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Abstract 13 

Cognitive models of time perception propose that perceived duration is influenced by 14 

how quickly attention is orientated to the to-be-timed event and how consistently attention is 15 

sustained on the to-be-timed event throughout its presentation. Insufficient attention to time is 16 

therefore associated with shorter more variable representations of duration. However, these 17 

models do not specify whether covert or overt attentional systems are primarily responsible for 18 

paying attention during timing. The current study sought to establish the role of overt attention 19 

allocation during timing by examining the relationship between eye-movements and perceived 20 

duration. Participants completed a modified spatial cueing task in which they estimated the 21 

duration of short (1400ms) and long (2100 ms) validly and invalidly cued targets. Time to first 22 

fixation and dwell time were recorded throughout. The results showed no significant 23 

relationship between overt sustained attention and mean duration estimates. Reductions in 24 

overt sustained attention were however associated with increases in estimate variability for the 25 

long target duration. Overt attention orientation latency was predictive of the difference in the 26 

perceived duration of validly an invalidly cued short targets but not long ones. The results 27 

suggest that overt attention allocation may have limited impact on perceived duration.  28 

  29 
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Introduction 30 

The ability to accurately judge the duration of events is dependent on a broad range of 31 

cognitive resources including attention. Cognitive models of time perception, such as Scalar 32 

Expectancy Theory (SET) (Gibbon, Church & Meck, 1984) and the Attentional Gate Model of 33 

timing (AGM) (Block & Zakay, 1996; Zakay & Block, 1995, 1996), provide theoretical 34 

accounts of how attention allocation influences perceived duration. SET proposes that time is 35 

processed by a pacemaker-accumulator clock connected by a switch. At the start of a to-be-36 

timed-event, the switch between the pacemaker and the accumulator closes allowing output 37 

from the pacemaker to be transferred to the accumulator. At the end of the to-be-timed-event 38 

the switch opens and accumulation ceases. The amount of output accumulated forms the 39 

representation of duration. Increases in switch closure latency therefore delay the 40 

commencement of accumulation, resulting in less accumulation and a shorter estimate of 41 

duration. The switch is often considered to be a form of selective attention to time, with changes 42 

in switch latency being thought to reflect changes in the speed with which attention is orientated 43 

towards the to-be-timed-stimulus. It is unclear however whether the switch represents a form 44 

of overt or covert attentional processing. 45 

The AGM formalised the role of attention in timing by adding an attentional gate to the 46 

SET framework (see Figure 1). Although the precise nature of the gate remains debated (see 47 

Lejeune, 1998, 2000 and Zakay, 2000 for discussion), it is now widely accepted that the 48 

attentional gate is able to open and close throughout the presentation of a to-be-timed-stimulus 49 

and therefore reflects sustained attention to the timed event. When attention to time (or the to-50 

be-timed-stimulus) decreases the gate opens and accumulation is reduced resulting in a 51 

shortening of perceived duration and more variable representations of duration. Increases in 52 

attention to time result in greater closing of the gate, more accumulation and a longer, less 53 

variable representations of duration. The AGM also provided clearer specification for the 54 

attentional role of the switch in timing. Here, the switch is responsible for the detection of 55 

relevant stimuli and in doing so, commences the start of the accumulation process. As in SET, 56 

this reflects the orientation of attention to the to-be-timed-event. Therefore, increased latency 57 

in switch closure reduces accumulation, resulting in a shorter representation of duration 58 

whereas decreases in switch latency result in more accumulation and a longer representation 59 

of duration. Although not central to this manuscript, it is interesting to note that in the AGM 60 

the switch is positioned after the gate. This seems perhaps paradoxical in that orientation and 61 

evaluation of the stimulus (switch) occurs after sustaining attention on the to-be-time-event 62 
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(gate). Like SET however, the AGM does not specify whether the gate or the switch operate 63 

as a function of overt or covert attentional processing.  64 

Switch (selective attention orientation) and gate (sustained attention) effects are often 65 

distinguished by the effects that they have on perceived duration (see Wearden et al., 2010, and 66 

Matthews & Meck, 2016 for discussion). Switch latency effects are thought to be absolute, 67 

having the same effect on the perceived duration of stimuli of different durations. Gate effects 68 

however reflect sustained attention to time throughout a stimulus and are therefore 69 

multiplicative in nature having greater effects with longer stimulus durations (see Buhusi & 70 

Meck, 2009, Coull, Vidal, Nazarian, & Macar, 2004 for discussion).  71 

Figure 1: A modified schematic of the AGM adapted from Zakay & Block (1995). 72 

 73 

  The primary prediction of SET and the AGM, that reduced focus of attention on time 74 

results in shorter more variable representations of time, is supported by experimental studies. 75 

Consistent with the proposed role of the attentional gate, dual-task studies consistently show 76 

that estimates of time are shorter and more variable under dual-task than single task conditions 77 

(see Block, Hancock & Zakay, 2010 for review). This is thought to be because attention 78 

allocated to the completion of the concurrent non-timing task results in greater gate opening 79 

under dual than single-task conditions, resulting in shorter more variable representations of 80 

duration. Further support comes from studies in which participants are instructed to increase 81 

or decrease the amount of attention they pay to time. For example, Steinborn, Langer & 82 

Huestegge (2017) showed that simply instructing participants to sustain focus removed natural 83 

fluctuations in attention and the associated increases in response variability.  84 
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The findings of spatial cueing studies are consistent with the proposed operation of the 85 

switch in SET and the AGM. Studies show that the perceived duration of to-be-timed events 86 

are lengthened when they appear in a location preceded by a valid exogenous (Seifried & 87 

Ulrich, 2011; Yershurun & Marom, 2008) or endogenous spatial cue (Enns, Brehaut & Marom, 88 

2008; Mattes & Ulrich, 1998). Conversely, invalid exogenous or endogenous spatial cues 89 

subjectively shorten the perceived duration of subsequent events relative to valid cues (Enns, 90 

Brehaut & Marom, 2008; Mattes & Ulrich, 1998; Seifried & Ulrich, 2011; Yershurun & 91 

