical skewness of -0.01 SKG was also recorded. Scatter chart of the 

range of mean down core skewness across all branches. Largest range observed at the Eastern 

branch.  R-squared linear correlation coefficient analysis revealed no significant linear relationship 

between depth and skewness. One-way ANOVA on ranks analysis showed that there was no 

significant difference in sorting across the branches (p > 0.05). Numbers are events. ....................... 55 

Figure 3:4 (A) Surface plot of down core mean kurtosis across sites. Mesokurtic sediments, not 

especially peaked or "normal" (0.9-0.11KG) and leptokurtic and very leptokurtic, highly peaked, 

sediments (1.11->1.50) were observed across most sites. However, some platykurtic, flat peaked, 

values were observed within the Explorer, Acesta and Eastern branches.  (B) Scatter diagram of the 

range of mean down core kurtosis across all branches. Largest range observed at the Eastern branch. 

R-squared linear correlation coefficient on analysis revealed no significant linear relationship 

between depth and kurtosis, however Spearman’s rank analysis did reveal a minor positive 

relationship (rs [48] = 0.296, p = 0.046). One-way ANOVA on ranks analysis showed that there was no 

significant difference in sorting across the branches (p > 0.05). Numbers are events. ....................... 56 

Figure 3:5 Mean down core total sand–silt–clay percentages of sites across nine branches of the 

Whittard Canyon. Where blue is clay, red is silt and yellow is sand. .................................................. 60 

Figure 3:6 CM plot indicating depositional mechanisms and sedimentary sub environments. 

Numbers indicate mechanisms and sub environments 1= rolling and beach deposits 2= bottom 

suspension and rolling tractive current deposits 3= graded suspension, no rolling, river-terrace gravel 

4= uniform suspension of tills 5= pelagic suspension and pelagic. All sediments fall within graded, 

uniform suspension of tills and pelagic suspension hydrological conditions (Passega, 1957, 1964)... 62 

Figure 3:7 (A) Linear correlation map between the multiple correlation coefficient (R2) of end-

members (B) Four selected end-members.......................................................................................... 63 

Figure 3:8 (A-J) Four end-members superimposed over multi-specimen grain size distribution plots 

across all branches. An R2 value of 0.9443, Theta value of 11.4102, and EM R2 0.0135 indicates 

goodness of fit and reduced likeliness of overfitting data. EM 1 (blue) signifies pelagic deposition, EM 

2 (orange) is indicative of the silt population, EM 3 (yellow) is indicative of the coarser, sand 

file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200925
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200926
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200926
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200926
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200926
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200926
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200926
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200926
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200926
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200927
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200928
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200928
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200929
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200929
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200929
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200929
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200929


vi 
 

population and EM 4 (blue), seen at some branches, indicates extreme events, such as gravity flows, 

responsible for distributing coarse material like turbiditic sediments as discussed by Amaro et al. 

2015. A= All branches, B= Western, C= Western Middle, D= Acesta, E= Eastern Middle, F= 

Intersection, G= Eastern Middle 2, H= Eastern, I= Explorer, J= Main Channel. ................................... 68 

Figure 4:1 (A, B) Surface plot and scatter diagram of mean TIC% of the first-centimetre section across 

sites. Upper canyon 0-1000m ranges from 1.44% at the Explorer canyon to 3.65% at the Western 

Middle branch. Mid canyon 1000-2000m ranges from 1.93% at the Eastern Middle branch to 3.03 % 

at the Eastern Middle branch. Lower canyon >200m ranges from 1.62% at the Explorer canyon 

(JC125-076-PSH02-861.2m) to 3.13% at the Main Channel (JC125-045-MC-3723m). One-way ANOVA 

on ranks analyses revealed no significant difference in surficial mean TIC% across branches or with 

depth (p > 0.05). ............................................................................................................................... 100 

Figure 4:2 Surface plot and scatter diagram of mean TIC% down core across sites. Upper canyon 0-

1000m ranges from 1.97% at the Explorer canyon to 3.76% at the Western Middle branch. Mid 

canyon 1000-2000m ranges from 1.32% at the Western Middle branch to 3.40% at the Eastern 

Middle branch. Lower canyon >2000m ranges from 2.02% at the Western Middle branch to 3.13% at 

the Main Channel. One-way ANOVA on ranks analyses showed that there was no significant 

difference in down core TIC% across branches or with depth (p > 0.05). ......................................... 101 

Figure 4:3 (A, B) Surface plot and scatter diagram of TOC% of the first-centimetre section across 

sites. Upper canyon 0-1000m ranges from 0.33% at the Eastern branch to 2.26% at the Western 

Middle branch. Mid canyon 1000-2000m ranges from 1.06% at the Acesta branch to 2.20% at the 

Eastern branch. Lower canyon >2000m ranges from 1.10% at the Western branch to 2.32% at the 

Main Channel. One-way ANOVA on ranks analyses revealed no significant difference in surficial 

mean TOC% across branches or with depth (p > 0.05). (C) Frequency distribution of TOC% in surface 

sediments (<1cm) of the Whittard Canyon (N 33) according to water depth interval. Organic 

enrichment is observed at all depths (>2%); however, the upper slopes down to 500m presents the 

lowest TOC% observed (0-0.5%). At depths between 3000 and 4000m, TOC contents higher than 2% 

were recorded, indicating possible increased input or burial. .......................................................... 102 

Figure 4:4 (A, B) Surface plot and scatter diagram of mean TOC% down core across sites. Upper 

canyon 0-1000m ranges from 0.71% at the Eastern branch to 2.38% at the Eastern Middle branch. 

Mid canyon 1000-2000m ranges from 1.15% at the Eastern Middle branch to 2.31% at the Eastern 

branch. Lower canyon >2000m ranges from 0.95% at the Western branch to 2.0 % at the Main 

Channel. One-way ANOVA on ranks analyses showed that there was no significant difference in 

down core mean TOC% and across branches or with depth (p > 0.05). ............................................ 103 

Figure 4:5 (A-I) TOC% down core plotted by branch. Sharp peaks of total organic carbon enrichment 

at the Acesta branch (CE16006-033-PSH08-780m) and Eastern Middle branch (CE16006-022-PSH06-

731.38m)........................................................................................................................................... 105 

Figure 4:6 (A, B) Surface plot and scatter diagram of the C/N ratio of the first-centimetre section 

across sites. Most surficial samples analysed were within the range of 3 to 25 C/N. Upper canyon 0-

1000m ranges from 3.47 at the Eastern branch to 79.46 at the Eastern Middle branch. Mid canyon 

1000-2000m ranges from 9.17 at the Eastern Middle branch to 57.99 at the Eastern Middle 2 branch. 

Lower canyon >2000m ranges from 6.99 to 22.75 in the Main Channel. One-way ANOVA on ranks 

analyses revealed no significant difference in surficial mean molar C/N ratio across the branches or 

with depth (p > 0.05). R-squared linear correlation coefficient analysis revealed no significant linear 

relationship between depth and surficial mean molar C/N ratio. Stars represent data from Hunter et 

al. (2013). (C) Frequency distribution of molar C/N ratio in surface sediments (<1cm) of the Whittard 

Canyon (N 32) according to water depth interval. Typical marine signatures in the range of <3-10 

where observed at all depths, excluding 3000-4000m. High values exceeding 25 were observed down 

file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200932
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200932
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200932
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200932
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200932
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200932
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200932
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200933
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200933
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200933
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200933
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200933
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200933
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200934
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200935
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200935
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200935
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200935
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200935
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200935
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937


vii 
 

to 2000m. Due to the distance from land, high C/N ratios likely indicate degradation and not a 

terrestrial contribution (Meyers, 1994). ........................................................................................... 106 

Figure 4:7 (A, B) Surface plot and scatter diagram of the down core mean molar C/N ratio across 

sites. Upper canyon 0-1000m ranges from 5.43 at the Western Middle branch to 64.47 at the Eastern 

Middle branch. Mid canyon 1000-2000m ranges from 10.22 at the Eastern Middle branch to 51.51 at 

the Eastern Middle 2 branch. Lower canyon >2000m ranges from 14.28 to 27.52 in the Main 

Channel. One-way ANOVA on ranks analyses showed that there was no significant difference in 

down core mean molar C/N ratio across the branches or with depth (p > 0.05). R-squared linear 

correlation coefficient analysis revealed no significant linear relationship between depth and down 

core mean molar C/N ratio %. Numbers are events. ........................................................................ 107 

Figure 4:8 (A) Mean δ 13C‰ of surficial 1cm section across all sampling sites. Lowest values of δ 13C 

were observed within the Explorer canyon JC125-101-MC-664m (-24.42‰). The highest value was 

observed within the Eastern Middle branch CE16006-030-PSH12-511.37m (-12.76‰). (B) Mean δ 
15N‰ of surficial 1cm section across all sampling sites. The lowest value of δ 15N was observed within 

the Western branch JC125-083-PSH03-2740m (1.30‰) and the highest was observed within the 

Explorer canyon JC125-101-MC-664m (4.28‰). One-way ANOVA on ranks analysis showed that 

there was no significant difference in stable isotopes across the branches (p > 0.05). All data are 

presented in units (‰) relative to the international standard reference (Pee Dee Belemnite for δ 13C 

and Atmospheric Nitrogen for δ 15N). ............................................................................................... 110 

Figure 4:9 (A) Mean δ 13C‰ and δ 15N‰ of surficial 1cm section plotted with depth (m). Lowest 

values of δ 13C were observed within the Explorer canyon JC125-101-MC-664m (-24.42‰). The 

highest value was observed within the Eastern Middle branch CE16006-030-PSH12-511.37m (-

12.7‰6).  Mean δ 15N‰ of surficial 1cm section across all sampling sites. The lowest value of δ 15N 

was observed within the Western branch JC125-083-PSH03-2740m (1.30‰) and the highest was 

observed within the Explorer canyon JC125-101-MC-664m (4.28‰) (Not seen as no δ 13C value). 

One-way ANOVA on ranks analysis showed that there was no significant difference in stable isotopes 

across the branches (p > 0.05). ......................................................................................................... 111 

Figure 5:1 PCoA analysis of surficial samples across the Whittard canyon. PC1 (33.3%) and PC2 

(20.1%) account for 53.4% of the variation in environmental parameters between samples. 

Environmental parameters with Pearson correlation of >0.2 are overlaid in blue with blue lines 

indicating eigenvector weighting of each parameter.  Coloured symbols indicate samples. Samples 

that are clustered together indicate that they are driven by the co-variance of overlain 

environmental parameters (blue text). Dotted circles indicate water depth interval, where green is 0-

1000m, blue is 1000-2000m and red is >2000m.  Full orange circles indicate areas where enhanced 

nepheloid layers have been recorded. Dashed orange circles indicate dilute nepheloid layers (Wilson 

et al., 2015). ...................................................................................................................................... 128 

Figure 5:2  (A) Grain size (µm) (B) sorting (ϬG) (C) skewness (SKG) and (D) kurtosis (KG) for all surficial 

sediment samples across the Whittard canyon. Interpolations were produced in ODV 4.7.4 using 

Data Interpolating Variational Analysis (DIVA) gridding software according to the method by Troupin 

et al. 2012. ........................................................................................................................................ 131 

Figure 5:3 (A) TOC (%) (B) C/N (C) δ 13C (‰) and (D) δ 15N (‰) for all surficial sediment samples 

across the Whittard canyon. Interpolations were produced in ODV 4.7.4 using Data Interpolating 

Variational Analysis (DIVA) gridding software according to the method by Troupin et al. 2012. ..... 132 

 
 

file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200937
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200938
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200938
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200938
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200938
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200938
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200938
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200938
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200938
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200940
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200940
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200940
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200940
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200940
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200940
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200940
file:///C:/Users/ckers/OneDrive/Documents/CORRECTIONS3.docx%23_Toc66200940


viii 
 

 
ABSTRACT 
 

The Whittard submarine canyon (Celtic Sea, North East Atlantic) is one of the largest 

(~100km across, down to 4500m depth) and most complex underwater features in the 

North-Western European Margin having several branches all converging to the main 

channel. It is located >200km from the nearest coast, affected by complex hydrodynamics 

and is home to an array of diverse benthic ecosystems. Little is known about how submarine 

canyons differ from typical open-ocean environments. This study aims to improve the 

understanding of the canyon’s underlying role in biogeochemical cycling and carbon storage 

in relation to the sedimentological regime and specific geomorphic features.  This study 

hypothesizes that the highly heterogeneous nature of the canyon’s physical landscapes may 

influence organic matter spatial patterns and the potential for carbon burial. This project 

attempted to assess this gap in knowledge by examining morphological (slope analysis, 

ruggedness), grain size characteristics, and biogeochemical properties (organic carbon, 

nitrogen, δ13C and δ15N isotopes) of 46 short cores (0-10cm) from a variety of depths, across 

nine main locations (Western, Western Middle, Acesta, Eastern Middle, Eastern Middle 2, 

Intersection, Eastern, Explorer and the Main channel branches). Grain sizes often appear 

multimodal, with a sandy/silty/clay predominance, with coarse material present at depths 

exceeding 1000m, indicating that diverse processes are at play within the system. Surficial 

mean molar C/N ratios are variable but often higher than typical marine ranges; 22 ± 15.62, 

given the distance from land, this is likely a consequence of reworking. Organic carbon 

contents generally exceeded the typical range expected from the deep-sea (>~0.5% of dry 
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sediment) but are similar to other canyon systems that are closer to land, this may indicate 

an increased potential for carbon storage within the Whittard Canyon (Tyler et al., 2009b; 

Masson et al., 2010a). All samples within the central channel (Main Channel) at depths 

>3700m were organically enriched (>1.25%), this is likely an accumulation of organic 

material, funnelled from the upper canyon reaches. However, at one site of the Eastern 

branch (CE14009-005-450m), the lowest TOC content of 0.33% was recorded, indicating 

reduced input or the efficient recycling of organic matter. The majority of δ13C‰ values fell 

within the lighter isotopic range of ~-24‰ and ~-22‰, indicating phytoplankton and 

zooplankton derived organic matter. However, a heavier value was recorded at the 

connecting shelf of the Acesta and Eastern Middle branch CE16006-030-PSH12-511.37m (-

12.76), indicating sulfide-oxidized carbon which is associated with the form II Rubisco 

pathway (Fry and Sherr, 1984; Levin and Michener, 2002; Hunter et al., 2013a). A mean δ15N 

signature of 3.32‰ ± 0.84 falls just below the deep-water average of ~5‰ value associated 

with internal cycling and assimilation by marine primary producers (Sigman and Casciotti, 

2001). This is in line with previous research within the Whittard Canyon, where values of 

4.09‰ ± 2.42 and 3.94‰ ± 0.67 for West and Eastern branches were recorded (Hunter et 

al., 2013a). Statistical analyses were carried out to decipher influences of morphology, 

location (i.e. branch), depth and potential anthropogenic activity. Previous research has 

indicated that the Eastern branch displays high biodiversity and faunal abundance, results 

from all disciplines explored in this study confirmed that the Eastern branch was the most 

heterogeneous, which may explain this phenomenon (Amaro et al., 2015; Gunton et al., 

2015). Recent work suggests that anthropogenic (i.e. fishing) activities may impact natural 

processes, possibly affecting material transport, deposition and ecological functions within 

the Acesta and Eastern Middle branches, that would take many years to recover (Wilson et 
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al., 2015). Because of this, this study proves useful as it provides one of the highest 

resolution accounts of recent conditions across this environmentally and biologically diverse 

canyon system. 
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Chapter 1:  Submarine canyons 

1.1 Introduction 
 

Submarine canyons are abundant and ubiquitous incisions found along continental and 

oceanic island margins, connecting the continental shelves to deep ocean basins (Shepard 

and Dill, 1966). Recent bathymetric data analysed by Harris and Whiteway (2011) revealed 

that there are 5,849 separate large submarine canyons in the world ocean, with active 

continental margins containing 50% more canyons than passive margins (Figure 1:1). 

Canyons are typically closely spaced, steeper, shorter and more dendritic on active than 

passive margins. The global distribution of all canyons is estimated to be over 9,000, 

covering approximately 11% of the continental margins (Harris et al., 2014a). They are 

complex, heterogeneous, topographic features, characterised as being broad, deep valleys 

with intricate relief and highly dynamic sedimentary and hydrodynamic characteristics. The 

complexity of canyons results in an environment that differs significantly from the majority 

of the deep-sea, with rich and varied biological communities being able to establish and 

thrive in many canyons globally (Tyler et al. 2009). Steep topography renders conventional 

shipboard mapping and sampling techniques inadequate, due to the inaccessibility of these 

sites, with the result that many questions regarding their global role in maintaining 

biodiversity/productivity and in storing and transporting minerals and organic matter 

remain largely unanswered. However, recent advances in technology, such as dynamic 

positioning of research vessels and precisely controlled remotely operated vehicles (ROVs), 

have rendered their study a possibility (Huvenne et al., 2011). 
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Figure 1:1 Global distribution of large submarine canyons, as classified by Harris and Whiteway (2011). Active continental 
margins are labelled in red, passive margins in green (figure courtesy of Harris and Baker, 2012). 

1.1.1 Submarine carbon and ecosystems 
 

The complexity of the physical environment of submarine canyons is often mirrored by rich 

and varied biological communities that inhabit them compared to continental slopes (Tyler 

et al., 2009a; Amaro et al., 2016a). This is likely to be a result of a localised increase in 

organic matter, food availability, and quality compared to other deep-water environments, 

in part due to the hydrodynamic regimes within some canyons.  

Within the open ocean, the sinking of marine organic matter (OM) produced in the euphotic 

zone through the mesopelagic zone and down to deeper waters, is the primary pathway for 

transporting carbon and other vital biological elements to pelagic and benthic organisms 

(Henson et al., 2011; Boyd et al., 2019; Conte, 2019).  However, the organic compounds are 
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almost entirely consumed, and remineralized to C02, by heterotrophic zooplankton and 

bacteria, this leaves a limited amount (5-15%) of organic matter to escape into the ocean 

interior, where it is mainly used as a food source for meso- and bathypelagic organisms. 

Subsequently, just a fraction (>0.5%) of organic matter reaches the sea-floor, where benthic 

organisms and bacteria continue to assimilate and respire it (Gordon, 1971; Emerson and 

Hedges, 1988, 2008; Wakeham and Lee, 1989; Aberle and Witte, 2003).  Though, the 

presence of fauna may also affect benthic carbon burial, as carbon may be subducted into 

deeper layers through bioturbation (Kiriakoulakis et al., 2004). In areas of complex 

topography, such as submarine canyons, reports of organic-rich material being transported 

to the seafloor have been made, indicating that larger quantities of organic matter (>0.5%) 

may be available for carbon-recycling or burial (Kiriakoulakis et al., 2001).  

Unique canyon morphology and distance from land are key influencers in the variability of 

ecosystem connectivity (Jannasch and Taylor, 1984; Gage and Tyler, 1992; Bergamaschi et 

al., 1997; Soliman and Rowe, 2008; DE Leo et al., 2010; Morris et al., 2013a). Indeed, some 

canyons are known hotspots for enhanced deep-sea sediment and water fluxes, through a 

variety of mechanisms such as gravity flows and dense water cascades and act as conduits 

and reservoirs for terrigenous deposits and organic material (Hotchkiss and Wunsch, 1982; 

Gardner, 1989; de Stigter et al., 2007; Arzola et al., 2008; Savoye. et al., 2009; Canals et al., 

2009; Kiriakoulakis et al., 2011). Where internal tides dominate canyons, organic matter 

distribution may focus within the canyon walls. However, where canyons are dominated by 

down canyon hydrological circulation, organic matter will likely be transported to greater 

water depths (García et al., 2008) 



4 
 

1.1.2 Submarine canyon stresses 
 

While the presence of submarine canyons may prove significant for deep-sea heterogeneity 

and biodiversity, stresses on submarine canyon systems have been recognised. Submarine 

hydrodynamics may enhance the transportation of litter and chemical pollutants from the 

continental shelf to the vulnerable deep-sea environments (Palanques et al., 2012). 

Additionally, while canyon morphology affects the circulation and transportation of water, 

sediment and particulate matter, climatic forcing factors exist too, although the spatial and 

temporal resolution is still relatively coarse (Pérenne et al., 2001; Bosley et al., 2004; Genin, 

2004; Kiriakoulakis et al., 2011). The effects of climate change may alter the characteristics 

of water masses, changing the intensity of currents, which may have an impact on 

submarine species (Canals et al., 2009). Submarine canyons may also be subjected to direct 

anthropogenic stressors, such as fishing, oil and gas extraction (Harris et al., 2014a). The 

impact of bottom-trawl fishing on the continental slope and canyon flanks is known to 

negatively affect the benthic ecosystem more than any other anthropogenic activities 

combined (Benn et al., 2010). Covering a ground area of up to three-quarters of the world's 

continental shelves bottom-trawling is believed to transport as much sediment as global 

terrestrial fluvial systems and resulting sediment-laden gravity flows are known to occur, 

engulfing fauna in their wake (Watling and Norse, 1998; Kaiser et al., 2002; Puig et al., 2012; 

Wilson et al., 2015a). Upon impact with the seafloor dragged trawling gear leads to the 

smoothing of the seafloor at large scales and is responsible for the overturning, destruction 

of sediment fabric, causing bed armouring and sorting and layering of sediments (Martín et 

al., 2014; Oberle et al., 2016, 2017; Daly et al., 2018). With increasing particle density and a 

reduction in substratum heterogeneity there is believed to be a reduction in organic carbon 
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(OC) concentration in surficial sediments (Clark and Rowden, 2009; Puig et al., 2012; Martín 

et al., 2014).  

Further to the physical alterations, trawling activity is also known to modify the 

biogeochemical composition of sediments (Lykousis et al., 2005; Pusceddu et al., 2005).  

Additionally, it has been noted that compositional changes observed from trawling activity 

exceed that of natural seasonal inputs of organic matter (Sañé et al., 2013). Previous work 

has revealed that trawled sites are commonly organic carbon impoverished as a result of the 

removal of recent, organic-rich sediments, and sediment stirring that increases oxygen 

penetration, thus enhancing remineralisation of buried organic matter (Paradis et al., 2019). 

Flocculent organic carbon may be winnowed, along with the fine sediment fraction, leaving 

the coarse, OC depleted, sediment behind (Martín et al., 2014). Ultimately, these changes 

may harm the structure and functioning of canyon communities, resulting in changes in 

nutrient supply to the deep-sea, biodiversity, carbon storage and burial; the latter is poorly 

studied but potentially large (Masson et al., 2010a). Thus, the understanding of both natural 

and anthropogenic drivers in canyon transformation requires further quantification for 

management and conservation purposes (Davies et al., 2007; Benn et al., 2010; Daly et al., 

2018). 

1.2 General aims and rationale 
 

Specific aims and objectives can be found in each chapter. However, the overarching 

outcome of this work aims to support existing research by providing a better understanding 

of the function of submarine canyons and its variability from typical open-ocean settings. 

Three overall aims attempt to do this: 
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I. Canyon morphology: Geomorphometric measures may aid the understanding of the 

topography of each branch, providing valuable insight into slope stability, sediment 

and hydrodynamics. 

II. Sedimentary characteristics: Particle analyses aim to characterise the canyon 

sediments down core and compare them with the adjacent slopes at different points 

along several canyon branches, to acquire a more representative spatial and 

temporal view of the processes that operate in the system.   

III. Carbon and nutrient cycling potential: Using elemental (TOC, TN and C/N), and bulk 

stable isotope (δ13C and δ15N) analyses, the origin, quantity, nutritional quality and 

burial potential of sedimentary organic matter (SOM) across the canyon branches 

will be examined.   

1.3 Study site 
 

 Site description 

 

The Whittard Canyon is located within the Celtic Margin; a WNW-ESE orientated passive 

margin that extends from the Goban Spur to the Berthois Spur, found within the Bay of 

Biscay (Figure 1:2 inset). While the adjacent continental shelf is vast, the continental slope is 

steep, averaging 8°. The extent of the margin is incised by approximately 35 submarine 

canyons, with the Whittard Canyon being the most westerly 300km south of Ireland (Amaro, 

de Stigter, Lavaleye, and Duineveld, 2015; Bourillet, Zaragosi, and Mulder, 2006; Morris, 

Tyler, Masson, Huvenne, and Rogers, 2013b).  
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Figure 1:2 Main branches of Whittard canyon. Bathymetry data from Esri, Garmin, GEBCO, NOAA, NGDC and other contributors. (Inset map) Sidescan sonar map of the Whittard Canyon and 
proximal part of the Whittard Channel and adjacent slopes, showing all the stations used for this paper. Bathymetry courtesy of the RRS James Cook Cruise JC35, 7-19 Jun 2009 and RRS James 
Cook cruise JC125 13 Aug-09 Sept 2015. Projected coordinates (WGS84).
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It is one of the largest and most complex dendritic canyon systems in European waters. Its 

morphology influenced by existing NNW-SSE trending fault systems, older buried canyons 

and natural depressions within the seafloor (Cunningham et al., 2005). The Celtic spurs and 

canyons are associated with the Grande Sole and Petite Sole submarine drainage basins. 

Both drainage areas feed the Celtic deep-sea fan via the Whittard and Shamrock Canyons 

(Bourillet et al., 2006).  

Extending from the upper slope down to abyssal depths, the Whittard Canyon has four main 

V-shaped branches that converge downslope, connecting the shelf at 180-200m with the 

broad, flatbottomed, U-shaped Whittard Channel, that then flows out to the Celtic Fan 

3600-4400m (Reid and Hamilton, 1990; Duineveld et al., 2001; Amaro et al., 2015) (Figure 

1.2 main map). The orientation of the canyon branches at the shelf edge is primarily NNW-

SSE and NNE-SSW with canyon slope angles rising to 40°, or potentially more, within the 

canyon head and flanks, forming cliffs and overhang features (Cunningham et al., 2005; 

Huvenne et al., 2011; Robert et al., 2015).  

The upper flanks are characterised by complex gully networks, numerous headwall scars 

from slumps and slope failures which result from gravity-driven flows that widened the 

canyon through retrogressive canyon wall failure (Amaro et al., 2015). Due to the distance 

from land, the Whittard Canyon has reduced sediment input from fluvial processes. 

However, significant off-shelf sediment fluxes have been recorded. This is due to high 

overlying pelagic productivity and complex hydrological processes such as boundary 

currents and internal waves that generate sediment-laden nepheloid layers (Figure 1:3)  

(Morris et al., 2013a; Sharples et al., 2013; Wilson et al., 2015c; Hall et al., 2017). The seabed 

substratum is generally mixed on the interfluves with pelagic material and reworked 
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sediments from the outer shelf and canyon margins tending to be coarse, compared to the 

alternations of fine and coarse material found in the lower reaches (Cunningham et al., 

2005; Duros et al., 2011; Stewart et al., 2014). Outcropping rocks are mainly limited to 

vertical walls, gullies and scars. To the East, reports of over 400 mini-mounds of dead cold-

water coral fragments within the Explorer and Dangeard interfluves have been found 

between 250-410m deep (Reid and Hamilton, 1990; Cunningham et al., 2005; Stewart et al., 

2014). In contrast to the morphologically diverse canyon walls, the canyon thalwegs are 

blanketed by flat areas of soft sediment (Robert et al., 2015).  

The Whittard Canyon was initiated in the Plio-Pleistocene era through headward erosion 

and retrogressive slope failure incising deeply into the underlying Miocene deltaic deposits 

and Cretaceous/Palaeocene chalks (Huvenne et al., 2011). The most recent phase of canyon 

incision occurred during several episodic sea-level low stands in the Plio-Pleistocene era 

(Bourillet et al., 2003). During this last glacial period, these canyons were linked to an active 

palaeovalley system (Bourillet et al., 2006; Toucanne et al., 2009). However, its activity is 

now reduced due to the distance from the current shoreline (Reid and Hamilton, 1990). 

