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Abstract-In the sign language alphabet, several hand signs are in use. Automatic recognition of 

performed hand signs can facilitate the communication between hearing and none hearing people. 

This framework proposes hand posture recognition of the American Sign Language alphabet based 

on a Neural Network (NN) which works on geometrical feature extraction of the hand. The user’s 

hand is captured by a 3D depth-based sensor camera. Consequently, the hand is segmented 

according to the depth features. The proposed system is called “Depth-based Geometrical Sign 

Language Recognition” (DGSLR). The DGSLR adopted an easier hand segmentation approach, 

which is further used in other segmentation applications. The proposed geometrical feature 

extraction framework improves the accuracy of recognition due to unchangeable features against 

hand orientation or rotation compared to Discrete Cosine Transform (DCT) and Moment Invariant. 

As a Support Vector Machine (SVM) is a type of Artificial Neural Network (ANN), it is used to 

drive desired outcomes. Since there are 26 different signs in the Sign Language alphabet, a multi-

class SVM versus a single SVM classifier with 26 classes by an RBF kernel was used to validate 

each class. The proposed framework is proficient to hand posture recognition and provides an 

accuracy of up to 96.78 %. The findings of the iterations demonstrated that the combination of the 

extracted features resulted in a better accuracy rate in the recognition process in the classification 

step. 

Keywords: Sign Language, hand posture, segmentation, geometrical features 

 

1  INTRODUCTION 

Sign language is a visual language, which transfers the signs of the hands using not only the 

movement and orientation of hands, arms, or bodies, but also facial expressions instead of sound 
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patterns. There is no uniform sign language across the world. Each country has its own sign 

language but in this study, we have considered the American Sign Language which is most popular 

among existing Sign Languages.  

The previous studies on sign language recognition failed to supply a complete or reliable model 

without restriction. In particular, most of them are depending on users, in other words, they are not 

able to be applied for independent user systems. It can be conducted by some methods, especially 

in the feature extraction steps due to the image base system. Furthermore, they can involve mimic 

of the face or body postures for more details, for example, portray anger and emotion through the 

hands. Likewise, all of the studies on Artificial Neural Network (ANN) have shown that it has a 

robust learning capability, and there are varieties of ANN systems used in hand posture recognition 

systems. On the other side, the Support Vector Machine (SVM) approaches have very effective 

results on recognition systems (Dominio et al., 2014).  

Our novelty in this work is using a new method of geometrical feature extraction which leads to 

get more accurate classification in our classifier. In fact, a new integration of the extracted features, 

geometrical features of the hand are presented in Sign Language recognition system. Furthermore, 

the proposed system uses a new simple approach for segmentation in different backgrounds. The 

concept regarding Microsoft’s Kinect sensor returns to the attainment of 3D data for paving the 

way in a new solution for quite a few challenging computer vision issues, including human activity 

analysis, object tracking, indoor 3D mapping, supervision scenarios, and recognition especially 

hand gesture recognition. Changes due to different lighting conditions have a bad effect on the 

recognition process. Furthermore, the recognition process is more difficult in a cluttered 

background than a plain background. This issue has an important impact on accuracy. In order to 

make a system that works in both simple and cluttered backgrounds, indoor or outdoor with 

different lighting conditions, a new approach is necessary to solve these problems. 

A realistic Sign Language Recognition with error-free recognition is an ambitious goal for many 

outstanding researchers in computer science especially pattern recognition. The effects of 

illumination changes on hand recognition as well as occlusion by another object in the scene in the 

cluttered background have been attempted in this research. In addition, finding some features of 

the hand which are independent to the hand orientation or direction have been important issues 

which this research tried to address. The proposed methods cater for the weaknesses in the hand 

posture recognition system to develop an SLR system. These methods are applied in segmentation 
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and feature extraction phases and can increase the overall accuracy due to the depth-based images 

and geometrical features of the hand. 

This paper used SVM in DGSLR recognition. All algorithms in each part have been 

explained in detail. The model used in support vector machines, especially in the most basic cases 

(eg two-class classification), is a model with a linear structure and very similar to what is used, for 

example, in the multilayer perceptron neural network or MLP. In fact, along with some other 

differences between the two models, they actually teach a very similar structure in two different 

ways. In MLP neural network, the parameters of this model are adjusted by error minimization, 

but in SVM, the risk of incorrect classification is defined as a target function and the parameters 

are adjusted and optimized accordingly. For some issues, the error rate may be as low as zero, but 

of all the zero-error models, there is only one that has the lowest operational risk. Therefore, in 

some cases, the SVM output, in addition to its better performance, will also show more robustness 

to changes and noise in the data. Because it is basically designed and trained to withstand such 

uncertainties and to perform well. On the other hand, the use of the term neural network (artificial) 

or any other similar term to refer to such devices has been merely to create a metaphor that is 

appropriate and close to nature, and the essence of the theorem is the mathematical relationship 

behind these systems. From this perspective, many of the systems and models used in the field of 

machine learning use very similar (and sometimes identical) mathematical structures, and only in 

the way the problem is expressed, the way the models are set up and described with They are 

different from each other. For further study, it is recommended that you read the second edition of 

Simon Haykin's famous book, Neural Networks: A Comprehensive Foundation, published in 1999. 

In the introduction of this book, it is well explained that SVM is a type of neural network. The 

third edition of this book, with the new title "Neural Networks and Learning Machines" was 

published in 2008. Another suitable reference for further studies in this regard is the book "Neural 

Networks in a Soft-computing Framework" (neural networks in the framework of soft computing), 

which in the introduction and chapter ten of this book, the topic of support vector machines, and 

the fact that they are a special form of artificial neural networks has been debated. The book 

"Pattern Recognition and Machine Learning", written by Christopher M. Bishop (Christopher M. 

Bishop), is another very important and practical reference in this field, and interested for more 

information, you can refer to this important and practical reference.  
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This paper introduces an American Sign Language Alphabet recognition method to hand 

gesture recognition to help deaf and dumb people. It also presents some geometrical features of 

the hand for achieving more reliable recognition. Then it explains the literature review in depth-

based on hand gestures in sign language recognition systems. In the next part, the research 

methodology and the procedure of the research are described. Segmenting the signer’s hand is 

performed and the appeared issues are discussed. The Level set method is implemented and 

reported their results. The feature extraction method is in accordance to hand geometrical features. 

The Support Vector Machine (SVM) algorithm is implemented to classify the extracted features 

in the previous step for recognizing the performed gestures. Then, it expounds implementation 

step. Finally, a comparison discussion between the proposed method by SVM and two classifiers, 

K Nearest Neighbor (K-NN) and Decision Tree (DT) are employed. The evaluation and testing of 

the system are applied and then the accuracy rate of the proposed method is shown as charts and 

tables. Also, errors due to wrong recognition are shown. The paper ends with a conclusion and 

some suggestions for further research in the future, which may provide ways to easier hand gesture 

recognition in order to apply in the recognition systems. 

The idea behind this work is: users can act on desired signs while the proposed system 

detects the signs. The detected signs can be converted to sound or text for normal people. The new 

idea in this research is depth-based segmentation and geometrical features which distinguishes it 

from other methods. It can be developed by a depth-based camera embedded on a cell phone. The 

depth-based camera can lead to subtract the background more easily whether simple or clutter. On 

the other side, geometrical features are independent of the orientation, location, or position of the 

hand. So, the emotional signs do not make any problem in the recognition process. There is natural 

variability in the executed signs because of the different positions of the hand in the same signs, 

and the observations are error-prone, thus applying a method other than the existing exact matching 

of features is needed without considering the finger’s positions. Furthermore, it can be developed 

on a system in public places such as airports or libraries, or even educational places like 

universities. It can be used in conferences or other scientific assemblies. 

After introducing an American Sign Language Alphabet recognition system, some related 

works were explained in the literature review in section 2. In section 3, the research methodology 
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and depth-based geometrical features procedure are described. The used dataset, Segmentation 

method, proposed feature extraction methods and finally classification step have been defined. 

Experimental results and discussion are in section 4. The paper ends with a conclusion and some 

suggestions for further research in the future, which may provide ways to easier hand gesture 

recognition in order to apply in the recognition systems. 

 

2  RELATED WORKS  

There are several challenges which we will try to solve. Complex background and lighting 

conditions are more important than the rest factors.  The distance between the user and Kinect 

Camera during the capturing images can be considered as a limitation of this research. However, 

some ordinary cameras can solve this issue, but they have no depth-based application.  The process 

is very sensitive to hand movements due to the illumination changes. This may lead to the 

occlusion of some parts of the hand by other parts.  Two letters ‘J’ and ‘Z’ are motional signs and 

it is much better to remove them from the hand posture recognition field. These two signs are very 

similar to ‘I’ and ‘G’, they have similar features together. It caused to confuse the conditions in 

the classifier process.   