Marom, 2008).  However, whilst the effects of spatial cues are broadly consistent, it should be 92 

noted that the reverse effects were observed by Chen & O’Neill (2002), although further 93 

examination by Seifried & Ulrich (2011) suggested that unique experimental conditions in 94 

Chen & O’Neill (2002) led to this finding.  95 

Studies of typically and atypically developing individuals also suggest that reduced 96 

attentional capacity increases the variability of duration representations. Developmental 97 

differences in the attentional capacities of young children, older children and adults are also 98 

thought to contribute to greater variability in the timing of young children (see Droit-Volet, 99 

2003, 2016). Similarly, in clinical groups such as autistic spectrum disorders (ASD), reduced 100 

sensitivity to time (increased time variability) has been observed in some studies (e.g. Allman 101 

& Falter, 2015; Isaksson, Salomaki, Tuominen, Arstila, Falter-Wagner & Noreika, 2018; Vogel 102 

Falter-Wagner, Schoofs, Kramer, Kupke & Vogeley, 2019). However, when ASD and control 103 

participants are matched for cognitive function, no differences in timing are observed 104 

suggesting that differences in attention and working memory may contribute to these effects 105 

when observed (Gil, Chambres, Hyvert, Fanget & Droit-Volet, 2012). Attentional differences 106 

are also thought to contribute towards impaired temporal sensitivity in people with attention 107 

deficit hyperactivity disorder (ADHD) in comparison with controls (e.g. Smith, Taylor, Rogers, 108 

Newman & Rubia, 2002; Noreika, Falter & Rubia, 2013). Although collectively these studies 109 

offer support for an effect of attention on timing, it is not always clear whether these effects 110 

are attributed to the operation of the gate, the switch or a combination of the two, or whether 111 

they are due to differences in covert attentional capabilities or over attentional differences.  112 

Although current findings from experimental and individual differences studies support 113 

the SET and the AGM’s proposed roles of attention in timing there are significant gaps in our 114 

understanding of precisely how attention functions during timing. Most importantly perhaps, 115 

both SET and the AGM are agnostic about whether timing is accomplished through overt or 116 

covert attentional processing systems. Overt attention in the visual domain refers to shifts in 117 
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attention that involve head or eye movements, whereas covert attention refers to shifts in 118 

attentional in the absence of eye or head movement (Posner, 1980). One possibility is that 119 

accurate time perception can be achieved solely through covertly attending to the to-be-timed 120 

event in the periphery. Here, switch closure and opening would be prompted by shifts in 121 

attention which occurred in the absence of eye-movements, or at least in the absence of eye-122 

movements resulting in foveation of the to-be-timed stimulus. Similarly, gate opening and 123 

closure would be governed by sustained covert attention on the to-be-timed stimulus in the 124 

absence of sustained fixation in the foeva. However, another possibility is that accurate timing 125 

is only possible when attention is overtly focused on the to-be-timed event. In this overt 126 

attention scenario, for the switch to close and open and for the attentional gate to remain closed, 127 

the to-be-timed stimulus would need to be foveated throughout presentation. A further 128 

possibility however is that the switch and the gate may be controlled by different attentional 129 

processes, for example, covert attention may identify a to-be-timed target, resulting in switch 130 

closure. However, this may result in a shift in overt attention to the target resulting in overt 131 

control of the attentional gate. The converse is also possible; overt attention may be needed to 132 

close the switch, but then covert attention can be used to monitor the to-be-timed event 133 

throughout its presentation. 134 

The lack of specificity regarding the influence of overt and covert attention is 135 

compounded by the fact that previous studies into the role of attention in timing have often 136 

failed to take objective measures of attention allocation during timing to evidence their 137 

suggestions. As a result, simple questions such as “does how long something is overtly looked 138 

at correlate with its perceived duration?” remain difficult to conclusively answer. These issues 139 

have led to suggestions that objective measures of overt and covert attention should be used to 140 

demonstrate the precise roles and mechanisms of attention allocation in timing (see Matthews 141 

& Meck, 2016; Ogden, Turner & Pawling, 2020; Wearden, 2016 for discussion). 142 

One way to integrate objective attention measures of overt attention into timing studies 143 

is through the measurement of eye movements. Even though attention and oculomotor systems 144 

are traditionally considered as separate modules, even covert attentional shifts appear to 145 

involve the oculomotor system to some degree (e.g de Haan et al., 2008; Van der Stigchel & 146 

Theeuwes, 2007). Overt attentional shifts at their most basic level can be measured by tracking 147 

changes in foveation, which is possible through the use of eye-tracking technology (Kulke et 148 

al., 2016; Wang et al., 2019). In typical studies Eye-tracking has been widely used to record 149 

changes in endogenous and exogenous overt attention allocation (Parkhurst, Law & Niebur, 150 
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2002, Soto, Heinke, Humphreys, & Blanco, 2005, Theeuwes, Kramer, Hahn, Irwin, & 151 

Zelinsky, 1999 and see Eckstein, Guerra-Carrillo, Singley, & Bunge, 2017 and Rayner, 2009 152 

for reviews). Simple and elegant spatial cuing tasks, perhaps the best known of which is the 153 

Posner paradigm (Posner, 1980), have been used for decades to explore attention capture, 154 

including overt exogenous attentional shifts. The Posner paradigm typically involves a 155 

participant fixating on a central location after which a cue, often a dot, flash or geometric shape 156 

appears at a peripheral location, followed by a target (again often a dot or shape) at a matching 157 

(valid) or different (invalid) peripheral location. When the interval between cue and target is 158 

brief (<300ms) (Klein, 2000; Posner & Cohen, 1984), participants typically respond with faster 159 

reaction times to valid as opposed to invalid targets, demonstrating attentional capture by the 160 

cue. Such designs have typically been used to measure attention capture within the visual field 161 

without eye movement (covert attention) (Posner & Cohen, 1984), but have also been used in 162 

conjunction with eye-tracking technology to demonstrate the effectiveness of peripheral cues 163 

in capturing overt attention in situations where participants are instructed to look toward the 164 

oncoming target or have the freedom to do so as part of making a manual response (Caldani et 165 

al., 2020; Gobel & Giesbrecht, 2020; MacInnes & Bhatnagar, 2018). Eye-movement latencies 166 

toward targets are typically faster when targets were preceded by valid as opposed to invalid 167 

cues meaning the targets are foveated more quickly and potentially for longer.  168 