Linear tidal sand ridges that developed on the outer continental shelf of the Celtic sea 

between ~ 20-12ka are proposed as sediment sources to the Celtic deep-sea fan. Due to the 

lowered sea level, rivers were connected to the Grande Sole and the Petite Sole drainage 

basins, resulting in multiple terrestrial sediment sources to the Celtic deep-sea fan at this 

time (Bourillet et al., 2003). Furthermore, with deglaciation of the British and European ice-

sheets (~ 20-12ka) there was a significant eustatic change within the Grande Sole Basin, and 

hence the Whittard Canyon. It is suspected, with glacial-hydrostatic uplift of the British Isles, 

that this terrigenous input was prolonged until ~7000 years ago (Jean François Bourillet et 
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al., 2003; Lambeck, 1996). However, recent hydrological measurements and modelling 

results suggest the upward flow of sediment transport (Cunningham et al., 2005; Bourillet et 

al., 2006; Scourse et al., 2009; Praeg et al., 2015; Amaro et al., 2016b). 
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Figure 1:2 Targeted sites where known nepheloid layers have occurred (Wilson et al., 2015). Clear stars are where no enhanced nepheloid layers where found; White stars are where dilute 
nepheloid layers were found; Yellow stars are where enhanced nepheloid layers were found. Bathymetry data from Esri, Garmin, GEBCO, NOAA, NGDC and other contributors. (Inset map) 
Sidescan sonar map of the Whittard Canyon and proximal part of the Whittard Channel and adjacent slopes, showing all the stations used for this paper. Bathymetry courtesy of the RRS James 
Cook Cruise JC35, 7-19 Jun 2009 and RRS James Cook cruise JC125 13 Aug-09 Sept 2015. Projected coordinates (WGS84).
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 Hydrological regime 

 

Lander records indicate that in the upper canyon reaches, from the shelf edge to ~2500m 

and the near-bed current regime is dominated by strong semi-diurnal tidal currents, flowing 

in both up and down canyon directions (van Weering et al., 2000; Amaro et al., 2016a). 

However, net suspended sediment transport, driven by tidal currents, generally appears to 

be in an up-canyon direction. Likewise, net water flow at deeper sites has been recorded as 

flowing in an up-canyon direction, indicating that tidal currents do not contribute to down-

canyon sediment transport (Mulder et al., 2012).  

Bottom water turbidity is often observed to rise during periods of increased current speed, 

indicating that bottom sediment is suspended and entrained by the tidal current. It has been 

noted that during current peaks, rapid horizontal particulate fluxes have reached values in 

the order of several grams m-2 s-1. At increased depth, within the main Whittard channel 

(4166m), semi-diurnal currents are weak, not exceeding 0.1-0.15m s-1, with no sign of 

resuspending bottom sediment (Amaro et al., 2015).  

 Ecosystem threats 

 

Hydrological fluxes drive nutrient changes, fueling enhanced primary productivity in surface 

waters along the Bay of Biscay (100-250gcm-2yr-1) (Vlasenko et al., 2014).  Furthermore, 

accelerated currents, due to topographic forcing, increase the organic matter flux to the 

benthos, therefore enhanced food availability is recorded at depth, compared to less active 

areas on the continental slope (Morris et al., 2013c). As a result, the canyon exhibits 

different faunal patterns from the wider NE Atlantic.  

The Whittard Canyon is associated with Vulnerable Ecosystems (VMEs) and sites of novel 
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biodiversity. Coldwater corals (CWCs) have been reported at ~500 to ~2500m in the 

Whittard Canyon (Huvenne et al., 2011; Johnson et al., 2013a; Morris et al., 2013b; Amaro 

et al., 2016b). Unique and dense assemblages of the CWC scleractinian coral Lophelia 

pertusa and giant bivalves Acesta excavata have been associated with intermediate 

nepheloid layers, that likely provide a sufficiently organically enriched food-source. A 

vertical wall, spanning 1600m, at ~1350m, within the Eastern branch has found to be 

dominated by novel L.pertusa. At depths of ~700m, in the Acesta branch, A.excavata and 

giant oysters Neopycnodonte zibrowii have been recorded.  

Due to the high primary productivity in this area, the Celtic Sea Shelf is heavily exploited for 

fishing using bottom trawls, pelagic trawls and longlines (Gerritsen and Lordan, 2014). Based 

on the last decade, the fishing intensity is variable across the Whittard Canyon (Daly et al., 

2018). Fishing intensity has been associated with the possible smoothing of the seafloor, 

particularly over steeper sloping parts of canyon interfluves (Daly et al., 2018). Trawling 

along the continental margin, east of the Whittard Canyon is seasonal, with much of fishing 

occurring between July and March, peaking in August (Sharples et al., 2013). However, due 

to the scale and complexity of the canyon, the canyon is not exploited to the degree that 

other submarine canyons, closer to coastal regions, would endure (Palanques et al., 2006). 

Furthermore, due to the technical constraints of fishing gear, slopes >20° are rarely fished 

(Daly et al., 2018 estimated 90h in 10 years).   

Nevertheless, recent work by Wilson et al. (2015) on one of the eastern branches suggests 

that human activity in the form of deep-sea trawling in the interfluves does affect material 

transport and input into the canyon.  Both benthic nepheloid layers (BNL) and intermediate 

nepheloid layers (INL) line the branches of the Whittard Canyon (Huvenne et al., 2011; 
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Johnson et al., 2013b; Wilson et al., 2015c) (Figure 1:2). These cloudy layers, thick with 

suspended particulate material, are driven by energetic hydrodynamics and act to link the 

productive shallow environments with the nutrient-depleted deep waters (Puig and 

Palanques, 1998; Wilson et al., 2015c).  In the upper region of the canyon (~700m) a dense 

assemblage or corals and large bivalves have been associated with a nepheloid layer. It is 

believed that the nepheloid layer, thick with sediment and organic matter, is transporting 

the necessary nutrients for these organisms to thrive (Johnson et al., 2013b). Figure 1:2 

illustrates that these sites were targeted to reveal a sedimentary signature of these 

occurrences. While nepheloid layers are a natural phenomenon, formed by gravity flows 

and other disturbance events, there is evidence that anthropogenic activity, such as bottom 

trawling within the Whittard Canyon, act to enhance these layers beyond the concentration 

levels that are typically observed in the region9  (~1mgL(-1)) (Wilson et al., 2015b). This may 

lead to significant disturbance of little-known natural processes, possibly affecting local 

ecosystems and carbon export and remineralisation rates, thus affecting the supply of 

energy to the benthos and the potential of carbon storage by altering carbon burial. If 

confirmed, this would be one of the rare observed cases of large-scale human impacts in the 

deep-sea, rendering the study of this system significant. 
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1.4  Data collection 
 

1.4.1 Cruise strategy 
 

Owing to the high cost of research cruises and the number of scientists often involved, 

sampling is time-restricted, and it is necessary to be flexible when having a sampling 

strategy. Unlike most fieldwork on land, it is not always possible or cost-effective, for 

sampling to be undertaken at all sites each scientist requests. Rarely will a research cruise 

have one objective, but instead various, and numerous sample types will be taken at each 

location. The three voyages (CE13008, CE14009, CE16006), discussed in this paper, aim to 

answer a range of questions that include (but are not limited to) the canyon's biology, 

hydrology, chemistry and sedimentary characteristics. The benefit of taking discrete samples 

at the same sites is that it provides a more comprehensive understanding of each location. 

Using published papers to inform this research, principal branches and sites were identified, 

suggesting that interesting mechanisms and processes were taking place.   

1.4.2 Sampling and data methods 
 

 Core retrieval 

 

A total of forty-two push cores and four mega cores, taken during three surveys, have been 

analysed (Table 1:1).  Core codes have been attributed to each sample, indicating the cruise 

name, event number, push-core tube (where available) and depth. Colours and numbers 

have been assigned to branches, where 1 and purple= Western, 2 and pink= Western 

Middle, 3 and yellow= Acesta, 4 and green= Eastern Middle, 5 and beige= Intersection, 6 and 

magenta= Eastern Middle 2, 7 and brown= Eastern, 8 and blue= Explorer and 9 and red= 

Main Channel. Thirty-three push cores were taken onboard the Celtic Explorer using the 
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mechanical arm of the remotely operated vehicle (ROV) Holland I (Figures 1:3 and 1:4). 

These short cores (10-25cm) were collected across four main branches along their axes and 

adjacent slopes of the Whittard Canyon (Northwest Atlantic Ocean) over spring and summer 

research cruises in 2014 and 2016 as part of the Ecosystem Functioning and Biodiscovery at 

Whittard Canyon program led by Dr. Martin White and Dr. Louise Allcock of the National 

University of Ireland, Galway. A further nine push cores and four mega cores were taken 

aboard the RRS James Cook vessel in 2015 as part of the CODEMAP project (Complex Deep-

sea Ecosystems: Mapping habitat heterogeneity as proxy for biodiversity), funded by the 

European Research Council and led by Dr. Veerle Huvenne of the National Oceanography 

Centre (Grant No 258482). 
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Table 1:1 Core sites targeted across 9 branches of the Whittard Canyon with longitude and latitude. Canyon branches are colour coded Purple (Western Branch), Pink (Western Middle Branch), 
Yellow (Acesta Branch), Green (Eastern Middle Branch), Cream (Intersection), Magenta (Eastern Mid 2), Brown (Eastern Branch), Blue (Explorer Canyon) and Red (Main Channel). 

BRANCH 
No. 

BRANCH 
 
 

DEPTH 
(m) 

CRUISE YEAR SAMPLE CORE CODE LONGITUDE LATITUDE 

1 Western 2740 
 

JC125 2015 JC125-083-PSH03-
2740m 
 

48.6078 
 

-11.198 
 2 Western Middle 440 CE14009 2014 CE14009-045-440m 

 
48.8864 -10.5099 

 Western Middle 719 CE14009 2014 CE14009-042-719m 
 

48.77501 -10.6415 

 Western Middle 781 CE16006 2016 CE16006-087-
PSH02-781.13m 
 

48.81914 
 

-10.556 
  Western Middle 819 CE14009 2014 CE14009-042-819m 

 
48.77501 -10.6415 

 Western Middle 1601 CE16006 2016 CE16006-081-
PSH03-1601m 
 

48.72878 -10.7748 
3 Acesta 499 JC125 2015 JC125-078-PSH02-

498.7m 
 

48.7582 -10.4558 

 Acesta 640 JC125 2015 JC125-080-PSH04-
640m 
 

48.75588 -10.4733 

 Acesta 780 CE16006 2016 CE16006-033-
PSH08-780m 
 

48.70419 -10.5277 

 Acesta 974 CE16006 2016 CE16006-084-
PSH05-974m 
 

48.71236 -10.5648 
 Acesta 974.2 CE16006 2016 CE16006-084-

PSH02-974.2m 
 

48.71236 -10.5648 

 Acesta 1130 CE14009 2014 CE14009-009-
1130m 
 

48.7089 -10.5607 

 Acesta 1487 CE14009 2014 CE14009-027-
1487m 
 

48.58651 -10.7708 

 Acesta 2816 CE14009 2014 CE14009-027-
2816m 
 

48.58651 10.7708 
4 Eastern Middle 501 CE14009 2014 CE14009-040-501m 

 
48.7379 -10.3718 

 Eastern Middle 511 CE16006 2016 CE16006-030-
PSH12-511.37m 
 

48.64928 -10.519 

 Eastern Middle 574 CE14009 2014 CE14009-012-574m 
 

48.63147 -10.4937 

 Eastern Middle 659 CE14009 2014 CE14009-030-659m 
 

48.71344 -10.5658 
 Eastern Middle 700 CE14009 2014 CE14009-030-700m 

 
48.71344 -10.5658 

 Eastern Middle 700 CE16006 2016 CE16006-030-
PSH07-700m 
 

48.64183 -10.5113 

 Eastern Middle 723 CE14009 2014 CE14009-033-723m 
 

48.72148 -10.3787 
  Eastern Middle 731 CE16006 2016 CE16006-022-

PSH06-731.38m 
 

48.65172 -10.4869 
 Eastern Middle 1095 CE14009 2014 CE14009-040-

1095m 
 

48.7379 -10.3718 

 Eastern Middle 1271 CE16006 2016 CE16006-062-
PSH07-1270.84m 
 

48.60796 -10.4993 

 Eastern Middle 1323 CE14009 2014 CE14009-012-
PSH09-1323m 
 

48.63147 -10.4937 

5 Intersection 1487 CE14009 2014 CE14009-031-
1487m 
 

48.48728 -10.3999 
 Intersection 1776 CE14009 2014 CE14009-031-

1776m 
 

48.48728 -10.3999 

 Intersection 1836  CE14009 2014 CE14009-025-
PSH12-1836m 
 

48.46718 -10.401 

 Intersection 2086 CE14009 2014 CE14009-025-
2086m 
 

48.46718 -10.401 

 Intersection 2384 CE14009 2014 CE14009-025-
2384m 

48.46718 -10.401 
6 Eastern Mid 2 1845 CE16006 2016 CE16006-056-

PSH05-1845m 
48.42784 -10.1828 

 Eastern Mid 2 1850 CE16006 2016 CE16006-056-
PSH07-1850 
 

48.42784 -10.1828 
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7 Eastern 450 CE14009 2014 CE14009-005-450m 
 

48.66627 -10.5607 

 Eastern 571 JC125 2015 JC125-109-PSH03-
570.5m 

48.73715 -10.0931 

 Eastern 571 JC125 2015 JC125-109-PSH05-
570.5m 

48.73715 -10.0931 

 Eastern 681 CE14009 2014 CE14009-005-681m 
 

48.7089 -10.5607 
 Eastern 1233 JC125 2015 JC125-111-PSH05-

1233m 
48.64067 -10.0047 

 Eastern 1298 CE16006 2016 CE16006-002-
PSH05-1297.81m 

48.6524 -10.0359 

 Eastern 1620 CE16006 2016 CE16006-042-
PSH02-1620m 

48.5746 -9.94462 
9.9446159446151 
9.9446151 

 Eastern 2979 JC125 2015 JC125-091-PSH05-
2979m 
 

48.4008 -9.9981 
8 Explorer 664 JC125 2015 JC125-101-MC-

664m 
 

48.46327 -9.63735 

 Explorer 764 JC125 2015 JC125-035-764.4m 
 

48.4376 -9.7995 

 Explorer 861 JC125 2015 JC125-076-PSH02-
861.2m 

48.46698 -9.64245 

9 Main Channel 3723 JC125 2015 JC125-045-MC-
3723m 

48.1149 -10.1994 
 Main Channel 3759 JC125 2015 JC125-028-MC-

3758m 
 

48.1054 -10.2306 

 Main Channel 4010 JC125 2015 JC125-063-MC-
4010m 
 

47.95632 -10.2239 
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Figure 1:3 (Inset) Location map of the Whittard Canyon along the Celtic Margin, Bay of Biscay. Bathymetry data from Esri, Garmin, GEBCO, NOAA, NGDC and other contributors. (Main map) 
Sidescan sonar map of the Whittard Canyon and proximal part of the Whittard Channel and adjacent slopes, showing all the stations used for this paper. Bathymetry data courtesy of Esri, 
Garmin, GEBCO, NOAA, NGDC and RRS James Cook cruise JC35, 7-19 Jun 2009 and RRS James Cook cruise JC125 13 Aug-09 Sept 2015. Projected coordinates (WGS84). 
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Figure 1:4 ROV Holland deployed during CE16006 (Kershaw, 2016). 

Once recovered, the Celtic Explorer samples were processed on deck, taking care to avoid 

contamination. From the sediment/water interface, the core was sliced using a sterile blade 

at 1cm intervals down to 10cm and then at 2cm intervals to the base of the core. The blade 

was washed in deionised water between slicing each section, to avoid cross-contamination 

of sediment. These sub-samples were stored in pre-combusted foil (400°C; 24h) before 

being stored in a freezer (-80°C). On return to shore, the samples were freeze-dried before 

being stored at -20°C.   

The National Oceanographic Centre (NOC), Southampton, UK, undertook initial processing 

of the push core samples, taken aboard the RRS James Cook. The samples were stored, in 

their plastic tubing, in the vessel's onboard freezer (-80°C). Additionally, mega cores of 

56mm diameter × 600mm long were taken using a multi-corer. These were not sliced 

onboard but instead stored in a freezer within their tubes at -80°C.  

Upon returning to Southampton, all push cores and mega cores were transferred to pre-

combusted foil (400°C; 24h) before being transferred, chilled by dry-ice, to Liverpool John 
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Moore's University where they were stored at (-80°C). The push core samples, partially 

thawed, every cm down to 10cm and subsequently every 2cm using the same protocol as 

described above. The mega core sampling was similar, but thaw time was generally longer 

due to the thickness of the core, and a larger knife was used to section the core every cm 

down to 10cm and subsequently every 2cm. Both push cores and mega cores were freeze-

dried for 36 hours before being stored at -20°C.   

 Methodological considerations 

 

When recovering sediment cores, it has been suggested that changes in temperature and 

pressure lead to alterations in carbon, nitrogen and oxygen compositions (Hall et al., 2007). 

While care was taken during sampling and undisturbed sediment at the seafloor was 

targeted, with minimal resuspension occurring, it is possible that the surficial sediment 

layers were disturbed during sampling. However, while this data set may contain some 

artefacts, it describes the relative differences of biochemical parameters across the 

Whittard Canyon. 

 Cruise observations and photographs 

 

During the Celtic Explorer CE16006 2016 cruise, ROV observations and photographs were 

taken to provide a context of the sites.  

 Statistical analysis 

 

Bathymetric and sample location maps were created using ArcGIS Desktop 10.6. Base map 

general bathymetric ocean data is attributed to the General Bathymetric Chart of the 

Oceans (GEBCO). 
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The Shapiro-Wilk test was used to determine normality distributions within the software 

IBM SPSS Statistics 23. Non-parametric tests were used, as all data were either non-normally 

distributed (p < 0.05) or were of sample size less than 50. 

As most of the results failed the assumption of homogeneity of variances under Levene's 

test, where results were significantly different (p >0.05), the null hypothesis was retained. 

The significant differences between mean values across all branches were determined using 

the independent samples Kruskal-Wallis (one-way ANOVA on ranks) test, before the nature 

of differences was evaluated using Dunn-Bonferroni post-hoc pairwise comparison tests. 

Non-parametric and Spearman's rank correlation tests were used to examine relationships 

between selected variables. 

Sedimentological and biogeochemical values were plotted using Ocean Data View 4.7.4 

(ODV) software, Matlab, Microsoft Excel and IBM IBM SPSS Statistics 23. Canyon branches 

are colour coded and abbreviated throughout the results as follows; Purple (Western 

Branch), Pink (Western Middle Branch), Yellow (Acesta Branch), Green (Eastern Middle 

Branch), Cream (Intersection), Magenta (Eastern Mid 2), Brown (Eastern Branch), Blue 

(Explorer Canyon) and Red (Main Channel). 

Down core grain size composition was presented as sand–silt–clay percentages and end-

member analyses were achieved using the AnalySize plugin Matlab, developed by Greig A. 

Paterson and David Heslop (2015). 

Numerical unmixing of end-member data by end-member analysis (EMA) was undertaken to 

sort grain size data into its constituent components. EMA can provide valuable insight into 

the geological processes and palaeo-environmental changes within a sample. For in-depth 
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methods, please see Chapter 3. Methods.  

Within Primer- E v7.0.13 software, principal coordinate analysis (PCoA), also known as 

multidimensional scaling, was undertaken to interpret the similarity, or dissimilarity of all 

geomorphological, sedimentological and biogeochemical parameters of mean samples 

down core. Each parameter was assigned a location on a graphical plot, in a low-

dimensional Euclidian space. Also, relationships between these variables were examined 

using the non-parametric multivariate test PERMANOVA within Primer-E v7.0.13. 

PERMANOVA compares groups of variables and tests the hypothesis that the dispersion of 

the groups is equal for all groups. A rejection of the null hypothesis means that the spread 

of the variables is different (Anderson et al., 2008). For in-depth methods, please see 

Chapter 5. Methods. 
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Chapter 2:  Geomorphology 

2.1 Canyon morphology 
 

The study of the deep-sea environment often requires the study of the processes that 

influence and shape the geomorphology of the seabed. This is because marine species are 

sensitive to their environments. For many marine organisms, depth, substrate type and 

seafloor shape dictate their presence and distribution (Harris and Baker, 2012; Di Stefano 

and Mayer, 2018; Novaczek et al., 2019). 

The irregularity of canyon topography and its influence on the hydrodynamic regime that 

often results in nutrient supply to the surface is known to enhance primary productivity in 

places (Allen and Hickey, 2010; Ryan et al., 2005). Due to the incised morphology of 

submarine canyons organic matter, lithogenic and organic material may be transported to 

the deep-sea, resulting in increased biomass and regional species diversity and richness (DE 

Leo et al., 2010; Amaro et al., 2015).  

The transportation of unconsolidated sediments both downslope and upslope, by local 

hydrodynamic regimes, has been widely observed within submarine canyons (Cunningham 

et al., 2005; Puig et al., 2014; Amaro et al., 2016a). While material found on the deep-sea 

floor is dominated by fine-grained sediment, suggestive of low energy depositional 

environments, canyon sediments have been found to have a greater range of grain sizes 

which indicates unique depositional regimes within them. Reid and Hamilton (1990) 

stressed that individual canyon morphology likely affects the hydrological regime of the 

environment, and therefore an increased/decreased potential to deposit coarser grains and 

organic matter (Amaro et al., 2016b). For example, a narrow canyon cross-section could 
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result in higher flow velocity within the channel, increasing energy and hence the ability to 

transport material. Gardner (1989) revealed that particle size in the Baltimore Canyon 

decreased along the canyon axis, with coarse and medium grain sands gradually fining out 

to silt and clays, as energy, in the form of local currents, decreased converting the regime 

from transport-dominated to depositional. However, work within the Nazaré, and Setúbal 

Canyons located at the west Iberian Margin (de Stigter et al., 2007; Arzola et al., 2008) 

revealed a more complex picture. Areas of intense deposition dominated by fine-grained 

(silt to clay grade) material, were found near areas dominated by coarser grain sediments 

indicating relatively complex depositional systems. This illustrated the small-scale 

complexity of such systems and suggested that different canyons (or parts thereof) may be 

affected by various combinations of hydro-sedimentological processes (Turnewitsch et al. 

2008; Tyler et al. 2009). While the complex topography may well be the primary causal 

factor that leads to the observed variety of depositional/erosional regimes over relatively 

small spatial scales, the sediment source further complicates matters (Rajput et al., 2016). 

Sand particles at the seafloor, need comparatively lower energy to erode, transport and 

deposit than coarser-grained gravels. However, due to the mineralogy of silt and clay, 

regardless of their fine grain size, they require a higher energy environment to erode the 

particles at the seafloor but have a lower energy requirement for transportation and 

deposition (Hjulstrom, 1939; Sundborg and Sundborg, 1956).  

As individual canyon morphology influences sedimentation in submarine canyons, recent 

studies have investigated the impact that sediment type has on canyon morphology and 

biodiversity. Carter et al. (2018) proposed that lithostratigraphic units with increased tensile 

strength, such as mud-rich carbonates, may form overhanging ledges that provide an ideal 
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environment for sessile species to inhabit. Conversely, where weaker "pure" carbonate units 

exist, undercutting and receding sections of rockwall may occur, preventing sessile 

organisms colonising.   

2.1.1 Bathymetric mapping 

 

Recent work in shallower water has signalled the importance of seafloor mapping and 

landform characterisation (Bekkby et al. 2002; Dartnell and Gardner 2004; Lundblad et al. 

2006), but there has been little work in deeper waters beyond the continental shelf. While 

flat, abyssal plains occupy approximately 28% of the global seafloor (Voelker, 2016), the 

ocean is bordered by continental margins that host approximately 9,477 submarine canyons 

(Harris et al., 2014). These canyons are some of the most geomorphological complex 

features found within the oceanic environment, with consequences that extend beyond the 

canyon, making the mapping of them essential.  

Geomorphometric digital terrain models (DTMs) are increasingly used to identify and 

quantify geomorphic features through manual expert interpretation or by way of semi-

automated or automated tools (MacMillan and Shary, 2009; Lecours et al., 2016). Accurate 

bathymetric maps and DTMs of seafloor geomorphology are not only important as they 

provide a baseline characterisation of the seafloor, but they also form a critical component 

in informing ocean management decisions and understanding marine ecosystems 

(Mountjoy and Micallef, 2018; Wölfl et al., 2019).  Land surface parameters such as slope, 

rugosity and ruggedness are useful in geomorphological interpretation. A land surface 

parameter is a continuous field of quantitative values, such as a raster image or a map, for 

the same digital elevation map extent (Pike et al., 2009). Where biological information is not 
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available, reliable geomorphometric data can be utilised by scientists to predict areas where 

organisms may or may not colonise. Slope and terrain variability are known to act as 

significant predictors in species distribution. Smoother, flatter areas may exhibit different 

seabed facies, supporting communities that differ to those on steeply sloping areas (Dartnell 

and Gardner, 2004; Lundblad et al., 2006; Wilson et al., 2007). Increasing slope angles are 

also known to have a limiting effect on fishing activity (Daly et al., 2018). 

Furthermore, where there is a high slope angle, current flow is known to become 

accelerated (Mohn and Beckmann, 2002). Seafloor mapping forms an essential tool in 

marine geo-hazard assessments, and the study of mass transport processes as high slope 

value may indicate areas at risk of failure (Rovere et al., 2014) (Rovere, Gamberi et al., 

2014). Submarine canyon landslides can trigger tsunamis and flood events, resulting in 

infrastructure damage and loss of life. Therefore it is crucial to identify the triggers and 

frequency of submarine slope failures (Deering et al., 2019; Novaczek et al., 2019).  

2.2 Aims 
 

Due to the complex nature of canyons, it is imperative to gain an improved understanding of 

the morphology of the individual core sites at a high resolution. Spatial analyses were 

performed on the high-resolution acoustic data sets acquired over past surveys 

The geomorphology of the Whittard canyon system was explored using digital elevation 

models (DEMs) and generating quantitative terrain attributes, such as vector ruggedness 

measurements (VRM), rugosity and slope analysis.  These geomorphometric measures of 

canyon topography may provide insight into slope stability, sediment and hydrodynamics. 

Furthermore, images taken at the sites, courtesy of the National University of Ireland 
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Galway (NUIG) CE16006 cruise CE16006, attempt to further aid the understanding of the 

morphology and sampling environment. The increased knowledge of canyon 

geomorphology aims to support sedimentological and biogeochemical techniques.  

2.3 Methods 
 

Bathymetric and sample location maps were created using ArcGIS Desktop 10.6. Base map 

general bathymetric ocean data is attributed to the General Bathymetric Chart of the 

Oceans (GEBCO 2019). Seabed topographic bathymetry within the Whittard Canyon was 

derived using digital elevation data provided by the NUIG, combined with high-resolution 

swath acoustic multi-beam and 30kHz TOBI (resolution 20m by 20m) side-scan sonar data 

from the National Oceanography Centre (NOCS) collected in 2009 (JC35). Hill shade was 

added to the bathymetry to present the data in a visually more effective manner. 

Canyon topography derivatives were extracted from the bathymetry using geospatial 

analyst within the geographical information systems (GIS) ARC Map software. Using the 

Benthic Terrain 3.0 Modelling Plugin developed by (Walbridge et al., 2018) 

geomorphometry scripts were run to better examine the benthic landscape characteristics. 

Terrain slope, rugosity and ruggedness were determined using the spatial analyst tool within 

ARC Map (Burrough and McDonnell, 1998; Campanyà-Llovet et al., 2018; Walbridge et al., 

2018).  This can give an indication of what the environmental features are but is by no 

means diagnostic.  