   

Limitations and constraints in the existing vision-based methods have been caused to obtain the 

unsatisfying results in the previous research. Object recognition in the cluttered scene, or with long 

sleeve clothes of the signer, or the necessity of motionless head or face are some of these 

restrictions. Likewise, steady hand movements, stable pose and location of the body, determined 

primary location for hands, and restricted vocabulary is other discussed limitations in this field.  

Lee et.al (2013) explained a computer vision based method for posture recognition of a hand 

posture and its application on an iOS iPhone. The proposed algorithm used YCbCr images (Lee et 

al., 2013) to set skin regions. They eliminated noise caused by slanted hand posture. Then ANN 

was used for sign recognition and applied to another device like iPhone. The accuracy rate of 

recognition was 89%in the motion hand posture and it was 94.6 percent for static hand posture, 

but the skin detection was affected by the illumination conditions of the environment. This issue 

caused a low accuracy in some states or orientations. 
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The feature extraction step is one of the crucial steps in every recognition system. There is a diverse 

huge collection of feature extraction methods that each of them has some advantages and 

disadvantages, such as Scale-invariant Feature Transform (SIFT) (Dardas and Georganas, 2011, 

Gurjal and Kunnur, 2012), Wavelet Moments (Chen et al., 2012), Histogram of Oriented Gradients 

(HOG) (Mihalache and Apostol, 2013, Nölker and Ritter, 1998, Nölker and Ritter, 1999), and 

Gabor Filters (GF) (Amin and Yan, 2007, Pugeault and Bowden, 2011). These techniques are very 

robust in the recognizing process but for a small number of simple hand postures (Dong et al., 

2015). For example, Dardas and Georganas (2011) obtained an accuracy rate of 96.23% for 

recognizing six signs using SIFT based and an SVM classifier. Pugeault and Bowden (2011) 

implemented the recognition of 24 static ASLalphabet signs using the Gabor Filter (GF) method. 

The mean accuracy of 75% was reported. Moreover, the proposed method had a high confusion 

rate of 17% between similar signs such as "r" and "u". In short, these methods are usually not able 

to obtain desirable accuracy in complex classifying or variations of a lot of ASL signs.  

In addition, Dominio et al. (2014) presented multiple depth-based descriptors. The descriptors 

included some features of the hand such as distance and elevation, the hand’s contour curvature, 

and properties of the palm region to be extracted. The achieved accuracy was 93.8% by 

SVMclassifier in an experimental set of 12 static and digit signs of ASL alphabet. Liang et al. 

(2014) improved the per-pixel based hand parsing method by distance-adaptive feature selection 

scheme and super-pixel partition-based Markov Random Fields (MRF). The improved algorithm 

was led to increase from 72% to 89% of accuracy in per-pixel classification. The above methods 

recognize only a small number of simple postures (less than 15) including ASL digits and custom 

signs which are a small portion of ASL alphabet signs. 

Changes due to different lighting conditions have a negative effect on the recognition tasks due to 

the shadow or undesired effects on the objects (Chai et al., 2013, Kishore and Kumar, 2012a, Zhu 

et al., 2010). Furthermore, the recognition process is more difficult with a cluttered background 

than a plain background (Prasad et al., 2015). Compared to the body or skeleton recognizing 

procedures, the recognition of the hand or another specific part of the body is more sensitive tasks. 

In these cases, the other objects in the scene can lead to occlusion, and consequently wrong 

detection procedure. These issues have an important impact on accuracy. In order to make a system 

that works in both simple and cluttered backgrounds, indoor or outdoor with different lightening 

conditions, a new approach is necessary to solve these problems. 
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Most of the previous researches are dependent to the signer (Chai et al., 2013, Sharma et al., 2013). 

On the other word, the selected extracted features of the hand in these previous hand recognition 

systems is dependent on the position or direction of the signer’s hand (Oikonomidis et al., 2011, 

Yeo et al., 2013). Then, the recognition process is performed correctly just for a specific user and 

it does not work properly for generic users. Using features independent of the user’s hand shape, 

orientation, location, position and direction is highly desirable. On the other hand, most of the 

previous research used fingertips as a feature (Liang et al., 2014). The main weakness of the use 

of hand fingertips in the extracted features is that they can be occluded by other fingers. There is a 

natural variability in the executed signs because of the different positions of the hand in the same 

signs. Furthermore, if the observations are error-prone, then a method other than the existing exact 

matching of features is needed without considering the finger’s positions.  

Kiseľák et al (2020) introduced a new method as “scaled polynomial constant unit activation 

function – SPOCU” for a medical image in some cancer detection. Such a novel activation function 

relates to complex patterns through the phenomenon of percolation, and thus, it can overcome 

already introduced activation functions, e.g., SELU and ReLU. Discrimination between mammary 

cancer and mastopathy tissues plays a crucial role in clinical practice. In this case, a more precise 

activation function in the classifier is necessary which can detect the tissue and its complexity. But 

in our case, using such an activation function only leads to increasing computational time. 

This study focuses on the classification by SVM because of its clarity and simplicity in the 

classification. Furthermore, its usability to resolve the various problems is one of another reason 

to use it, as some approaches like decision trees are not simplicity used in the various problems. 

As Hinton (2008) mentioned the SVM causes to get a good generalization on a big dataset. Since 

a big data set requires a complicated model and the full Bayesian framework is very costly in 

computation. In contrast, the SVM is faster and still has a good generalization solution. 

Furthermore, due to a very big set of non-linear task-independent features, SVM has a clever way 

to prevent Over-Fitting problem.  
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3  DEPTH-BASED GEOMETRICAL FEATURES IN HAND RECOGNITION   

3.1   Dataset 

Two separate datasets are employed in this research. The first one is the chosen dataset by the research 

which is called DGSLR. The other one is a standard dataset. In the DGSLR dataset, three novice users of 

Sign Language, one man and two women, were employed in this study. They were asked to sit down in 

front of the Kinect camera and perform the signs. Each letter was repeated for five times.  

After the preparing step and teaching the signs to the signers, the images were captured by the Kinect 

Explorer – WPF application at 30 frames per second. In this coloured image capturing application, the hand 

is detected by a distinct colour due to the depth feature. 

The capturing process was performed in both plain and cluttered backgrounds in different variations of 

illumination. As Figure 1 illustrates, the other objects in the cluttered background do not have any 

interference in the detection procedure. The farther objects are removed and the closer objects are shown 

in the different depth with the user in the foreground. Thus, the hand is still shown as different colours in 

the RGB mode (Figure 1 (left)) and brighter view in the depth mode (Figure 1 (right)). The hand is also 

recognizable in two modes. 

 

Figure 1 Cluttered background in RGB and Depth mode 

In order to validate the data, a huge standard dataset from the Centre for Vision, Speech and Signal 

Processing, University of Surrey (Pugeault and Bowden, 2011), was used. The images have been captured 

from 9 people in different backgrounds similar to the research dataset. The images gathered by Kinect and 

are only depth-based. In addition, there are more than 400 repetitions on each sign in different postures and 

directions. The users changed their hand direction and also the distance to the Kinect sensor.  

Posture or gesture recognition methods can be divided into two types: one is to use Kinect (for example in 

our work), Leap motion and other depth cameras to obtain image depth information, such as position. The 

other one is to split the gesture from the background by traditional methods and then extract the apparent 

image characteristics of the posture by neural networks to perform posture recognition.  
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In this case, according to the type of neural network (MLP) and learning paradigms (Backpropagation), and 

also the desired task which is “Pattern Recognition”, the “Fermi function” can be used. This study uses a 

non-linear SVM, and since there are different kernel functions in the non-linear SVM structure, choosing a 

kernel based on the prior knowledge of invariances as suggested by Cawley and Talbot (2007) is an 

excellent idea. The Gaussian Radial Basis function (GRBF) kernel is one of the most common kernel which 

is used in this research. 

 

3.2       Segmentation of the Hand 

Hand extraction is a crucial step in hand recognition systems because all of the following processing steps 

are performed on the segmented regions only. The proposed scheme for segmenting the hand is based on 

the depth data. A scenario used in this research is to have users facing the Kinect camera with their hands 

held in front of themselves. In this case, the hand seems brighter than the other objects because of the depth 

capability in the image. It caused to place the body or other objects in the scene in the deeper layer and the 

hand seems by different colour due to changing light conditions compared to the rest of the body. The 

distance between the user and the Kinect was 150 cm. In addition, the lighting conditions were changeable 

during the signing process.  