Recently, Ogden et al., (2020) used eye-tracking to examine the role of overt attention 169 

allocation in emotional distortions to time. Participants estimated the duration of high arousal 170 

negative, high arousal positive and neutral IAPS images which appeared on the left or right 171 

side of visual space. Participants were instructed they could ignore peripheral cues that 172 

preceded each target image, but were free to move their eyes. Two measures of overt attention 173 

were taken; time to first fixation (TOFF) and dwell time. TOFF was a measure of the time it 174 

took a participant to first fixate on the to-be-timed stimulus and was therefore a measure of 175 

attention orientation. Dwell time was the total amount of time that a participant spent fixated 176 

on the to-be-timed stimulus and was therefore a measure of sustained attention. TOFF was 177 

therefore theorized to reflect switch closure latency and dwell time was thought to reflect 178 

sustained attention to time i.e. the closure of the gate. Despite obtaining effects of emotional 179 

valence on time estimates and TOFF there was no significant relationship between measures 180 

of overt attention allocation and emotional distortions to time. This raises the possibility that 181 

the role of overt attention allocation in time perception is perhaps small. This suggestion is 182 

supported by Enns et al’s., (1999) belief that the lengthening of perceived duration by 183 
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endogenous valid spatial cues could not only be explained by faster stimulus onset detection. 184 

Further research testing the relationship between eye-movement measures of overt attention 185 

allocation and temporal estimates is therefore required to establish how, if at all, overt attention 186 

affects time perception. 187 

The current study 188 

The current study sought to further develop our understanding of the precise nature of 189 

the attentional processes employed during timing. Specifically, the study sought to aid 190 

understanding of whether the switch and gate described in SET and the AGM are a form of 191 

overt attentional processing. This was achieved by establishing whether overt attention 192 

allocation was related to the perceived duration of an event. Overt attention allocation was 193 

therefore quantified by recording eye-movements during a modified spatial cueing task, 194 

recording the onset and duration of foveations of to-be-timed targets. The study also aimed to 195 

establish whether the two predictions of SET and the AGM were accomplished through overt 196 

attentional allocation. The first test was whether sustained overt attention to a to-be-timed 197 

stimulus was predictive of its perceived duration. This constitutes a test of whether the 198 

proposed role of the attentional gate in timing is accomplished through the maintenance of 199 

overt attention on the to-be-timed stimulus. The second was to test whether differences in overt 200 

attention orientation latency for valid and invalidly cued stimuli were predictive of differences 201 

their perceived duration. This constitutes a test of whether the proposed operation of the switch 202 

in SET and the AGM is accomplished through shifts in overt attention.    203 

Participants completed a modified spatial cueing task in which, following the 204 

presentation of a fixation cross, a cue in the form of a black rectangle was presented in the left 205 

or right half of the screen. Following cue offset a target stimulus was presented in the form of 206 

a black square. The target appeared in either the same location as the cue (valid cue) or on the 207 

opposite side of the screen (invalid cue). Participants were required to estimate, in milliseconds, 208 

the duration of the target following target offset. Two key target durations were studied; short 209 

(1400ms) and long (2100ms). Their repeated presentation was disguised by the presentation of 210 

target stimuli with the duration of which was selected at random. Eye-movements were 211 

recorded throughout the task. Two measures of eye-movement were taken on each trial; time-212 

of-first fixation (TOFF) and dwell time. TOFF was defined as the duration in milliseconds from 213 

target onset to the first fixation on the target and is therefore a measure of latency in overt 214 

attentional orientation toward the to-be-timed stimulus. Dwell time was defined as the total 215 
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duration in milliseconds of fixations that participants made to the to-be-timed-stimulus during 216 

its presentation and is therefore a measure of sustained overt attention to the to-be-timed-event 217 

throughout its time on screen. The difference in mean estimates, estimate variability, TOFF 218 

and dwell time between validly cued and invalidly cued trials was calculated for the short and 219 

long target durations separately. The relationships between these values were then tested for 220 

the short and long target durations separately.  221 

 Both SET and the AGM suggest that more rapid orientation of spatial attention to the 222 

location of the to-be-timed event will lengthen its perceived duration. Consistent with previous 223 

cueing studies, it was expected that duration estimates would be longer and less variable for 224 

valid cue trials than invalid cue trials, replicating the findings of Seifried & Ulrich (2011). This 225 

would reflect enhanced attentional processing of the to-be-timed target in the valid than 226 

invalidly cued conditions. In addition, TOFF was expected to be longer on invalidly cued trials 227 

than validly cued trials, replicating the findings of previous studies of cued overt attention 228 

(Caldani et al., 2020; Gobel & Giesbrecht, 2020 MacInnes & Bhatnagar, 2018).  Conversely, 229 

dwell times were expected to be longer on validly cued trials than invalidly cued trials, as 230 

participants were expected to fixate on validly cued targets earlier than invalidly cued targets 231 

and no rival stimulus would recapture attention.  232 

If the operation of the attentional gate (AGM) is determined by the amount of overt 233 

attention paid to time throughout the to-be-timed event, it would be expected that dwell times 234 

would be positively correlated with duration estimates and negatively correlated with estimate 235 

variability. Therefore, longer dwell times would be expected to be associated with longer less 236 

variable duration estimates. However, if the gate primarily functions on the basis of covert 237 

attentional processing we may expect little or no relationship between measures of dwell time 238 

and duration estimates and estimate variability. Furthermore, if the operation of the switch is 239 

governed by shifts in overt attention, it would be expected that differences in TOFF and dwell 240 

time between the valid and invalidly cued trials would be predictive of differences in duration 241 

estimates and estimate variability between the valid and invalidly cued trials. Therefore, longer 242 