Terrain slope measurements were calculated within the Benthic Terrain Modeler 

application. The slope tool calculates the maximum difference of change in value from that 

cell to neighbouring cells of a raster in degree units. Theoretically, the tool fits a plane to the 
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z-value of a 3 x 3 (grid cell) neighbourhood around the centre cell to find the average 

gradient in the horizontal and vertical directions at each location in the surface raster. A 

single slope value of this plane is then calculated using the average maximum technique 

created by Burrough and McDonnell (1998). The direction the plane faces is the aspect of 

the central cell. Essentially, the lower the slope value, the flatter the terrain and the higher 

the slope value, the steeper the terrain. 

A non-standardised, unitless descriptor for seafloor roughness was obtained using the high-

resolution bathymetric data collected during the JC35 cruise. Within the benthic terrain 

modeller toolbox in ARC Map, rugosity values were derived using the Arc-Chord ratio (Du 

Preez, 2015). The benefits of using an ACR rugosity index is that it is simple, accurate and 

independent of data dimensionality (2-D, 3-D). Importantly, it decouples from background 

slope, using a plane of best fit, rather than a horizontal plane. Thus, it is well suited for use 

over highly complex topographical features within the Whittard Canyon. 

Terrain attributes were generated based on recommendations from Lecours et al. (2017) 

and Novaczek et al. (2019) (slope, rugosity and VRM). Using the method created by 

Sappington et al. (2007), a further non-standardised measure was derived.  This method 

accurately presents variability in aspect and slope in a single measure. Using the Vector 

Benthic Terrain Modeler 3.0 application within ARC GIS, ruggedness measure values were 

calculated for a 3-cell analysis window at 25m scale bathymetry (Hobson, 1972). Research 

has found that VRM decouples terrain ruggedness from slope better than indices such as 

land surface ruggedness index (LSRI) and terrain ruggedness index (TRI) (Sappington et al., 

2007). Rugged terrain is defined at being topographically uneven, broken, rocky or steep. 

Sappington et al. (2007) developed a robust quantitative tool using a geographic 
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information system. Unlike previous measures, that heavily relied on slope measurements, 

Sappington et al. (2007) developed a 3-dimensional vector ruggedness measure (VRM) of 

terrain based on a geomorphometry method for measuring vector dispersion. The VRM 

method effectively represents the variability in slope and aspect into one measurement. 

Vector ruggedness measure values range from 0 (no terrain variation) to 1 (complete terrain 

variation). Typical natural terrains range between 0 and 0.4 (Sappington et al., 

2007)(Sappington, Longshore and Thompson, 2007). While the vector ruggedness 

measurement proxy was initially created to predict areas well adapted for species to 

inhabit, its application is useful in better understand canyon morphology (Novaczek et al., 

2019).  

Cruise observations and photographs captured during the CE16006 cruise was used to 

support bathymetric data.  
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2.4 Results 
 

Slope analyses of the canyon branches indicate that the thalwegs and the shallower shelf 

breaks are characterised by slope angles <20° (Figure 2:1), while higher slope angles are 

observed at canyon walls and cliffs reaching 80°.  

Vector ruggedness measure highlights areas characterised by terrain variability across the 

canyon. With exception of the Intersection site (0.41 VRM), VRM at all sites are below 0.4 

(Figures 2:2 and 2:3).  

The Western Middle sites show variability in slope and ruggedness downslope. The 

uppermost site CE14009-045-440m presents the highest slope angle 40-80° and a VRM 

value of 0.12, compared to site CE16006-087-PSH02-781.13m, which is less than 10km away 

and is characteristically flat, with slope angles below 20° and a VRM value of 0.02. Cruise 

photography (Figure 2:4) and ROV observations depict a core site that is flat, sparse, with 

only a single Pennatulacea observed. 

While the resolution of maps and photography differ, the bedforms observed indicate the 

erosional, transport and depositional action of the bottom currents. ROV photography 

reflects flat and sparse areas were ruggedness values <0.05 at sites CE16006-087-PSH02-

781.13m (Western middle), CE16006-033-PSH08-780m (Acesta branch), CE16006-062-

PSH07-1270.84m and (Eastern middle) (Figure 2:4). Where ruggedness values exceed 0.05, 

observations made during the dive reflect an environment that is characterised by ripples, 

stepped edges, steep cliffs and overhangs (CE16006-056-PSH05-1845m, CE16006-056-PS07-

1845m, CE16006-002-PSH05-1297.81m and CE16006-042-PSH02-1620m). While no 

photography is available for site CE16006-084-PSH02-974.2m (Acesta branch), due to a 
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technical limitation, it was noted that this site was characterised by varying smooth and 

steep areas. A ruggedness value of 0.17 supports this. Furthermore, a large net was 

observed here along with coral and fish, indicating trawling activity in the surrounding areas, 

which has been previously noted to occur by Wilson et al. (2015). 

The Western site JC125-083-PSH03-2740m is <0.01km from slope values of 60-80°, with 

ruggedness values reaching 0.60, suggesting steep and high terrain variability close by. 

Onboard footage confirmed a nearby canyon wall which may support this. Sappington et al. 

(2007) describe typical natural terrain being less than 0.4 VRM, supporting the knowledge 

that this is indeed a highly rugged site.  
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2.4.1 Slope angle 
 

 

Figure 2:1 Map image of slope angle with areas in green greater than 20°. Slope angles of 0-20° characterise thalwegs and upper canyon reaches. Canyon walls are characterised by steeper 
slopes reaching 60-80°, calculated within ARCMAP using the Benthic Terrain Modeler 3.0 plugin. 
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2.4.2 Terrain ruggedness 
 

 Vector ruggedness measure across the Whittard Canyon 

 

Figure 2:2 Vector ruggedness measure terrain attributes calculated within ARCMAP using the Benthic Terrain Modeler 3.0 plugin. VRM values recorded in the canyon reach >0.6. 
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 Vector ruggedness measure with depth  

 
Figure 2:3 Vector ruggedness measure (VRM), as per Sappington's method (2007), for sites across all Whittard Canyon 
branches, where high-resolution bathymetry data was available. The graph highlights the variability of ruggedness across 
sites, with the highest ruggedness value observed at the Intersection (CE14009 event 25, all depths) and another large peak 
at the Eastern branch (CE16006-002-PSH05-1297.81).  The lowest reading was recorded within the main channel at 4010m 
(JC126-063-MC-4010m) indicating lowest variability in terrain. R-squared linear correlation coefficient on analysis revealed 
no significant linear relationship between depth and vector ruggedness measure.   
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2.4.3 Cruise photography and observations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) (B) (C) (D) 

(E) (G) (H) (F) 

Figure 2:4 ROV photography and shipboard observations: (A) Western Middle Branch: CE16006-087-PSH02-781.13m. ROV observations: flat, sparse, sea pen Pennatulacea. (B) Acesta Branch: 
CE16006-033-PSHO8-780m. ROV observations: flat, sparse. (C) Eastern Middle Branch: CE16006-022-PSH06-731.38m. ROV observations: sandy ridge, Cladorhiza sponge and Brachyura crab. 
(D) Eastern Middle 2 Branch: CE16006-056-PSH05-1845m and CE16006-056-PSH07-1845m. ROV observations: Flat area with sandy ripples. (E) Eastern Branch: CE16006-002-PSH05-
1297.81m. ROV observations: easy penetration, poor visibility. Nearby area (>0.1km) characterised by a steep bedded wall and dense coral. (F) (G) (H) Eastern Branch: CE16006-042-PSH02-
1620m. ROV observations: vertical chalky cliff, with stepped edges and overhangs before sloping out to flatter sandier area, where the core was taken. Images courtesy of CE16006 cruise. 
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2.5 Discussion 
 

While there is no clear trend in slope and ruggedness variability between the Western and 

the Eastern sides of the canyon, depth does appear to contribute to terrain ruggedness 

variability. In most deep-sea settings, below 1000m VRM rarely rises above 0.1. However, 

the results suggest it is more common to observe VRM values above 0.1 at this depth, which 

is expected as canyons are known to be highly topographically variable (Figure 2:3).  

Furthermore, slope analyses of the canyon branches indicate that the thalwegs and the 

shallower shelf breaks are characterised by slope angles <20° (Figure 2:1), while higher slope 

angles are observed at canyon walls and cliffs reaching 80° which may indicate areas of 

slope instability (Locat, 2001)   

The Eastern branch displayed the most considerable variability in VRM of all branches. 

Aslam et al. (2018) indicated that this branch exhibits the largest energy fluxes of all 

branches. The steep and heterogenic topography may focus this. This is also reflected in the 

images taken along the branch where Figures 2:4 (E-H) present a branch with highly variable 

terrain, consisting of steep bedded wall, dense coral and vertical, chalky cliffs with stepped 

edges and overhangs that flatten out to sandy areas.  
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Chapter 3:  Sedimentology 

3.1 Deep-sea sediments 
 

Deep-sea sediments, also referred to as deposits, were first systematically studied during 

the British Challenger Expedition (1872-1876). Scottish naturalist John Murray was 

responsible for the study of thousands of samples. Alongside his coworker, Alphonse-

François Renard (1842-1903) he published a report on their findings, with much of their 

focus on sediments. Later, in the 1920s-1930s, William H. Twenhofel became one of the first 

scientists to catapult the study of sedimentation to worldwide attention (Twenhofel, 1933). 

Now recognised as Sedimentology, there is extensive knowledge of continental sediment 

and their importance in nutrient supply and carbon storage. However, due to the 

inaccessibility of the ocean, it has been problematic to study ocean sediments to the same 

degree. Though with improved technology, we now understand that deposits found on land 

and the seafloor differ significantly in their characteristics because they are exposed to 

different physical and chemical conditions.  

Ocean sediments are important to us as they provide many of the resources we use, such as 

oil and gas. However, many of these products are not renewable and can have devastating 

impacts on natural ecosystems. With increasing pressure on Earth’s resources and the 

threat of a rapidly deteriorating climate and environment, scientists are looking to oceanic 

sediments to increase understanding of their global significance. The study of these 

sediment characteristics is particularly valuable to Oceanographers, as such characteristics 

can act as extensive archives of information regarding the Earth’s past and present 

processes. Allowing scientists to unravel the mystery of the origin of these sediments and 

the complex processes that have acted to form, transport and preserve them over many 

years (Rajput et al., 2016).  
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Marine sediments originate primarily from two sources, allochthonous and autochthonous. 

Allochthonous refers to deposits not indigenous of the deposition site; contrastingly 

autochthonous refers to deposits formed in situ (Rounick et al., 1982; Pedrosa-Pàmies et al., 

2015). External allochthonous material can be in both particulate and dissolved form. It may 

be transported to the ocean as eroded terrigenous material, volcanic ash or cosmogenic 

matter before being deposited to the sea.  Autochthonous sediments, found on the deep 

ocean floor, at depths that generally exceed 3km and often hundreds of kilometres from 

continental margins, cover 55 % of the earth's surface (Douglas, 1978).   

Marine sediments can be further separated into two components: biogenic and lithogenic. 

The biogenic component primarily originates in productive surface waters, with a smaller 

contribution from the benthos (Dunlea et al., 2018). Further biogenic material may also be 

transported from the land. The biogenic segment can be divided into three main categories: 

organic material, calcium carbonate and opal-A (biogenic silica). Coccolithophores and 

foraminifera are the main contributors to calcium carbonate. Opal-A (biogenic silica) is 

comprised of siliicoflagellates, radiolarians, siliceous sponges, and occasionally includes 

terrestrially derived phytoliths and freshwater diatom inputs. The lithogenic fraction 

consists of pre-existing rock detritus (igneous, metamorphic, and sedimentary) which has 

been eroded on land before being deposited to the sea (Maslin and Swann, 2006). Organic 

matter may range from terrigenous pollen grains, wood plant fragments and marine 

macrophyte detritus, but it is not limited to this. Rowe and Staresinic (1979) estimated that 

terrestrial contribution to deep-sea sediments is low. Sediment trap data indicated that 

small planktonic particulate organic matter (POM) contributes to approximately 4g cm-2 to 

the deep-sea carbon pool annually.  
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While a range of factors influences the distribution of sediment including latitude 

dependence, the productivity of organic matter, nature of terrigenous inputs, the influence 

of large-scale eddies and climatic fluctuations, the distance from the continents is one of the 

most significant factors (Rajput et al., 2016). The contribution of external eroded continental 

landmass material contributes considerably to the sedimentation of continental margins, 

resulting in significantly higher allochthonous content in these shallow areas and 

proportionately higher pelagic autochthonous, with a lesser degree fine sand, volcanic and 

cosmogenic material accumulating at the ocean floor . Weathered continental mass and 

organic matter are transported to the oceans by fluvial, gravity, æolian or glacial movement. 

Here oceanic currents carry the eroded, fragmented rock particles and organic matter to 

different regions of the sea for deposition, depending on the particle size and strength of 

the current flow (Rajput et al., 2016). 

One of the primary controls of the pattern and texture of sediments is the rate of 

sedimentation. During a low rate of deposition, the oceanic currents have enough time to 

sort the sediment grains, leading to a uniform distribution in the deposits. Contrastingly, a 

faster rate of sedimentation may result in poorly-sorted sediment grains, resulting in 

deposits with mixed grain size fractions, e.g. sand and mud (Pinet, 2009).   

During transit, particles are subjected to varied physical (mechanical) and chemical 

alterations before deposition. There are three critical categories of load that may be 

transported; dissolved, suspended and bedload.  The dissolved material is carried in solution 

throughout the water column and includes dissolved organic matter (DOM) and nutrients, 

such as nitrogen and phosphorus, all of which support biological activity in the sea. The 

suspended load is characterised as fine-grained particulate organic matter (POM), including 
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silt and clay that remains in the water during transportation and is defined as being less 

than <0.062mm.  Sand is defined as material that is between 0.062 and 2mm and may be 

resuspended or saltated dependent on the current velocity. Coarser material, such as 

pebbles >4mm, travelling along the seafloor is described as bedload, rarely resuspending 

when a high-energy turbulent event, such as a deep-sea trawling and internal waves occur 

(Folk and Ward, 1957). 

Aggregates of both biogenic and lithogenic material create ballasts commonly referred to as 

marine snow (particles >5mm). Marine snow is important in the transport of rich organic 

matter, their large particle size contributing to increased sinking velocities.  However, fine 

material is also often observed in the deep-sea. Hemipelagic sediments, red clay, 

manganese nodules (Van Dongen et al., 2014) and biogenic ooze (such as Globigerina) are 

formed in situ conditions and are typically confined to the deep quiescent environment of 

the ocean (Douglas, 1978). Pelagic sediment is composed of very fine-grained particles that 

have less than a quarter of particles larger than >5 µm in size (Weissert, 2011). They are 

deposited from suspension to the ocean floor; however, they are not automatically found at 

depth but instead are usually located away from continental margins (Henrich and Hüneke, 

2011; Weissert, 2011). 

Previous observations have found that the sinking velocity of ocean particles is between 10 

and 150m d-1 (McDonnell and Buesseler, 2010; McDonnell, 2011). However, Lampitt (1985) 

estimated that the deep Atlantic Ocean may have much higher velocities of ~3000 m d-1, 

suggesting that processes are increasing vertical transport here, such as higher levels of 

production, high-velocity events or a combination of processes not yet fully understood. 

Previous research has found that the fluxes of ballast minerals (calcium carbonate, opal and 
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lithogenic material) and the organic carbon fluxes are correlated in the bathypelagic zones 

of the ocean, leading to the shared hypothesis that organic carbon export is directly 

controlled by the presence of ballast minerals within settling aggregates. Thus, it is 

proposed that where increased aggregate density exists and sinking velocity is higher, there 

is increased organic carbon preservation when ballast minerals are present or by the 

protection of the organic matter due to the quantitative association to ballast minerals 

(Armstrong et al., 2001; Francois et al., 2002; Klaas and Archer, 2002). Findings by Klaas and 

Archer (2002) observed that ~83% of the global particulate organic carbon fluxes were 

associated with carbonate, suggesting that carbonate is a more efficient ballast mineral 

compared to opal and terrigenous material. However, this was unsupported by a later study 

by De La Rocha et al. (2008) which found no positive correlation between calcium carbonate 

and organic matter, so doubts still exist. 

Thus, while historically the deep-sea was believed to be spatially homogenous, often 

compared to a nutrient-deprived, flat, soft-sediment desert, unable to support rich and 

varied life forms, improved sampling over the last few decades has disregarded this theory. 

Instead, species richness and diversity have been linked to large-scale variation in sediment 

grain size diversity, nutrient and oxygen availability, hydrologic conditions and catastrophic 

events. Deep-sea sediments are now recognised as being highly dynamic and closely linked 

to the biosphere at global, regional and landscape scales (Levin et al., 2001).  

3.2 Aims 
 

This studies approach aims to characterise the Whittard canyon sediments down core and 

compare them with the adjacent slopes at different points along several canyon branches, 

to acquire a more representative spatial and temporal view of the processes that operate in 
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the system.  Laser diffraction will be used to determine the particle size of sediment <2mm 

in diameter. 

In addition, a robust statistical approach will be undertaken in an attempt to identify and 

quantify generic sediment transport processes and palaeo-environmental changes from 

grain size distributions of sedimentary core data (Weltje, 1997; Paterson and Heslop, 2015; 

Yu et al., 2016; Jiang et al., 2017). Within the software MATLAB, the Analysize plugin 

developed by Paterson and Heslop (2015), powerful unmixing techniques and several 

routine methods for quantifying grain size data, will be performed to understand better the 

extensive grain size data set. These include vector ruggedness measurements (VRM), End-

member Analysis (EMA) and C (one percentile of the grain size) and M (the median) plots.  

The combined analyses of the canyon sediments will be done to evaluate the role of the 

system in transporting material from the upper reaches of the ocean to the abyss and its 

potential for carbon burial. 

3.3 Methods 
 

3.3.1 Grain size distribution analysis 
 

One of the most popular tests undertaken for the study of soil and sediments in geological 

investigations is that of particle, or grain size distribution (GSD) analysis (Folk and Ward, 

1957; Passega and Byramjee, 1969; Martín et al., 2014). Particle size distribution is an 

essential aspect of the oceanic system and its study can create an understanding of the  

palaeoenvironmental environment, sedimentary processes and depositional conditions. The 

behaviour of particles is governed mainly by their size, density and shape and it is these 

physical characteristics that ultimately affect the erosion, transportation and deposition of 
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material (Passega, 2003; Blott et al., 2004; McCave and Syvitski, 2010).  

I. Sediment sample preparation 

 

As particles did not exceed 2mm, it was not necessary to sieve material prior to analysis. 

Due to the very low organic matter (>2%) (OM) contents of the samples, OM removal was 

not necessary prior to analysis. Using the laser diffraction method, a Beckman Coulter 

LS13320 Laser Diffraction Particle Size Analyser was used to determine the granulometric 

properties of particles ranging between 0.04µm to 2mm. 

II. Instrument operation 

 

Laser diffraction analysis technologies were developed in the 1970s (Agrawal et al., 2010). 

The technology is based on the principle that when a laser beam is passed through a 

sediment suspended in a fluid smaller particles scatter a parallel beam of monochromatic 

light at specific intensities and higher angles than larger particles (Cheetham et al., 2008). 

The method is fast, automated, reproducible and non-destructive, allowing for a large 

number of samples to be run and a statistically significant data spread to be achieved (Blott 

et al., 2004; Switzer and Pile, 2015).  

Approximately 0.5g of each cm core section was run five times; this was done to ensure that 

aggregates were broken down and accurate particle size was measured. The data collected 

from the first four runs was discarded. No significant flocculation of particles was observed 

due to the low organic content. Flocculation is known to be one of the fundamental 

processes for determining the size, settling velocity, and deposition rate of fine-grained 

cohesive sediment particles in marine environments (Fettweis et al., 2012; Lee et al., 2014). 
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3.3.2  Statistical analysis 
 

The raw data retrieved from the Beckman Coulter LS13320 Analyser was put into the 

GRADISTAT macro for Excel (Blott and Pye, 1986). Descriptive statistics such as mean, mode, 

sorting (ϬG), skewness (SKG) and kurtosis (KG) were calculated arithmetically and 

geometrically (metric units) and logarithmically (phi units) using moment and Folk and Ward 

graphical methods (Blott and Pye, 2001). 

In the early 1900s, Chester Wentworth devised a solution to standardise the analysis of 

clastic sediments using the phi scale (Wentworth, 1922). Method evaluation by Blott and 

Pye (2001) identified that the Folk and Ward measures (in metric units) appeared to provide 

the most robust foundation for comparing variable sediments routinely, particularly where 

data is non-normally distributed and polymodal, as is the case in this study area.  However, 

there are still limitations when interpreting multimodal distributions using descriptive 

moments (Folk and Ward, 1957; Blott and Pye, 2001).  

All statistics were expressed with standard deviation to express value dispersion. Of the 

descriptive statistics recorded, sorting indicates the fluctuation in the amount of kinetic 

energy and the depositional regime on grain size characteristics. Skewness measures the 

degree of particle distribution asymmetry. The skewness for a normal distribution is zero, 

positive values (skewed left) indicate skewness towards finer grain sizes, while negative 

values (skewed right) indicate skewness towards coarser material (Pedrosa-Pàmies et al., 

2015). Kurtosis measures the “peakedness” of grain size frequency curves and the degree of 

outliers from the normal distribution. General forms of kurtosis are as follows; leptokurtic 

(positive) mesokurtic (normal) and platykurtic (negative). The term leptokurtic refers to a 

statistical distribution where excess kurtosis values are positive, therefore resulting in a 
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higher probability of extreme positive or negative outliers. Mesokurtic refers to a 

distribution that is close to or the same as the normal distribution. Lastly, the term 

platykurtic refers to a statistical distribution where excess kurtosis values are negative, 

therefore resulting in fewer extreme positive or negative outliers (Folk and Ward, 1957; 

Blott and Pye, 2001; Rajganapathi et al., 2013).   

Down core (0-10cm) descriptive statistics, including mean and standard deviation, were 

generated using IBM SPSS Statistics 23.  Within this software, normality distributions were 

identified using the Shapiro-Wilk test. All granulometric data was either non-normally 

distributed (p < 0.05) or of small sample size, so nonparametric tests were used. Comparison 

of mean values were determined using IBM SPSS Statistics 23. For independent samples, the 

non-parametric Kruskal-Wallis (one-way ANOVA on ranks) test was used.  

Where results failed the assumption of homogeneity of variances (p >0.05), therefore 

retaining the null hypothesis, the nature of differences was evaluated using Dunn-

Bonferroni post-hoc pairwise comparison tests.  

Non-parametric Spearman's rank correlation test was used to examine relationships 

between the data sets for further information; please refer to Chapter 1: Methods. 

Surficial and average down core sedimentary parameters plots (grain size, sorting, skewness 

and kurtosis) were created using Ocean Data View 4.7.4 software (ODV) © 2016 Reiner 

Schlitzer, for further information, please refer to Chapter 1: Methods. 

Down core grain size composition was presented as sand–silt–clay percentages using the 

AnalySize plugin in Matlab. 
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CM patterns were explored to better understand the relationship between the depositional 

environment and the hydrodynamic conditions of the Whittard Canyon sediments (Passega, 

1957, 1964). C (coarse one percentile in micron of the grain size) and M (the median value in 

micron) values were obtained from phi values of the C and M from cumulative frequency 

curves. These values were plotted on a lognormal probability plot with the help of the 

AnalySize package in Matlab. As per Passega's methodology, the CM pattern is divided into 

five segments to determine the depositional mechanisms – 1: rolling; 2: bottom suspension 

and rolling; 3: graded suspension no rolling; 4: uniform suspension and 5: pelagic 

suspension. Further to this, the CM pattern was used to establish the sedimentary sub-

environment-1: pelagic; 2: tills; 3: river-terrace gravel; 4: tractive current and 5: beach. 

Grain size data, composing of all core sections (320 samples), generated by the Beckman 

Coulter LS13320 Laser Diffraction Particle Size Analyser was reanalysed using the AnalySize 

plugin within software Matlab. Upon generating end-members, the linear correlation chart 

between multiple correlation coefficient (R2) and end-member numbers was examined for 

the goodness of fit. A high R2 value is required along with a low theta value, as this indicates 

that the model has not altered the particle size data to apply fit significantly. Further to this, 

a low-end-member similarity (EM R2) is preferred as it suggests that the model is not 

overfitting the data.  

Mean surficial and down core sedimentological values (µm, ϬG, SKG and KG) were plotted 

using ODV software, for more information refer to Chapter 1: Methods. 
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3.4 Results 
 

3.4.1 Granulometric properties  
 

The largest down core mean grain size, very fine sand, was observed at the Eastern site 

CE14009-005-450m (122.10 ± 11.45µm). The smallest deposits, very fine silt, were found at 

the Explorer site JC125-076-PSH02-861.2m (5.66 ± 1.07µm) (Table 3:1). 

Surficial sediments mainly consisted of fine particles, with grain size generally less than 60 

µm (Φ 4, silt) in the upper 1cm (Figure 3:1). Very fine sand and silt was observed at the 

Eastern branch CE14009-005-450 (Φ4 to Φ3, 111.56µm). Fine to medium sand was 

observed at the Eastern Middle 2 site CE16006-056-PSH05-1845m (Φ3 to Φ2, 187.67µm). 

This coarser sandy material is present down core to 2cm before it fines out to silts. 

However, at the same site, a mean GS reading of 19.9µm was also recorded, highlighting 

variability within sites. The largest range was observed at Eastern Middle 2 and Eastern 

branches.  

One-way ANOVA on ranks analysis indicated that there was a significant spatial change in 

the surficial grain size distribution across branches (p = 0.038). The Dunn-Bonferonni post-

hoc test revealed that there was a significant difference in mean grain size between most 

branches and the Eastern Middle 2 branch, excluding the Western and Eastern branches. 

Western Middle and Eastern Middle 2 branch (p =0.045), Acesta and Eastern Middle 2 

branch (p = 0.026), Eastern Middle Branch and Eastern Middle 2 branch (p =0.036), 

Intersection and Eastern Middle 2 branch (p = 0.020), Explorer and Eastern Middle 2 branch 

(p =0.021), and Main Channel (p =0.010). One-way ANOVA on ranks analysis showed that 

there was no significant spatial change in the down core grain size distribution across 
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branches (p < 0.05). 

Mean down core sorting values reveal that all samples range between very poorly sorted 

(2.00-4.00ϬG) and extremely poorly sorted (>4.00ϬG) (Figure 3:2). The Eastern Middle site 

CE16006-030-PSH07-700m is the most well-sorted (2.02ϬG). However, it is still considered 

very poorly sorted by Folk and Ward. The most poorly sorted site was the Explorer site 

JC125-076-PSH02-861.2m (5.66ϬG). One-way ANOVA on ranks analysis showed that there 

was a significant spatial change in the surficial sorting across branches (p = 0.043). As a 

result of a significant spatial change across branches being recognized further analysis was 

undertaken to explore this further. Dunn-Bonferroni Post-hoc analysis revealed that there 

was no significant difference in sorting at the Eastern Middle 2 branch compared to all 

branches (p > 0.05), the Eastern branch only differed significantly from the Main channel (p 

> 0.24).  Significant difference in sorting were observed between the Western and Western 

Middle branches (p = 0.007), Western and Intersection (p = 0.041), Western and Main 

Channel (p = 0.004), Western Middle and Eastern Branch (p = 0.043), Western Middle and 

Explorer Branch (p = 0.034), Acesta and Main Channel (p = 0.029), and Explorer and Main 

Channel (p = 0.017).  

