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Abstract— For centuries researchers have used sound to 

monitor and study wildlife. Traditionally, conservationists have 

identified species by ear; however, it is now common to deploy 

audio recording technology to monitor animal and ecosystem 

sounds. Animals use sound for communication, mating, navigation 

and territorial defence. Animal sounds provide valuable 

information and help conservationists to quantify biodiversity. 

Acoustic monitoring has grown in popularity due to the 

availability of diverse sensor types which include camera traps, 

portable acoustic sensors, passive acoustic sensors, and even 

smartphones. Passive acoustic sensors are easy to deploy and can 

be left running for long durations to provide insights on habitat 

and the sounds made by animals and illegal activity. While this 

technology brings enormous benefits, the amount of data that is 

generated makes processing a time-consuming process for 

conservationists. Consequently, there is interest among 

conservationists to automatically process acoustic data to help 

speed up biodiversity assessments. Processing these large data 

sources and extracting relevant sounds from background noise 

introduces significant challenges. In this paper we outline an 

approach for achieving this using state of the art in machine 

learning to automatically extract features from time-series audio 

signals and modelling deep learning models to classify different 

bird species based on the sounds they make. The acquired bird 

songs are processed using mel-frequency cepstrum (MFC) to 

extract features which are later classified using a multilayer 

perceptron (MLP). Our proposed method achieved promising 

results with 0.74 sensitivity, 0.92 specificity and an accuracy of 

0.74.        

Index Terms— Conservation; Audio Classification; Acoustic 

Monitoring; Modelling Biodiversity; Deep Learning 

I.INTRODUCTION 

lobally biodiversity is in rapid decline. As a result, there is 

an urgent need to easily deploy scalable and cost-effective 

monitoring technology to better model and understand wildlife 

and the environments they inhabit [1]. Sound is considered to 

be an important aspect when monitoring wildlife and habitat 

health. Acoustic sensors provide unobtrusive access to nature, 

for conservationists and researchers. These sensors provide 

important ecological data that allows information on abundance, 

distribution and animal behaviour within ecosystems to be used 

to model conservation strategies [2]. Typical types of analysis 

include occupancy or distribution modelling, density estimates 

and population trend analysis [3]. While camera traps have 

been the go-to technology in such analysis, acoustic monitoring 

has been used to extend biodiversity studies. Audio obviously 

provides a different sensory dimension to images but it also has 

the added benefit of traversing much larger geographical 

boundaries and is less impacted by field of sight and the 

vegetive constraints in many hard to reach environments [4]. 

Largely due to the geographical reach of acoustic sensors 

and them being less susceptible to densely populated 

environments acoustic monitoring is increasing within ecology 

and conservation and is now considered a key component to 

understanding animal responses to environmental change [5]. 

Camera traps have proven to be very useful for detecting large 

animals. However, when they are combined with passive 

acoustic monitoring, they can identify a much broader range of 

animal species that include very small animals not easily 

detected by camera traps. When acoustic sensors are used in 

isolation they can be deployed for extended periods (often 

months) to model a particular ecosystem.  

Acoustic sensors generate continuous time-series data and 

often include a combination of frequencies relating to different 

signal generators. Different animal species will generate sounds 

using different acoustic features and frequencies. If is therefore 

necessary to separate the signal from the noise in order to gain 

access to required information. Extracting frequency 

characteristics is most commonly performed using Fast Fourier 

Transform (FFT). In this paper FFT is implemented in the 

acoustic monitoring pipeline to generate spectrograms which 

have previously been used to visually classify and label animal 

calls [6]. Detection involves locating particular sounds of 

interest within the recording while assigning each sound to a 

particular category such as species type. This form of analysis 

is labour intensive and can often be biased depending on the 

experience of the conservationist [7]. Figure 1 shows an 

example spectrogram (House Sparrow) from the dataset used 

in this paper. 

 

Figure 1. Spectrogram of a House Sparrow 

While automated signal analysis has helped to improve 

classification [8], variability within predictions and efficiency 

remain a significant issue that impedes widespread adoption [9]. 

Yet, there is significant interest and support for automated and 

semi-automated acoustic, including video, analysis among 

conservationists to speed up study times and facilitate large 

scale and practical acoustic monitoring.  
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This paper aims to address these challenges through an 

automated sound classification pipeline that will help to support 

large scale acoustic surveys and passive monitoring projects. 