TOFFs would be expected to be associated with shorter duration estimates, and shorter dwell 243 

times would be expected to be associated with shorter duration estimates. However, if switch 244 

opening and closure latency is governed by covert attentional processing systems we may 245 

expect little or no relationship between measures of dwell time and duration estimates and 246 

estimate variability.  247 
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Method 248 

Participants 249 

Fifty participants were recruited via email volunteer sampling from Liverpool John 250 

Moores University and the general population. Participants were given a £5 shopping voucher 251 

in exchange for participation. Participants were aged 18 to 35 years old (M=20.68 years, 252 

SD=3.37 years) with 37 females and 13 males participating. All participants were required to 253 

have normal or corrected to normal vision. The study was approved by Liverpool John Moores 254 

University Research Ethics Committee and all participants gave informed written consent. The 255 

study was conducted in accordance with the principles expressed in the Declaration of Helsinki.  256 

Apparatus  257 

Eye movement recording: Eye-tracking was carried out using a Tobii Pro X3-120 monitor 258 

mounted eye-tracker, sampling at 120Hz. Participants sat approximately 500mm away from 259 

the monitor. Prior to beginning the task each participant underwent a five-point calibration 260 

procedure and the experimenter repeated the calibration if they judged it to be unacceptable. 261 

Calibration was repeated at the half-way point during the task. Participants completed three 262 

practise trials to orient them to the demands and timing of the task. All stimuli were presented 263 

against a white background on a monitor with an actual screen size of 474mm (width) by 264 

296mm (height). Stimuli were displayed on Hanns.G Hi221 22” monitor with a resolution of 265 

1680 by 1050 pixels and a 60Hz refresh rate.  266 

Procedure 267 

The basic experimental procedure was as follows. Participants completed an initial five-268 

point calibration exercise. They then completed three practice trials of the modified verbal 269 

estimation task followed by a further 63 trials of a modified verbal estimation task in which 270 

they had to judge how long a target was presented on the screen for following either a valid or 271 

invalid cue.  Participants then re-completed the recalibration exercise followed by a further 63 272 

trials of the modified verbal estimation task. The total experiment lasted for approximately 30 273 

minutes.  274 

Eye-movements calibration: Participants completed a five-point calibration procedure that 275 

required them to make saccades to five locations (the centre and four corners of the screen) 276 

dictated by a moving white dot. When the dot stopped moving on reaching each of the five 277 

locations the participants were instructed to fixate on it until it moved again. Calibration 278 

https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
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accuracy, represented by error bars in each location, was visually inspected and the procedure 279 

repeated if considered necessary.  280 

Verbal estimation task: A modified version of verbal estimation was developed for this task. 281 

Participants were informed that, on each trial, they would see a fixation cross, a cue and a target 282 

stimulus and that their task was to estimate, in milliseconds, how long the target stimulus was 283 

presented on the screen for. Participants were informed that the target was always presented 284 

for between 1000ms and 2500ms. In order to ensure that participants’ eye-movements were 285 

naturalistic and comparable to those in a typical verbal estimation task, participants were given 286 

no specific instructions regarding eye-movements except that they were requested to look 287 

toward this fixation cross at the start of each trial. 288 

At the start of each trial a black fixation cross (1.27° by 1.27°) was presented in the 289 

centre of the screen on a white background for 500ms. This was followed by a cue, in the form 290 

of a black oval (1.09° by 1.71°, and presented 17.45° horizontally from centre and .19° below 291 

centre) which was presented for 150ms. On 50% of trials the cue was presented to the left-hand 292 

side of the screen and on 50% of trials it was presented to the right hand side. Following cue 293 

offset, the target stimulus was presented in the form of a black rectangle (60mm by 40mm, 294 

0.67° by 0.46°) which was presented so that its centre was 80mm from the side of the screen 295 

(left or right depending on trial validity) and 150mm from the top of the screen on a white 296 

background. The duration of target presentation was determined by the trial type. There were 297 

three types of target presentation duration 1) short targets, presented for 1400ms, 2) long 298 

targets, presented for 2100 ms and 2) random targets, presented for a duration, selected at 299 

random, from a range of 1000ms - 2500ms. Random targets were included to disguise the 300 

repeated use of short and long targets. Data from random targets was not analysed (e.g. 301 

Piovesan, Mirams, Poole, Moore & Ogden, 2019). Following target presentation participants 302 

were instructed to verbalise their estimate and it was recorded by the experimenter. No 303 

performance feedback was given. See Figure 2 for trial diagram.  304 

Figure 2: Trial structure schemata showing valid and invalid trials for left and right target 305 

locations. 306 
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 307 

There were two trial types, valid and invalid. On valid trials, the cue and the target 308 

stimulus occurred in the same spatial location. On invalid trials however, the cue and the target 309 

appeared in different spatial locations (see Figure 1 for illustration). 58% of trials were valid 310 

and 42% of trials were invalid. On 50% of valid and invalid trials the target was presented on 311 

the left side of the screen, on the remaining 50% of trials the target was presented on the right 312 

side of the screen. Across the whole experiment there were a total of three practice trials, 48 313 

short trials (of which 50% were valid) and 48 long trials (of which 50% were valid). There 314 

were a further 38 random trials of which 30 were valid). All trials were presented in a random 315 

order.  316 

Data analysis:  317 

Eye movement: Measures of dwell time and TOFF were generated within Tobii Pro Studio 318 

(version 3.4.8.1348) through the creation of areas of interest. These were centred on the target 319 

stimuli and made 10 pixels larger on either side of the stimulus rectangle to account for small 320 

errors in eye position tracking resulting in regions of . Mean, minimum and maximum dwell 321 

times and TOFF, and their standard deviations were calculated at the participant level within 322 

Tobii Studio and these statistics were first visually inspected for outliers / artefacts. 323 