Most sites, except for two (Eastern CE14009-005-681m and Explorer JC125-076-PSH02-

861.2m), were negatively and very negatively skewed (-0.3 to-1SKG) (Figure 3:3). The Eastern 

CE14009-005-681m and Explorer site JC125-076-PSH02-861.2m site recorded down core 

skewness measures that were nearly symmetrical (-0.01 ± 0.03 and -0.08 ± 0.02 SKG). One-

way ANOVA on ranks analysis showed that there was no significant spatial change in 

surficial sorting across branches (p < 0.05).    

Mean down core kurtosis values recorded at most sites were mesokurtic and not especially 
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peaked (Figure 3:4). However, some sites displayed large kurtosis values and were very 

highly peaked. These sites include sites: Western JC125-083-PSH03-2740m (1.88 ± 0.15KG), 

Western Middle CE16006-081-PSH03-1601m (1.64 ± 0.83KG), Eastern Middle 2 CE16006-

056-PSH05-1845m (1.91 ± 1.12KG) and the Eastern branch site CE14009-005-450m (1.88 ± 

0.15KG). One-way ANOVA on ranks analysis showed that there was no significant spatial 

change in the surficial kurtosis across branches (p < 0.05).    

Grain size revealed both positive and negative correlations when compared to other 

variables. A high negative correlation with skewness (rs [48] = -0.651, p = 0.000), moderate 

positive correlation with kurtosis (rs [48] = 0.320, p = 0.030). Mean down core grain size was 

found to be negatively correlated with sorting (rs [48] =-0.404, p = 0.005) and negatively 

correlated with skewness (rs [48] = -0.732, p = 0.000). Mean down core grain size was 

positively correlated with kurtosis (rs [48] = 0.439, p = 0.002).  

Skewness was negatively correlated with kurtosis (rs [48] = -0.362, p = 0.013). Kurtosis 

negatively correlated with sorting (rs [48] = -0.651, p = 0.000). Sorting positively correlated 

with skewness (rs [48] = -.424, p = 0.003). 

Relationships between sedimentological characteristics and depth were also explored. A 

minor positive correlation between kurtosis and depth was recorded (rs [48] = 0.296, p = 

0.046). Furthermore, surficial grain size negatively correlated with depth (rs [48] = -0.322, p 

= 0.029). 
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Table 3:1 Down core mean values with standard deviations of granulometric properties of particles from 9 branches of the Whittard Canyon. Canyon branches are colour coded Purple 
(Western Branch), Pink (Western Middle Branch), Yellow (Acesta Branch), Green (Eastern Middle Branch), Cream (Intersection), Magenta (Eastern Mid 2), Brown (Eastern Branch), Blue 
(Explorer Canyon) and Red (Main Channel). N = number of sections, where 10 where not met. 

BRANCH 
 
 

DEPTH 
(m) 

CORE SURFICIAL 
GRAIN SIZE (µm)  

DOWN CORE 
MEAN 
GRAIN SIZE (µm)  

DOWN CORE  
SORTING  
(ϬG) 

DOWN CORE 
SKEWNESS 
(SKG) 

DOWN CORE 
KURTOSIS (KG) 
 
 

Western 2740 
 

JC125-083-PSH03-
2740m 
 

52.72 35.40 ± 18.91 4.35 ± 0.42 -0.46 ± 0.25 1.88 ± 0.15 

Western Middle 440 CE14009-045-440m 
 

44.48 53.23 ± 6.93 3.41 ± 0.21 -0.52 ± 0.05 N9 1.12 ± 0.11 N9 

Western Middle 719 CE14009-042-719m 
 

18.95 20.43 ± 1.11 3.38 ± 0.08 -0.33 ± 0.03 1.06 ± 0.03 

Western Middle 781 CE16006-087-PSH02-
781.13m 
 

26.38 26.21 ± 1.58 3.60 ± 0.07 -0.38 ± 0.33 1.00 ± 0.02 
Western Middle 819 CE14009-042-819m 

 
35.02 35.39 ± 6.32 3.88 ± 0.15 -0.34 ± 0.09 0.97 ± 0.03 

Western Middle 1601 CE16006-081-PSH03-
1601m 
 

49.23 67.02 ± 41.13 3.11 ± 1.02 -0.52 ± 0.17 1.64 ± 0.83 

Acesta 499 JC125-078-PSH02-
498.7m 
 

46.27 24.739 ± 14.35 4.65 ± 0.45 -0.39 ± 0.26 0.83 ± 0.07 

Acesta 640 JC125-080-PSH04-
640m 
 

34.62 28.68 ± 4.12 3.90 ± 0.11 -0.47 ± 0.10 N7 0.83 ± 0.03 N7 
Acesta 780 CE16006-033-PSH08-

780m 
 

19.42 17.37 ± 2.16 N5 4.12 ± 0.34 N5 -0.21 ± 0.03 N5 1.06 ± 0.03 

Acesta 974 CE16006-084-PSH05-
974m 
 

21.56 59.91 ± 68.88 N9 3.41 ± 0.40 -0.36 ± 0.18 N7 1.00 ± 0.09 n7 

Acesta 974.2 CE16006-084-PSH02-
974.2m 
 

24.69 27.27 ± 4.07 N7 3.73 ± 0.11 -0.36 ± 0.10 1.03 ± 0.03 N10 

Acesta 1130 CE14009-009-1130m 
 

29.06 31.87 ± 3.79 3.38 ± 0.07 -0.44 ± 0.44 1.03 ± 0.04 
Acesta 1487 CE14009-027-1487m 

 
21.57 18.63 ± 1.39 3.43 ± 0.07 

 
-0.32 ± 0.12 1.12 ± 0.03 

Acesta 2816 CE14009-027-2816m 
 

38.29 47.88 ± 28.15 3.45 ± 0.63 -0.44 ± 0.15 1.18 ± 0.53 n9 

Eastern Middle 501 CE14009-040-501m 
 

41.91 45.16 ± 1.70 3.24 ± 0.06 -0.41± 0.02 1.17 ± 0.03 

Eastern Middle 511 CE16006-030-PSH12-
511.37m 
 

47.44 37.11± 17.26 4.05 ± 0.47 -0.41 ± 0.18 1.01 ± 0.15 
Eastern Middle 574 CE14009-012-574m 

 
30.25 44.73 ± 18.79 3.19 ± 0.46 -0.40 ± 0.08 1.29 ± 0.34 

Eastern Middle 659 CE14009-030-659m 
 

24.34 21.85 ± 1.64 3.67 ± 0.11 -0.30 ± 0.01 
 

1.00 ± 0.03 

Eastern Middle 700 CE14009-030-700m 
 

34.58 27.77 ± 2.52 3.73 ± 0.12 -0.25 ± 0.04 
 

1.00 ± 0.08 

Eastern Middle 700 CE16006-030-PSH07-
700m 
 

31.62 23.22 ± 5.10  2.02 ± 0.32 -0.35 ± 0.02 
 

1.01 ± 0.03 
Eastern Middle 723 CE14009-033-723m 

 
30.19 48.93 ± 23.76 3.16 ± 0.58 -0.36 ± 0.05 

 
1.26 ± 0.31 

Eastern Middle 731 CE16006-022-PSH06-
731.38m 
 

21.49 21.20 ± 1.68 3.84 ± 0.12 -0.27 ± 0.02 
 

1.06 ± 0.04 

Eastern Middle 1095 CE14009-040-1095m 
 

48.69 27.86 ± 15.89 3.67 ± 0.50 -0.30 ± 0.13 
 

1.09 ± 0.12 

Eastern Middle 1271 CE16006-062-PSH07-
1270.84m 
 

23.51 22.68 ± 1.55 3.99 ± 0.17 -0.23 ± 0.01 1.03 ± 0.05 
Eastern Middle 1323 CE14009-012-PSH09-

1323m 
 

60.25 64.68 ± 13.20 4.20 ± 0.40 -0.31 ± 0.08 1.14 ± 0.08 

Intersection 1487 CE14009-031-1487m 
 

21.75 21.42 ± 1.50 3.64 ± 0.11 -0.28 ± 0.02 1.01 ± 0.06 

Intersection 1776 CE14009-031-1776m 
 

20.43 20.01 ± 1.36 3.53 ± 0.12 -0.29 ± 0.03 1.09 ± .003 

Intersection 1836  CE14009-025-PSH12-
1836m 
 

24.73 22.91 ± 3.78 3.50 ± 0.16 -0.33 ± 0.04 1.06 ± 0.04 
Intersection 2086 CE14009-025-2086m 

 
24.48 26.70 ± 5.40 3.61 ± 0.19 -0.30 ± 0.18 1.06 ± .0.03 

Intersection 2384 CE14009-025-2384m 36.95 48.02 ± 8.63 3.54 ± 0.19 -0.51 ± 0.06 1.10 ± .0.07 

Eastern Mid 2 1845 CE16006-056-PSH05-
1845m 

187.67 57.11 ± 72.08 3.43 ± 0.85 -0.38 ± 0.17 1.91 ± 1.12 
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Eastern Mid 2 1850 CE16006-056-PSH07-
1850 
 

19.91 20.10 ± 3.97 3.83 ± 0.20 -0.27 ± 0.07 1.02 ± 0.09 

Eastern 450 CE14009-005-450m 
 

111.56 122.10 ± 11.45 
± 14.48 

2.61 ± 0.21 -0.48 ± 0.03 1.88 ± 0.15 

Eastern 571 JC125-109-PSH03-
570.5m 

33.68 43.02 ± 7.87 3.79 ± 0.18 -0.60 ± 0.08 

0.03765 
 

1.07 ± 0.19 

Eastern 571 JC125-109-PSH05-
570.5m 

27.89 36.08 ± 6.83 3.71 ± 0.17 -0.60 ± 0.08 1.07 ± 0.19 
Eastern 681 CE14009-005-681m 

 
25.04 19.18 ± 4.99 5.64 ± 0.21 -0.01 ± 0.03 

 
0.90 ± 0.09 

Eastern 1233 JC125-111-PSH05-
1233m 

21.05 18.52 ± 3.51 4.25 ± 0.19 -0.20 ± 0.07 0.85 ± 0.02 

Eastern 1298 CE16006-002-PSH05-
1297.81m 

22.75 47.93 ± 64.10 3.56 ± 0.17 -0.32 ± 0.13 
 

0.98 ± 0.03 

Eastern 1620 CE16006-042-PSH02-
1620m 

31.97 ABSENT ABSENT ABSENT ABSENT 
Eastern 2979 JC125-091-PSH05-

2979m 
 

20.55 36.68 ± 45.29 3.87 ± 0.91 -0.25 ± 0.20 
 

1.17 ± 0.57 

Explorer 664 JC125-101-MC-664m 
 

22.75 11.03 ± 4.52 3.52 ± 0.21 -0.21 ± 0.02 
 

1.18 ± 0.07 

Explorer 764 JC125-035-764.4m 
 

26.41 23.10 ± 4.54 4.24 ± 0.15 -0.41 ± 0.11 
 

0.79 ± 0.02 

Explorer 861 JC125-076-PSH02-
861.2m 

7.35 5.66 ± 1.07 5.66 ± 1.07 -0.08 ± 0.02 0.88 ± 0.01 
Main Channel 3723 JC125-045-MC-3723m 11.63 12.78 ± 2.61 3.25 ± 0.18 -0.28 ± 0.06 1.13 ± 0.08 

Main Channel 3759 JC125-028-MC-3758m 
 

18.79 28.65 ± 11.84 3.20 ± 0.18 -0.37 ± 0.11 
 

1.14 ± 0.06 

Main Channel 4010 JC125-063-MC-4010m 
 

10.07 17.22 ± 15.43 3.30 ± 0.24 -0.35 ± 0.10 1.21 ± 0.15 
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 Surficial and down core mean grain size 

 

 

 

Figure 3:1 (A, B) Surface plot and scatter diagram of the grain size of the first-centimetre section across sites. Sediments 
mainly consist of fine particles, with grain size generally less than 60 µm (Φ 4, silt). Very fine sand observed at the Eastern 
branch CE14009-005-450 (Folk and Ward Method mean MG  111.56µm (Φ 4 to 3, silt and very fine sand). Fine sand to 
medium sand observed at the Eastern Middle 2 site CE16006-056-PSH05-1845m (Φ 3 to 2, 187.67µm) However, an 
additional core was taken at the same site, recorded a surficial mean GS reading of 19.9µm. One-way ANOVA on ranks 
analysis revealed a significant spatial change in the surficial grain size distribution across the branches (p= 0.038). Most 
sites, excluding the Western and Eastern branches, significantly deviated from the mean grain size of the Eastern Middle 2 
branch. Surficial grain size negatively correlated with depth (rs [48] = -0.322, p = 0.029). (C, D) Surface plot and scatter 
diagram of mean grain size down core across sites. Sediments mainly consist of fine particles, with the grain size generally 
less than 60 µm (Φ 4, silt). However, at the Eastern branch CE14009-005-450, an average down core particle size of 
112.11µm was recorded. Numbers are events. 
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 Down core mean sorting 
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Figure 3:2 (A) Surface plot of down core mean sorting across sites. Sediments consist of very poorly and extremely poorly sorted 

sediments, within the range of 2-6 σG. (B) Scatter diagram of the range of mean down core sorting across all branches with depth. 

The largest ranges observed at the Acesta and Eastern branches. The most poorly sorted site was within the Explorer branch. The 
most sorted, yet still classified as poorly sorted was within the Eastern branch. R-squared linear correlation coefficient revealed no 
significant linear relationship between depth and sorting. One-way ANOVA on ranks analysis showed that there was a significant 
difference in sorting across the branches (p = 0.43). Dunn-Bonferroni post-hoc analysis revealed that there was a significant 
difference in sorting between some branches. Numbers are events. 
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 Down core mean skewness 
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Figure 3:3 (A) Surface plot of down core mean skewness across sites. Sediments mainly consist of negatively skewed sediments. (B) 
The most positively skewed site was in the Eastern sites JC125-109-PSH03-570.5m and PSH05 (-0.6 SKG). However, at the Eastern 
branch CE14009-005-681, an average down core of near-symmetrical skewness of -0.01 SKG was also recorded. Scatter chart of the 
range of mean down core skewness across all branches. Largest range observed at the Eastern branch.  R-squared linear correlation 
coefficient analysis revealed no significant linear relationship between depth and skewness. One-way ANOVA on ranks analysis 
showed that there was no significant difference in sorting across the branches (p > 0.05). Numbers are events. 
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 Down core mean kurtosis 
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Figure 3:4 (A) Surface plot of down core mean kurtosis across sites. Mesokurtic sediments, not especially peaked or "normal" (0.9-
0.11KG) and leptokurtic and very leptokurtic, highly peaked, sediments (1.11->1.50) were observed across most sites. However, some 
platykurtic, flat peaked, values were observed within the Explorer, Acesta and Eastern branches.  (B) Scatter diagram of the range of 
mean down core kurtosis across all branches. Largest range observed at the Eastern branch. R-squared linear correlation coefficient 
on analysis revealed no significant linear relationship between depth and kurtosis, however Spearman’s rank analysis did reveal a 
minor positive relationship (rs [48] = 0.296, p = 0.046). One-way ANOVA on ranks analysis showed that there was no significant 
difference in sorting across the branches (p > 0.05). Numbers are events. 
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 Clast percentages 

 

The down core grain size variation is presented in Figure 3:5 as sand–silt–clay percentages. 

All cores displayed a minimum of three grain-size modes (e.g. Western branch JC125-083-

PSH03-2740m) however, within some sections bi-modal distributions were observed (e.g. 

Main Channel JC125-045-MC-3723m 2-3cm). The presence of these distinctive polymodal 

grain-size modes in the samples is consistent with changing modes of deposition and the 

contribution of different material over time. The populations are partitioned as follows, fine 

sand (A), silt (B) and clay (C). Sediments from the upper reaches, down to 500m, were 

dominated by silty sand (>50%). Beyond this, excluding the Explorer canyon and the Main 

Channel, fine sand and silt continue to dominate the sites to depths of 2816m. The Explorer 

branch of the canyon had the most considerable clay fraction of the sites analysed (~ 40%). 

Within the Explorer site JC125-076-PSH02-861.2m, the sand fraction was observed in the 

first three-centimetre sections, before a bimodal signature was observed. While sand 

depletes beyond 2816m, silt continues to dominate to the lower reaches of the canyon.  

However, within the main channel, at depths exceeding 3500m coarse sand punctuates the 

core profile.  
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Figure 3.5. Area plots i llustrating down core grain size fraction variation across 

branches of the Whittard canyon. The presence of polymodal grain -size 

distributions in the samples is consistent with changing modes of deposition 

and input type over time. 
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Figure 3:5 Mean down core total sand–silt–clay percentages of sites across nine branches of the Whittard Canyon. Where blue is 
clay, red is silt and yellow is sand. 
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 Passega diagram 

 

Plots between C (coarse one percentile in microns) and M (median value in microns) 

obtained from phi values of the C and M from the cumulative frequency curves, are plotted 

on the lognormal probability plots. The Whittard Canyon samples fall within graded 

suspension no rolling to uniform and pelagic suspension in the pelagic and tractive current 

sub environments (Figure 3:6). 
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Figure 3:6 CM plot indicating depositional mechanisms and sedimentary sub environments. Numbers indicate mechanisms and sub environments 1= rolling and beach 
deposits 2= bottom suspension and rolling tractive current deposits 3= graded suspension, no rolling, river-terrace gravel 4= uniform suspension of tills 5= pelagic 
suspension and pelagic. All sediments fall within graded, uniform suspension of tills and pelagic suspension hydrological conditions (Passega, 1957, 1964). 
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3.4.2 End-member analysis 
 

The linear correlation chart between multiple correlation coefficient (R2) and end-member 

numbers (Figure 3:7A), end-member (EM) modelling improved greatly from three to four 

end-members but changed less between four to five end-members. A high R2 value of 

0.9443 suggested that four end-members explain the particle size distribution well. A low 

theta value (11.4102), indicates that the model has not altered the particle size data to 

apply fit significantly and there is a low-end-member similarity (0.0135 EM R2) suggesting 

that the model is not overfitting the data. This combined information suggests that four 

end-members may explain the data set well. EM 1 (blue) peaked between 1-3 (phi units), 

EM 2 (orange) peaked between 3 and 4 (phi units), EM 3 (yellow) peaked between 4 and 

5(phi units), and EM 4 (purple) peaked between 5 and 6 (phi units) (Figure 3:7B). 

 

Figure 3:7 (A) Linear correlation map between the multiple correlation coefficient (R2) of end-members (B) Four selected 
end-members. 
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The end-members were superimposed over multi-specimen plots for all samples, and each 

branch (Figure 3:8). End-members 1 (blue) and 3 (yellow) appear to fit the Western branch 

best indicating that there are two main processes or sources occurring within this branch 

(Figure 3:8B). End-member three accounts for the largest fractional abundance at the 

Western site and EM 4 appears absent. While all end-members fit the Western Middle 

branch, it appears to be influenced less from EM 1 (blue) and EM 3 (yellow) and instead EM 

2 (orange) and EM 4 (purple) appear to explain the majority of variability observed here 

(Figure 3:8C).  The Acesta branch reflects a broader spread of end-member data, with end-

members 3 and 4 accounting for the largest abundance (Figure 3:8D). The Eastern Middle 

branch has the first noticeable pulse of coarser material observed from West to East; this is 

associated with EM 4 (purple).  EM 3 (yellow) accounts for the largest fractional abundance 

at the Intersection site. End-member 1 (blue) represents the lowest fractional abundance 

(Figure 3:8E). The Eastern Middle 2 and Eastern branch sites reflect all end-members. 

However, a sizeable fractional abundance of coarser material between 0-2Φ is seen, 

attributed to EM 4 (purple) (Figures 3:8F and 3:8G).  The Explorer branch is unlike all sites, 

EM 1 (blue) and EM 2 (orange) appear to be responsible for the large fraction of smaller 

grain sizes observed.  EM 2 reflects grain sizes of fractional abundances exceeding 14%. 

There is an absence of EM 4 at the Explorer branch and main channel (Figures 3:8H and 

3:8I).  
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Figure 3:8 (A-J) Four end-members superimposed over multi-specimen grain size distribution plots across all branches. An R2 
value of 0.9443, Theta value of 11.4102, and EM R2 0.0135 indicates goodness of fit and reduced likeliness of overfitting 
data. EM 1 (blue) signifies pelagic deposition, EM 2 (orange) is indicative of the silt population, EM 3 (yellow) is indicative of 
the coarser, sand population and EM 4 (blue), seen at some branches, indicates extreme events, such as gravity flows, 
responsible for distributing coarse material like turbiditic sediments as discussed by Amaro et al. 2015. A= All branches, B= 
Western, C= Western Middle, D= Acesta, E= Eastern Middle, F= Intersection, G= Eastern Middle 2, H= Eastern, I= Explorer, J= 
Main Channel. 
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3.5 Discussion 
 

Within the upper reaches of the canyon, to depths of ~500m, structureless alternating 

patterns composed of silt and very fine sand dominate the core profiles.  Very fine sand, the 

largest fraction mean down core, was observed at the Eastern site (CE14009-005-450m) 

indicating spillover of shelf-derived material. Variability in grain sizes was observed well at 

the Eastern Middle 2 branch, both fine and coarse sediment was recorded in surficial 

sediment of two cores. Sandy coarse material is present down core to 2 cm within core 

CE16006-056-PSH05-1845m, indicating another event where shelf-derived material may 

have been deposited.   

While, surficial sediments mainly consist of fine silty particles, indicating that coarse 

material is not transported due to reduced hydrological energy, the finest material, very fine 

clay, was observed at the Explorer site JC125-076-PSH02-861.2m indicating quiescent 

conditions (Deacon, 1964). Furthermore, where the Western branch is characterised by 

smooth sloping topography, lower velocity bottom currents and increased microphagous 

feeders typical of quiescent environments (Amaro et al., 2016b; Aslam et al., 2018). Coarse 

material is notably absent from the Western sample site, indicating insufficient energy levels 

to transport larger particle sizes.  

One-way ANOVA on ranks analysis did not have enough evidence to reject the null 

hypothesis that the grain size means significantly differ across sites. However, while this 

may be the case, increasing the power of the test by increasing the sample size or improving 

the process may improve testing in the future (Holcomb et al., 2018).  Surficial grain size 

negatively correlated with depth, indicating that with increasing depth, grain size becomes 

smaller. This is in agreement with an early model of ocean sedimentology, where the energy 
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of the ocean currents decrease with depth and therefore smaller particles may settle to the 

less energetic seafloor (Johnson et al., 1977; Karl, 2006).  

All sites targeted displayed, on average, poorly sorted sediments down core, signifying a 

large variance in grain size. Thus, indicating that the energy, rate or sediment source 

responsible for the deposition of sediment differs over time. It also suggests that the 

sediment has been deposited close to the source area, i.e. it has not undergone sorting 

during a long period of transportation (Middleton, 1962; Blott and Pye, 2001). A Spearman’s 

rank test found that as grain size increased, sorting values decreased. This may support the 

idea that coarser material has been transported quickly, resulting in poorly sorted material.  

While, all sites are poorly sorted, hotspots of poor sorting appear on the outer flanks of the 

canyon system. This indicates that the energy regime and sources at these locations are 

variable. A hotspot of very poorly sorted material is indicated within the Explorer canyon, 

indicating varying particle sizes. While the particle size is the smallest recorded (5.66 ± 

1.07µm), the mixture of both biogenic gravel, comprised of coral and shell fragment debris, 

and lithogenic material has been observed within this branch (Cunningham et al., 2005; 

Stewart et al., 2014). 

Variations of skewness and kurtosis in these sediments may be related to the mixing of two 

or more grain size populations, in varying proportions. By applying Folk and Wards 

geometric graphical measures (1957), skewness is pronounced when one population is 

dominant.  Most sites were negatively and very negatively skewed. Only two sites Eastern 

CE14009-005-681m and Explorer JC125-076-PSH02-861.2m presented near symmetrical 

down core mean skewness measures. The dominance of mesokurtic and leptokurtic nature 

of sediments indicates compositionally and mineralogically mature sands (Martins and 
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Hope, 2020). Most sands are leptokurtic in nature and are either positively or negatively 

skewed; this may be explained by the fact that most sand consists of two populations, one 

dominant population and other subordinate population. If the dominant population is finer, 

it will lead to negative skewness; if the dominant population is coarse, it will lead to a 

positive skewness (Friedman, 1967). The trend towards positive skewness measures within 

the surficial section of the main branches of the canyon and the westerly slope may be due 

to a more significant percentage of coarse material and less fine material (McLaren, 1981). 

This indicates the winnowing out of fine sediment, through constant wave and current 

action (Nicholas, 2003). Down core trends of negative skewness across the canyon suggest 

that the dominant fraction of material is finer, indicating reduced lithogenic input and 

coarse grain deposition.   

Mean down core kurtosis values at most sites were mesokurtic, suggesting that extreme 

outliers in much of the sites were rare. However, there is a trend towards leptokurtic 

sediments to the flanks and within the lower center of the canyon (Blott and Pye, 2001). 

Large leptokurtic kurtosis values are observed at the following sites; Western JC125-083-

PSH03-2740m, Western Middle CE16006-081-PSH03-1601m, Eastern Middle 2 CE16006-

056-PSH05-1845m, and the Eastern branch site CE14009-005-450m. This indicates that high 

energy events may have occurred, resulting in the large values observed. Mean down core 

grain size was positively correlated with kurtosis (rs [48] = .432, p = .002), supporting this 

hypothesis as extreme events may transport larger grain sizes. Some flat peaked, platykurtic 

values are observed within the Explorer, Eastern and Acesta branches, indicating that at 

these sites a normal distribution and contribution of grain sizes is present and there are less 

frequent extreme outliers. 



72 
 

Skewness was negatively correlated with kurtosis (rs [48] = -.372, p = .009). In other words, 

as a sample is closer to 0 (normally distributed), there are fewer samples with extreme 

outliers. Kurtosis was negatively correlated with sorting (rs [48] = -.546, p = .000), suggesting 

that extreme outliers resulted in poorly sorted material as one might expect.  

Most sections displayed distinct polymodal populations down core, indicating three 

distinctive sources.  These populations consist of fine sands (population A), silt (population 

B) and clay (population C). The coarser fraction, population A, with a mean of 0-4Φ, 

population B represents samples with a mean of 4-8Φ, and the finer clay population is 

represented by >8 Φ. According to the CM diagram, samples fall within graded suspension 

no rolling to uniform and pelagic suspension in the Pelagic and tractive current sub 

environments. Essentially, the largest grain size may be transported through graded 

suspension and that the finer material through uniform suspension (Passega, 1957).  

Furthermore, according to Passega (1957), graded suspension deposits of tractive current 

sub environments have characteristics of turbidity current deposits. Amaro et al. (2015) 

describe the alternating patterns of finer carbonate-rich hemipelagic ooze and thin turbiditic 

layers. The layers represent events in time, with the coarse turbiditic layers attributed to 

intermittent sedimentary gravity flows. 

Sediments from the upper reaches, down to 500m, were dominated by silty sand. This 

suggests ongoing transport of lithogenic shelf-derived material. At increasing depth 

lithogenic fine sands and silt alternate with finer, hemipelagic clays.  While sand depletes 

beyond 2816m, lithogenic silt continues to dominate to the lower reaches of the canyon.  

However, within the main channel, at depths exceeding 3500m lithogenic coarse sand 

continues to punctuate the core profile, demonstrating gravity-driven flows and turbidite 
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sediments from the upper canyon reach. The Explorer branch of the canyon had the most 

considerable clay fraction of the sites analysed. Within the Explorer site JC125-076-PSH02-

861.2m, the sand fraction was observed in the first three-centimetre sections, before a 

bimodal signature was seen, indicating that the low energy environment allowed for fine 

particles to settle out of suspension.  