3.3       Morphological Object Dilation 

There are some noisy points in the obtained depth images in this study. Then, a post-processing procedure 

has been to improve the obtained depth images. These noisy points can be due to hand movements or 

shaking during the signing. Furthermore, the Kinect sensitivity to the illumination conditions can also have 

an effect on the images. A filtering operation can perform on the image to address this issue, but according 

to the review on the filtering methods, they are commonly time-consuming procedures (Chiang et al., 2013, 

Pal et al., 2014). On the other hand, in our depth images, no need to rectify the edge and only some 

morphological operations are applied for smoothing the binary depth-based image and remove the noisy 

points on the hand surface as the demonstrated example in Figure 2. 

 

Figure 2 The binary image before and after morphological operations   
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The first step, all the images were resized to a 128-by-128 pixel matrix. A unified dataset of images, all of 

equal size allows for modifications in later stages if needed. These points of the image should be 

distinguishable from the rest black points like background points. Since the number of these type of images 

was little in this study, the mentioned issue was resolved by a series of morphological functions in Matlab 

as following definition. 

The dilation of A by B is implicated A B  where defined as: 

^

( )zA B z B A 
 

 =   
 

                                                                                                           (1) 

Where 
^

B  is the reflection of the structuring element B. In fact, it is the set of pixel locations Z, where the 

reflected structuring element overlaps with foreground pixels in A when translated to Z. In the grayscale 

dilation, the structuring element has a height. The grayscale dilation of A(x,y) by B(x,y) is as: 

 ( )( , ) max ( , ( , ) ( , ) BA B X Y A x x y y B x y x y D      = − − +                                                        (2) 

where DB is the domain of the structuring element B and A(x,y) is assumed to be −∞ outside the domain of 

the image. To create a structuring element with non-zero height values, the syntax strel (sdom, height) is 

used, where height shows the height values and sdom corresponds to the structuring element domain. The 

grayscale dilation is commonly performed with a flat structuring element (B(x,y) = 0). Grayscale dilation 

using such a structuring element is equivalent to a local-maximum operator: 

 ( )( , ) max ( , ) ( , ) BA B X Y A x x y y x y D    = − −                                                                          (3) 

3.4       Feature Extraction 

After hand segmentation and post processing based on depth hand images, selected feature vectors are 

expected to represent the position of fingers and palm. Consequently, fingers should be roughly 

characterized by a robust approach.  

3.4.1    Hand Geometry  

The hand area (HA) and hand perimeter (HP) are the first feature descriptors which were calculated by 

morphological operators. In order to compute the perimeter of the hand, the distance between each adjacent 

pair of pixels around the hand contour is calculated. The discontinuous areas in the hand region may lead 

to unexpected results. All noisy points should be removed to gain better results in the hand area and 

perimeter here. Two mentioned parameters, HA and HP are for all the fingers are closed and when they are 

open. This is the minimum and maximum value, respectively, so the other signs are within this range.  

3.4.2   Convex Hull of the Hand 

The convex hull of the hand is calculated in order to gain the desired geometry information. It should be 

noted that the forearm or arm of the hand were removed from the initial images as it did not contain any 
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important information. In the hand image of the research, a convex hull is a n-by-m matrix that determines 

the smallest convex polygon containing the hand region. The parameter n is the number of the pixels and 

m represents the vertexes. Each row of the matrix demonstrates the coordinates of one vertex of the 

circumscribed polygon of the hand. In the next section, the concept of convex polygon will be introduced. 

Consequently, for a nonempty points set in a certain plane, the convex hull is the smallest convex polygon 

which includes all these points in the set. For instance, in Figure 3 the polygon around the points is a convex 

hull and the six points which are on the boundary are called “hull points”.  

 

 Figure 3  Convex hull of (left) a points set, (right) segmented hand 

The convexity defects of the hand have some geometry properties which can be used as features of the 

proposed system in this study. The area of the convexity defects, CDA, was computed by a similar algorithm 

of the convex hull. Likewise, the number of convexity defects represents the number of open or closed 

fingers. The empty spaces between the opened fingers are also convexity defects, so the number of these 

spaces can be represented for some specific signs in the classification step. This is much more useful for 

designing a reliable recognition system. 

3.4.3    Ratio Feature 

Another extracted feature is the ratio between the hand area, HA, and the area of the convex polygon, CHA, 

enclosing it. As mentioned above it is called convex hull. So it is named convex hull area ratio that is: 

( )

( )
CHA

Handarea HA

ConvexHullarea CHA
 =                                                                                                             (4) 

The ratio between the perimeter of the handshape (HP) and the convex hull perimeter (CHP) is another 

useful parameter. Those gestures with closed fingers are typically related to perimeter less than when some 

fingers are opened. Likewise, the rate of hand perimeter to the convex hull is close to 1. The following 

Equation shows this relationship. 

( )

( )
CHP

Handperimeter HP

ConvexHullperimeter CHP
 =                                                                                                   (5) 

Similarly to the convex hull, the rate of hand geometry area (HA) to the convexity defect area (CDA) can 

be considered as an informative feature for a reliable recognition system. This rate has been calculated by: 
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( )

( )
CDA

Handarea HA

Convexitydefectarea CDA
 =                                                                                                       (6) 

3.4.4    Distance Feature 

The height and width of the signer’s hand are other measurable features which are considered in this 

research. The height and width values can represent the hand postures. Although the similar signs have 

similar values of height and width, they can be classified in the same class for more clarity in the classifier. 

For example, as represented in Figure 4, for three signs ‘A’, ‘S’, and ‘T’ the value of the height and width 

are close together. This similarity also occurs between ‘R’ and ‘U’. 

 

Figure 4 Similar signs with close geometrical values 

For computing the height and width of the hand, the edge of the hand should be detected. Then, the longest 

diameter of the hand in vertical and horizontal directions is computed based on the Eigenvalue and the 

Eigenvector concepts. As the last step, the calculation of the distance feature was performed by the 

Euclidean distance between the ending points of these diameters on the hand boundary. 

The first step, the hand boundary should be calculated. There are some predefined functions which can be 

applied on the images for detecting the edges of the objects. Matlab software also includes several 

algorithms for calculating the object’s boundary, but edges may include the adjacent number of rows which 

creates a ‘thick’ edge as shown in Figure 5.  

      

Figure 5  Thick edge includes several points, Image edge detection algorithm, then original image, detected 

contour,  more detailed view are extracted. 

In statistics, a covariance is a matrix which its element in the i, j position means the covariance between the 

ith and jth elements of a random vector variable. Each element of this vector is a scalar variable with a finite 

number of appeared experimental values or by a finite or infinite number of possible values determined by 

the theory of joint probability distribution of all the random variables. 
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The covariance between two jointly distributed real-valued random variables X and Y with finite second 

moments is (Statistics, 2002): 

( , ) [ [ ])( [ ])]X Y E X E X Y E Y = − −  [ ] [ ] [ ]E XY E X E Y= −  

where E[X] is the expected value of X. Since all probabilities pi adds up to one, p1 + p2 + ... + pk = 1, the 

expected value is shown as the weighted average: 

1 1 2 2 1 1 2 2

1 2

... ...
[ ]

1 ...

k k k k

k

x p x p x p x p x p x p
E X

p p p

+ + + + + +
= =

+ + +
                                                                   (7)       

An eigenvector of a square matrix in linear algebra is a vector that does not change its direction under the 

linear transformation. If v is a non-zero vector, then the v is an eigenvector of the square matrix A as Av is 

a scalar multiple of v.There is a relationship between n by n square matrices and linear transformations. 

The linear transformation of n-dimensional vectors specified by an n by n matrix A is: 

Av w=                                                                                                                                                       (8) 

where, 

,1 1 ,2 2 , ,

1

...
n

i i i i n n i j j

j

w A v A v A v A v
=

= + + + =                                                                                                       (9) 

If w and v be the scalar multiples then: 

Av v=                                                                                                                                                         (10) 

which v is an eigenvector of the linear transformation A and the factor λ is the eigenvalue of it. 

The approximate longest diameter in the hand and then the perpendicular line to it should be computed as 

shown in Figure 6. The coordinate of the points on the hand contour was computed in the boundary 

detection algorithm. So, the gravity centre point is easily obtained. Then the covariance matrix is computed. 

The direction and value of the longest diameter will be obtained by calculating the Eigenvalue and the 

Eigenvector.   

 

Figure 6  Height and width of the hand 

3.5       Feature Vector Structure 

All computed features on both DGSLR and standard datasets were saved in two repositories in a CSV 

(comma separated file) which we utilized Microsoft Excel for easy usage. The first one which belongs to 

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Weighted_average
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_map
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the DGSLR dataset includes three sheets where each sheet corresponds to each user. The rows and columns 

of this file represent the letters and features respectively. The last column is considered as a label column 

for labelling each sign within 1 to 26. Considering the leave-one-out approach which will be explained in 

the next part in classification, one person is kept for testing and the rest is considered in the training phase. 

The second excel file corresponds to the standard data set that consists of 26 sheets which each of which 

belong to a specific sign. We took a regular training procedure of 70/30 split, 70% of images is used for 

training, while 30% is used for testing’.   