Verbal estimation: time estimates for the short and long targets were each assessed using two 324 

measures: 1) mean estimate, 2) coefficient of variation (CoV). Mean verbal estimate was 325 
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calculated as the average estimate given for the short and long target. CoV was calculated using 326 

the following formula for the short and long target separately for each participant; standard 327 

deviation/mean estimate. A CoV of zero indicates no variability.  328 

In accordance with Steinborn, Langer, Flehmig & Huestegge (2018), an initial split half 329 

reliability analysis was performed on measures of TOFF, dwell time and duration estimates. 330 

Significant positive correlations were observed between measures taken from the first half the 331 

study (trials 1-63) and the second half of the study (trials 64-126) for TOFF (r = .39, p = .006), 332 

dwell time (r = .62, p < .001), duration estimates (r = .79, p < .001) and CoV (r = .69, p < .001) 333 

suggesting good reliability between measures taken in the first and second half of the task. 334 

Results 335 

Data from one participant was removed from the dataset because an equipment failure meant 336 

that eye-movements were not recorded.  The following analysis is therefore based on the 337 

remaining 49 participants.  338 
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Table 1: Descriptive statistics for the measures of temporal perception and eye-movements. 339 

Trial Type Mean 

estimate 

ms (SD) 

 Estimate 

skew 

Estimate 

kurtosis 

Mean 

CoV 

(SD) 

CoV 

skew 

CoV 

kurtosis 

Mean 

TOFF 

ms (SD) 

TOFF 

skew 

TOFF 

kurtosis 

Mean 

dwell time 

ms (SD) 

Dwell 

time 

skew 

Dwell 

time 

kurtosis 

Valid 

Short 

1516.97 

 

(222.05) 

 0.17 -0.58 0.18 

(0.06) 

-0.29 -0.19 198.20  

(242.05) 

1.98 4.03 1212.90  

(194.43) 

-1.58 2.66 

Invalid 

Short 

1449.36  

(219.93) 

 0.53 -0.05 0.20  

(0.07) 

-0.40 0.29 401.60  

(247.38) 

3.00 10.96 1033.40  

(166.59) 

-1.73 2.67 

Valid  

Long 

2002.34  

(171.99) 

 0.29 0.60 0.15  

(0.06) 

0.86 0.86 195.70  

(209.84) 

1.48 1.86 1760.70  

(364.85) 

-1.85 3.84 

Invalid 

Long 

1975.58  

(173.05) 

 0.08 0.02 0.16  

(0.06) 

0.46 -0.16 410.20  

(338.77) 

3.17 11.79 1590.00  

(329.92) 

-1.29 0.66 

 340 

 341 

 342 
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Eye-movements:  343 

Attention orientation latency: Table 1 shows mean TOFF and dwell times for the short and 344 

long target durations preceded by valid and invalid cues. Examination of Table 1 suggests that 345 

the latency of TOFF was greater for the invalid than valid cues, which supports the 346 

effectiveness of the cueing task in influencing the speed at which participants were able to 347 

fixate on the targets. Table 2 shows the results of a repeated measures ANOVA with within 348 

subjects factors of cue (valid vs invalid), location (left side cue vs right side cue) and target 349 

duration (short vs long). Examination of Table 2 confirms a significant effect of cue validity 350 

on TOFF, suggesting that cue validity affected overt attention orientation.   351 

Sustained attention: Examination of the dwell times in Table 1 suggests that dwell times were 352 

longer for validly cued trials and for long target trials than for invalidly cued trials and short 353 

target trials, again supporting the efficacy of the cueing task in influencing the amount of time 354 

that participants were able to spend gazing at the targets. The analysis of dwell times presented 355 

in Table 2 shows significant effects of cue validity and target duration on dwell times. Post-356 

hoc testing of the interaction between cue validity and cue location suggested that the 357 

difference in dwell times between valid and invalid trials was greater for trials with a right cue 358 

location than a left cue location (p < .01). These findings confirm that cue validity and target 359 

duration affected the length of sustained attention to the to-be-timed stimulus.  360 

 361 

Time estimates 362 

Mean estimates: Examination of the mean estimates in Table 1 suggests that longer estimates 363 

were given for validly cued trials and trials with a long target duration. The mean estimate 364 

analysis presented in Table 2 shows significant main effect of cue validity and target duration. 365 

Post-hoc analysis of the significant two-way interaction between cue validity and target 366 

duration confirmed that cue validity had a greater effect on estimates for the short target than 367 

for the long target (p < .05). Furthermore post-hoc analysis of the interaction between cue 368 

validity and cue location confirmed that there was no difference in estimates for invalid trials 369 

however for valid trials estimates were longer for right cue locations (p < .001).Together these 370 

finding confirm that participants were sensitive to duration, giving longer estimates for longer 371 

target durations. They also confirm that cue validity effectively affected time estimates.  372 

 373 
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Coefficient of variation: Examination of the CoVs in Table 1 suggest that variability was 374 

greater for the invalid than valid trials. Variability was also greater for the shorter than longer 375 

target durations. Examination of the analysis in Table 2 confirmed a significant effects of cue 376 

validity and target duration on CoV suggesting more variable estimates for longer durations.  377 

  378 
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Table 2: Results of the effects of cue validity (valid vs invalid), target duration (short vs long) 379 

and cue location (left vs right) on attention orientation latency, sustained attention, mean 380 