End-member analysis (EMA) identified four sedimentary end-members that attempt to 

explain the particle size distribution population and processes. A low theta value (11.4102), 

indicated that the model did not alter the particle size data to apply fit significantly, and a 

low-end-member similarity (0.0135 EM R2) suggesting that the model is not overfitting the 

data. The data indicate that EM 1 (blue) signifies pelagic deposition, EM 2 (orange) is 

indicative of the silt population, EM 3 (yellow) is indicative of the coarser, sand population 

and EM 4 (purple), seen at some branches, indicates extreme events, such as gravity flows, 

responsible for distributing coarse material like turbiditic sediments as discussed by Amaro 

et al. 2015. Grain size descriptive results support this, for example, an absence of EM 4 

within the Explorer branch, is supported by the noticeable lack of coarse material observed 

at this site. Additionally, it must also be noted that the coarsest fraction was observed (0 Φ) 

at CE14009-005-450m, which may be explained by EM 4 (purple). 
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Chapter 4:  Marine biogeochemistry 

4.1 Marine carbon 
 

With rapidly increasing temperatures observed over the 20th century, anthropogenic activity 

is recognised as a significant driver in climate change, relative to natural changes. The 

Intergovernmental Panel on Climate Change (IPCC) concluded that “It is extremely likely that 

human influence is the dominant cause of the observed warming since the mid-20th 

century” (IPCC, 2012). The emission of greenhouse gases such as carbon dioxide, methane 

and nitrous oxide, by anthropogenic activity, is mainly responsible for the observed surface 

temperature increase. Temperatures are predicted to rise a further 0.3-1.7°C in a moderate 

scenario, dependent on future greenhouse gas emissions and climate feedback effects 

(Fleitmann et al., 2013) Of the greenhouse gases, carbon dioxide (C02) is one of the main 

contributors to global warming (Weart, 2003). Therefore, it is critical to understand how the 

Earth system interacts with carbon in its different forms.  

The organic carbon content in marine sediments depends on a series of factors such as 

sedimentary characteristics, terrestrial input, the rate of microbial degradation and primary 

productivity (Burone et al., 2003). Organic matter (OM) in sediments is an important sink of 

total organic carbon (TOC) and total nitrogen (TN) representing an important reservoir for 

the carbon cycle (Escobar-Briones et al., 2009). Organic carbon content is primarily affected 

by several factors;  

• The amount of primary productivity in overlying waters may determine how much 

organic material is produced. 

• The sedimentation rate, where fast rates of sedimentation may promote the 
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preservation of organic carbon and low rates which may promote decomposition of 

organic carbon. 

• The distance with depth from the sources, where increased time during the descent 

of material may lead accelerated break down of organic material in the water 

column. 

• Oxygen availability, where more oxygen may lead to the efficient breakdown of 

organic matter. However, anoxic/suboxic conditions may break down organic matter 

too, only slower so it is time restrained. 

• Type of organic matter, e.g., marine vs terrestrial or degraded marine vs fresh 

marine. The association with minerals and surface area. Generally, organic carbon 

content is higher in finer-grained material due to the higher surface areas of the clay 

minerals that tend to ‘trap’ more organic matter (Mayer, 1994; Hedges and Keil, 

1995). 

 Carbon composition 

 

Carbon can take two forms - total inorganic carbon (TIC) and total organic carbon (TOC). 

Organic carbon is continually being produced and destroyed and, as a result, is the most 

dynamic form of carbon. It drives four major reservoirs, interconnected by pathways of 

exchange through physical, geological, biological and chemical processes. These reservoirs 

are the atmosphere, the terrestrial biosphere and biota (including land water masses), the 

oceans (dissolved inorganic carbon, and living and non-living biota) and carbon-rich 

sediments. 
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Two main types of inorganic carbon are found in the ocean - dissolved inorganic carbon 

(DIC) and total inorganic carbon. Dissolved inorganic carbon is made up of bicarbonate 

(HCO3-), carbonate (CO2-
3) and carbon dioxide (including both dissolved CO2 and carbonic 

acid H2CO3). Photosynthesis acts as the primary process for inorganic carbon fixation in 

sediments (Lee, 1994). Furthermore, calcifying organisms, such as foraminifera, 

coccolithophores, crustaceans, echinoderms and mollusks utilize dissolved inorganic carbon 

to produce the total inorganic carbon, calcium carbonate (CaC03), for their shells and 

skeletons. On a global scale, the storage of organic matter, in terms of TOC, broadly reflects 

the distribution pattern of phytoplankton biomass in the overlying waters (Seiter et al., 

2004). 

Inorganic and organic carbon can be found in the ocean in both dissolved (DIC, DOC) and 

particulate (PIC, POC) form. Dissolved organic carbon is defined operationally as an organic 

molecule that can pass through a 0.2µm filter (Wagner et al., 2020). Dissolved organic 

carbon can be transformed into particulate organic carbon by heterotrophy, and it can also 

be converted to dissolved inorganic carbon through respiration. Particulate organic carbon 

consists of living and dead organisms and detritus. POC can be converted to DOC through 

the breakdown of molecules and by phytoplankton exudation. Lastly, POC is commonly 

transformed to DIC through heterotrophy and respiration (Ridgwell and Arndt, 2015).  

 Carbon burial 

 

While organic carbon will likely be recycled within the water column by organisms, when 

calcifying organisms die, their calcium carbonate tests or shells may sink to the seafloor. 

However, as a result of respiration, increasing pressure and decreasing temperature, the 

water column can become increasingly undersaturated in calcium carbonate with depth, 
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resulting in the dissolution of calcium-rich tests and shells. The depth where the rate of 

calcium carbonate supply equals the rate of dissolution is referred to as the calcium 

carbonate depth (CCD). If the seafloor exists below this depth, calcium carbonate will be 

absent from sediments. Likewise, if the seafloor exists above the CCD depth, sediments can 

become enriched with calcium carbonate (Woosley, 2018). Present estimations of global 

carbonate burial rates in deep-sea environments are thought to be between 100 and 

130PgC kyr -1 (Catubig et al., 1998; Sarmiento et al., 2002; Cartapanis et al., 2018). Calcium 

carbonate burial is of high importance too.  While CaCO3 burial removes carbon, it also 

reduces alkalinity (ALK) within the system. Therefore, the higher the alkalinity of seawater, 

the higher the solubility of CO2, thus the reduced transfer of carbon from the atmosphere.  

While the shallow ocean contains the largest active pool of organic carbon, the deep ocean 

is recognised for its slower rate of exchange with the atmosphere, by organic carbon burial 

within marine sediments (Broecker, 1982; Opdyke and Walker, 1992; Sigman and Boyle, 

2000; Wallmann et al., 2016; Cartapanis et al., 2018). With increased exploration, the rates 

of organic matter oxidation and hence carbon burial has been found to vary across different 

environments. Past research has generally indicated that TOC burial is highly focused in 

nearshore environments and over continental shelves owing to several reasons (Dunne et 

al., 2007). Primary productivity is often enhanced over continental shelves, there are often 

higher rates of sedimentation and, due to the shorter vertical transects to the sediments, 

there is lower decomposition during sinking. In addition, there is a larger flux of terrestrial 

OM due to the proximity to land (Van Dongen et al., 2000). Thus, the burial of organic 

carbon is not uniformly distributed within the ocean. The ocean is not as homogenous as 

once thought. At smaller scales, diverse morphological, hydrological, biogeochemical and 
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sediment processes may alter patterns of TOC burial due to differing sediment types and 

organic matter production rates (Stein, 1990), TOC export flux rates (Suess, 1980; Tyler et 

al., 2009b; Amaro et al., 2016b), its origin (Mackin and Aller, 1984) and the amount of 

dissolved oxygen in the water (Canfield, 1994).  

The flux of organic carbon delivery to sediments is poorly quantified, with estimates ranging 

by orders of magnitude (Petsch, 2013). While most TOC is recycled through grazing in the 

upper water column, some may sink to abyssal depths, effectively pumping C02 out of the 

atmosphere and helping to regulate the Earth’s temperature (Boyd et al., 2019). Dunne 

(2007) estimated the burial rates of nearshore (<50m) and deep-sea sediments. He 

suggested that despite the deep-sea accounting for ~90% of the ocean area, nearshore 

deposits could potentially bury 480PgC kyr -1, 190PgC kyr -1 on shelves (50-200m), 100PgC 

kyr -1 on slopes (200- 2000m) whereas the burial rate in the deep-sea abyssal plains 

(>2000m) to be a fraction of this at only 12PgC kyr -1. Therefore, a small fraction (typically 

<2%) of the total biosynthesized organic carbon is buried at the seafloor, in coastal and 

pelagic environments (Escobar-briones et al., 2009; Kiriakoulakis et al., 2011; Sigman and 

Hain, 2012). 

 Carbon burial in submarine canyons 

 

Recent work suggests that canyons may act to quickly transport organic matter to the deep-

sea (Vetter and Dayton, 1999; Garcia et al., 2007). However, very little work exists on the 

ability to store carbon.  Due to the accelerated rate of transportation (relative to other 

deep-sea environments) it is possible that localized primary production could be 

transported to deeper sections of the canyons by strong coastal, tidal and/or gravity 

currents. This would elevate the organic inputs into the sediments and could also lead to 
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enhanced burial rates (Vetter and Dayton, 1999). In other cases, the enrichment of carbon 

in canyon sediments may be a result of elevated terrestrial inputs (e.g. Lacaze-Duthier 

Canyon in the Gulf of Lions (Schmiedl et al. 2004)). Likewise, bioturbation and high 

respiration rates by benthic organisms that live in submarine canyons may promote 

recycling of carbon rather than burial. For example, cold-water corals found in canyon 

systems (e.g. Morris et al., 2013) are known to be hotspots of carbon recycling (Van Oevelen 

et al., 2011; White et al., 2012). However, the exchange of oceanic C02, through coral 

respiration, has been recognised as a source of CO2 to the atmosphere (Chisholm and 

Barnes, 1998). 

Low rates of OM oxidation and hence higher rates of burial are usually associated with high 

rates of sediment accumulation or organic matter influx. Such conditions have been 

observed in Nazaré Canyon, which acts as a depocentre of TOC in the west Iberian Margin 

(Masson et al., 2010; Kiriakoulakis et al., 2011). Ingels et al. (2011) suggested that at places 

in the Nazaré Canyon, high organic loads caused the depletion of oxygen in the sediments, 

leading to lowered infauna abundance or increased opportunistic species (Amaro et al., 

2016b; Gambi and Danovaro, 2016). This could lead to lower OM recycling and 

consequently, higher TOC burial efficiency. Therefore, different processes may be operating 

in different canyons or even different parts of the same canyon at various spatial and 

temporal scales and questions remain regarding the controls of these processes. 

4.1.1 Molar C/N ratio  
 

As organic matter sinks through the water column it is transformed through zooplankton 

and microbial activity. Further transformations occur upon arrival to the deep-sea floor by 

the benthic fauna and sedimentary microorganisms (Wakeham and Lee 1989; Kiriakoulakis 
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et al., 2001). In areas of topographic complexity, such as continental margins, marine OM 

transformations may be impacted by physical processes, such as gravity flows, internal 

tides, Ekman drainage and cascading (Reid and Hamilton 1990). These processes can 

ultimately lead to alterations in the freshness and lability of the OM, carbon (C) and 

nitrogen (N) which contributes to its burial efficiency and its ecological potential (Berner, 

1982; Wakeham and Lee, 1989; Walsh, 1991; Smith et al., 2009).  

While carbon content can tell us something about the paleoenvironment and paleoclimate, 

only a small fraction of the initial organic matter survives degradation and alteration during 

sinking. Therefore, other analyses are required to understand canyon processes better. Past 

studies have highlighted the usefulness of molecular, elemental and isotopic analysis of 

sediments in understanding the origin and environmental history (Stoffers et al., 1984; 

Meyers, 1994). C/N elemental ratios and isotopic signatures may retain records up to 

millions of years and can provide information about the origin and processes occurring.  In 

1934 Redfield found that the global elemental composition of marine OM ( dead and living) 

was remarkably consistent across all ocean regions with a stoichiometric ratio of 

C:N:phosphorous (P) of 106:16:1  (Redfield, 1958). He hypothesized that the elemental 

requirements of surface plankton controlled deep ocean nutrient concentrations. This 

concept was extended to include elements such as carbon, becoming fundamental in our 

understanding of ocean biogeochemistry. 

Molar ratios of elemental C/N can be used as an indicator of the origin, lability and 

freshness of marine organic matter. C/N ratios in the range of 4-10 are usually from marine 

sources, whereas ratios for vascular terrestrial plants are often above 20 (Ishiwatari and 

Uzaki, 1987).  This is because phytoplankton is rich in nitrogen, resulting in low C/N ratios, 
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indicating the dominance of marine organic matter (Carpenter and Capone, 2008). Higher 

terrestrial plant organic matter has a lower nitrogen content, thus a greater C/N ratio 

(Hunter et al., 2013). High C/N ratios of organic matter may also indicate the preferential 

scavenging of nitrogen-rich compounds by bacteria, indicating older, reworked material 

(Kiriakoulakis et al., 2001, 2006). However, lower ratios have also occasionally been 

observed in fine-grained sediments. C/N ratios below 6.6 may indicate the adsorption of 

dissolved inorganic nitrogen or nitrogen-rich compounds, such as those from phytoplankton 

blooms. As nitrogenous compounds break down, they produce ammonia (which may be 

retained by clay minerals) and the CO2 released by the oxidation of organic carbon escapes 

(Libes, 1992; Müller, 1977). 

4.1.2 Bulk stable isotopes  
 

Stable carbon and nitrogen isotopic signals (δ13C, δ15N) preserved in carbonate rocks, and 

organic carbon are useful tracers for further determining organic matter origin and 

transformation processes (Middelburg, 2014). Hayes (1993) states that the carbon isotopic 

composition of any natural organic compound is dependent on the carbon source and on 

the isotopic fractionation associated with assimilation, metabolism and biosynthesis of 

carbon by the producing organism. Bulk stable isotopes of carbon and nitrogen are 

commonly used in trophic studies, where variations delineate biological, chemical and 

physical variability. δ13C is often used as an indicator of carbon origin, while δ15N values can 

be used to aid the interpretation of trophic relationships and improve the understanding of 

resource partitioning (Kiriakoulakis et al., 2005; Duineveld et al., 2012; Layman et al., 2012). 

Organic matter produced by terrestrial plants has a comparatively lighter average δ13C 

isotopic signature value of ~-27‰ to -29‰ compared to the heavier isotopic value of 
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marine organic matter (~-22‰ to -15‰). Applying this theory, the analysis of the stable 

carbon isotopes (δ13C) and stable nitrogen isotope (δ15N )can be undertaken in order to 

differentiate between terrestrial and marine sources of organic matter (Calvert and 

Fontugne, 1987; Hayes, 1993).  

 δ 13C  

 

The ratio of 13C and 12C (expressed relative to a standard, δ13C) has been routinely used in 

biogeochemical analyses to evaluate the structure and dynamics of marine communities. It 

is useful where multiple sources of organic matter may be contributing to the marine 

ecosystem, for example, where a mangrove river may be depositing terrestrial material into 

a marine system (Rodelli et al., 1984; Alfaro et al., 2006). δ13C may vary significantly 

depending on the source of primary production; however, the ratio of δ13C changes are 

minor as carbon moves through the food-web (~1‰ per trophic level) (Rounick et al., 1982; 

Peterson and Fry, 1987; Gearing, 1991). Isotopic fractionation occurs during the autotrophic 

assimilation of carbon by an organism. Primary producers, such as plants contain less 13C 

than the atmospheric CO2 on which they rely for photosynthesis. Thus, they are relatively 

“depleted” of 13C compared to the atmosphere. The variability is attributed to the 

preferential loss of 12C during respiration and the preferential uptake of 13C during 

assimilation, digestion or through metabolic fractionation during tissue synthesis (Michener 

and Kaufman, 2008). These processes vary among plants using different photosynthetic 

pathways. This depletion is caused by enzymatic and physical processes that discriminate 

against 13C in favour of 12C. Discrimination varies among plants using different 

photosynthetic pathways; the Calvin cycle (C3), Hatch–Slack (C4), Crassulacean acid 

metabolism (CAM) or from chemosynthetic processes (Levin and Michener, 2002; Layman et 
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al., 2012). The discovery of chemosynthetically supported deep-sea communities (such as 

those found around hydrothermal vents, methane and hydrocarbon seeps, sewage leaks, 

whale falls and seagrass beds) has increased knowledge of carbon origin and cycling in the 

marine environment (Rodelli et al., 1984; Levin and Michener, 2002; Kang et al., 2007; 

Selvaraj et al., 2015). Diagnostic indices of δ 13C signatures are shown in Table 4:1.  

Table 4:1 Diagnostic indices δ13C ‰ for primary organic matter sources in the marine environment. 

δ13C SOURCE INDICATOR 

-16‰ to -9‰ Sulfide-oxidized derived carbon that involves form II Rubisco pathway (Levin 
and Michener, 2002) 

-18‰ to -15‰ Methane released through basalt degassing (serpentinization) (Keir et al., 
2005) 

-22‰ to -15‰ Marine phytoplankton and zooplankton derived organic matter (Fry and 
Sherr, 1984; Levin and Michener, 2002)  

-29‰ to -27‰ Terrestrial derived organic matter (Hayes, 1993) 

-37‰ to -27‰ Sulfide-oxidized derived carbon that involves form I Rubisco pathway (Levin 
and Michener, 2002) 

>-55‰ to -40‰ Methane-derived carbon via hydrothermal processes (the thermal 
breakdown of buried organic matter, bacterial fermentation or deep-water 
formation (Welhan, 1988; Levin and Michener, 2002; Keir et al., 2005) 

 

 δ15N  

 

Nitrogen has two stable isotopes 14N and 15N. 14N is the more abundant of the two, 

accounting for 99.63% of the nitrogen found in nature. Biological, physical and chemical 

processes discriminate between the two isotopes, resulting in quantifiable differences in the 

ratio of 14N and 15N (expressed relative to a standard, δ15N) thus enabling trophic position 

estimation (Sigman et al., 2010). Nitrogen is critical to marine biomass and one of the 

primary nutrients required by all phytoplankton (Gruber and Galloway, 2008). While 

nitrogen is an essential element for all life forms, it mostly occurs as dissolved N2 gas (> 95%) 

that is unavailable to most species. The rest is reactive nitrogen (Nr), such as nitrate, 

ammonia and dissolved organic compounds. Therefore, the biological fixing of nitrogen is 
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crucial. Biological fixation of dinitrogen (N2) by marine prokaryotic species is the main 

source of nitrogen to the ocean, estimated at 106–120Tg N y−1. Nitrogen fixation is 

significant in tropical surface waters, some benthic systems as well as anoxic waters at the 

seafloor where diatom-diazotroph symbiosis exists (Dekas et al., 2009; Foster et al., 2011; 

Voss et al., 2013). The process of nitrification relies on oxygen availability, where 

autotrophic nitrifiers convert ammonia to nitrites NO2- and nitrates NO3-. Likewise, 

denitrification in the ocean is also controlled by oxygen availability; however, denitrification 

takes place under low oxygen conditions. Denitrification by eukaryotic species, such as 

foraminifera, is the microbial process of reducing nitrate and nitrite to gaseous forms of 

nitrogen, such as nitrous oxide (N20) and nitrogen (N2) (Voss et al., 2013).  As sources and 

sinks are dominantly internal and biological, with marine N2 fixation supplying most of the 

fixed nitrogen in the ocean, and the process of denitrification removing it. The study of 

nitrogen provides a way of exploring the cycle (input/output budget) of oceanic fixed N 

within the ocean (Sigman et al., 2010) 

Typically, an organism is enriched in δ15N by 3-4‰ relative to its diet and displays stepwise 

enrichment with trophic transfers (Minagawa and Wada, 1984; Peterson and Fry, 1987). 

However, deep-sea values may be less due to poor food availability. Iken et al. (2001) 

revealed that within the Porcupine Abyssal Plain (NE Atlantic), an overlap in nitrogen 

isotopic values between trophic levels, reducing the “typical” 3‰ stepwise enrichment was 

recorded, indicating an overlap in food sources. Iken et al. (2001) showed that suspension 

feeders exhibited a broad trophic spectrum as they fed on both particulate material and live 

prey, altering the nitrogen signature. 

Field studies of the best-known genus of open ocean N2 fixer Trichodesmium, have yielded 
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δ15N values of ~ -2‰ to 0.5‰. Taking into consideration the δ15N of dissolved N2 (~0.6‰ in 

the surface mixed layer) this value is consistent, but less variable, than culture studies of 

Trichodesmium where values range between ~0‰ and 4‰.   

The bacterial reduction of nitrate to nitrogen is the largest mechanism of fixed nitrogen loss 

from the ocean, occurring in both the water column and sediments, where oxygen levels fall 

below 5µmol/kg. Denitrification studies suggest that the isotope effect of denitrification is in 

between 5‰ to 30‰ (Sigman and Casciotti, 2001; Sigman et al., 2010). However, the 

observed isotopic effect of denitrification is believed to be limited by the rate of nitrate 

supply to the denitrifying bacteria. In some ocean margin sediments, denitrification 

completely consumes the nitrate that is supplied by diffusion through sediment pore 

waters, resulting in an ‘effective’ isotope close to 0‰ (Sigman and Casciotti, 2001). Studies 

of internal cycling and the assimilation by phytoplankton, of nitrate (NO3
-), has resulted in 

isotopic signatures of 4-6‰. Where ammonium (NH4
+) assimilation occurs, isotopic 

signatures of 6.5-20‰ have been recorded (Sigman and Casciotti, 2001). The return of 

organic nitrogen to the marine system as NO3
-, by remineralization, occurs in two steps: the 

degradation of organic nitrogen to ammonium and the bacterial oxidation of ammonium to 

nitrate. Limited data suggest that the net effect on δ15N is less than 5‰ in most cases, 

however where the nitrification of ammonium to nitrate occurs values as high as 35‰ have 

been recorded (Sigman and Casciotti, 2001). 

While the complexity of the processes occurring can prove challenging to comprehend, the 

understanding of nitrogen cycling is crucial. The nitrogen cycle is closely related to that of 

carbon, phosphorous and other essential biological elements. The implication of this is that 

any human alterations to nitrogen cycling are likely to have large impacts for other 
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biogeochemical processes and ecosystem functioning (Voss et al., 2013).  

4.2 Aims 
 

This chapter aims to investigate the biogeochemical composition of sediment samples 

matter through a multi-proxy approach, which may improve the understanding of transport 

mechanisms and organic matter preservations within the morphologically complex Whittard 

Canyon. 

4.3 Methods 
 

Organic geochemical analysis was carried out across two laboratories. Elemental (isotopic 

carbon and nitrogen) analysis was undertaken at the Oceanographic Laboratories, 

Department of Earth, Ocean, and Ecological Sciences, University of Liverpool. Further 

elemental (carbon and nitrogen) analysis was undertaken at the Geography Laboratories, 

School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores 

University. 

4.3.1 Elemental carbon and nitrogen analysis 
 

Carbon and nitrogen content were analysed using the Skalar Primacs SNC-100 TN/TC Analyser 

within the solid sample module. High-temperature combustion, with non-dispersive infrared 

detection (NDIR), is used to analyse total carbon (TC), total inorganic carbon (TIC) and total 

nitrogen (TN). Calibration curve for quantification of total carbon and total nitrogen was 

achieved using glycine (5-30-60-90-120-150mg). Calibration curve for quantification of 

inorganic carbon was achieved using 1.00% NaCO3 (100-200-400-600-800-1000-1200mg). 

 Elemental carbon and nitrogen sample preparation 
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Prior to analysis, sub-core samples were sectioned every cm down to 10 cm; samples were 

subsequently sectioned at 2cm intervals before being freeze-dried. Total carbon was 

determined by placing ~0.05mg of sediment into a weighed ceramic crucible. Alongside the 

TC run, total nitrogen results were also acquired using the Skalar Primacs SNC-100 TN/TC 

Analyser. Due to the low concentrations of nitrogen within the samples, the sample weight 

was increased to ~ 2mg to ensure accurate nitrogen readings. 

 Instrument operation 

 

The Dumas method was used to achieve total organic carbon and total nitrogen values. This 

was undertaken with the following instrument settings. High purity oxygen was passed 

through the injection system to remove any atmospheric gasses before the sample was 

heated to 1100oC. Oxygen was added to the combustion crucible to increase the oxidation 

rate. The acid vapours and H2O were removed by passing through the following: steel wool 

scrubber, Peltier cooler and a brass/cellulose scrubber. The sample gas stream was split 

with 79/80 of the sample forwarded to the IR detector for C02 quantification. Under a pure 

helium stream for N2 measurement, the remaining 1/80 of the sample gas stream was 

collected within a copper collection vessel and passed to the reduction oven (750oC) for 

detection by a Thermal Conductivity Detector.  

The total inorganic carbon measurement was acquired by acidifying the sample using 20% 

phosphoric acid, heating to 110oC and passed directly to the IR detection via the Peltier 

cooler and brass/cellulose scrubbers. 

 Calculation of total inorganic, organic carbon and nitrogen 

 

The percentage of total carbon, total inorganic carbon and total nitrogen in each sample 
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were calculated by comparing the peak area of the sample components to those in the 

standards. The total organic carbon fraction could then be inferred by subtracting total 

inorganic from total carbon readings as per the method by Brian Schumacher (Schumacher, 

2002). The following equation was used: 

                                  TOC (%) was calculated by subtracting TIC (%) from TC (%): 

                                                            𝑇𝑂𝐶(%) = 𝑇𝐶(%) − 𝑇𝐼𝐶(%)  

 

Inorganic carbon is likely to be calcium carbonate. Inorganic carbon may be transformed 

into carbonate using the following equation: 

𝑇𝐼𝐶 × 𝑌 

Where CaCO3 molecular weight is 100 and C is 12. Therefore 100 divided by 12 = 8.33̇ = Y 

 Calculation of C/N ratios 

 

          Molar C/N was calculated by (TOC (%) divided by 12) divided by (TN (%) divided by 14):               

                                                       𝑀𝑜𝑙𝑎𝑟 𝐶/𝑁 =   
(% 𝑤𝑒𝑖𝑔ℎ𝑡 𝑇𝑂𝐶/12)

(% 𝑤𝑒𝑖𝑔ℎ𝑡 𝑇𝑁/14)
 

4.3.2 Stable isotope analysis 
 

The isotopic (13C/12C and 15N/14N) signatures of organic matter within sediment samples 

were derived using a Costech 4010 Elemental Analyser, connected to a Thermo Scientific 

Delta V Advantage mass spectrometer. Nitrogen and carbon were analysed with and 

without de-carbonation, respectively, at the School of Earth, Ocean, and Ecological Sciences, 
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University of Liverpool.  

 Decarbonation of δ13C samples and preparation of δ15N samples 

 

The removal of carbonate was undertaken using an acidification method. Two aliquots of 

each sample containing 80-100μg of carbon were weighed into silver capsules (8 x 5mm, 

elemental microanalysis). Decarbonation was undertaken by placing the sample into silver 

capsules (Elemental Microanalysis Cat No: D2006; 6X4mm) within a cell well (Elemental 

Microanalysis Cat No: E2044 Cell Well 96 Flat Bottom). The silver capsules were left open 

and two drops of Ultrapure MiliQ water was added to moisten the sample before the cell 

well was then placed into a desiccator containing Hydrochloric acid (HCl) and left to 

decarbonate overnight (12-16 hours). The cell well was removed and placed in a drying oven 

at 50oC to ensure the samples were dry. The silver capsules were carefully sealed by twisting 

the top prior to analysis. 

Two aliquots of each freeze-dried and ground sample, containing 80 –160μg nitrogen, were 

weighed into tin capsules (8 x 5mm, elemental microanalysis). 