3.6       Classification 

The last step of the proposed recognition system includes an appropriate Machine Learning method to 

classify the extracted features in the previous step in order to recognize hand gestures. In this research, a 

multi-class one versus one SVM classifier has been used, and in accordance with a set of n(n−1)/2 binary 

SVM classifiers used to test each gesture against each other. Each output is selected as a vote for a certain 

gesture and as mentioned before the gesture with the maximum votes is the recognition process result. This 

study uses a non-linear SVM, and since there are different kernel functions in the non-linear SVM structure, 

choosing a kernel based on the prior knowledge of invariances as suggested by Cawley and Talbot (2007) 

is an excellent idea. 

The Gaussian Radial Basis function (GRBF) kernel is one of the most common kernel which is used in this 

research as obtained by Equation 11. 

2

( , ) exp( )i j i jk x x x x= − −     for 0                                                                                                (11) 

 The Gaussian radial basis function kernel supports the corresponding feature space in an infinite 

dimension. The maximum margin in the classifier is well regularized, and it is widely believed that the 

infinite dimensions do not spoil the results (Jin and Wang, 2012). The GRBF kernel makes a good default 

kernel in a non-linear model. It may lead to having an efficient-to-compute and high accuracy approach 

without having the huge and potentially infinite-dimensional feature vector. The optimized run time of the 

GRBF is one of the other reasons to employ it in the classifier of this research. The GRBF execution time 

is bounded by O(nlogn), where n is the number of training samples. 

In this research, there are two datasets of the depth-based image of the sign language alphabet. Firstly, the 

classification process is applied on the DGSLR dataset, so the training set contains data from three available 

users.  A cross validation method as K-fold cross validation is used by K equals to 5 and 10 in the testing 

step. In the K-Fold validation method, the collected data is partitioned into the K subsets. In these subsets, 

one of them is used for validating data and K-1 subsets for the training process. This procedure is repeated 

K times and all the data are used once for training and once for testing. Finally, the average of these K 

procedures is selected as the final estimation.  



15 
 

The two parameters C and  φ of the RBF kernel are subdivided with a regular grid which when C is 

considered, equals to 1,10,100, and 1000, and parameter φ equals to .001, .01, .1, 1. Similar to other 

classifiers, for each couple of these parameters, the training collection is divided into two categories, N −1 

users in the training set and the rest for validating. We reiterate the 70/30 split between training and testing. 

The accuracy is assessed and the testing process is iterated frequently based on changing the iteration 

number. Finally, the parameter pair which gives the most accuracy is selected and applied to the SVM 

structure. 

In order to measure the classifier accuracy, two statistical parameters called ‘Sensitivity’ and ‘specificity’ 

were used. The Sensitivity parameter or true positive rate measures the proportion of actual positive samples 

which are correctly identified. It is also complementary to the false negative rate. The Specificity parameter 

or true negative rate measures the proportion of negative samples that are correctly identified. Similarly, it 

is complementary to the false positive rate.  

A perfect predictor approach describes samples as 100% sensitive and 100% specific, but in fact, there is 

no perfect predictor and theoretically, all of them have a minimum error bound called the Bayes error rate. 

As concluding the four outcomes can be formulated derived a confusion matrix as follows: 

• True positive (TP) = correctly identified 

• False positive (FP) = incorrectly identified 

• True negative (TN) = correctly rejected 

• False negative (FN) = incorrectly rejected 

Two equations can be formulated and derived from a confusion matrix as follows (Fawcett, 2006, Powers, 

2011): 

( )
NumberofTruePositives

Sensitivity TruePositiveRate TPR
NumberofTruePositives NumberofFalseNegatives

= =
+

   

                                                        
TruePositive

ConditionPositive
=




                                                                    (12) 

 

( )
NumberofTrueNegatives

Specificity TrueNegativeRate TNR
NumberofTrueNegatives NumberofFalsePositives

= =
+

 

 
TrueNegative

ConditionNegative
=




                                                                                                                       (13) 

These statistical parameters can be represented in the confusion matrix as shown in Table 1. 

Table 1 Statistical parameters in confusion matrix to measure the classifier accuracy 

Predictive Results of Classification  

No Yes 
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False Positive (FP) True Positive (TP) Yes Actual Results of 

Classification True Negative (TN) False Negative (FN) No 

  

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The experiments were divided into two categories, our own dataset and the standard dataset. The 

experiments were performed on a gesture dataset in the Centre for Vision, Speech and Signal Processing, 

University of Surrey, Guildford, GU2 7XH, the United Kingdom allowing comparison with state-of-the-

art techniques in this study. A number of practical tests were performed to evaluate the proposed methods 

and computed the accuracy of the system with different parameters. Using a larger data set will definitely 

lead to more accurate results. The proposed method is independent of the size, angle and rotation of the 

hand. Therefore, the increase in the dataset size leads to better network learning and finally more accurate 

results.  

Some geometrical features were used as parameters:  

• hand area (HA),  

• hand perimeter (HP),  

• A convex hull is an nXm matrix that determines the smallest convex polygon containing the hand 

region. So, the area of the convex polygon (CHA), & perimeter of the convex polygon (CHP) are 

considered as new parameters. 

• The area of the convexity defects is computed by a similar algorithm to the convex hull. Likewise, 

the number of convexity defects represents the number of open or closed fingers. The empty spaces 

between the opened fingers are also convexity defects, so the number of these spaces can be 

represented for some specific signs in the classification step. The area of the convexity defect of 

the hand (CDA) is another parameter that is considered in this paper. 

• The longest diameter of the hand in vertical and horizontal directions is another parameter which 

is computed based on the Eigenvalue and the Eigenvector concepts. 

 

These parameters and the ratio between them are considered in the computational process. The parameters 

under study depend directly on the type of the signs. Since some of these signs are very similar, the values 

are very close together. A threshold has been considered for each sign to avoid interfering and overlapping. 

For example in two signs, i & j, the convexity defects are very close together as you can see in the figure. 

 

A tolerance between ± 0.1 is error-prone in each repeat for the similar sign but by one specified signer 

because it depends on the size of the signer’s hand. Furthermore, in different signers with the same sign, it 

increased to ± 0.5 in each iteration.  
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In other parameters the tolerance was different, so for each parameter, a different tolerant was considered.  

 

4.1  Data Collection 

After collecting the desired data from both DGSLR and standard datasets, the signer’s hand should be 

separated from the rest of the body and other objects in the scene. The proposed segmentation approach is 

represented based on the depth-based image property. After converting the grayscale images to the binary 

mode, Otsu’s thresholding algorithm (Batenburg and Sijbers, 2009) was applied to the images as described 

in the previous chapter. Some samples of the experimental results are shown in Figure 7. 

 

Figure 7 Hand segmentation 

It is clearly observed that no need to trace the hand or determine the bounding box around the hand region. 

In addition, there is no difference between the left or right hand, because the coordinate of the hand location 

is not important. The hand can be segmented well only based on the illumination intensity. For more clarity, 

the segmented hands were cropped and zoomed in as shown in Figure 8. 

   

  Figure 8 Hand segmentation 

In order to separate the wrist from the forearm, the hand contour was computed, and an inscribed circle 

with a palm centre was drawn. The longest diameter of the hand was calculated based on the Eigenvector 

and Eigenvalue of the hand image. Then, the perpendicular line to the longest diameter and also tangent to 

the inscribed circle was plotted as represented in the previous section in detail. The green star represents 

the tangent point between the inscribed circle and the perpendicular line (hand width) in the lowest point 

of the circle. Figure 9 shows some experimental results a none expert user.   
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Figure 9 Removed forearm 

In order to recognize the hand position, the Level Set method (LSM) was employed due to the low 

computational cost and high speed (Gonzalez et al., 2009). In this case, it was applied to the signer’s image 

for recognizing the missed parts in hand. As described in the previous section, some parts of the hand may 

be missed due to illumination directions and the position of the hand. The hand could be segmented by the 

definition of a set of arbitrary points around the hand region. Some examples of the experimental results of 

the Level Set Method have been highlighted in Figure 10. 

 

                    (a)                  (b)                       (c)                   (d) 

Figure 10 Comparision between the Kinect and Level Set segmentation, (a) depth image, (b) 

Kinect segmentation, (c) LSM execution, (d) LSM segmentation 

4.2  Feature Extraction 

The next step includes extracting features from the segmented hand. These features will be used in the 

classification step for evaluating the conducted gestures.  