The current version of the pipeline is capable of classifying 

different bird songs, although many other types of animals 

could be included following the generation of species-specific 

acoustic classification models. Birds have been chosen since 

they are considered to be an important species when assessing 

habitat health and modelling biodiversity [10].  

The remainder of the paper is structured as follows. A 

background discussion on current acoustic analysis tools and 

their associated limitations is introduced in Section 2. Section 

3 details the proposed methodology before the results are 

presented in Section 4. Section 5 discusses the results and the 

paper is concluded and future work is presented in Section 6. 

II.BACKGROUND AND RELATED WORK 

The development of audio classification tools for 

conservation applications is challenging and often impeded by 

a number of different factors. These include the availability of 

validated data, un-biased data (data which is recorded in a 

variety of different habitats therefore supporting 

generalisation), standardisation and acoustic tagging [11]. A 

wide variety of approaches exist and many of them utilise 

supervised machine learning algorithms such as Artificial 

Neural Networks (ANNs), Random Forests (RF) and Support 

Vector Machines (SVMs). The remainder of this section will 

provide a discussion on some of the more common systems in 

operation today and highlight their associated limitations that 

this paper aims to address. 

A. Current Solutions 

Historically, the identification of animal species within 

audio recordings has been undertaken by humans. However, 

there is now significant interest in fully or semi-automating this 

process. While, more traditional systems focused on pre-

processing audio data to aid in manual classification most 

approaches now combine pre-processing with automatic 

classification using machine learning [12]. In existing machine 

learning approaches, researchers deploy either deep or non-

deep learning approaches [13] to classify different animals 

from acoustic data. These include classifying different animal 

species such as monkeys, lions and dogs. Studies that primarily 

focus on same species classifications, such as different birds, 

have received much less interest amongst machine learning 

practitioners and conservationists.  

This said, a great deal can be learnt from these other more 

popular studies and their findings mapped directly into within 

species classification. For example, in [14] researchers 

developed a convolutional neural network (CNN) to classify 

different environmental sounds you might find in typical urban 

settings. The model was evaluated using three different 

environmental datasets (ESC-50, ESC-10 and UrbanSound8K). 

While the results reported are relatively low (64.6% accuracy – 

no sensitivity or specificity values were provided), the paper 

does provide interesting insights into the development of 

appropriate pipelines and CNN networks capable of being 

generalised to animal sounds and acoustic monitoring. This 

said, a much more in-depth analysis of data pre-processing and 

network structure is required to improve the results and provide 

a viable solution in acoustic modelling.   

Focusing on animal sounds [15] presents a much more 

relevant proposition. Again, a CNN architecture is formulated 

and used to model animal sounds using the Mel Frequency 

Coefficients (MFCC) library to extract features from audio 

signals. Unlike the results obtained in [14], [15] was able to 

able to obtain a classification accuracy of 75%. Again, 

sensitivity and specificity were not reported. 

Directly relating to the approach posited in this paper, 

several deep learning approaches have been reported in the 

literature [16] and [17]. In these studies, features extracted from 

visual spectrogram representations of foreground species 

recordings were used to train CNNs and achieve 0.605 MAP in 

BirdCLEF2017. While [10] combined hand-crafted features 

with deep learning in an attempt to classify fourteen different 

bird species using three different feature types (acoustic 

features, visual features, and those generated using deep-

learning). They reported that an F1-score equal to 95.95 was 

possible when all three approaches were combined in an 

ensemble configuration. 

B. Limitations 

CNN approaches require a large corpus of high-quality 

annotated data that can be used to train the network. Given that 

there is limited availability of publicly available data that 

satisfy this requirement there are currently no viable models 

capable of classifying within species animal types.  Another 

major challenge to overcome is the deployment and automated 

inference of acoustic sensors. Individually, sensors may 

generate reasonable amounts of data, but collectively the 

amount of data that needs to be processed will increase 

exponentially based on the number of sensors deployed. The 

first challenge relates directly to how the data is obtained. The 

second is the cost of compute needed to process the data. 

Deploying trained models on edge devices for real-time 

inferencing will take some consideration which has not been 

sufficiently reported in the literature. Centralising inference 

will require communications in the field using for example, 

Global System for Mobile Communications (GSM). The 

difficulty however is that many environments in which habitat 

and animal surveys are conducted will not have access to GSM. 