 Instrument operation 

 

In a pure 02 atmosphere, combustion took place at 980oC in a prepacked Costech NCH/NC/N 

combustion tube. The reduction column (Costech prepacked, heavy-walled, NCH/NC/N 

reduction tube) temperature was set to 700oC, packed with high purity Cu. H2O was 

removed using a scrubbing tube (GL14 thread, 110mm, EOA Labs) filled with anhydrous 

magnesium perchlorate (Mg(ClO4)2). Gaseous products (N2 and CO2) were eluted and 

separated using a separation column (NC separation column, 3m, 6 x 5mm stainless, PQS, 

2mm 6 MB ports, OEA Labs) in the order of N2, CO2. Compositional analysis of the eluted 
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gasses was determined using Isodat 2.5 software, Thermo Fisher Scientific. 

 Calculation of δ13C ‰ and δ15N ‰ 

 

The variation of bulk stable isotopes was calculated using the following equation: 

                                                 𝑅𝑎𝑡𝑖𝑜 (𝑅) =
𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 ℎ𝑒𝑎𝑣𝑦 𝑖𝑠𝑜𝑡𝑜𝑝𝑒

 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑠𝑜𝑡𝑜𝑝𝑒
 

                                                                    𝛿 =  
𝑅𝑠𝑎𝑚𝑝

𝑅𝑠𝑡𝑑
− 1 ∗ 1000  

Rsamp is the ratio of the sample and Rstd is the ratio of the internal standard (as defined by 

the IAEA). 𝛿 values are multiplied by 1000 and reported as parts per thousand ‰. Variations 

in the isotope ratios of samples were measured against known standards USGS-41 (δ13C‰ 

37.626; δ15N‰ 47.6) and USGS-40 (δ13C‰ -26.389; δ15N‰ -4.5). 

 Instrumentation drift correction 

 

The correction of isotopic values for analytical drift during isotopic analysis was undertaken 

by performing regression analysis on the known standards USGS-41 and USGS-40. These 

known standards were interspersed evenly, in duplicate, throughout the sample run. Where 

linear regression revealed a similar direction and slope strength, the correction for any 

deviation or “drift” was achieved using an average slope strength. The following formula 

was used: 

DC𝛿13C‰ = 𝑅𝑎𝑤𝛿13𝐶‰ − (𝑆𝐺 × (𝑥 − 1)) 

DC δ13C ‰ is the drift corrected isotope value, Raw δ13C ‰ is the raw isotope value, SG is 

the average slope gradient of USGS-41 and USGS-42 and 𝑥 is the sequential run number. 
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 Scaling of isotope values to Vienna Pee Dee Belemnite (VPDB) and Atmospheric Nitrogen Drift 

 

Drift corrected (DC) isotope values were scaled to USGS standard values through regression 

analysis of the IAEA USGS standard values versus measured values. Gradient and y-intercept 

of regression were used with the following formula: 

                                               𝑉𝑃𝐷𝐵𝛿13𝐶 = 𝐷𝐶𝛿13𝐶 × 𝑆𝐺 + 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

VPDB δ13C ‰ is the Vienna Pee Dee Belemnite scaled carbon isotope value, DC δ13C ‰ is 

the drift corrected isotope value and SG is the slope gradient of USGS standard values vs 

measured values. 

𝐴𝑁𝛿15𝑁 = 𝐷𝐶𝛿15𝑁 × 𝑆𝐺 + 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

ANδ15N ‰ is the Atmospheric Nitrogen scaled nitrogen isotope value, DC δ15N ‰ is the drift 

corrected isotope value, and SG is the slope gradient of USGS standard values vs measured 

values. 

4.3.3 Statistical analysis 

 

Mean surficial and down core biogeochemical values (IC%, OC%, C/N, δ13C ‰ and δ15N ‰) 

were plotted using ODV software, for more information refer to Chapter 1: Methods. 

Biogeochemical values (IC%, OC%, C/N, δ13C ‰ and δ15N ‰) were plotted as scatter charts 

with linear fit lines within IBM SPSS Statistics 23 software. 

Within IBM SPSS Statistics 23 software, normality distributions were identified using the 

Shapiro-Wilk test. All biogeochemical data was either non-normally distributed (p < 0.05) or 
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of small sample size, so nonparametric tests were used. Comparison of mean values were 

determined using IBM SPSS Statistics 23. For independent samples, the non-parametric 

Kruskal-Wallis (one-way ANOVA on ranks) test was used.  

Where the results failed the assumption of homogeneity of variances (p < 0.05), therefore 

retaining the null hypothesis, the nature of differences was evaluated using Dunn-

Bonferroni post-hoc pairwise comparison tests. 

Spearman’s rank correlation tests were used to examine relationships between the data 

sets.   
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4.4 Results 
 

4.4.1 Elemental carbon and nitrogen  
 

Surficial and down core mean elemental concentrations of TIC%, CaCO3%, TOC%, TN % and 

C/N ratio with standard deviations, across nine branches of the Whittard Canyon, are shown 

in Tables 4:1 and 4:2 Surficial and down core values are shown in Figures 4:1-4:7. 

 Total inorganic carbon  

 

Surficial mean percentages of TIC across all branches of the canyon ranged between 1.62% 

at the Explorer canyon to 3.65% at the Western Middle branch (n = 33). Surficial mean 

percentages of TIC in the Upper canyon (0-1000 m) ranged from 1.44% at the Explorer 

canyon to 3.65% at the Western Middle branch (n = 37). Within the mid canyon (1000-

2000m) TIC ranged between 1.93% at the Eastern Middle branch to 3.03% at the Eastern 

Middle branch. Lower canyon >2000m TIC ranged between 1.62% at the Explorer canyon to 

3.13% at the Main Channel. One-way ANOVA on ranks analysis showed that there was no 

significant difference in surficial TIC% across branches (p > 0.05). Likewise, no significant 

difference when compared across depth intervals (0-1000, 1000-2000 and >2000m) was 

recorded (p > 0.05). R-squared linear correlation coefficient analysis revealed no significant 

linear relationship between depth and surficial mean TIC%. 

Down core mean percentages of TIC across all branches of the canyon ranged between 

1.32% at the Western Middle branch to 3.76% at the Western Middle branch (n = 37). Down 

core mean percentages of TIC in the Upper canyon (0-1000m) ranged from 1.97% at the 

Explorer canyon to 3.76% at the Western Middle branch. Within the mid canyon (1000-

2000m) TIC ranged between 1.32% at the Western Middle branch to 3.40% at the Eastern 
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Middle branch. Lower canyon >2000m TIC ranged between 2.02% at the Western Middle 

branch to 3.13% at the Main Channel. One-way ANOVA on ranks analysis showed that there 

was no significant difference in down core TIC% across branches (p > 0.05). Likewise, no 

significant difference when compared across depth intervals (0-1000, 1000-2000 and 

>2000m) was recorded (p > 0.05). R-squared linear correlation coefficient analysis revealed 

no significant linear relationship between depth and down core mean TIC%.  

A moderate correlation was noted between surficial IC% and TN% (rs [30] = - .446, p = 

0.014), however this was not observed down core (p > 0.05). Likewise, when IC is converted 

to carbonate, a moderate positive correlation was observed between surficial CaCO3 % and 

TN% (rs [35] = - .496, p = 0.005). 

 Total organic carbon  

 

Surficial (first 1cm section) percentages of TOC across all branches of the canyon ranged 

between 0.33% at the Eastern branch to 2.32% at the Main Channel (n = 33). Surficial 

percentages of TOC in the Upper canyon (0-1000m) ranged from 0.33% at the Eastern 

branch to 2.26% at the Western Middle branch. Within the mid canyon (1000-2000m) TOC 

ranged between 1.06% at the Acesta branch to 3.03% at the Eastern Middle branch. Lower 

canyon >2000 m TOC ranged between 1.10% at the Western branch to 2.32% at the Main 

Channel. Despite an order of magnitude difference observed, One-way ANOVA on ranks 

analysis showed that there was no significant difference in down core TOC% across 

branches (p > 0.05). Likewise, no significant difference when compared across depth 

intervals (0-1000, 1000-2000 and >2000m) was recorded (p > 0.05). Depth intervals aim to 

separate the upper productive waters >1000 m, the areas in which cold-water corals, such 

as L.pertusa, may continue to persist >2000 m where nepheloid layers continue to occur but 
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are a great distance from overlying productive waters. R-squared linear correlation 

coefficient analysis revealed no significant linear relationship between depth and down core 

mean TOC%. Frequency distribution of TOC% in surface sediments shows organic 

enrichment (>2%) is observed at all depths; however, the upper slopes down to 500m 

presents the lowest TOC% observed (0- 0.5%). At depths between 3000 and 4000m, TOC 

contents higher than 2% were recorded.  

Down core mean percentages of TOC across all branches of the canyon ranged between 

0.71% ± 0.30 at the Western branch to 2.38% ± 0.51 at the Eastern Middle branch. Down 

core mean percentages of TOC in the Upper canyon (0- 1000m) ranged from 0.71%± 0.30 at 

the Eastern branch to 2.38% ± 0.51 at the Eastern Middle branch. Within the mid canyon 

(1000- 2000m) TOC ranged between 1.15% at the Eastern Middle branch to 2.31% at the 

Eastern branch. Lower canyon >2000m TOC ranged between 0.95% at the Western branch 

to 2.08% at the Main Channel. One-way ANOVA on ranks analysis showed that there was no 

significant difference in down core TOC% across branches (p > 0.05). Likewise, no significant 

difference when compared across depth intervals (0-1000, 1000- 2000 and >2000m) was 

recorded (p > 0.05). R-squared linear correlation coefficient analysis revealed no significant 

linear relationship between depth and down core mean TOC%.  

 Total nitrogen 

 

Surficial total nitrogen ranged between 0.01% and 0.39% at the Eastern Middle branch 

CE16006-030-PSH07-700m and the Explorer Canyon branch JC125-076-PSH02-861.2m, 

respectively. One-way ANOVA on ranks analysis showed that there was no significant 

difference in surficial TN% across branches or by water depth interval (p > 0.05). A moderate 

negative correlation was observed between surficial TN% and surficial C/N (rs [33] =-.859, p 
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= 0.000). 

A moderate correlation was noted between surficial IC% and TN% (rs [30] = - .446, p = 

0.014). Likewise, when IC is converted to carbonate, a moderate positive correlation was 

observed between surficial CaCO3 % and TN% (rs [35] = - .496, p = 0.005). 

Down core total nitrogen ranged between 0.03% and 0.23% at the Eastern Middle branch 

CE16006-030-PSH12-511.37m and CE14009-042-719m, respectively. One-way ANOVA on 

ranks analysis showed that there was no significant difference in down core TN% across 

branches or by water depth interval (p > 0.05). A moderate negative correlation was 

observed between down core TN% and down core C/N (rs [33] =-.589, p = 0.000). 

 C/N ratio 

 

Surficial molar C/N ratio across all branches ranged between 3.47 at the Eastern branch and 

79.46 at the Eastern Middle branch (n = 33). However, a stem and leaf analysis plot 

indicated that values > 58 are likely to be outliers. C/N ratio in the Upper canyon (0-1000m) 

ranged between 3.47 at the Eastern branch to 79.46 at the Eastern Middle branch. Within 

the mid canyon (1000-2000m) C/N ranged between 9.17 at the Eastern Middle branch 57.99 

at the Eastern Middle 2 branch. Lower canyon >2000m C/N ranged between 6.99 to 22.75 at 

the Main Channel. One-way ANOVA on ranks analysis showed that there was no significant 

difference in surficial C/N across branches (p > 0.05). Likewise, no significant difference 

when compared across depth intervals (0-1000, 1000-2000 and >2000m) was recorded (p > 

0.05). R-squared linear correlation coefficient analysis revealed no significant linear 

relationship between depth and surficial mean C/N.  

Down core mean molar C/N ratio across all branches ranged between 5.43 at the Western 
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Middle branch and 64.47 at the Eastern Middle 2 branch. No trend with depth was 

observed. C/N ratio in the Upper canyon (0-1000m) ranged between 5.43 at the Western 

Middle branch to 64.47 at the Eastern Middle branch. Within the mid canyon (1000-2000m) 

C/N ranged between 10.22 at the Eastern Middle branch to 51.51 at the Eastern Middle 2 

branch. Lower canyon >2000m C/N ranged between 14.28 to 27.52 at the Main Channel. 

One-way ANOVA on ranks analysis showed that there was no significant difference in down 

core C/N across branches (p > 0.05) R-squared linear correlation coefficient analysis 

revealed no significant linear relationship between depth and down core mean C/N.  

Negative correlations were observed between surficial TN% and surficial C/N (rs [33] =-.859, 

p = 0.000) and down core values (rs [33] =-.589, p = 0.000).
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Table 4:2 Surficial values for elemental properties of particles from 9 branches of the Whittard Canyon. Canyon branches are colour coded Purple (Western Branch), Pink (Western Middle 
Branch) Yellow (Acesta Branch), Green (Eastern Middle Branch), Cream (Intersection), Magenta (Eastern Mid 2), Brown (Eastern Branch), Blue (Explorer Canyon) and Red (Main). 

 

BRANCH 
 
 

DEPTH (m) CORE TIC%   CaCO3% TOC%   TN% C/N RATIO 
 Western 2740 

 
JC125-083-PSH03-2740m 
 

1.62 13.49 1.10 0.17 7.71 
Western Middle 440 CE14009-045-440m 

 
2.64 21.99 1.85 0.07 30.01 

Western Middle 719 CE14009-042-719m 
 

3.65 30.40 1.94 0.26 5.62 
Western Middle 819 CE14009-042-819m 

 
3.08 25.65 2.26 0.13 20.28 

Western Middle 2816 CE14009-027-2816m 
 

2.30 19.15 1.53 0.12 14.88 
Acesta 780 CE16006-033-PSH08-780m 

 
2.43 20.24 1.65 0.08 23.22 

Acesta 974 CE16006-084-PSH05-974m 
 

2.20 18.40 ABSENT ABSENT ABSENT 
Acesta 974.2 CE16006-084-PSH02-974.2m 

 
2.95 24.57 ABSENT ABSENT ABSENT 

Acesta 1130 CE14009-009-1130m 
 

2.71 22.57 1.06 0.05 23.27 
Eastern Middle 501 CE14009-040-501m 

 
2.97 24.74 1.13 0.08 16.29 

Eastern Middle 511 CE16006-030-PSH12-511.37m 
 

2.19 18.24 .99 0.03 32.12 
Eastern Middle 574 CE14009-012-574m 

 
2.41 20.07 1.79 0.08 19.89 

Eastern Middle 700 CE14009-030-700m 
 

2.77 23.07 1.41 0.06 24.13 
Eastern Middle 700 CE16006-030-PSH07-700m 3.27 27.23 1.23 0.01 79.46 
Eastern Middle 723 CE14009-033-723m 

 
3.19 26.57 1.65 0.17 10.86 

Eastern Middle 731 CE16006-022-PSH06-731.38m 
 

2.45 20.40 2.20 0.08 29.79 
Eastern Middle 1095 CE14009-040-1095m 

 
3.03 25.23 1.15 0.14 9.17 

Eastern Middle 1271 CE16006-062-PSH07-1270.84m 
 

2.65 22.07 1.53 0.08 21.81 
Eastern Middle 1323 CE14009-012-PSH09-1323m 

 
1.93 16.07 1.82 0.10 24.62 

Intersection 1776 CE14009-031-1776m 
 

2.85 23.74 1.73 0.08 24.08 
Intersection 1836  CE14009-025-PSH12-1836m 

 
2.79 23,24 1.91 0.20 10.89 

Intersection 2086 CE14009-025-2086m 
 

2.93 24.40 1.13 0.08 14.77 
Intersection 2384 CE14009-025-2384m 2.44 20.32 1.21 0.08 17.43 
Eastern Middle Two 1845 CE16006-056-PSH05-1845m 2.05 17.07 2.04 0.05 43.72 
Eastern Middle Two 1850 CE16006-056-PSH07-1850 

 
2.38 17.07 2.14 0.04 57.99 

Eastern  450 CE14009-005-450m 
 

3.55 29.57 .33 0.11 3.47 
Eastern  681 CE14009-005-681m 

 
2.44 20.32 1.33 0.04 36.81 

Eastern 571 JC125-109-PSH05-570.5m 2.22 18.49 1.99 0.22 10.78 
Eastern 1620 CE16006-042-PSH02-1620m 2.65 22.07 1.19 0.05 24.71 
Eastern 1298 CE16006-002-PSH05-1297.81m 2.37 19.74 2.20 0.07 32.45 
Explorer 664 JC125-101-MC-664m 

 
1.80 14.99 1.60 0.10 18.12 

Explorer 861 JC125-076-PSH02-861.2m 1.44 11.99 1.33 0.39 3.95 
Main Channel 3723 JC125-045-MC-3723m 3.13 26.07 2.29 0.18 14.34 
Main Channel 3759 JC125-028-MC-3758m 

 
2.90 24.15 2.32 0.11 22.75 

Main Channel 4010 JC125-063-MC-4010m 
 

3.02 25.15 1.26 0.21 6.99 
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Table 4:3 Down core mean values with standard deviations for elemental properties of particles from 9 branches of the Whittard Canyon. Canyon branches are colour coded Purple (Western 
Branch), Pink (Western Middle Branch) Yellow (Acesta Branch), Green (Eastern Middle Branch), Cream (Intersection), Magenta (Eastern Mid 2), Brown (Eastern Branch), Blue (Explorer Canyon) 
and Red (Main). N =10 samples unless otherwise stated. 

BRANCH 
 
 

DEPTH (m) 
m(m)(m) 

CORE TIC%   CaCO3% TOC%   TN% C/N RATIO 
 Western 2740 

 
JC125-083-PSH03-2740m 
 

1.72 ± 0.34 17.96 ± 2.63 0.95 ± 0.36 N9 0.10 ± 0.06 18.34 ± 19.08 N9 
Western Middle 440 CE14009-045-440m 

 
2.58 ± 0.08 21.53 ± 0.71 1.70 ± 0.15 N8 0.05 ± 0.00 31.48 ± 3.10 N8 

Western Middle 719 CE14009-042-719m 
 

3.76 ± 0.07 31.29 ± 0.60 1.10 ± 0.20 0.23 ± 0.02 5.43 ± 0.93  
Western Middle 819 CE14009-042-819m 

 
2.99 ± 0.13 24.99 ± 1.15 1.17 ± 0.38 0.10 ± 0.01 12.23 ± 3.49  

Western Middle 1601 CE16006-081-PSH03-1601m 1.32 ± 0.05 ABSENT ABSENT ABSENT  
Western Middle 2816 CE14009-027-2816m 

 
2.02 ± 0.25 N9 16.82 ± 2.12 N9 1.50 ± 0.37 N8 0.10 ± 0.01 17.09 ± 3.82 N8 

Acesta 700 CE14009-030-700m 2.96 ± 0.27 24.71 ± 2.29 1.47 ± 0.42 0.13 ± 0.07 15.13 ± 7.00  
Acesta 780 CE16006-033-PSH08-780m 

 
3.63 ± 1.14 N8 16.97 ± 3.29 N8 1.59 ± 0.91 N8 0.06 ± 0.02 27.95 ± 7.95 N8 

Acesta 974 CE16006-084-PSH05-974m 
 

2.03 ± 0.35 16.98 ± 2.98 ABSENT ABSENT ABSENT 
Acesta 974.2 CE16006-084-PSH02-974.2m 

 
2.09 ± 0.14 17.41 ± 1.20 ABSENT ABSENT ABSENT 

Acesta 1130 CE14009-009-1130m 
 

2.81 ± 0.33 23.44 ± 2.79 1.12 ± 0.30 0.05 ± 0.00 23.76 ± 6.67 
Eastern Middle 501 CE14009-040-501m 

 
2.90 ± 0.09 24.20 ± 0.79 1.23± 0.17 0.08 ± 0.00 16.38 ± 2.01 

Eastern Middle 511 CE16006-030-PSH12-511.37m 
 

2.14 ± 0.17 17.85 ± 1.43 1.74 ± 0.39 0.03 ± 0.00 64.47 ± 17.48 
Eastern Middle 574 CE14009-012-574m 

 
2.34 ± 0.18 19.55 ± 1.51 1.62 ± 0.14 0.08 ± 0.00 22.99 ± 2.41 

Eastern Middle 700 CE14009-030-700m 
 

2.96 ± 0.27 24.71 ± 2.29 1.47 ± 0.42 
 

0.13 ± 0.07 15.13 ± 7.00 
Eastern Middle 700 CE16006-030-PSH07-700m 3.45 ± 0.17 28.80 ± 1.44 1.39 ± 0.13 0.06 ± 0.03 50.43 ± 65.64 
Eastern Middle 723 CE14009-033-723m 

 
2.85 ± 0.24 23.77 ± 2.07 1.31 ± 0.29 

 
0.10 ± 0.09 22.05 ± 11.72 

Eastern Middle 731 CE16006-022-PSH06-731.38m 
 

2.42 ± 0.13 20.22 ± 1.15 2.38 ± 0.51 
 

0.10 ± 0.03 29.58 ± 10.11 
Eastern Middle 1095 CE14009-040-1095m 

 
2.42 ± 0.59 20.19 ± 4.99 0.81 ± 0.29 

 
0.10 ± 0.01 10.22 ± 3.36 

Eastern Middle 1271 CE16006-062-PSH07-
1270.84m 
 

2.60 ± 0.11 21.71 ± 0.99 1.60 ± 0.13 0.08 ± 0.00 23.04 ± 3.24 
Eastern Middle 1323 CE14009-012-PSH09-1323m 

 
3.39 ± 0.69 28.30 ± 5.81 1.15 ± 0.32 0.08 ± 0.01 15.50 ± 4.05 

Intersection 1487 CE14009-031-1487m 
 

2.81 ± 0.05 N7 23.40 ± 0.44 N7 ABSENT ABSENT ABSENT 
Intersection 1776 CE14009-031-1776m 

 
3.07 ± 0.11 25.59 ± 0.93 1.72 ± 0.14 0.08 ± 0.00 23.98 ± 2.59 

Intersection 1836  CE14009-025-PSH12-1836m 
 

2.84 ± 0.07 N7 23.66 ± 0.64 N7 1.97 ± 0.08 N7 0.18 ± 0.01 12.79 ± 1.28 N7 
Intersection 2086 CE14009-025-2086m 

 
2.97 ± 0.11 N9 24.78 ± 0.98 N9 1.24 ± 0.25 N9 0.09 ± 0.01 14.81 ± 2.23 N9 

Intersection 2384 CE14009-025-2384m 2.24 ± 0.10 N8 18.73 ± 0.88 N8 0.95 ± 0.14 N8 0.07 ± 0.00 29.35 ± 6.40 N8 
Eastern Middle Two 1845 CE16006-056-PSH05-1845m 2.19 ± 0.09 N9 18.29 ± 0.75 N9 1.83 ± 0.11 N9 0.06 ± 0.01 34.88 ± 17.04 N9 
Eastern Middle Two 1850 CE16006-056-PSH07-1850 

 
1.95 ± 0.15 16.24 ± 1.30 

19.84206 

15.08563 

15.91863 

15.60209 

16.39344 

15.88531 

15.70205 

16.1602 

15.95195 

15.92696 
   

2.10 ± 0.18  0.05 ± 0.01 36.07 ± 9.17 
Eastern  450 CE14009-005-450m 

 
2.78 ± 0.34 N9 23.19 ± 2.89 N9 0.71 ± 0.30 N7 0.10 ± 0.01 8.48 ± 4.42 N7 

Eastern 571 JC125-109-PSH05-570.5m 2.38 ± 0.34 22.21 ± 0.55 1.46 ± 0.33  0.09 ± 0.07 39.23 ± 43.91 
Eastern 681 CE14009-005-681m 

 
2.39 ± 0.16 N9 19.91 ± 1.26 1.13 ± 0.19 N 9 

 
0.07 ± 0.01 17.29 ± 9.62 N9 

Eastern 1620 CE16006-042-PSH02-1620m 2.79 ± 0.09 23.09 ± 0.82 1.44 ± 0.13 0.06 ± 0.00 26.54 ± 1.59 
Eastern 1298 CE16006-002-PSH05-

1297.81m 
2.46 ± 0.15 20.55 ± 1.27 2.31 ± 0.25 N3 

 
0.09 ± 0.02 29.81 ± 4.24 N3 

Explorer 664 JC125-101-MC-664m 
 

1.96 ± 0.07  16.39 ± 0.62 1.43 ± 0.09 
 

0.09 ± 0.01 15.76 ± 6.58 
Explorer 861 JC125-076-PSH02-861.2m 1.76 ± 0.49  18.52 ± 1.56 1.41 ± 0.25 N4 0.10 ± 0.12 42.63 ± 31.78 N4 
Main Channel 3723 JC125-045-MC-3723m 2.70 ± 0.35 22.50 ± 2.96 2.08 ± 0.31 0.14 ± 0.03 18.45 ± 8.95 
Main Channel 3759 JC125-028-MC-3758m 

 
2.45 ± 0.88 20.44 ± 7.36 1.96 ± 0.29 

 
0.07 ± 0.02 27.52 ± 12.71 

Main Channel 4010 JC125-063-MC-4010m 
 

2.87 ± 0.12 N8 23.96 ± 1.01 N8 1.93 ± 0.32 N8 0.17 ± 004 14.28 ± 5.28 N8 
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 Spatial pattern of surficial TIC 
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Figure 4:1 (A, B) Surface plot and scatter diagram of mean TIC% of the first-centimetre section across sites. Upper canyon 0-1000m ranges from 1.44% at the Explorer canyon to 
3.65% at the Western Middle branch. Mid canyon 1000-2000m ranges from 1.93% at the Eastern Middle branch to 3.03 % at the Eastern Middle branch. Lower canyon >200m 
ranges from 1.62% at the Explorer canyon (JC125-076-PSH02-861.2m) to 3.13% at the Main Channel (JC125-045-MC-3723m). One-way ANOVA on ranks analyses revealed no 
significant difference in surficial mean TIC% across branches or with depth (p > 0.05).  
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 Spatial pattern of down core TIC 
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Figure 4:2 Surface plot and scatter diagram of mean TIC% down core across sites. Upper canyon 0-1000m ranges from 1.97% at the Explorer canyon to 3.76% at the Western Middle branch. 
Mid canyon 1000-2000m ranges from 1.32% at the Western Middle branch to 3.40% at the Eastern Middle branch. Lower canyon >2000m ranges from 2.02% at the Western Middle branch to 
3.13% at the Main Channel. One-way ANOVA on ranks analyses showed that there was no significant difference in down core TIC% across branches or with depth (p > 0.05). 
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 Spatial pattern of surficial TOC 
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Figure 4:3 (A, B) Surface plot and scatter diagram of TOC% of the first-centimetre section across sites. Upper canyon 0-1000m ranges from 0.33% at the Eastern branch to 2.26% at 
the Western Middle branch. Mid canyon 1000-2000m ranges from 1.06% at the Acesta branch to 2.20% at the Eastern branch. Lower canyon >2000m ranges from 1.10% at the 
Western branch to 2.32% at the Main Channel. One-way ANOVA on ranks analyses revealed no significant difference in surficial mean TOC% across branches or with depth (p > 0.05). 
(C) Frequency distribution of TOC% in surface sediments (<1cm) of the Whittard Canyon (N 33) according to water depth interval. Organic enrichment is observed at all depths (>2%); 
however, the upper slopes down to 500m presents the lowest TOC% observed (0-0.5%). At depths between 3000 and 4000m, TOC contents higher than 2% were recorded, indicating 
possible increased input or burial.   
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 Spatial pattern of down core TOC 
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Figure 4:4 (A, B) Surface plot and scatter diagram of mean TOC% down core across sites. Upper canyon 0-1000m ranges from 0.71% at the Eastern branch to 2.38% at the Eastern 
Middle branch. Mid canyon 1000-2000m ranges from 1.15% at the Eastern Middle branch to 2.31% at the Eastern branch. Lower canyon >2000m ranges from 0.95% at the Western 
branch to 2.0 % at the Main Channel. One-way ANOVA on ranks analyses showed that there was no significant difference in down core mean TOC% and across branches or with 
depth (p > 0.05). 
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 Down core total organic carbon  
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Figure 4:5 (A-I) TOC% down core plotted by branch. Sharp peaks of total organic carbon enrichment at the Acesta branch 
(CE16006-033-PSH08-780m) and Eastern Middle branch (CE16006-022-PSH06-731.38m).
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 Spatial pattern of surficial molar C/N 
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Figure 4:6 (A, B) Surface plot and scatter diagram of the C/N ratio of the first-centimetre section across sites. Most surficial samples analysed were within the range of 3 to 25 C/N. Upper 
canyon 0-1000m ranges from 3.47 at the Eastern branch to 79.46 at the Eastern Middle branch. Mid canyon 1000-2000m ranges from 9.17 at the Eastern Middle branch to 57.99 at the 
Eastern Middle 2 branch. Lower canyon >2000m ranges from 6.99 to 22.75 in the Main Channel. One-way ANOVA on ranks analyses revealed no significant difference in surficial mean molar 
C/N ratio across the branches or with depth (p > 0.05). R-squared linear correlation coefficient analysis revealed no significant linear relationship between depth and surficial mean molar C/N 
ratio. Stars represent data from Hunter et al. (2013). (C) Frequency distribution of molar C/N ratio in surface sediments (<1cm) of the Whittard Canyon (N 32) according to water depth interval. 
Typical marine signatures in the range of <3-10 where observed at all depths, excluding 3000-4000m. High values exceeding 25 were observed down to 2000m. Due to the distance from land, 
high C/N ratios likely indicate degradation and not a terrestrial contribution (Meyers, 1994). 
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 Spatial pattern of down core molar C/N 
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Figure 4:7 (A, B) Surface plot and scatter diagram of the down core mean molar C/N ratio across sites. Upper canyon 0-1000m ranges from 5.43 at the Western Middle branch to 64.47 at the 
Eastern Middle branch. Mid canyon 1000-2000m ranges from 10.22 at the Eastern Middle branch to 51.51 at the Eastern Middle 2 branch. Lower canyon >2000m ranges from 14.28 to 27.52 in 
the Main Channel. One-way ANOVA on ranks analyses showed that there was no significant difference in down core mean molar C/N ratio across the branches or with depth (p > 0.05). R-
squared linear correlation coefficient analysis revealed no significant linear relationship between depth and down core mean molar C/N ratio %. Numbers are events. 
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4.4.2 Surficial stable isotopes δ13C‰, δ15N‰ 
 

δ13C‰ and δ15N‰ isotopes (Table 4:3) present a range of values across branches. However, 

One-way ANOVA on ranks analysis showed that there was no significant difference in stable 

isotopes across branches (p > 0.05). Likewise, no significant difference when compared 

across depth intervals (0-1000, 1000- 2000 and >2000m) was recorded (p > 0.05). 