4.2.1    Hand Geometry Features 

The geometrical properties of the hand are reliable features for hand gesture recognition systems because 

properties like area or perimeter are constant against rotation or changing the location of the hand. The 

signer may move a bit or the signer’s hand may be shaken and change its position or  one signer might use 

the right hand for some signs and the left for other signs. Table 2 shows HA and HP for the three signers in 

DGSLR dataset. 
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Table 2  The area and perimeter of the hand for three different signers 

 Signer “A” Signer “B” Signer “C” 

 HA HP HA HP HA HP 

a1 2283 230.9949 1369 170.0244 1854 170.235 

a2 1765 175.4386 1482 180.5097 956 154.2384 

a3 2037 200.0244 1356 171.3245 1803 165.2301 

a4 1768 196.8528 1407 161.5391 1456 164.0213 

a5 1582 185.3381 1334 162.9533 2016 190.5064 

b1 2744 237.3381 2119 224.4092 1758 160.5489 

b2 2673 242.4092 2043 218.7523 2013 215.324 

b3 2355 230.9949 2026 207.5807 2254 254.159 

b4 2175 209.9655 1990 198.9949 2189 220.407 

b5 1793 193.6812 2139 210.9533 2105 218.754 

c1 1270 230.9949 1025 256.3289 1985 198.564 

c2 1032 256.2082 1105 273.3209 2246 247.196 

c3 2034 267.1787 956 293.1289 950 194.3245 

c4 1373 246.7939 1074 303.5635 785 194.2301 

c5 1238 234.9856 881 249.4214 1125 215.321 

d1 1039 224.8944 1062 176.2254 1048 231.6523 

d2 1254 212.2082 1142 195.4327 1001 256.3214 

d3 1099 213.7229 1213 191.7817 1057 205.678 

d4 1076 209.4802 1254 201.3564 1023 182.36895 

d5 1096 215.8234 1349 200.1665 985 174.523 

 

4.2.2 Convex Hull of the Hand  

The convex hull of the 2D depth-based hand shape was computed by the interpolation and computational 

geometry of mathematic functions. It can be one of the constructions of the existing descriptors for the hand 

posture (Pedersoli et al., 2012). All the binary segmented hand images were resized and then the convex 

hull function was applied to them. Some instances of the results were represented in Figure 11.  

 

Figure 11 Convex hull of the hand shape 

As it can be observed in the above figure, the similarity between the sign may lead to the similar convex 

hull polygon around them like the first and fifth signs which represent the ‘A’ and ‘E’ signs. This similarity 

is also observed in Figure 11 between the fourth and the last sign which are ‘D’ and ‘R’ signs. meanwhile, 

a little difference in the geometrical features such as area and perimeter of the convex polygon is acceptable 

for this classification process. 

The convex hull area and perimeter have been shown with CHA and CHP abbreviations, respectively which 

the results them for DGSLR dataset is presented in Table 3  



20 
 

Table 3  The area and perimeter of the convex hull for three different signers 

 Signer “A” Signer “B” Signer “C” 

 CHA CHP CHA CHP CHA CHP 

a1 2584 208.267 1950 184.2614 1516 159.4386 

a2 1860 166.9533 1258 125.6041 1660 166.6102 

a3 2205 183.8823 1900 180.2398 1432 154.6897 

a4 1961 177.8823 1540 158.02364 1525 155.5391 

a5 1768 164.267 2231 212.9876 1454 154.8112 

b1 3013 219.5807 1856 175.234 2323 208.7107 

b2 2944 219.5807 2219 201.9875 2217 204.3675 

b3 2613 210.7523 2679 254.7745 2212 197.9239 

b4 2330 190.1665 2215 223.128 2119 190.5097 

b5 1977 176.5097 2265 214.5879 2306 200.0244 

c1 1772 172.468 2054 165.328 1764 195.3245 

c2 1705 168.9533 2542 214.7107 1810 181.3797 

c3 2555 213.6812 1781 142.03214 1695 219.6224 

c4 1941 179.196 1745 112.2131 2158 196.2082 

c5 1736 169.9828 1986 120.3564 1590 164.5097 

d1 1494 168.0244 1821 135.21 1342 160.8112 

d2 1698 179.2376 1854 120 1654 175.8641 

d3 1588 175.1371 1985 165.432 1643 174.9533 

d4 1490 166.6102 1421 165.3223 1721 179.9239 

d5 1558 172.0244 1052 103.5024 1694 176.6102 

4.2.3    Convexity Defects of the Hand  

An applicable way of estimating the shape of a specific object is to calculate its convex hull and then its 

convexity defects. As mentioned the convexity defects are some parts of an object which are contained in 

the convex hull of the object but it does not belong to the object. There are several ways to compute the 

convexity defects of an object (Keskin et al., 2012). Some experimental results of the applied procedure to 

obtain the convexity defects of the hand have been illustrated in Figure 12. 

 

Figure 12 Convexity defects of the hand shape 

Too many informative data can be extracted from convexity defects of the hand, as shown in Figure 12 

Some signs like ‘F’, the fourth sign in the figure from the left can represent the number of open fingers by 

counting the convexity defect spaces between the fingers. Each space between two fingers consists of one 

point which belongs to the hand and has a maximum distance to the convex hull. The number of these 

points is also helpful to understand the shape of the hand in the hand posture. Then the area computation 

procedure is followed similarly to the convex hull process. The results of this procedure are as shown in 

Table 4. 
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Table 4  The area of the convexity defect for three different signers 

Sign CDA CDA CDA 

a1 301 96 147 

a2 95 302 178 

a3 168 97 99 

a4 261 84 110 

a5 186 215 120 

b1 269 98 204 

b2 271 206 174 

b3 258 425 186 

b4 155 26 129 

b5 184 160 167 

c1 502 69 666 

c2 673 296 705 

c3 521 831 646 

c4 568 960 1084 

c5 451 861 709 

d1 455 773 280 

d2 444 853 271 

d3 489 928 430 

d4 414 398 428 

d5 462 67 345 

4.2.4    Hand  Ratio  

There is another good feature which is considered in this study. It is the ratio between the hand shape area 

and perimeter and the convex hull enclosing it. This ratio is also computed for convexity defects areas. 

Equations 14 to 16 show these mathematical relationships. Table 5 shows some instances results of these 

equations. 

( )

( )
CHA

Handarea HA

ConvexHullarea CHA
 =                                                                                                                    (14) 

( )

( )
CHP

Handperimeter HP

ConvexHullperimeter CHP
 =                                                                                                    (15) 

  
( )

( )
CDA

Handarea HA

Convexitydefectarea CDA
 =                                                                                                     (16)  

Table 5 The area and perimeter ratio for three different signers 

                                  Signer “A”                          Signer “B”                                        Signer “C”     

            RCHA              RCHP                  RCDA                RCHA                 RCHP                 RCDA                  RCHA                 RCHP                 RCDA 

a1 0.8835 1.10912 7.58471 0.95076 0.92387 19.3125 0.90303 1.06639 9.31292 

a2 0.9489 1.05082 18.5789 0.75993 1.22797 3.16556 0.89277 1.08342 8.32584 

a3 0.9238 1.08778 12.125 0.94894 0.91672 18.5876 0.94692 1.10753 13.6969 

a4 0.9015 1.10664 6.77394 0.94545 1.03795 17.3333 0.92262 1.03857 12.7909 

a5 0.8947 1.12827 8.50537 0.90363 0.89444 9.37674 0.91746 1.05259 11.1166 

b1 0.9281 1.04499 12.9230 0.94719 0.91619 17.9387 0.91218 1.07521 10.3872 

b2 0.9107 1.08086 10.2007 0.90716 1.06602 9.77184 0.92151 1.07038 11.7413 

b3 0.9079 1.10396 9.86346 0.84135 0.99758 5.30352 0.91591 1.04879 10.8924 
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b4 0.9012 1.09604 9.12790 0.98826 0.98780 84.1923 0.93912 1.04453 15.4263 

b5 0.9334 1.10411 14.0322 0.92935 1.01941 13.1562 0.92758 1.05463 12.8083 

c1 0.9069 1.09728 9.74456 0.96640 1.20103 28.7681 0.58106 1.31232 1.53903 

c2 0.9061 1.12362 9.65853 0.88355 1.15129 7.58783 0.61049 1.50689 1.56737 

c3 0.7167 1.33934 2.52988 0.53340 1.36817 1.14320 0.56401 1.33469 1.47987 

c4 0.6052 1.51644 1.53343 0.44985 1.73090 0.81770 0.49768 1.54714 0.99077 

c5 0.7960 1.25036 3.90403 0.56646 1.78902 1.30662 0.55408 1.51615 1.24259 

d1 0.7073 1.37722 2.41725 0.57550 1.71327 1.35575 0.79135 1.09585 3.79285 

d2 0.7131 1.38240 2.74501 0.53991 2.13601 1.17350 0.69044 1.11127 4.21402 

d3 0.6041 1.44011 1.52631 0.53249 1.24327 1.13900 0.73828 1.09618 2.82093 

d4 0.6954 1.33846 2.28351 0.71991 1.10311 2.57035 0.72864 1.11911 2.92990 

d5 0.7385 1.18394 2.82432 0.93631 1.68617 14.7014 0.79634 1.13338 3.91014 

 4.2.5  Distance Features 

The approximate longest diameter of the hand can be calculated via the Eigen value and Eigen vector 

concepts. In addition, the approximate width is also computable by drawing a line perpendicular to this line. 