estimates and CoV.  381 

Variable Source df F p ηp2 

Orientation 

latency 

Cue validity 1, 48 31.45 <.001 .400 

Target duration 1, 48 .30 .63 .005 

Cue location 1, 48 .14 .71 .003 

Cue validity * Target duration 1, 48 .03 .85 .001 

Cue validity * Cue location 1, 48 .06 .81 .001 

Target duration * Cue location 1, 48 .40 .53 .008 

Cue validity * Cue location * Target 

duration  

1, 48 .56 .46 .010 

Sustained 

attention 

Cue validity 1, 48 149.33 < .001 .76 

Target duration 1, 48 411.77 < .001 .90 

Cue location 1, 48 .85 .36 .02 

Cue validity * Target duration 1, 48 .11 .74 .002 

Cue validity * Cue location 1, 48 4.42 .04 .08 

Target duration * Cue location 1, 48 3.51 .07 .06 

Cue validity * Cue location * Target 

duration  

1, 48 .13 .73 .003 

Mean 

estimates 

Cue validity 1, 48 18.33 <.001 .28 

Target duration 1, 48 523.67 <.001 .92 

Cue location 1, 48 2.14 .15 .04 

Cue validity * Target duration 1, 48 4.98 .03 .09 

Cue validity * Cue location 1, 48 4.85 .03 .09 

Target duration * Cue location 1, 48 2.85 .10 .06 

Cue validity * Cue location * Target 

duration  

1, 48 .68 .41 .01 

CoV Cue validity 1, 48 7.09 .01 .13 

Target duration 1, 48 24.20 <.001 .33 

Cue location 1, 48 .26 .62 .005 

Cue validity * Target duration 1, 48 .48 .49 .01 

Cue validity * Cue location 1, 48 1.30 .20 .03 

Target duration * Cue location 1, 48 .78 .38 .02 
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Cue validity * Cue location * Target 

duration  

1, 48 .40 .53 .008 

 382 

The relationship between eye-movements and perceived duration 383 

To establish whether there was a relationship between overt looking time and perceived 384 

duration, Pearson’s correlations were used to assess the relationship between dwell time and 385 

duration estimates and estimate variability for the short and long, valid and invalid conditions 386 

separately (see Table 3).   387 

 388 

Table 3: Inter-correlation coefficients between eye-movement variables and measures of time 389 

estimation. Panel a shows data from the short valid trials, panel b shows data from the short 390 

invalid trials, panel c shows data from the long valid trials and panel d shows data from the 391 

long invalid trials. Coefficients marked with a * are significant at p < .05, correlations in bold 392 

test the relationship between measures of time and measures of eye-movement.  393 

a) Short Valid       c) Long Valid 394 

 CoV  TOFF  Dwell time    CoV TOFF Dwell time 

Estimate  -.38** -.16 .03  Estimate  -.63** -.11 .22 

CoV  - .13 .10  CoV  - -.001 -.44** 

TOFF  - - -.57**  TOFF  - - -.55** 

Dwell time  - - -  Dwell time  - - - 

 395 

b) Short Invalid       d) Long Invalid 396 

 CoV  TOFF  Dwell 

time  

  CoV TOFF Dwell time 

Estimate -.31** -.02 .15  Estimate -.67** .16 .19 

CoV - -.04 -.21  CoV - -.19 -.31* 

TOFF  - - -.58**  TOFF - - -.18 

Dwell time  - - -  Dwell time - - - 

 397 

Examination of Table 3 suggests that for short target durations, eye-movements did not 398 

correlate with measures of duration perception (mean estimates and CoV). For long target 399 

durations, eye-movements did not correlate with mean estimates of duration, however there 400 
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were significant negative correlations between dwell time and CoV for both valid and invalid 401 

trials. However, the skew of some measures may have affected these findings.  402 

Multiple simple linear regression analysis demonstrated that for long target durations 403 

with valid cues, eye-movement variables explained 23.00% of the variance in COV (R2 = 26.30, 404 

F(2, 48) = 8.21, p = .001). TOFF (β = -.30, p = .05) and dwell time (β = -.59, p = .001) were 405 

both significant predictors. For long trials with invalid cues, eye-movement variables explained 406 

12.60% of the variance in COV (R2 = 16.20, F(2, 48) = 4.46, p = .02). Dwell time was a 407 

significant predictor (β = -.36, p = .02) but TOFF was not (β = -.26, p = .07). No significant 408 

model fits could be found for short valid estimates F(2, 48) = .76, p = .47 or COV F(2, 48) = 409 

.41, p = .67, short invalid estimates F(2, 48) = .71, p = .50 or COV F(2, 48) = 2.06, p = .14, 410 

long valid estimates F(2, 48) = 1.21, p = .31 or long invalid estimates F(2, 48) = 1.85, p = .17. 411 

This suggest that sustained attention is related to the variability of long estimates of duration, 412 

rather than the estimate value itself, with lower levels of sustained attention being associated 413 

with increased estimate variability for long target durations.  414 

 415 

To establish whether the effect of cue validity on mean estimates and estimate 416 

variability was related to the effect of cue validity on attention orientation and selective 417 

attention, the difference in TOFF, dwell time, mean estimates and COV for validly and 418 

invalidly cued trials was calculated separately for the short and long target durations. The 419 

relationship between these measures was then assessed using Pearson’s correlation and p-420 

values were adjusted for multiple comparisons (see Table 4).  421 

 422 

Table 4: Correlation coefficients between measures of eye-movement variables and measures 423 

of time estimation. Coefficients marked with a * are significant at p < .05. 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

  TOFF Short Dwell Time Short 

Short Estimate -.37* .34* 

 Cov .24 -.25 

  TOFF Long Dwell Time Long 

Long Estimate -.33 .09 

 CoV .03 .11 
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Multiple regression was used to test whether differences in TOFF and dwell time between the 433 

valid and invalidly cued trials predicted differences in mean estimates and CoV between the 434 

valid and invalidly cued conditions. For short target durations, eye-movement changes 435 

explained 15.90% of the variance in the difference between estimates for the valid and invalidly 436 

cued conditions (R2 = 19.40, F(2, 48) = 5.55, p = .007). TOFF was a significant predictor (β = 437 

-.30, p = .04) but dwell time was not (β = .25, p = .08). No significant model fit could be found 438 

for the change in CoV between the valid and invalid conditions for the short target duration 439 

F(2, 48) = 2.33, p = .11. For the long target duration conditions, no significant model fits were 440 

found for mean estimates F(2, 48) = 2.90, p = .07 or CoV F(2, 48) = .32, p = .73. 441 

Discussion 442 

This study examined the relationship between overt attention allocation and the 443 

perceived duration of valid and invalidly cued targets, using a modified verbal estimation task. 444 