δ13C‰ ranged between -24.42‰ at the Explorer canyon (JC125-101-MC-664m) and -

12.76‰ at the Eastern Middle branch (CE16006-030-PSH12-511.37m) (Figures 4:8 and 4:9). 

The majority of δ13C‰ values fell within the lighter isotopic range of ~-24‰ and ~-22‰, in 

line with previous research and indicating phytoplankton and zooplankton derived organic 

matter (Fry and Sherr, 1984; Levin and Michener, 2002; Hunter et al., 2013a). However, a 

heavier isotopic signature of -12.76‰ was recorded at the Eastern Middle branch (CE16006-

030-PSH12-511.37m) which is indicative of sulfide-oxidized derived carbon that involves the 

form II Rubisco pathway (Levin and Michener, 2002).  

The majority of δ15N‰ fell within the range of ~3 to ~4‰, just below the widely supported 

boundary value of ~5‰ for nitrate-derived organic matter production through algal primary 

productivity, and close to the value of <3‰ for sedimentary denitrification (Sigman and 

Casciotti, 2001; Sigman and Fripiat, 2019). The lightest reading of 1.30‰ was observed at 

the Western branch (JC125-083-PSH03-2740m) and the heaviest reading of 4.28‰ was 

recorded at the Explorer canyon (JC125-101-MC-664m). In the Western branch, the lightest 

isotopic reading of 1.30‰ coincided with a C/N ratio of 7.71 which is typical of fresh  algal 

organic matter (Emerson and Hedges, 1988; Meyers, 1994).  In the Explorer canyon, the 

heavier isotopic reading of 4.28‰ coincided with a carbon-rich C/N ratio of 18.12. 
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Table 4:4 Mean surficial values of stable isotopes (δ13C‰, δ15N‰) from 9 branches of the Whittard Canyon. Canyon branches are colour coded Purple (Western Branch), Pink (Western Middle 
Branch) Yellow (Acesta Branch), Green (Eastern Middle Branch), Cream (Intersection), Magenta (Eastern Mid 2), Brown (Eastern Branch), Blue (Explorer Canyon) and Red (Main channel). All 
data are presented in units (‰) relative to the international standard reference (Pee Dee Belemnite for δ 13C and Atmospheric Nitrogen for δ 15N). 

BRANCH 
 

DEPTH (m) CORE δ 13C ‰ δ 15N ‰ 

 
Western 2740 

 
JC125-083-PSH03-2740m 
 

-22.27 ± 0.07 1.30 ± 0.48 

Western Middle 440 CE14009-045-440m -21.97 ± 0.14 3.81 ± 0.10 

Western Middle 719 CE14009-042-719m 
 

-23.83 ± 0.08 3.45 ± 0.06 

Western Middle 1487 CE14009-027-1487m 
 

ABSENT 4.03 ± 1.46 

Western Middle 2816 CE14009-027-2816m 
 

-22.54 ± 0.37 3.45 ± 0.02 

Acesta 659 CE14009-030-659m -22.57 ± 0.12   3.83 ± 0.19 

Acesta 700 CE14009-030-700m -22.59 ± 0.18 3.50 ± 0.40 

Acesta 780 CE16006-033-PSH08-780m -22.96 ± 0.15 3.88 ± 0.08 

Acesta 1130 CE14009-009-1130m 
 

-22.65 ± 0.09 3.34 ± 0.00 

Eastern Middle 501 CE14009-040-501m 
 

-23.40 ± 0.25 3.60 ± 0.12 

Eastern Middle 511 CE16006-030-PSH12-511.37m 
 

-12.76 ± 1.67 3.59 ± 0.19 

Eastern Middle 574 CE14009-012-574m 
 

-21.58 ± 1.72 3.66 ± 0.02 

Eastern Middle 700 CE16006-030-PSH07-700m 
 

-22.82 ± 0.00 1.50 ± 1.94 

Eastern Middle 723 CE14009-033-723m 
 

-22.65 ± 0.53 4.05 ± 0.42 

Eastern Middle 1095 CE14009-040-1095m 
 

-20.99 ± 1.84 3.95 ± 0.56 

Eastern Middle 1271 CE16006-062-PSH07-1270.84m 
 

-22.73 ± 0.01 2.65 ± 0.47 

Eastern Middle 1323 CE14009-012-PSH09-1323m 
 

ABSENT 2.82 ± 0.07 

Intersection 1836  CE14009-025-PSH12-1836m 
 

-23.07 ± 0.10 4.19 ± 0.04 

Intersection 2086 CE14009-025-2086m 
 

-22.87 ± 0.07 3.98 ± 0.41 

Eastern Mid 2 1845 CE16006-056-PSH05-1845m -22.15 ± 0.46 3.12 ± 0.69 

Eastern Mid 2 1850 CE16006-056-PSH07-1850 
 

-23.45 ± 0.14 2.34 ± 1.06 

Eastern 450 CE14009-005-450m 
 

-21.35 ± 0.39 3.65 ± 1.05 

Eastern 571 JC125-109-PSH03-570.5m -23.87 ± 1.14 4.05 ± 0.38 

Eastern 681 CE14009-005-681m 
 

-23.19 ± 0.11 3.67 ± 0.07 

Eastern 1620 CE16006-042-PSH02-1620m -22.50 ± 0.16  3.78 ± 0.29 

Eastern 2979 JC125-091-PSH05-2979m 
 

-23.08 ± 0.83 3.11 ± 0.39 

Explorer 664 JC125-101-MC-664m 
 

-24.42 ± 0.72 4.28 ± 0.15 

Explorer 861 JC125-076-PSH02-861.2m -24.95 ± 0.40  2.71 ± 0.15 

Main Channel 3758 JC125-028-MC-3758m -23.62 ± 0.45 3.57 ± 0.10 
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 Spatial pattern of surficial δ 13C and δ 15N 

 

 

Figure 4:8 (A) Mean δ 13C‰ of surficial 1cm section across all sampling sites. Lowest values of δ 13C were observed within the Explorer canyon JC125-101-MC-664m (-24.42‰). The highest 
value was observed within the Eastern Middle branch CE16006-030-PSH12-511.37m (-12.76‰). (B) Mean δ 15N‰ of surficial 1cm section across all sampling sites. The lowest value of δ 15N 
was observed within the Western branch JC125-083-PSH03-2740m (1.30‰) and the highest was observed within the Explorer canyon JC125-101-MC-664m (4.28‰). One-way ANOVA on ranks 
analysis showed that there was no significant difference in stable isotopes across the branches (p > 0.05). All data are presented in units (‰) relative to the international standard reference 
(Pee Dee Belemnite for δ 13C and Atmospheric Nitrogen for δ 15N). 
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  Cross plot of δ 13C and δ 15N

Figure 4:9 (A) Mean δ 13C‰ and δ 15N‰ of surficial 1cm section plotted with depth (m). Lowest values of δ 13C were observed within the Explorer canyon JC125-101-MC-664m (-24.42‰). The 
highest value was observed within the Eastern Middle branch CE16006-030-PSH12-511.37m (-12.7‰6).  Mean δ 15N‰ of surficial 1cm section across all sampling sites. The lowest value of δ 
15N was observed within the Western branch JC125-083-PSH03-2740m (1.30‰) and the highest was observed within the Explorer canyon JC125-101-MC-664m (4.28‰) (Not seen as no δ 13C 
value). One-way ANOVA on ranks analysis showed that there was no significant difference in stable isotopes across the branches (p > 0.05).  

 

Western 
Western Middle 
Acesta 
Eastern Middle 
Intersection 
Eastern Middle 2 
Eastern 
Explorer 
Main Channel 

CE16006-030-PSH12-511.37m 



112 
 

4.5 Discussion 
 

The average surficial and down core TIC values across all sites were 2.62% ± 0.51 (n = 33) 

and 2.58% ± 0.53 (n= 37), respectively. Clustering of low TIC values was observed within the 

Explorer branch. In contrast, the Main Channel was characterized by higher TIC content. 

When transformed to CaCO3, carbonates are spatially variable and not determined by 

depth. Spearman’s rank correlation recorded no significant relationship with depth (p > 

0.05). This suggests that dissolution processes do not influence the deposition of carbonate, 

though there are no microscopic observations to support this. However, the CaCO3 depth is 

recorded as being >5000m within the North Atlantic, which suggests that it is not depth 

dependent at the targeted sites (Bickert, 2009). A moderate positive correlation was 

observed between TN% and CaCO3% (rs [35] = - .496, p = 0.005). The biological origin of 

both parameters may explain this. However, CaCO3 only refers to calcareous production and 

does not account for the siliceous or other soft tissue contribution (e.g. 

flagellates/cyanobacteria) (Broecker, 2003). Furthermore, the lability and hence faster 

decomposition of N-containing organic matter and the potential incorporation of inorganic 

nitrogen in the sediments, may also be responsible for the moderate relationship observed 

(Walsh, 1991; Corman et al., 2015).    

The average surficial and down core TOC values across all sites were 1.58% ± 0.47 (n= 33) 

and 1.47% ± 0.42 (n= 32), respectively. TOC content is enriched within the upper slopes of 

the canyon and to the East of the canyon. There is also a hotspot observed within the main 

channel. This suggests that the canyon may have the potential for efficient organic matter 

storage. TOC enrichments at increasing depths have also been observed within the 

morphologically complex Congo fan turbidite system, there values as high as 5% have been 
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recorded (Baudin et al., 2010). All sites, excluding the surficial sediment from site CE14009-

005-450m of the Eastern branch, recorded TOC values > 0.5%, consequently exceeding the 

average organic content of open ocean marine sediments (Hedges and Keil, 1995). The 

lowest TOC% content was observed at site CE14009-005-450m, this site is characterized by 

the coarsest grain size observed across the canyon, which may explain the lowest TOC value 

noted. Generally, coarser-grained sediment increases oxygen exposure, penetration and 

thus oxidation of organic matter (Hedges and Keil, 1995) (See Chapter 5: Synthesis for 

interdisciplinary relationships).  However, during the same dive event, at 681m, an enriched 

TOC signature of 1.33% was recorded, indicating that high organic matter may be more 

efficiently recycled at the shallower site and consequently not effectively buried.  

The highest surficial TOC value of 2.32% was recorded within the Main Channel JC125-028-

MC-3758m. A study of the Portuguese Nazaré Canyon recorded similar values of ~ 2% of 

organic carbon within canyon sediments (Masson et al., 2010a). At these depths, organic 

matter would likely have been subject to long degradation processes as it travelled through 

the water column. Therefore, rich eutrophic overlying waters, due to upwelling, is likely the 

reason for the enhanced TOC% content observed. Additionally, this indicates that the 

increased TOC content observed at this depth is a result of rapid sedimentation, transport 

and burial. Amaro et al. (2016a) suggested that an increase in TOC% content with depth may 

be explained by intermittent gravity flow events, whereby sediments rich with organic 

material are flushed down. While nonparametric testing found no correlation with depth 

and TOC% (p < 0.05). The highest average down core reading (2.38%) was observed within 

the Eastern Middle branch CE16006-022-PSH06-731.3, this could indicate high primary 

productivity in the overlying waters and the subsequent efficient burial of organic matter in 



114 
 

the seafloor sediments.  

Higher macrofaunal abundance has been positively correlated with sedimentary total 

nitrogen, as increased total nitrogen values indicates better, more labile food quality (Cunha 

et al., 2011). Previously, Gunton et al. (2015) recorded significantly higher values of 

sedimentary total nitrogen in the Eastern branch, however One-Way ANOVA analysis 

showed no significant differences across branches or by water depth interval (p > 0.5). The 

average surficial and down core TN values across all sites were 0.11 ± 0.07 (n = 33) and 0.09 

± 0.04 (n = 33), respectively.  

Bulk stable isotope values showed variation within and between branches (Table 4:4 and 

Figure 4:8). The average surficial value of δ13C‰ was -22.28‰ ± 2.25 (n = 22). Marine 

organic matter typically ranges between -20 to -22‰ (Meyers, 1994). This indicates that the 

carbon is likely derived from marine phytoplankton or zooplankton (Fry and Sherr, 1984; 

Petersen and Fry, 1987; Hayes, 1993; Meyers, 1994; Levin and Michener, 2002). While δ13C 

values mainly range between -25 and -22.5‰, a heavier value was recorded at the 

connecting shelf of the Acesta and Eastern Middle branch CE16006-030-PSH12-511.37m (-

12.76).  

The average surficial and down core C/N ratios across all sites were 22.31 ± 15.60 (n = 33) 

and 23.55 ± 13.31 (n= 32), respectively. Amaro et al. (2015) recorded C/N ratios of 8.12 ± 

1.23 and 8.80 ± 1.68 for the Western and Eastern branches. These lower ratios indicate 

organic matter of marine origin. Surficial C/N values between 3 and 10, indicating fresh algal 

organic matter rich in proteinaceous material, were observed to depths of >4000m (Meyers, 

1994). Sites ranging from the upper slope to depths >4000m exhibited C/N values between 

3 and 10 across the West, East and Main Channel. Therefore, it is possible that while there is 
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a marine contribution of organic matter, at extreme depths, this is subsequently recycled 

and degraded within the water column before depositing in the sediments (Meyers and 

Silliman, 1996). Lipid analyses undertaken by Huvenne et al. (2011) reported that 

phytoplankton or zooplankton derived docosahexaenoic acid (DHA) and eicosapentaenoic 

(EPA) acids were present in suspended particulate organic matter (SPOM) within the Eastern 

branch, which may provide the support that marine rich organic material is available within 

the Eastern branch. Several studies of marine sediments have shown increasing C/N ratios 

with increasing depth. Holm-Hansen et al. (1966) and Gordon (1971)) reported ratios close 

to the marine plankton signature in the upper few hundred meters of the water column, 

however, below 1000m the CN/N ratios were higher than 10, before increasing to values of 

around 15 in deeper sections. Within this study, high values >20 are observed down to 

depths of ~3500m.  Due to the marine C/N signature and the distance from land, and 

unlikeliness of enhanced terrestrial input, high C/N ratios of organic matter, exported from 

the euphotic zone, is generally attributed to the preferential scavenging or nitrogen-rich 

compounds by bacteria. Thus, the high C/N ratios observed likely indicate extensively 

reworked and degraded material, removing much of the more labile N-containing organic 

matter (Müller, 1977; Kiriakoulakis et al., 2001, 2006). Wilson et al. (2015) recorded C/N 

ratios of 27 in the Eastern branch and suggested that this was because of trawl induced 

resuspension events, where the dilution of fresh rich organic material was mixed with 

degraded refractory material (Amaro et al., 2015). However, it remains unclear whether the 

differences are due to the modification of settling organic matter by benthic organisms or 

by dispersal of degraded organic matter from the shelf across the canyon. 

The heaviest δ 13C signature of -12.76‰ was observed in the upper canyon, indicating 
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sulfide-oxidized carbon which is associated with the form II Rubisco pathway (Levin et al., 

2001). Form II presents a low specificity factor, which is the measure of the ability of the 

enzyme to discriminate between CO2 and O2 at a given ratio. Thus, it is considered that form 

II is adapted to operate in low O2 and high CO2 surroundings (Badger and Bek, 2008; Tabita 

et al., 2008; Léniz et al., 2017). It is, therefore, possible, that this site is anoxic as a result of 

high primary productivity, low ventilation rates and high biological oxygen demand, due to 

high levels of organic matter respiration. At this site, grain size is characteristically silty with 

a mean down core grain size value of 37.11 ± 17.26μm, which could lead to low oxygen 

penetration. It is, therefore, possible, that the heavy isotopic value observed here is due to 

localised anoxic conditions, perhaps because of a pulse of organic matter being deposited in 

the area (See Chapter 5: Synthesis for interdisciplinary relationships). A study by Ingels et al. 

(2011) supports this theory, where it was suggested that the head of the canyon is oxygen-

limited, creating possible sulphidic conditions.   

The lighter δ 13C readings of -24 at the Explorer Canyon JC125-101-MC-664m and JC125-076-

PSH02-861.2m, may indicate bacterial remineralisation of isotopically light mucus (~ -25‰ 

and -22‰) that is released into the water column by cold-water corals (Wild et al., 2008). 

This canyon is a marine conservation zone (MCZ), where cold-water corals exist, indicating 

that the isotopically light δ 13C values observed may indeed be because of a similar process 

occurring as observed by Wild et al. (2008) in the Australian Great Barrier Reef. 

A study of ~2000 sites present the global δ15N‰ range of 2.5 to 16.6‰ for marine 

sediments. However, Tesdal et al. (2012) discovered that the majority of sites are positively 

skewed towards lower values of 4 and 6‰, highlighting the variability of marine sediments 

(Tesdal et al., 2012). Within this study, a mean δ15N signature of 3.32‰ ± 0.84 falls just 
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below the deep-water average of ~5‰ value associated with internal cycling and 

assimilation by marine primary producers (Sigman and Casciotti, 2001). This is in line with 

previous research within the Whittard Canyon, where values of 4.09‰ ± 2.42 and 3.94‰ ± 

0.67 for West and Eastern branches were recorded (Hunter et al., 2013a). All are below the 

oceanic deep water average, which may be a result of the lack of water column 

denitrification, previously recorded in the Atlantic ocean, or due to discrepancies in 

sampling techniques (Tesdal et al., 2012; Marconi et al., 2019). Low values, such 1.30‰ ± 

0.48, recorded at the Westernmost site (JC125-083-PSH03-2740m) and 1.50‰ ± 1.94 at the 

Eastern Middle site (CE16006-030-PSH07-700m) may indicate deposited sediment where 

low fractionation has occurred, such as atmospheric nitrogen fixation by cyanobacteria in 

the surface waters (Sigman et al., 2000; Sigman and Casciotti, 2001; Sigman and Fripiat, 

2019).  Both sites were sampled within the summer season, and the reduced nitrogen 

signature may indicate the transition from nutrient-rich conditions, early in the 

phytoplankton bloom, to more oligotrophic conditions as the phytoplankton has ingested 

much of the fresh nitrogen (enriched in 15N) and less nitrate is available. This may also result 

in marine phytoplankton utilizing recycled ammonia, which is typically depleted in 15N—

subsequently leading to low nitrogen isotopic values (Radke et al., 2017; Lu et al., 2020).  

Oceanographic regimes observed by Huvenne et al. (2011) suggest that the Western branch 

receives less-frequent sedimentary inputs, therefore consequently less organic matter from 

the continental shelf. This may result in noticeable resource-limitation compared with other 

branches (Hunter et al., 2013a). Grain size characteristics support the observation of 

Huvenne et al. (2011) silty fine-grain sizes suggest a low energy depositional site (35.403µm 

± 18.91). While fine-grained material may make oxygen penetration lower, the TOC value 
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here is the third-lowest observed (See Chapter 5: Synthesis for interdisciplinary 

relationships). Typically suboxic conditions are less efficient in breaking down organic 

matter, resulting in a corresponding increase in OC content (Winterer, 2012). However, this 

does not appear to be the case; thus, highlighting the complexity of the mechanisms 

occurring here. 

Amaro et al. (2016) suggested that transport of labile OM, through gravity flows, is limited in 

the Whittard with fresh OM mainly arriving through vertical deposition and lateral transport 

of settling phytodetritus from phytoplankton blooms that occur during spring/summer. 

Hunter at al. (2013) found that macrofaunal assemblages differed across the Eastern and 

Western canyon branches. Furthermore, Amaro et al. (2016) found that foraminiferal 

abundance was higher in the upper parts of the canyon than the lower canyon, suggesting 

organic enrichment in the upper reaches of the canyon. This further highlights the 

complexity of the Whittard Canyon. However, questions remain on the small-scale spatial 

and temporal variability in these processes.  

a) Upper slope 0-1000m  

The largest range in biochemical parameters was observed in the upper slopes of the 

canyon (0 -1000m). Mean surficial and down core TOC values ranged between 0.33% - 

2.26% and 0.71% - 2.38%, respectively. However, the largest percentage of TOC content 

down core of individual samples did exceed this. Within the Acesta branch, TOC peaked to 

3.82% in the 3-4cm section (CE16006-033-PSH08-780m). Similarly, the Eastern Middle 

branch (CE16006-022-PSH06-731.38m) peaked to 3.78% down core at 1-2cm. The enriched 

organic carbon observed here may be due to increased sedimentation or burial (Amaro et 

al., 2016a). Due to it being characteristically out of the norm for the core profile, it may also 
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be due to an episodic event such as a gravity flow or another disturbance such as 

bioturbation; where an organism effectively subducts carbon from the surface sediment to 

deeper layers (Kiriakoulakis et al., 2004). Nepheloid layers have been observed within this 

branch, which may explain this enrichment (Wilson et al., 2015d; Daly et al., 2018) . Similar 

values have also been observed within the Angola basin; at the same bathymetric interval 

(0-1000), were TOC values were typically higher than 2%. This enrichment was attributed to 

coastal upwellings and lateral transport of organically enriched nepheloid layers that quickly 

deposit in the sediment (Inthorn et al., 2006; Baudin et al., 2017).  

The lowest content of surficial TOC recorded (0.33%) at the Eastern branch (CE14009-005-

450m) corresponded with the lowest surficial C/N value of 3.47, across all water depth 

intervals, and isotopic signatures of δ13C ‰ -21.35‰ and δ15N‰ 3.65‰. Low organic 

carbon content may be a result of increased internal cycling or low input. Amaro et al. 

(2016) suggested that at shallower sites (mainly < 600m) within the Eastern branch, there 

was a strong concentration of stained (living) foraminifera in the upper 0.5cm sediment 

layer, reflecting the shallow oxygen penetration depth associated with greater OM input. 

However, the permeable sandy material indicates an energetic regime and significant 

oxygen penetration, which may enhance remineralisation rates of TOC (Marchant et al., 

2016; Ahmerkamp et al., 2017). This suggests that organisms are recycling TOC at this site. 

C/N ratios further support this. Where enhanced denitrification is expected when sediment 

is permeable, this does not appear to be the case. Instead, the nitrogen-rich C/N signature 

indicates that the organic matter is of marine origin and phytoplankton derived (Middelburg 

and Nieuwenhuize, 1998; Escobar-briones et al., 2009). While, it is also possible that 

nitrogen avoids being remineralized into the water column, by adsorption to the clay 
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surface, this is likely not the case in this instance as sediment from this site is characterized 

as fine sand with less than 5% of clay content present (Stevenson and Cheng, 1972; Suthhof 

et al., 2000). Stable isotopes provide further support that the organic matter is a 

consequence of phytoplankton or zooplankton contribution. Where δ13C ‰ is -21.35‰, it is 

recognized that this is likely due to primary producers (Fry and Sherr, 1984; Levin and 

Michener, 2002).  

The succeeding lowest TOC value does not display the same C/N relationship, as described 

previously. Instead, within the Eastern Middle branch (CE16006-030-PSH12-511.37m) where 

surficial TOC is 0.99 %, there is a high, carbon-rich, C/N ratio of 32.12 and isotopic values of 

δ13C -12.76 ‰ and δ15N 3.59 ‰. Due to distance from a terrestrial source, the high C/N 

value is indicative of the preferential loss of nitrogen-rich organic compounds, through 

degradation.  

The lightest δ13C‰ value of -24.42‰ observed at the Explorer canyon (JC125-101-MC-

664m) coincides with a carbon-rich C/N ratio of 18.12 and an organically enriched TOC value 

of 1.60%, higher than typical marine values of <0.5% (Archer et al., 2002; Emerson and 

Hedges, 2003). While the light carbon isotope is within the range for marine phytoplankton 

and zooplankton production (-25% to -15%), it may indicate bacterial remineralisation of 

isotopically light (~ -25‰ and -22‰) mucus that is released into the water column by cold-

water corals (Rodelli et al., 1984; Wild et al., 2008). Vector ruggedness measurements, ROV 

observations and grain size statistics suggest a quiescent site with low rugosity, flat 

landscape and fine silty sediment 11.03 ± 4.52μm, which may preserve organic material 

more effectively. However, the high C/N ratio observed indicates that while the material is 

organically enriched, it is older and well degraded. As discussed earlier, the higher C/N ratio 
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of organic matter exported from the euphotic zone is generally attributed to the 

preferential scavenging of nitrogen-rich compounds by bacteria, indicating older reworked 

particles (Kiriakoulakis et al., 2006).  

b) Mid canyon 1000-2000m 

In the mid canyon water interval across all branches, surficial and down core TOC values 

range between 1.06% - 2.20% and 1.32% - 2.31%, respectively, indicating that all sites are 

relatively enriched in organic matter compared to the open ocean, where organic carbon 

content typically does not exceed 0.5% (Archer et al., 2002; Emerson and Hedges, 2003). 