Again, this issue has not been sufficiently addressed in the 

literature. Not addressing these issues makes a viable 

automated acoustic monitoring system less likely.  

A perhaps less obvious limitation in the reported literature is 

the fact that machine learning training and classification is only 

performed using foreground species. This approach will likely 

result in poor generalisation once deployed in real world 

environments. In order to make acoustic classification viable 

for conservation, foreground and background noise processing 

must form part of the machine learning pipeline. In the 

remainder of this paper, we will discuss these limitations 



further and provide a first-step approach that shows how they 

may be resolved or mitigated in future acoustic monitoring 

platforms.  

III.MATERIALS AND METHODS 

In this section the dataset used in the study is presented along 

with the modelling approach taken and the evaluation metrics 

used to evaluate the trained model. The section also discusses 

data pre-processing using the Librosa library. Keras and 

TensorFlow 2.2 are utilised as the backend and an Nvidia 2070 

super GPU with 8GB of memory is utilised to accelerate model 

training. In addition, the proposed inferencing pipeline is 

discussed along with the associated technologies. 

A. Data Collection and Description 

The audio dataset contains five distinct bird species found in 

the UK (Lesser Spotted Woodpecker, Eurasian Collared Dove, 

Great Tit, House Sparrow and Common Wood Pigeon) which 

is accessible via the Xeno-Canto website1. In total the dataset 

contained 2104 individual wav files. The audio file lengths 

were variable. In order to standardise the inputs, the audio files 

were trimmed to the first 15 seconds of the recoding. Figure 2 

shows the datasets class distributions. There is a slight class 

imbalance however this is unlikely to affect the overall 

performance of the model. 

 

Figure 2. Class Count of Bird Species 

Each of the audio files in the dataset were sampled at 

44.1kHz. Figure 3 shows an example waveform for each of the 

classes in the dataset. 

 

 

Figure 3. Sample Waveforms 

 
1 https://www.xeno-canto.org/ 

The dataset contains a limited number of audio files for each of 

the bird species as shown in figure 2. In addition, the acquired 

data is comprised of both foreground and background noise of 

the target class which is reflective of real-world habitats. All of 

the acquired data is crowd source and requested through the 

Xeno-Canto website. 

B. Data Pre-processing 

There are a broad range of bit-depths within the dataset (-

24440 to 21707) which will to be normalised using the Librosa 

load function. This is achieved by taking the minimum and 

maximum amplitude values for a given bit-depth which results 

in a normalised range between -1 and 1 (-07461247 to 

0.66244507). As the dataset contains audio files recorded in 

both stereo and mono, they are merged to make them uniform. 

This is achieved by averaging the values of the two channels. 

Figure 4 shows the original audio file (stereo) at the top and the 

converted (mono) file at the bottom. 

 

Figure 4. Stereo to Mono Conversion 

C. Feature Extraction 

Features are extracted from the raw audio signals using the 

Mel-Frequency Cepstral Coefficients (MFCC). MFCC works 

by summarising the frequency distribution across the specified 

window size to analyse both the frequency and time 

characteristics of the acquired audio. The human auditory 

system does not follow a linear scale. As such for each tone 

with an actual frequency, f; measured in Hz, a subjective pitch 

is mapped on a scale called the Mel scale [18]. The process 

begins by segmenting the audio samples into a reduced frame 

size of 40msec. Fast Fourier Transform (FFT) is used to convert 

the N number of samples from the time domain to the frequency 

domain which is defined as [18]: 

𝑦 (𝑤) = 𝐹𝐹𝑇 [ℎ (𝑡) ∗ 𝑋 (𝑡)] = 𝐻 (𝑤) ∗ 𝑋 (𝑤) (1) 



If X (w), H (w) and Y (w) are the Fourier Transform of X (t), 

H (t) and Y (t) respectively [18]. Bank filters which separate 

the input signal into multiple components are used to calculate 

the weighted sum of the filter components which ensures that 

the output approximates to the Mel scale. Each filter output is 

the sum of its filtered spectral components. The mel-frequency 

scale is defined in the following equation where f is the 

frequency in Hz. The relation between linear frequency and 

Mel frequency is described as: 

𝐹 (𝑀𝐸𝐿) =  [2596 ∗ 𝑙𝑜𝑔 10[1 +  𝑓] 700] (2) 

Discrete Cosine Transformation (DCT) is then used to 

convert the log Mel spectrum into the time domain. The MFCC 

window size is set to 80 to capture a broader variety of 

frequency and time characteristics. Once the MFCC features 

are extracted the data set is split (train, test) using a ratio of 

90/10. 