Overt attention allocation was quantified using two measures of eye-movements; TOFF which 445 

measured the latency of overt attentional orientation to the to-be-timed stimulus, and dwell 446 

time, which measured sustained overt attention to the to-be-timed stimulus throughout its 447 

presentation. Of key interest was whether there was a relationship between sustained overt 448 

attention and perceived duration, and whether the effect of cue validity on measures of attention 449 

orientation and sustained attention were predictive of the effect of cue validity on mean 450 

duration estimates and the variability of duration estimates. 451 

 452 

 The results show that the spatial cueing manipulation successfully modulated duration 453 

estimates. Duration estimates were shorter when the to-be-timed target was preceded by an 454 

invalid spatial cue than a valid spatial cue. Estimates were also more variable for invalidly cued 455 

targets than validly cued targets. This confirms the findings of Seifried & Ulrich (2011) and 456 

Yershurun and Marom (2008) that exogenous spatial cues can modify the perceived duration 457 

of subsequent events, resulting in shorter duration estimates for invalidly cued targets than for 458 

validly cued targets. Our findings expand on these studies by demonstrating the effects with 459 

shifts of overt rather than covert attention. In addition, the use of a verbal estimation method 460 

in the current study, as opposed to the duration categorisation tasks or equality judgement tasks 461 

used in the previous research demonstrates that exogenous cueing effects are robust across 462 

experimental paradigms. Furthermore, the use of a supra-second duration range, as opposed to 463 

the sub-second ranges used in Seifried & Ulrich (2011) and Yeshurun and Marom (2008) 464 

confirms that exogenous spatial cues can affect the perceived duration of longer stimuli.  465 
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 466 

 The eye-movement recordings confirmed that the spatial cueing manipulation was 467 

effective in modifying overt attention allocation. TOFF was significantly longer in the invalid 468 

cue condition than the valid cue condition, suggesting faster orientation of overt attention to 469 

the target on validly cued than invalidly cued trials. This replicates the findings of Caldani et 470 

al., (2020), Gobel and Giesbrecht (2020) and MacInnes and Bhatnagar (2018) who also 471 

reported faster eye-movement orientations to validly cued targets than invalidly cued targets. 472 

There was no effect of target duration on TOFF, suggesting that the effects of cue validity were 473 

comparable for the longer and shorter target durations. Dwell times were significantly longer 474 

for the longer target than the shorter target, confirming that overt attention was sustained on 475 

the longer target for a greater amount of time than for the shorter target. Dwell times were also 476 

significantly longer in the valid condition than the invalid condition. These findings suggest 477 

that the modification of the cueing task to include duration estimation did not alter the effect 478 

of cue validity on overt selective attention orientation.  479 

 480 

Analysis of the relationship between measures of eye-movements and perceived 481 

duration revealed some expected and unexpected relationships. To test whether the period with 482 

which overt attention is sustained on the to-be-timed stimulus is related to its perceived 483 

duration, correlation and regression analysis was performed on the mean estimates, COV, dwell 484 

time and TOFF from each condition. Analysis of the relationship between sustained attention, 485 

indexed by dwell time, and mean estimates suggested that how long overt attention is sustained 486 

on a stimulus is not significantly related to its perceived duration.  487 

 488 

The AGM suggests that changes in sustained attention to time throughout the to-be-489 

timed stimulus affect the stimulus’ perceived duration and the variability of that representation. 490 

However, it does not specify whether this attention needs to be overt or covertly focused on 491 

the to-be-timed event. In the current study, no relationships were observed between measures 492 

of overt sustained attention and perceived stimulus length, however, overt sustained attention 493 

was significantly related to the variability of duration estimates, but only for the longer target 494 

duration, not the shorter one. Reductions in overt sustained attention therefore only appear 495 

affect the variability of the perceived duration of longer stimuli.  496 

 497 

Taken together, the relationships between sustained overt attention and perceived 498 

duration appear minimal, perhaps suggesting that changes in overt sustained attention to a 499 
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timed stimulus do not influence its perceived duration. However, this does not mean that 500 

sustained attention is not required for temporal processing. Instead, the absence of an effect of 501 

overt attention perhaps indicates that sustained attention to a to-be-timed-event is achieved 502 

primarily through covert attention processes, particularly for shorter duration ranges.  For 503 

example, the presence of a to-be-timed event may be monitored in peripheral vision, without 504 

the need for the stimulus to be foveated, using covert attentional processing. Here, fluctuations 505 

in covert attention would govern the opening and closing of the attentional gate results in 506 

alterations in perceived duration. We therefore tentatively suggest that these findings indicate 507 

that time is primarily monitored using covert attentional processes.  508 

 509 

The observation that decreases in overt sustained attention were associated with more 510 

variable duration representations does however suggest that for longer stimulus durations, overt 511 

attentional systems may be recruited to monitor duration. This raises the possibility that as 512 

stimulus presentation duration increases there is a shift from covert monitoring toward using 513 

more overt attentional monitoring and that fluctuations in this overt monitoring affect the 514 

variability of the duration estimate. Overt attention may only be recruited during longer 515 

duration presentations because shorter intervals places less demand on sustained attention than 516 

the processing of longer ones (Lewis & Miall, 2003 a and b), reducing the need for overt 517 

monitoring during short presentations. Accordingly, fluctuations in overt attention may 518 

therefore be more prevalent during the processing of longer intervals than shorter ones, 519 

providing greater capacity for these fluctuations to influence estimate variability. However, if 520 

overt sustained attention resources are used to a greater extent in the monitoring of longer 521 

durations, it is unclear why fluctuations in overt sustained attention would not also affect the 522 

perceived length of a stimulus rather than just its variability. This is because, according to the 523 

AGM, fluctuations in sustained attention affect the length and variability of an estimate by 524 

reducing the overall level of accumulation. Future research should therefore further explore the 525 

parameters under which covert and overt sustained allocation of attention influence the 526 

processing of short and long durations.  527 

 528 

To test whether the predictions of SET and the AGM regarding switch operation, were 529 

accomplished through overt attention allocation, the relationship between the difference in 530 

mean estimates, estimate COV and TOFF between the valid and invalid conditions was 531 

calculated. This analysis revealed that for the short target duration, the difference in mean 532 

estimates for the valid and invalid cue conditions was predicted by the difference in TOFF 533 
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between the valid and invalid cue conditions. For the long target duration, changes in TOFF 534 

between valid and invalid trials were not predictive of changes in estimate. Differences in 535 