Surficial and down core C/N values range between 9.17 - 57.99 and 10.22 - 51.51, 

highlighting large variability across branches. Fresh marine organic matter is generally 

believed to be ~6.6 which indicates that this organic matter is carbon-rich and nitrogen 

compounds have preferentially degraded (Kiriakoulakis et al., 2001; Burone et al., 2003; 

Escobar-briones et al., 2009; Sigman and Fripiat, 2019). Surficial isotopic signatures of 

δ13C‰ range between -23.07‰ and -20.99‰ and δ15N‰ range between 1.64‰ and 

4.19‰. While δ13C ‰ is typical of the marine environment (Meyers, 1994), lower δ15N‰ 

values indicate low fractionation occurring as discussed earlier.   

c) Lower canyon > 2000m 

Beyond 2000m, surficial and down core TOC values ranged between 1.10%- 2.32% and 

0.70% - 2.08%. Surficial and down core C/N values ranged between 6.99 - 22.75 and 14.28 – 

27.52, and isotopic signatures of δ13C‰ varied between -22.27‰ to -23.08‰, and δ15N‰ 

ranged between 1.30‰ - 3.98‰. The highest value of TOC (2.32%), across all water depth 

intervals, was detected at the Main channel (JC125-028-MC-3758m), suggesting an elevated 
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input of organic carbon to the site or improved burial (Masson et al., 2010a).  Similarly, at 

similar depths within the Angola deep-sea fan, enrichment was observed at the abyssal 

depths and like the Whittard Canyon TOC values exceeding 2% were observed, relating to 

Congo turbidite deposits (Baudin et al., 2017). It is possible that the same thing is being 

observed within the JC125-028-MC-3758m because turbidite layers have been recorded at 

similar depths within the canyon (Zaragosi et al., 2006). A high C/N ratio of 22.75 is 

indicative of degraded organic carbon. At this depth, OM would likely have been reworked 

and recycled as it travelled through the water column before depositing; thus it may suggest 

that as it has survived this process, the remaining exposure to oxygenated pore water within 

the sediment is minimal (Masson et al., 2010b). While isotopic data was not available for 

this site, another main channel site (JC125-045-MC-3723m) detected high values of TOC% 

(2.29%) and isotopic signatures for δ13C‰ and δ15N‰ of -22.92‰ and 3.90‰, respectively, 

indicating phytoplankton and zooplankton derived carbon and internal cycling through 

assimilation (Michener and Kaufman, 2008; Sigman et al., 2010). The lightest nitrogen 

isotopic value of δ15N 1.30‰ at the Western branch (JC125-083-PSH03-2740m) coincides 

with a nitrogen-rich C/N ratio of 7.71 and TOC value of 1.10%.  

Through the biogeochemical analyses of deep-sea sediments through elemental and stable 

isotopes, insight into the quantity and quality of organic matter, reaching the ocean floor 

was expanded. While, One-way ANOVA on ranks analyses showed that there was no 

significant difference in biogeochemical parameters across branches or by water depth 

interval (p > 0.05), variability within branches and across canyon may be seen, suggesting 

that small-scale differences are important.   
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Chapter 5:  Synthesis 
 

While each chapter has attempted to describe variability across the canyon, relationships 

between geomorphological, sedimentological and biogeochemical parameters have yet to 

be investigated. This chapter will attempt to uncover relationships where they may exist 

through a series of multivariate statistical tests, providing further information on the 

processes that impact organic matter content across the canyon system. 

5.1.1 Methods 
 

For data preparation, please refer to Chapter 1. Methods. 

 PCoA analysis 

 

Within Primer- E v7.0.13 software, principal coordinate analysis (PCoA), also known as 

multidimensional scaling, was undertaken to interpret the similarity, or dissimilarity of all 

geomorphological, sedimentological and biogeochemical parameters of surficial samples. 

The dataset was stripped back so that only sites that had a complete set of morphological, 

sedimentological and biogeochemical parameters would be assessed. Each parameter was 

assigned a location on a graphical plot, in a low-dimensional Euclidian space. The 

interpretation of a PCoA plot is as follows; objects located closer to one another are more 

similar than those located further away.  Due to the resemblance measure being set to 

Euclidean distance, PCoA gives essentially the same results as principal component analysis 

(PCA). Pearson’s correlation statistics were generated on the normalised data, and vectors 

of sedimentological and biogeochemical parameters were plotted if they returned a value 

<0.2. 

Differences between the same variables across sample sites were examined using the non-
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parametric Permutational Multivariate Analysis of Variance test (PERMANOVA) within 

Primer-E v7.0.13. PERMANOVA compares groups of variable and tests the hypothesis that 

the dispersion of the groups is equal for all groups. A rejection of the null hypothesis means 

that the spread of the variables is different across sample sites (Anderson et al., 2008). In 

other words, PERMANOVA analysis suggested that variable ranges differ across sample 

sites. 

Splitting the data by water depth interval was done using the following rationale. Samples 

are placed in the following depth categories; 0-1000, 1000-2000 and >2000m. Depth 

intervals aim to separate the upper productive waters >1000m, the areas in which cold-

water corals, such as L.pertusa , may continue to persist >2000m and >2000m where 

nepheloid layers continue to occur but are a great distance from overlying productive 

waters. Amaro et al. (2015) found that foraminiferal assemblage composition on the 

adjacent slopes of the canyon changed according to these depth intervals, reflecting 

increasingly food-depleted conditions. This study aims to understand if the environmental 

parameters examined here follow similar trends.  

One-way Analysis of Similarities (ANOSIM) was undertaken using Primer-E v7.0.13 on 

normalised data using the Euclidian distance matrix in order to determine the similarity of 

each variable across sites.  

 DIVA data analysis 

 

While this study has an unprecedented amount of sampling sites, the Whittard canyon is 

vast and heterogeneous in nature. Thus, there is still likely to be under-sampling of the 

canyon variability. However, the sophisticated analysis tool Data Interpolating Variational 
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Analysis (DIVA) has been developed to optimize the use of limited in-situ data points. DIVA 

aims to estimate a continuous spatial field, of a given environmental or biological variable, 

from a discrete set of measurements, considering margin of errors attached to these 

measurements (Barth et al., 2016). DIVA uses a finite-element method to solve the 

variational principle, considering the following;  

• The distance between analysis and data (observation constraint). 

• The regularity of the analysis (smoothness constraint). 

• The physical laws (behaviour constraint). 

In comparison to standard optimal interpolation (OI), DIVA considers uncertainties on 

observations and when applied to ocean data, considers coastlines, sub-basins and 

advection because of its variational formulation on the real domain. Additionally, the 

numerical cost is not dependent on the number of data points, but instead on the number 

of degrees of freedom, relating to the size of the finite-element mesh model (Troupin et al., 

2012). Sedimentological and biogeochemical data were plotted to predict spatial variability 

across the canyon extent according to the method by Troupin et al. (2012). Automatic scale 

lengths were used for the gridded field, and bad estimates were hidden according to a 

quality limit of 3.0. All ODV gridding methods assign for every estimate, at a given grid point 

(x, y), a dimensionless quality value. These values are based on the distances from the 

estimation point, measure in units of respective averaging scale lengths) of all the data 

points used for the estimate. A quality value larger than 3.0 indicates that the nearest 

measurement is more than two length-scales away from the estimation point, as such they 

are typically considered to be problematic. The domain selection map used was GEBCO 
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2014 30 X 30 sec. Nonlinear scaling was applied to visualize data effectively. 

Gridded field DIVA interpolation maps indicate the spatial coverage of surficial 

sedimentological and biogeochemical values, highlighting hotspots. However, while this 

method of interpolation is useful when there are sparse data points, it must be noted that 

small scale or extreme features in the data may be altered or lost as a consequence of the 

gridding procedure (Schlitzer, 2011). 

5.1.2 Results 
 

 Multivariate PCoA  

 

PCoA analysis of surficial samples across the Whittard canyon. PC1 (33.3%) and PC2 (20.1%) 

account for 53.4% of the variation in environmental parameters between samples (Figure 

5:1) The majority of samples group along the positive loading of PCO1 are driven by silt, and 

to a lesser degree, clay, δ15N, water depth, kurtosis and IC. However, there is a cluster of 

three sites that are negatively loaded along PC01, co-variances of sorting and skewness 

drive these, and to a lesser degree TN. The Western site (JC125-083-PSH03-2740m) varies 

from all sampled sites, while it is negatively loaded along PC01, it is positively loaded along 

PC02 and is driven by skewness SKG. The Eastern branch reflects the largest variation in 

drivers of all the branches, with each site influenced by varying positive and negative loads 

of PC01 and PC02. 

There is an apparent fluctuation in Acesta branch samples, with site CE16006-033-PSH08-

780m negatively loaded. However, there is a cluster of two sites CE14009-009-1130m and 

CE14009-027-2816m loaded along site PC01, indicating the same drivers at these two sites. 

The Explorer branch also shows some variability, with site JC125-076-PSH02-861.2m 
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negatively loaded along PC01.  However, the Eastern branch shows the most significant 

variability, with site CE14009-005-450m extremely positively loaded along PC02 and both 

negative and positive loadings for PCO1 observed at sites CE14009-005-681m and JC125-

109-PSH05-570.5m. C/N and VRM appear to have a lower effect on all sites; however, weak 

correlations exist according to Pearson’s statistic (>0.2). 

The PCoA plot highlights correlations between variables. Positive correlations are observed 

between water depth, clay and silt content, and δ15N. Grain size µm and TOC are negatively 

correlated, as is silt, clay, δ15N, and water depth with sand. TOC is also negatively correlated 

with δ13C and to a lesser degree sand content.  

Sites tend to cluster towards the positive loading of PC01; however, the Acesta site 

CE16006-033-PSH08-780m is an exception and is driven by negative loading along PC01, 

indicating that skewness, sorting and TN are the main driving factors. 

 PERMANOVA  

 

PERMANOVA testing showed no significant permutations (p = 0.598) between water depth 

interval where samples are placed in the following depth categories; 0-1000, 1000-2000 and 

>2000m. Depth intervals aim to separate the upper productive waters >1000m, the areas in 

which cold-water corals, such as L.pertusa, may continue to persist >2000m where 

nepheloid layers continue to occur but are a great distance from overlying productive 

waters. Additionally, there was no significant differences when samples were separated by 

branch (p = 0.135), North versus South (p = 0.58), or West versus East (p = 0.558) (for 

rationale please see Chapter 5.1.1 Methods).  
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 ANOSIM 

 

One-way ANOSIM testing for similarity highlighted the high similarity between variables 

across branches (R = 0.144), water depth interval (R = 0.104), North Versus South (R = 0.038) 

and West Versus East (R = 0.018). 

  

 

Figure 5:1 PCoA analysis of surficial samples across the Whittard canyon. PC1 (33.3%) and PC2 (20.1%) account for 53.4% of 
the variation in environmental parameters between samples. Environmental parameters with Pearson correlation of >0.2 
are overlaid in blue with blue lines indicating eigenvector weighting of each parameter.  Coloured symbols indicate samples. 
Samples that are clustered together indicate that they are driven by the co-variance of overlain environmental parameters 
(blue text). Dotted circles indicate water depth interval, where green is 0-1000m, blue is 1000-2000m and red is >2000m.  
Full orange circles indicate areas where enhanced nepheloid layers have been recorded. Dashed orange circles indicate 
dilute nepheloid layers (Wilson et al., 2015).   
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 Relationships 

a) Spearman’s rank correlation 

 

Spearman’s rank correlation was undertaken on non-parametric data to investigate 

relationships between geomorphological, sedimentological and biogeochemical data. 

b) Surficial grain size  

 

A moderate negative correlation was observed between surficial grain size and surficial OC 

(rs [33] =-0.408, p = 0.018). Furthermore, a strong positive correlation between δ13C and 

surficial grain size was reported (rs [48] = 0.752, p = 0.000). Surficial grain size and depth 

presented a moderate negative correlation (rs [48] = -0.322, p = 0.029). 

c) Skewness  

 

Down core skewness positively correlated with down core IC (rs [48] = 0.338, p = 0.041).  

d) Surficial total nitrogen 

 

A strong negative correlation was reported between surficial TN and surficial C: N (rs [48] = - 

0.859, p = 0.000). A moderate negative correlation was reported between surficial TN and 

surficial IC (rs [30] = 0.446, p = 0.014). 

A cross plot of nitrogen and carbon suggests that nitrogen may be preferentially degraded 

or trapped inorganic nitrogen could be present (see appendix 1). 

e) AVG δ 13C 

 

Positive correlations were observed between δ13C and surficial and down core grain size (rs 

[48] = 0.729, p = 0.000) and (rs [48] = 0.517, p = 0.009). 
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 DIVA interpolation 

 

a) Surficial sedimentological interpolation 

 

DIVA interpolation plots of sedimentary parameters indicate that the upper canyon and 

Eastern Middle 2 branch is characterized by coarser grain sands, with finer material 

generally observed with increasing depth. While most of the sediments appear poorly 

sorted across the canyon, a hotspot of very poorly sorted material is indicated within the 

Explorer canyon. Near symmetrical mesokurtic sediments are hotspots throughout the 

central and western branches. Kurtosis values are typically lower within the central canyon 

(Figure 5:2). 
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Figure 5:2  (A) Grain size (µm) (B) sorting (ϬG) (C) skewness (SKG) and (D) kurtosis (KG) for all surficial sediment samples 
across the Whittard canyon. Interpolations were produced in ODV 4.7.4 using Data Interpolating Variational Analysis (DIVA) 
gridding software according to the method by Troupin et al. 2012. 
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b) Surficial biogeochemical interpolation 

 

DIVA interpolation reveals hotpots of enriched TOC at all water depths intervals of the 

canyon. The highest C/N ratio observed are within the Eastern branches. A hotspot of 

increased δ13C values is seen between the Acesta and Eastern Middle branch, and δ15N is 

lowest at the West of the canyon and within the Eastern middle 2 branches (Figure 5:3). 

 

 

 

Figure 5:3 (A) TOC (%) (B) C/N (C) δ 13C (‰) and (D) δ 15N (‰) for all surficial sediment samples across the Whittard canyon. 
Interpolations were produced in ODV 4.7.4 using Data Interpolating Variational Analysis (DIVA) gridding software according 
to the method by Troupin et al. 2012. 
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5.1.3 Discussion 
 

The highly varied morphology, sedimentology and biogeochemistry of the canyon is 

supported by PCoA analysis (Figure 5:1), which suggests that the number of environmental 

or chemical parameters may be driving the differences observed. However, just 53.4% of 

the variation is explained by PC01 and PC02, meaning that almost half of the variation is not 

described by principal coordinates analysis.  

While some sites are influenced to greater degrees by differing variables, one-way ANOSIM 

testing for similarity, highlighted the high similarity of sedimentological and biogeochemical 

variables across groups; where an R-value close to 1.0 means dissimilarity between groups, 

and a value closer to 0 suggests an even distribution of high and low ranks between groups. 

R values between variables and groups are as follows; branches (R = 0.144), water depth 

interval (R = 0.104), North Versus South (R = 0.038) and West Versus East (R = 0.018). 

Additionally, when separated by water level, PERMANOVA testing showed no significant 

permutations, where the P-value is more than 0.05 (p = 0.598). Likewise, there were no 

significant differences when samples were divided by branch (p = 0.135), North versus South 

(p = 0.58), or West versus East (p = 0.558). However, this may be due to the grouping 

strategy, where differences may be lost due to the grouping procedure.  

PCoA analysis displays clustering of sites, indicating similar processes occurring. Others are 

plotted independently such as the Acesta, Eastern and Explorer branches. The Eastern 

branch site CE14009-005-450m is unlike any other site recorded, where high sand content 

and grain size are the main drivers (positive PCO2). This suggests that while 

sedimentological and biogeochemical parameters may not differ a great deal when 

separated by water interval (0, 1000, >2000m). Across the canyon, individual sites are driven 
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by each parameter to a varying degree, indicating within branch and canyon patchiness. 

The Eastern branch reflects the largest variation in drivers of all the branches, with each site 

influenced by varying PC01 and PC02 loads. This suggests that this branch is highly variable, 

further supported by the broad range of sedimentological and biogeochemical values 

recorded: wide-ranging VRM values and photographs support this (see Chapter 2). Steep 

bedded walls with dense coral, vertical chalky cliffs with stepped edges and overhangs, and 

flatter sandier areas are observed across the Eastern branch. Existing internal tide data has 

highlighted the high baroclinic energy generated southeast of the canyon along the Celtic 

shelf break. It is recognized that the Eastern branch is the focal point for this energy, with 

steep topography, driving higher energy fluxes within this branch than elsewhere in the 

canyon (Aslam et al., 2018). The increased energy may enable the transport and deposition 

of coarser material that is observed within this branch. End-member analysis further 

supports this, where a peak of coarse fraction, not seen in samples other than the Eastern 

Middle 2 branch, is recorded. This coarse fraction continues down to 9 cm, indicating the 

ongoing transport of shelf-derived coarse sediment to this site.   

It has been suggested that the heterogeneity observed within the Eastern branch may be 

responsible for the increased total benthic polychaeta species richness recorded (Gunton et 

al., 2015). Many of these species have been described as opportunistic, benefitting from 

areas of high disturbance, and are not observed in as high numbers within other canyon 

branches (Paterson et al., 2011; Gunton et al., 2015). 

Spearman’s correlations between depth and surficial grain size presented a significant 

negative correlation. In other words, overall, the grain size reduces with increasing depth. 

PCoA statistics support this further. When normalised, Pearson’s correlation testing 
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indicated a weak positive correlation between water depth, clay and silt content—

suggesting that with increased depth, coarse material tends to deplete. However, fine sand 

at the Eastern Middle 2 site CE16006-056-PSH05-1845m (187.67µm) is observed at 1845 m, 

indicating a complex picture, where ongoing shelf derived coarse lithogenic material may 

contribute to the sediment component down to increased depth along the Western and 

Eastern Middle branches. While TIC and CaCO3 values may loosely indicate the lithogenic 

fraction, a biogenic element may exist too, therefore this study cannot confirm this. While, 

some studies have found that coarse sediments dominate the upper canyon, and the lower 

canyon is predominantly covered in finer material, some research has reported vertical 

alterations in lithogenic fine sand and more carbonate-rich hemipelagic ooze, and have 

attributed this to episodic gravity flows within the canyon  (Duros et al., 2011; Hunter et al., 

2013b; Amaro et al., 2015).  

PCoA analysis suggests that grain size and TOC are negatively correlated, as is silt, clay, δ15N, 

C/N and water depth with sand. In other words, as grain size increases, TOC, silt, clay, δ15N 

and C/N decreases. This is supported by previous work, which suggests that where sediment 

is coarser, TOC is efficiently winnowed, lost, or remineralised quicker (Dauwe and 

Middelburg, 1998; Martín et al., 2014). This effect may be observed within the Eastern 

branch site (CE14009-005-450m), where the coarsest grain size fraction is recorded 

throughout the core profile, and the TOC is the lowest recorded in this study. Additionally, 

the δ15N decreasing trend, as grain size increases, may be due to the residence time of the 

material in the water column. Large, fast-sinking particles are more likely to have a lower 

residence time than slow sinking fine particles. This results in increased oxygen exposure, a 

higher rate of microbial alteration, and the subsequent increase in δ15N, as the organic 
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matter decomposes and subsequently 15N – depleted dissolved nitrogen is released (Altabet 

and Francois, 1994; Mintenbeck et al., 2007; Montes et al., 2013). PCoA analysis showed a 

strong inverse correlation between sediment grain size and C/N ratio. Furthermore, lower 

nitrogen levels associated with coarse particles may explain the increase in C/N (Figure 5:1) 

(Keil et al., 1994; Lesen, 2006).   

Discrete measurements of organic enrichment levels have been recorded in the upper, 

middle and lower canyon, indicating that organic depocenters are seen at all bathymetric 

levels (Figure 4:3C). Typically, in the open ocean,  as organic matter settles through the 

water column, it is almost entirely degraded back to dissolved chemicals and less than 1% of 

TOC reaches the seafloor (Archer et al., 2002; Emerson and Hedges, 2003). However, a 

significant enrichment in TOC is noted between 500-1000 m. At this bathymetric level, 6% of 

the study sites (33 data points) exhibited TOC values above 2%. Another enrichment was 

observed between 1000 and 2000m, here 9% of sites sampled presented TOC values above 

2%. Below 2000 metres, TOC content decreases. A third enrichment was seen between 3000 

and 4000m. Values as high as 2.08 % were observed, at a depth of 3723m (JC125-045-MC-

3723m) This suggests that while depth is not the main factor in which controls TOC 

enrichment within the canyon, processes occurring within the canyon determine TOC 

content. Similar pulses of enriched organic matter have been observed within the West 

African Congo fan, where TOC values exceeding 3.5% were also recorded at abyssal depths 

(< 4000m). This has been attributed to the organically enriched Congo turbidite system, high 

sedimentation rates, and the high proportion of clay sediments that is prone to adsorption 

of organic matter (Savoye et al., 2009). Likewise, turbidite deposits have been documented 

within the deeper sections of the Whittard Canyon. However silt continues to dominate, so 
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it is possible that a reduced effect is being observed within the Whittard Canyon due to 

lower organic carbon adsorption (Zaragosi et al., 2006; Amaro et al., 2015). Sedimentary 

gravity flow events have been recorded at depths of ~4000m in the canyon, punctuated by 

increases in bottom water turbidity along with a strong increase in sediment deposition 

(Amaro et al., 2015). It is, therefore, possible that the organically enriched sediment 

observed at depth is a result of high sedimentation events, subsequently reducing the 

oxygen exposure of organic matter, such as has been observed at the Nazaré Canyon 

(Kiriakoulakis et al., 2011). Another explanation for the enrichment where the branches 

merge within the main channel may be due to the accumulation of organic matter 

transported by multiple canyon branches. This process has been suggested within the 

Barkley Canyon (NE Pacific), where organic carbon enrichments were also seen at depth 

(Campanyà-Llovet et al., 2018). 

Surficial TOC is negatively correlated with surficial δ13C; in other words, increased TOC 

content leads to a decreased δ13C value. A possible explanation for the changes in stable 

isotope values is that depleted δ13C values may be due to the preferential removal of an 

organic fraction (carbohydrates and proteins) enriched in 13C and 15N; Whereby increased 

δ13C and δ15N values may be explained by the selective loss of organic matter components 

(lipids) depleted in 13C and 15N (Macko and Estep, 1984; Altabet, 1988; Montoya and 

Mccarthy, 1995; Altabet et al., 1999; Khim et al., 2018). 

Where sites cluster towards the positive loading of PC01, enhanced nepheloid layers (ENLs) 

have been documented (Intersection branch CE14009-025-PSH12-1836m, Acesta branch 

CE14009-009-1130m) (Wilson et al., 2015d). The main drivers at these two sites, according 

to the PCoA plot, are the proportion of clay and silt content, water depth, δ15N, and to a 
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lesser degree TOC, VRM and C/N ratio. Wilson et al. (2015) established that the most turbid 

ENLs are present within the steeper mid-lower canyon branches, where dilute ENLs were 

present in the softer sloping upper reaches. While fishing is restricted to the smooth spurs, 

the steeper morphology of the canyon walls is believed to cause a large driving force and 

thus propagate more material, resulting in the more turbid ENLs observed here (Martín et 

al., 2014). While it is not confirmed that the sediment analysed here has been deposited 

from previous nepheloid occurrences, the raised δ15N and TOC values in sedimentary 

material at sites were known ENLs had occurred a year prior (CE13008) may indicate 

deposition from these earlier events. Where, high TOC  and high δ 15N, suggest quickly 

transported organic-rich material from the upper reaches (Puig and Palanques, 1998; 

Sigman and Casciotti, 2001). 

Furthermore, where an ENL is observed along the negative loading of PCO1, the increased 

TN content may be a signature of nitrogen-rich sedimentary material, transported rapidly 

within the nepheloid layer from overlying productive waters, subsequently escaping much 

of the remineralization and oxidation that would be expected with depth (Stein, 1990; 

Wakeham, 2002; Arzola et al., 2008). However, a contrasting effect has also been recorded, 

demonstrating the complexity of the system. Instead, molar C/N ratios of suspended organic 

matter exhibit high carbon, nitrogen-poor values, indicating the resuspension of well 

degraded superficial sediment and lithogenic material from the upper canyon (Wilson et al., 

2015b).  
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5.2 Overall conclusions 
 

Each discipline sought to determine if the canyon was homogenous throughout and to 

compare it to typical deep-sea values. Overall, geomorphological, sedimentological and 

biochemical analyses indicated that while most branches do not differ significantly from one 

another, some branches are more intervariable than others, and there is a divergence from 

typical oceanic values.   

All disciplines agreed that the Eastern branch was notably different from the other 

branches, where the greatest range of parameters was observed for vector ruggedness 

measurements, grain size and total organic carbon- supporting and complementing previous 

findings. Amaro at al. (2015) indicated that megafauna and macrofauna were higher in the 

Eastern branch than the slope or western branches. Likewise, Gunton et al. (2015) 

highlighted the dissimilarity of the Eastern branches with the rest of the canyon, reporting 

that macrofaunal abundance was higher within this branch. These faunal patterns have 

been attributed to organic enrichment, different substrates, along with complex 

hydrodynamic activity and energy fluxes, that is influenced by the Eastern branch’s complex 

topography and tidal regime. However, it remains unclear what the primary driver of these 

patterns are. 

5.3 Further work 
 

Though slope and vector ruggedness measures have improved the understanding of the 

context of each site, there is a limitation to how useful this information is alone. It does not 

provide insight into whether the site is an area of deposition or erosion. However, the use of 

Fine Bathymetric Positioning Indexing (FBPI) has been successfully applied by Campanyà-
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Llovet et al. (2018) to determine convex or concave seafloor areas and, thus, areas of 

accumulation versus areas of resuspension. Indeed, the study by Campanyà-Llovet et al. 

(2018) found that the FBPI value was one of the main drivers of organic matter within the 

Barkley Canyon.  

Although particle size analysis has provided some useful descriptives of the types of 

sediment available within the canyon, it has not quantified the lithogenic or biogenic 

fraction. As deep-sea sediments represent the largest carbon sink on Earth, it is important to 

understand what material is reaching the seafloor (Dutkiewicz et al., 2016).  

Though it can be assumed that fluctuating sedimentological and biogeochemical values 

down core represent processes changing in time, without sedimentological rates it is not 

possible to determine if these changes were a result of seasonality, short-term disturbance 

events or representative of much longer-scale processes. Therefore, it is not possible to 

determine carbon rates. Carbon burial rates may help determine if the canyon is an efficient 

reservoir for carbon and to compare it with typical deep-ocean settings. 

While there appears to be a connection between within-branch heterogeneity and 

biodiversity and abundance, this study cannot draw firm conclusions as to what the main 

casual factors are. Although total organic carbon has been useful in describing food 

quantity, C/N ratios have indicated organic matter origin (terrestrial or marine) and bulk 

stable isotopes have provided insight into the source and degradation state of organic 

matter, future lipid analysis would provide invaluable information about the origin and 

nutritional value of organic matter (Kiriakoulakis et al., 2005; Parrish, 2013). Within lipids, 

certain fatty acids (FAs), polyunsaturated fatty acids (PUFAs), and sterols are considered 

important drivers of ecosystem health and stability (Arts et al., 2001; Arts et al., 2009). 
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While fatty acids are a minor component of the organic matter in sediments, they provide 

the densest form of energy, yielding at least two-thirds more energy per gram than proteins 

or carbohydrates (Parrish, 2013). They can act as diagnostic indices (biomarkers), providing 

crucial information on the organic matter/carbon sources in the overlying ocean, trophic 

linkages, and diagenetic processes. Despite their importance, they remain the least well-

understood nutrients for aquatic fauna, despite their role as essential nutrients (Parrish, 

2013). 
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APPENDIX 1 
 

 

Appendix 1 Cross plot that indicates possible preferential degradation of nitrogen or trapped inorganic nitrogen. 