Figure 13 presents some selected results of the above procedure for signer ‘A’ in both states with and 

without hand contour. The results have been zoomed till 200% for more clarity. 

 

Figure 13 Eigen vectors of the hand 

As can be observed in the results in Figure 13, the vectors are drawn from hand contour to hand centre. If 

they are continued to the opposite points, the approximate length and width of the hand can be computed 

easily.   

After trying all signs on the dataset, it was observed that this procedure cannot lead to a good result in some 

signs, as shown in Figure 14, so there is a complementary idea which explained in the following subsection 

to solve this issue. 
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Figure 14 Bad results of the Length and width calculation 

4.3 Classification 

4.3.1 Discussion on DGSLR Dataset 

In the last commands on the SVM, the average accuracy for trained and test sets was calculated. The 

experimental results were computed for extracted features lonely and also the combination of them. In 

addition, the program was repeated in 1 and 10 iterations for 5-Fold and 10-Fold cross validation. Tables 6 

and 7 show the accuracy rate in 5-Fold cross validation in the training phase and final accuracy of the testing 

phase for one iteration in the DGSLR dataset. The DGSLR dataset consists of three users with 390 depth-

based images. As it can be seen in Tables 6 and 7 the accuracy rate is increased considerably when the 

features are combined. For instance, when the convexity defect is a feature lonely, the trained accuracy rate 

is 23.88%. This rate in the validation phase equals to 21.88%. While, the combination of this feature with 

other features affects highly the recognition rate, as it reaches 80.64% in the training phase and 80.81% in 

the testing phase.  

Table 6 Accuracy of single extracted features from the DGSLR dataset 

Type of Features   Train Accuracy                 Test Accuracy 

HA+HP (Hand shape) 65.46%                                  63.56% 

CHA+CHP (Convex Hull) 75.43%                                  69.45% 

CDA (Convexity Defect) 23.88%                                  21.81% 

RCHA+RCHP  (Convex Hull Ratio)                        79.37%                                   76.65% 

RCDA  (Convexity Defect Ratio)  29.40%                                   26.67% 

D (Euclidian Distance) 45.63%                                   44.72% 

Table 7 Accuracy of combination of extracted features from the DGSLR dataset 

Type of Features Train Accuracy             Test Accuracy 

HA+HP+CHA 75.52%                           75.83% 

HA+HP+CHA+CHP 79.41%                           79.45% 

HA+HP+CHA+CHP+CDA 80.64%                           80.81% 

HA+HP+CHA+CHP+CDA+RCHA 86.33%                           86.67% 

HA+HP+CHA+CHP+CDA+RCHA+RCHP 89.36%                           89.65% 

HA+HP+CHA+CHP+CDA+RCHA+RCHP+RCDA 90.50%                           90.83% 

RCHA+RCHP+RCDA 79.32%                           79.67% 
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D+HA+HP+CHA+CHP 89.65%                           91.32% 

D+HA+HP+CDA 87.56%                           86.24% 

D+ RCHA+RCHP+RCDA 89.78%                           89.58% 

The following figures represent the results as line charts for more clarity. It can be seen that the training 

and testing phase have very close results in both single and specially combined features. Refer to Figure 

15, the convex hull feature has the most impact on the accuracy. The accuracy rate in two points which is 

related to the convex hull, (CHA+CHP) and (RCHA+RCHP), is close to 80%. This value for the distance 

feature is approximately 50%, and it shows that the distance feature is an important feature in this case.  

The overall accuracy rate for a single feature vector in the training phase is 53.195%. This magnitude in the 

testing phase is 50.48%. Likewise, the recognition accuracy in training and testing phases are 84.807% and 

85.005% respectively. Figure 15 shows the overall results in the DGSLR dataset.  

 

Figure 15 Accuracy rate in a single and combined feature vector 

Figures 16 shows the confusion matrix of 26 signs in the DGSLR dataset by three users. As it is observed 

those signs which are similar have some recognition error and cannot be detected 100% in all cases. For 

example, sign ‘M’ has been predicted correctly with an 89.5% rate and predicted as ‘A’ sign in 16.7% 

prediction rate.  

  

Figure 16 (left) Confusion matrix, signs A-M, DGSLR dataset with three users,(right)Confusion 

matrix, signs N-Z, DGSLR dataset with three users 
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In sign ‘T’, the sign has been predicted correctly in the 87.8% of cases but it has been detected as ‘N’ and 

’S’ in 5.3% and 11.2% of tested cases respectively. Likewise, some signs like ‘B’ and ‘V’ were predicted 

correctly in all cases. Consequently, the overall recognition rate equals 90.250% which is an acceptable rate 

considering the previous works in this field study. 

Totally for one and ten iterations in 5-Fold and 10-Fold cross validation in this case study of multiclass 

RBF SVM, the average accuracy rate in the training and testing phases were according to the presented 

charts as Figures 17.  

 

Figure 17 (left)Training phase accuracy rate,(right) Testing phase accuracy rate 

4.3.2 Discussion on Standard Dataset 

The multi-class SVM classifier was also applied on the standard dataset and the obtained results are as 

follows. The employed standard dataset includes a huge set of depth-based images of nine users in 

approximately 400 repetitions on each sign, so includes about 10400 images for each user. Here, just one 

user has been considered. As can be seen in Table 8, the most value of the recognition accuracy rate is 

related to the convex hull with 58.99% in the training phase and 59.65% in the testing phase. The second 

most value is related to the ratio between convex hull and hand. It is similar to DGSLR dataset results. 

Table 9 shows the extracted features combination where the highest value of accuracy rate belongs to a 

combination of distance, hand and the convex hull of the hand.  

Table 8 Accuracy of single extracted features from the standard dataset 

Type of Features   Train Accuracy                 Test Accuracy 

HA+HP (Hand shape) 35.22%                                  32.02% 

CHA+CHP (Convex Hull) 58.99%                                  59.65% 

CDA (Convexity Defect) 33.12%                                  29.96% 

RCHA+RCHP  (Convex Hull Ratio)                        49.57%                                   44.17% 

RCDA  (Convexity Defect Ratio)          23.29%                                   20.93% 

D (Euclidian Distance) 45.18%                                   46.48% 
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Table 9 Accuracy of combination of extracted features from the standard dataset 

Type of Features Train Accuracy             Test Accuracy 

HA+HP+CHA 85.50%                           85.78% 

HA+HP+CHA+CHP 85.71%                           86.69% 

HA+HP+CHA+CHP+CDA 85.43%                           86.88% 

HA+HP+CHA+CHP+CDA+RCHA 89.43%                           90.24% 

HA+HP+CHA+CHP+CDA+RCHA+RCHP 89.85%                           89.31% 

HA+HP+CHA+CHP+CDA+RCHA+RCHP+RCDA 92.50%                           93.43% 

RCHA+RCHP+RCDA 89.39%                           89.77% 

D+HA+HP+CHA+CHP 93.64%                           96.85% 

D+HA+HP+CDA 87.32%                           89.14% 

D+ RCHA+RCHP+RCDA 89.71%                           91.54% 

 

The following charts represent the results of the recognition accuracy rate in single and combined features 

to represent the recognition trend on the standard dataset. Similar to the DGSLR results, Figure 17(left) 

compared with Figure 17(right) has a higher accuracy rate. Furthermore, the trend of the combined features 

is increasingly upward.  

A recognition accuracy comparison between the proposed method and previous works which used the 

Kinect sensor has been presented in Table 10. According to the table, Random Occupancy Pattern and 

Eigen joints demonstrated a high accuracy rate between the other examined classifiers in the recognition 

process. Some applicable classifiers based on histograms have also illustrated the positive results on 

recognition. Moreover, the graph based classifiers have an accuracy rate of more than 70%. Whereas neural 

network based classifiers are widely used in most of the recognition processes, but compared with the other 

classifiers, they have a low accuracy rate. The hidden Markov Model has shown a high accuracy recognition 

in Sign Language applications as also discussed in the literature. The recognition accuracy rate of this 

research is based on SVM and examined on DGSLR and standard datasets. As Table 10 shows, the 

recognition rate of the classifier is more than 90% on DGSLR dataset and 96% on the standard dataset 

which is a good result compared to the previous research.           