TOFF were not predictive of differences in COV suggesting that overt attention orientation 536 

latency does influence the variability of duration estimates.  These findings therefore suggest 537 

that whilst the relative differences in overt attention orientation latency can explain relative 538 

differences in perceived duration of short stimuli, they cannot explain relative differences in 539 

the perceived duration of longer stimuli. Furthermore, changes in overt attention orientation 540 

latency are only predictive of relative differences in estimates between different conditions. 541 

The latency with which an individual stimulus is orientated to is not in itself predictive of its 542 

perceived duration.  543 

 544 

According to SET and the AGM, the switch closes when the to-be-timed stimulus is 545 

identified/attended to. Increases in the latency of this closure may therefore reduce perceived 546 

duration. However, neither model specifies whether switch operations is governed by overt or 547 

covert attention orientation. The findings of the current study suggest that the switch may be 548 

governed by overt attention processing, because for shorter durations at least, longer overt 549 

latencies are associated with shorter duration estimates. For longer durations, it is still possible 550 

that the stimuli were initially orientated to using overt attention, however it is possible that the 551 

relatively small effect of orientation latency is wiped out by increases in timing variability 552 

introduced by sustaining attention (covertly or overtly) over a longer period of time. However, 553 

it should be noted that overt attention orientation typically follows covert attention orientation 554 

(Posner, 1980). It is therefore possible that the switch may be primarily closed (and opened) 555 

by switches in covert attention and that the effects observed in this study represent secondary 556 

influences of overt allocation following covert attention allocation.   557 

 558 

 Collectively, the findings of this study suggest that overt attention allocation has small 559 

limited effects on duration estimates. This, coupled with Ogden et al’s (2021) findings of 560 

limited relationships between measures of overt attention and emotional distortions to time 561 

suggests that covert attentional processes may be primarily responsible for governing the 562 

operation the switch and the attentional gate. To-be-timed events do not therefore necessarily 563 

need to be overtly attended to or foveated to be processed, instead it would appear that their 564 

duration can be monitored covertly in the periphery. It should be noted however, that the use 565 

of a narrow duration range in this paper and Ogden et al., (2020) does not exclude significant 566 

effects of overt attention allocation on other duration ranges. For example, it is possible that 567 
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orientation latency effects would be greater for shorter sub-second durations because the 568 

duration of latency would make up a larger proportion of the overall stimulus duration. 569 

Similarly, it is possible that there may be more significant effects of overt sustained attention 570 

on the perceived duration of longer stimuli (e.g. 10’s of seconds or minutes in duration) because 571 

of the increased demands associated with a longer processing period. Further research should 572 

therefore systematically examine the effect of overt attention allocation on the timing of sub-573 

second to multi-minute stimulus durations.  574 

 575 

Limitations 576 

The current study used two measures of eye-movements, dwell time and TOFF, which 577 

were both taken from target onset. The study did not however measure anticipatory eye-578 

movements prior to target presentation. Consequently, the current study could not examine 579 

whether anticipatory shifts in overt attention toward the spatial location of the target also 580 

influence perceived duration. Future research should therefore seek to take broader measures 581 

of eye-movements and establish how they may relate to perceived duration. 582 

 583 

Although the spatial cueing manipulation used in the current study was successful in 584 

altering eye-movements and perceived duration the near equal weighting of the valid and 585 

invalid cues may have reduced the effect of cue validity on eye-movements and perceived 586 

duration. It is possible that a greater weighting for valid cues may have increased the effect of 587 

the cue on perceived duration and or eye-movement, potentially altering the relationships 588 

observed between eye-movements and duration perception. Furthermore, because the duration 589 

of the cue was constant in all trials, the start of the target was predictable from the appearance 590 

of the cue, regardless of cue validity. Future research should therefore use variable onset 591 

durations between the cue and the target to prevent the cue being a constant temporal predictor 592 

of  target onset and to ensure that participants are attending to the target in addition to the cue.  593 

 594 

A final issue is that of the effect of quantization on the relationships between estimates 595 

of duration and eye-movements. Verbal estimates of duration are subject to quantization, that 596 

is, the tendency to use some numerical values estimates much more frequently than others (see 597 

Ogden, Simmons & Wearden, 2020 and Wearden, 2015 for discussion). For example, people 598 

preferentially use round numbers such as 100ms, 500ms and 1000ms and rarely use precise 599 

estimates such as 127ms or 538ms. It is feasible that this process of quantization may have 600 

reduced the relationships observed between eye-movement and perceived duration because, 601 

https://link.springer.com/article/10.1007/s00426-020-01456-4#ref-CR35
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rather than examining the relationship between some raw representation of time and eye-602 

movements, we were examining the effect of a scaled and quantized representation of duration 603 

(see Ogden et al., 2020 for discussion). Future research should therefore explore how eye-604 

movements relate to non-quantized duration representations, for example, those produced in 605 

discrimination or categorization tasks such as temporal generalization and bisection.  606 

 607 

Conclusion 608 

The findings of this study show that measures of overt attention allocation are not consistently 609 

predictive of perceived duration. Although the relative difference in the perceived duration of 610 

valid and invalidly cued stimuli was predicted by differences in overt attention orientation 611 

latency, this was only the case for the short target not the long. Furthermore, and perhaps most 612 

surprisingly, there was no consistent significant relationship between measures of overt 613 

sustained attention and mean duration estimates. Overt looking duration does not therefore 614 

equal subjective perceived duration. These findings suggest that the mechanisms used to attend 615 

to time (e.g. the switch and the gate) are unlikely to be primarily governed by overt attentional 616 

processing systems. Instead, it seems likely that time is attended to using covert attentional 617 

processing systems.  618 

 619 

 620 

  621 
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