D. Machine Learning and Modelling 

A multilayer perceptron (MLP) is used for the classification 

task in this study. The network is constructed using the ReLu 

activation function. ReLU as defined in [20] is: 

𝑔(𝑥) = 𝑚𝑎𝑥(0,𝑥) (3) 

The MLP is configured with a filter size of 2 and is used with 

Backpropagation as the learning algorithm and Adam as the 

optimiser. A dropout value of 50% has been used in the first 

three layers to improve generalisation and reduce overfitting. 

The first three layers are composed of 256 nodes while the final 

layer is equal to the number of classes in our dataset. The model 

summary is shown in figure 5. 

 

Figure 5. Summary of the Compiled Model 

 
2 www.conservationai.co.uk 

The MLP was trained over 100 epochs as the results show 

this was a sufficient number for the model to converge without 

overfitting. This section concludes the methods used in this 

paper to train the model. 

The performance of the trained model is measured using 

Sensitivity, Specificity, Precision and Accuracy. The 

Sensitivity describes the true positive rate while the Specificity 

describes the true negative rate. Precision is used to show the 

number of correctly classified species. 

E. Model Inferencing 

The trained model is hosted using TensorFlow 2.2 and 

served through a public facing website developed by the 

authors 2 . CUDA 11 and cuDNN 7.6.5 enables the GPU 

accelerated learning aspect of the pipeline. A Samsung S10 is 

used to record garden birds and automatically upload the 

acquired audio to the platform using the Simple Mail Transfer 

Protocol (SMTP) for classification. Figure 6 shows the end-to-

end inferencing pipeline starting with the sensor and ending 

with the public facing conservationAI site as shown in Figure 

7. Due to the use of standard protocols, the system can interface 

with a variety of sensors for real-time inference. Where in field 

communication is unavailable, audio files can be batch 

uploaded through the website for offline inferencing. 
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Figure 6. End-to-end Inferencing Pipeline 

 

Figure 7. ConservationAI Platform 

Inferencing is undertaken on a custom-built server 

containing an Intel Xeon E5-1630v3 CPU, 64GB of RAM and 

a NVidia Quadro RTX 8000 GPU. Figure 8 shows the 

individual stages of the inferencing data pre-processing stages. 

 

http://www.conservationai.co.uk/
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Figure 8. Date Pre-processing Stages 

The acquired audio files are transmitted over 4G using 

SMTP. The audio file is segmented into 15 second windows. 

Each of the sample windows are passed to the feature extractor 

function where MFCC is used to return the extracted features 

for the classifier. The predicted vector is processed and logged 

to the site for review. 

IV.EVALUATION AND DISCUSSION 

In this section the classification results are presented using 

the evaluation metrics outlined previously. The deployment and 

inferencing of the trained model in test environment are also 

presented to ascertain the effectiveness of the end-to-end 

pipeline. 

A. Species Classification Performance 

The results presented in this section were obtained over 100 

epochs. Figure 9 shows the loss of the model using both the test 

and validation data during model training. The figure shows 

that there was no overfitting during training and that the 

dropout layers helped with model regularisation. Although 

model convergence was achieved early in the training session 

the loss shows continuing decreases throughout the specified 

epochs. 

 

Figure 9. Train and Validation Loss 

The model achieved an accuracy of 0.83 for the train split 

and 0.74 for the test split. Figure 10 shows the accuracy for both 

the train and validation data over 100 epochs. The results 

illustrate that the accuracy of the model flattens towards the end 

of the training session and shows that the necessary number of 

epochs required for model convergence is sufficient. Increasing 

the number of epochs would achieve minimal gains in accuracy 

and would likely lead to overfitting. 

 

Figure 10. Train and Validation Accuracy During the Training 

Session. 

Table 1 shows the performance metrics obtained using the 

test data. The best performing class was the Eurasian Collard 

Dove achieving a Sensitivity of 0.86 and a Specificity of 0.90. 