Table 10 Recognition accuracy comparison 

Method              Accuracy 

Recurrent neural network (Han et al., 2013) 0.425 

Dynamic temporal warping (Hossny et al., 2012) 0.540 

Hidden Markov Model (Caon et al., 2011) 0.900 

Action graph on bag of 3D points (Anand et al., 2013) 0.847 

Histogram of 3D joints (Rafibakhsh et al., 2012) 0.789 

Random occupancy pattern (Luber et al., 2011) 0.862 
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Eigen joints (Machado and Ferreira, 2013) 0.823 

Sequence of most informative joints (Maimone and Fuchs, 2012) 0.471 

Proposed method on DGSLR dataset 0.903 

Proposed method on standard dataset 0.968 

4.3.3 Discussion and Comparison on Benchmark  

The experimental results of this research are according to previous principal research that used the 

mentioned standard dataset. Here there is a quick look at this research and then some comparisons between 

this study and the main research are conducted in obtained practical results as tabular form. 

In the principal research which this study built on it, the depth-based detection of the user’s hand has been 

performed using the OpenNI+NITE (Middleware, OpenNI) framework on a Kinect. This library provides 

functions for detecting hands in 3D space by the depth image made by the Kinect sensor. Then, the hand is 

segmented from the depth-based image assuming that the hand is a continuous region. For the feature 

extraction step, the hand shape features used were based on Gabor filtering of the depth images and 

intensity. The learning and classification process is well established and utilized via a multi-class random 

forest, discussed in detail earlier. The random forest has good accuracy in learning (Daugman, 1985) and 

can handle large feature space and large datasets. It has shown some good results in fast training. The flow 

work of this research is presented as follows. 

Figures 18 and 19 show the confusion matrix for the detection of all signs in the mentioned research and 

this research, using a combined feature vector.  

 

Figure 18 Confusion matrix of all signs in the dataset in benchmark research 
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Figure 19 Confusion matrix of all signs in the standard dataset in the proposed research 

Considering both above confusion matrixes, it can be found that some signs like ‘A’, ‘B’, ‘M’, ‘N’, ‘S’, 

and ‘T’ which have similar posture, the recognition rates are close together. For example, the recognition 

rate for ‘A’ sign equals to 0.64 (64%) and for ‘E’ is 0.63. These rates in the benchmark results are 0.75 and 

0.63. Similar signs can be wrongly detected. This wrong detection occurs in ‘Y’ and ‘L’ or ‘F’ and ‘W’. In 

addition, the prediction error has similar results, for example, the ‘A’ sign is detected wrongly as ‘M’ with 

0.05 rate of prediction in the principal study. This rate in this proposed research is 0.03. The ‘O’ sign is 

predicted as ‘C’ with 0.3 rates, while this rate in this research is 0.05. On the other hand, some recognition 

rates have been improved while some of them, vice versa. But with an overall look at both figures it can be 

realized that most of the rates have been improved in the proposed research. One another considerable note 

is about two signs ‘J’ and “Z’. These signs are motional and have movement while signing. Since this 

research is related to the study of images, so having a look at the figures, can be found these two signs have 

a low recognition rate. The benchmark research removed these signs from its field, and this research got an 

average of the different poses of the sign. It means that, while the signer doing the sign, the images were 

captured one by one, and then calculate the average of geometrical features of them.  

Consequently, in the benchmark research, the best results were obtained for two signs ‘L’ and ‘V’ with 0.87 

prediction rate and the lowest rates for ‘O’ sign with 0.13 and ‘S’ and ’m’ with 0.17. These rates in the 

proposed research are 0.35 and 0.39 for ‘J’ and ‘Z’ respectively. It means that two motional signs have the 

lowest recognition rates between all the performed signs. The overall recognition rate in the benchmark 

research is 52.95% while this rate equals to 66.07%  in the proposed research. As mentioned before this 

rate is 90.25 in the DGSLR dataset in this research with three users, and 96.85 on the standard dataset.  
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4.3.4 Discussion and Comparison based on Different Classifiers 

The results of two common classifiers, K-Nearest Neighbours (K-NN) and Decision Tree (DT) have been 

represented and compared to SVM. For obtaining the better result, the signs were divided into some 

categories which five signs in each category. The categories are as A to E, F to J, …, U to Z, by labeling 1 

to 5, 6 to 10,…, 21 to 26 respectively. Firstly, the results of SVM with 5 and 10-fold cross validation are 

presented as shown in Table 11, 12.  

Table 12 shows the accuracy rate of recognition methods for training and test phases in each class of SVM 

in 5-fold cross validation. The average of accuracy in each class is also presented. Eventually, the final 

accuracy in train and test is illustrated.    

Table 11    SVM by 5-Fold cross validation in training phase 

Label of Sign 1-5 6-10 11-15 16-20 21-26 

 

Train 

accuracy rate in each 

class 

0.9429    

0.9143    

0.8857    

0.9143    

1.0000 

0.9706    0.8235    

0.7941    0.9706    

0.9706 

1.0000    0.9091    

0.8182    0.9394    

0.9697 

1.0000    0.9697    

0.9697    1.0000    

1.0000 

1.0000    0.9375    

0.9063    0.9063    

1.0000 

0.9074 

 

Test accuracy rate in 

each class 

0.8194    

0.9167    

0.8333    

0.7778    

0.9861 

0.8333    0.9722    

0.8056    0.7639    

0.9722 

0.8333    0.8889    

0.7917    0.7500    

0.9722 

0.8333    0.9722    

0.8611    0.7917    

1.0000 

0.8333    0.9444    

0.8472    0.8056    

0.9861 

0.8903 

Mean accuracy of 

Train 

0.9429 0.9216 0.9394 0.9899 0.9479 

Mean accuracy of 

Test 

0.8889 0.8796 0.8472 0.9306 0.9444 

Total accuracy 0.94834 , 0.89814 

Table 12 shows the accuracy rate of recognition methods for training and testing phases in each class of 

SVM in 10-fold cross validation. The average accuracy in each class is also presented. Eventually, the final 

accuracy in train and test is presented.  

Table 12    SVM by 10-Fold cross validation in training phase 

Label of Sign 1-5 6-10 11-15 16-20 21-26 

 

Train accuracy rate 

in each class 

1.0000    

0.8824    

0.8824    

1.0000    

1.0000 

0.9412    0.9412    

0.9412    0.8824    

1.0000 

1.0000    0.8750    

0.8750    1.0000    

1.0000 

1.0000    0.8889    

0.8333    0.8889    

1.0000 

1.0000    0.9444    

0.9444    0.9444    

1.0000 

1.0000 

 

Test accuracy rate in 

each class 

0.8333    

0.9722    

0.8333    

0.7778    

1.0000 

0.8333    0.9583    

0.8472    0.8056    

1.0000 

0.8194    0.8750    

0.8472    0.8056    

0.9722 

0.8333    0.9167    

0.8472    0.7917    

1.0000 

0.8333    0.9722    

0.8611    0.7917    

1.0000 

0.9812 

Mean accuracy of 

Train 

1.0000 0.9412 1.0000 0.9444 0.9630 

Mean accuracy of 

Test 

0.9444 0.9444 0.8750 0.8889 0.9306 

Total accuracy 0.96972 ,  0.91666 

Comparing two Tables 11 and 12 shows that the accuracy rate of SVM in 10-Fold cross validation is higher 

than the 5-Fold.  
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Table 13 represents the accuracy rate of recognition by K-NN classifier which k equals to 10. Two last 

iterations in each class have been presented as a sample. For example, in the third class of 11 to 15 labels, 

related to ‘K’ to ‘O’ signs, the sign ‘k’ with label 11 as input and the classifier predicts it as ‘O’ with a label 

of 15. In the next iteration, it is predicted as ‘N’ with the label of 14. Whereas, in this class, two signs ‘L’ 

and ‘M’ with 12 and 13 labels, are predicted correctly in accordance to input. The total accuracy rate is 

roughly 85% which is less than the SVM classifier.   

Table 13    K-NN accuracy recognition, K=10 

Label of Sign 1-5 6-10 11-15 16-20 21-26 

 

 

 

 

Sample 

input predict input predict input predict input predict input predict 

     1     1 

     2     2 

     3     3 

     4     4 

     5     5 

     1     1 

     2     2 

     3     4 

     4     4 

     5     5 

     6     7 

     7     7 

     8     8 

     9     9 

    10    10 

     6     8 

     7     8 

     8     8 

     9     9 

    10    10 

    11    15 

    12    12 

    13    13 

    14    13 

    15    15 

    11    14 

    12    12 

    13    13 

    14    14 

    15    13 

    16    16 

    17    18 

    18    20 

    19    20 

    20    19 

    16    17 

    17    18 

    18    20 

    19    19 

    20    20 

    21    21 

    22    22 

    23    21 

    24    24 

    25    25 

    26    26 

    21    24 

    22    22 

    23    21 

    24    24 

    25    25 

    26    26 

 

Test accuracy rate 

in each class 

1.0000    

0.7833    

0.9333    

0.7833    

0.7000 

0.9000    0.8167    

0.7833    0.9333    

1.0000 

0.9167    1.0000    

0.9000    0.7667    

0.7167 

0.8667    0.7667    

0.8167    0.8000    

0.6833 

0.7778    0.9306    

0.8611    0.8333    

1.0000 

0.9028 

Mean accuracy of 

Test 

0.8400 0.8867 0.8600 0.7867 0.8843 

Total accuracy 0.85154 

Table 14 presents the accuracy rate of recognition by K-NN classifier which k equals to 20. Two last 

iterations in each class have been presented as a sample. For example, in the second class of 6 to 10 labels, 

where are related to ‘F’ to ‘J’ signs,  sign ‘F’ with label 6 is the input and the classifier predicts it as ‘H’ 

with the label of 8. In the next iteration, it is predicted the same. Whereas in this class, the sign ‘G’ with 

label 7, is predicted correctly in accordance to input in the second iteration, meanwhile it is predicted as ‘J’ 

in the first iteration. The total accuracy rate is more than 84% which is less than the SVM classifier.   

Table 14    K-NN accuracy recognition, K=20 

Label of Sign 1-5 6-10 11-15 16-20 21-26 

 

 

 

 

Sample 

input predict input predict input predict input predict input predict 

     1     1 

     2     2 

     3     3 

     4     3 

     5     5 

     1     1 

     2     2 

     3     4 

     4     3 

     5     5 

     6     8 

     7    10 

     8     7 

     9     9 

    10    10 

     6     8 

     7     7 

     8     8 

     9     9 

    10    10 

    11    14 

    12    12 

    13    13 

    14    14 

    15    15 

    11    14 

    12    12 

    13    13 

    14    13 

    15    13 

    16    16 

    17    18 

    18    20 

    19    20 

    20    19 

    16    17 

    17    18 

    18    20 

    19    19 

    20    19 

    21    21 

    22    22 

    23    21 

    24    24 

    25    25 

    26    26 

    21    24 

    22    22 

    23    21 

    24    24 

    25    25 

    26    26 
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Test accuracy rate 

in each class 

1.0000    

0.8667    

0.8333    

0.6833    

0.7833 

0.8833    0.7833    

0.8000    0.8167    

0.9833 

0.9167    1.0000    

0.8667    0.7500    

0.7667 

0.8833    0.7500    

0.8333    0.7667    

0.6333 

0.7917    0.9583    

0.8889    0.8333    

1.0000 

0.9167 

Mean accuracy of 

Test 

0.8333 0.8533 0.8600 0.7733 0.8981 

Total accuracy 0.8436 

Table 15 presents the DT results as the next classifier. The total accuracy rate of recognition is about 81%. 

Which is less than the K-NN and SVM, but because of its simple structure it is widely used in the 

classification goals. 

Table 15    DT accuracy recognition 

Label of Sign 1-5 6-10 11-15 16-20 21-26 

 

 

 

 

Sample 

input predict input predict input predict input predict input predict 

     1     1 

     2     2 

     3     3 

     4     3 

     5     4 

     1     1 

     2     2 

     3     3 

     4     3 

     5     4 

     6     8 

     7     6 

     8     7 

     9     9 

    10    10 

     6     8 

     7     6 

     8     7 

     9     6 

    10    10 

    11    13 

    12    12 

    13    13 

    14    13 

    15    14 

    11    11 

    12    12 

    13    13 

    14    15 

    15    13 

    16    16 

    17    18 

    18    18 

    19    19 

    20    19 

    16    16 

    17    18 

    18    19 

    19    19 

    20    19 

    21    21 

    22    22 

    23    21 

    24    25 

    25    25 

    26    26 

    21    25 

    22    22 

    23    21 

    24    25 

    25    25 

    26    25 

 

Test accuracy rate 

in each class 

1.0000    

0.8333    

0.7833    

0.7333    

0.8500 

0.7500    0.6667    

0.6833    0.8167    

0.9167 

0.9333    1.0000    

0.7833    0.7833    

0.7333 

0.8333    0.7667    

0.7333    0.6667    

0.8000 

0.8194    0.7917    

0.8750    0.7917    

0.8750 

0.8750 

Mean accuracy of 

Test 

0.8400 0.7667 0.8467 0.7600 0.8380 

total 0.81028 

Figure 20 shows the results of the recognition rates for three classifiers. It is clear that the SVM classifier 

has the most accuracy rate compared with K-NN and DT classifiers. It is surprising that the K-NN with 

K=10 has a higher accuracy rate than the K-NN with K=20, which is an unexpected result. In the end, the 

DT classifier has the least recognition rate between two other classifiers. 

 

Figure 20 Comparison between recognition accuracy rate of SVM, K-NN, and DT 

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

SVM, 5-Fold SVM, 10-Fold K-NN, K=10 K-NN, K=20 DT
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Lastly, a comparison between the research and its benchmark is represented in Table 16. We utilized Matlab 

and the LIBSVM library for the development of the algorithms.  The benchmarking process used the 

OpenNI and NITE libraries. The segmentation, feature extraction, and classification phases have been 

implemented differently, but both types of research used multiclass classification due to the number of the 

sign language alphabets.   

Table 16  Method Comparison 

 Proposed Method Benchmark research  Method 

 

Devices 

typical laptop, Intel Core 

i5 2430M processor at 2.40GHz 

Kinect camera 

typical laptop, Intel Core 

i5 M430 processor at 2.27GHz 

Kinect camera 

Software Matlab+LIBSVM+SDK OpenNI+NITE framework 

Hand Segmentation  Programing in Matlab  OpenNI+NITE predefine functions 

Feature Extraction  Hand geometrical features Hand shape features based on Gabor 

filtering 

Classification Multiclass SVM Multiclass random forest 

Dataset Centre for Vision, Speech and Signal 

Processing, University of Surrey 

Centre for Vision, Speech and Signal 

Processing, University 

of Surrey 

 

5. CONCLUSION 

We aimed to examine the accuracy of the proposed hand recognition technique on both DGSLR and 

standard datasets which contain a number of samples of the American Sign Language alphabet. The 

effectiveness of the proposed techniques was first evaluated on the DGSLR dataset by three users and 

acceptable recognition rates were obtained. Later, the evaluation approaches were carried out on the 

standard dataset and achieved considerable results which were very promising. Besides experimental 

results, different tabular analyses and discussions of the charts are also reported. Finally, a comparison 

discussion between the benchmark research and the proposed research with their final results are 

investigated. Furthermore, two classifiers, K-NN and DT are employed and the obtained results are 

compared to as an SVM classifier. 

Since there are 26 different signs in the Sign Language alphabet, a single multi-class versus a single SVM 

classifier with 26 classes by an RBF kernel was used to validate each class. The accuracy and accuracy of 

the proposed method were evaluated and the procedure was repeated by changing each parameter (C, σ) 

for the validation. The selected pair gave the best average accuracy from the group. Then, the SVM was 

trained on the selected training set with these optimal parameters. This method is also used to perform the 

recognition process by utilizing multiple feature descriptors which is multiple feature descriptors which is 

a combination of the extracted features. Experiments were conducted on the selected and standard datasets. 
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The combination of the extracted features reveals the superiority of the proposed method over the existing 

work on this subject. The selected dataset was used by three different users, which two users were novices 

in Sign Language. Each sign was repeated five times for getting improved accuracy. The standard dataset 

has more than 400 repetitions in each sign. The process was well done in 1 and 10 passes for all data in the 

dataset in 5 and 10-Fold cross validation. The confusion matrix is used in the proposed machine learning 

process which permits visualization of the algorithm efficiency.  

The significant finding of this research is the realization of the significant improvements in Sign Language 

recognition accuracy. Combined features give better results than a single feature. The distance feature has 

a major contribution on the recognition rate. Evaluations on the selected dataset report the recognition rate 

of 90.25% while this magnitude on the complete standard dataset using the proposed approaches, reports 

an identification rate of 96.85%, the best overall identification rate reported so far on the considered dataset.  

According to the confusion matrix visualization obtained from benchmarking and the proposed research, 

in specific cases, alternative techniques and combinations of machine learning algorithms provide higher 

accuracy of Sign Language recognition. This work is to create a generalized Sign Recognition process. Our 

research and proposed machine learning process for the creation of a generalized Sign Language 

Recognition system capable of being used in cluttered, varied lit environments, has given improved results 

from previous research utilizing the chosen dataset. 

In this research, geometric features along with some new features such as hand key-points for estimating 

and tracking have been employed. This has been done to detect multi-frame videos of our gestures by Deep 

Neural Network. Feature Learning and deep neural network are too time-consuming and overfitting, 

therefore, there are rooms to take them into account for future work. However, this has been done to detect 

multi-frame videos of our gestures by deep neural network.  
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