The worst performing class was the Lesser Spotted 

Woodpecker where the model attained a Sensitivity of 0.58 and 

a Specificity of 0.91. 

Table 1. Performance Metrics for Test Set 

Species Sensitivity Specificity 
F1 

Score 

Precision 

Common Wood 

Pigeon 

0.67 0.96 0.75 0.86 

Eurasian 

Collared Dove  

0.86 0.90 0.80 0.75 

Great Tit 0.91 0.92 0.82 0.74 
House Sparrow 0.75 0.91 0.72 0.70 

Lesser Spotted 

Woodpecker 

0.58 0.91 0.64 0.71 

B. Deployment Evaluation 

The trained model was implemented in the inferencing 

pipeline to record bird audio in a realistic environment. This 

was achieved using a Samsung S10 deployed under a tree 

containing nesting Common Wood Pigeons. Audio was 

recorded for a total of three minutes and uploaded to the 

platform for classification. During deployment 8 individual 

bird songs were detected. Figure 11 shows an example audio 

detection on the conservation platform. 

 

Figure 11. Sample Audio Detection from the ConservationAI 

Platform 



Each of the 8 classifications returned the prediction of Common 

Wood Pigeon with an average confidence value of 0.71. 

V.DISCUSSION 

In this paper we proposed a methodology and pipeline for 

the classification of five common UK birds – a Common Wood 

Pigeon, Eurasian Collared Dove, Great Tit, House Sparrow and 

Lesser Spotted Woodpecker. By extracting features using 

MFCC and an MLP for classification we were able to achieve 

encouraging results using a restricted amount of data with 

limited pre-processing. The results show that bird species can 

be detected and classified with a reasonable degree of accuracy 

to rapidly speed up the time taken to manually classify acoustic 

data. The performance values across all bird classes are 

encouraging and in many cases are capable of detecting birds 

with high Sensitively and Specificity values. 

 There are a number of key advantages of using the proposed 

methodology. Firstly, there are reduced computational 

requirements needed to both train and inference a model 

making it accessible and cost-effective for conservationists. 

This is in contrast to the approaches reported in the literature as 

discussed in this paper. While CNNs are used for the 

classification of bird audio, the data is carefully choreographed 

to only include foreground noise which represents an 

unrealistic account of animals in their natural habitat. In our 

approach we showed that using MFCC we can train the model 

on more realistic datasets containing both background and 

foreground noises of the target species. This enables the 

approach to make use of a wider range of datasets. The initial 

results are encouraging; however, we envision better 

performance following the collection of a much larger dataset. 

The deployment of the model demonstrates that the system 

can be used in practical way to automatically classify bird 

sounds within their natural habitat. Although a Samsung S10 

was used in the implementation, a broad range of acoustic 

sensors could be integrated into the system to achieve the same 

effect. The inferencing pipeline offers a scalable and cost-

effective way to collect, process and classify acoustic audio 

samples. 

VI.CONCLUSION AND FUTURE WORK 

Acoustic data are an import tool to quantify biodiversity and 

species densities as well as providing assessments of the overall 

acoustic health of the habitat in which they occupy. Until 

recently, the processing and classification of the acquired data 

was largely a manual process therefore limiting widespread 

deployment. Although advancements have been made in the 

automatic classification of audio within the conservation 

domain, significant challenges remain which impede its 

widespread adoption. The solution presented in this paper 

overcomes both the computational and dataset limitations 

outlined in the many existing approaches. This facilitates a 

scalable and cost-effective solution for automatic acoustic 

classification. 

While a limited range of species have been used in this study, 

future work will significantly expand the number of classes in 

the model. In addition, the flexibility of the proposed approach 

means that it can be rapidly adapted for other scenarios. Such 

applications include the identification of illegal activity and 

detecting forest fires using ambient noise or by measuring the 

stress of species within the affected habitat. 

The motivation of this work was to extend our existing 

pipeline which can already detect animals using vision-based 

sensors such as camera traps, drones and smart phones as 

shown in Figure 12.  

 

Figure 12. Bird Classification Using Visual Data 

By using a combination of both vision and acoustic based 

data we can extend the reach of the platform into habitats where 

visual monitoring is not feasible. By studying both image and 

acoustic data the system can analyse and provide a more 

holistic overview of the habitat. 
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