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Abstract
Air pollution is currently becoming a significant global environmental issue. The sources of air pollution in Malaysia are mobile
or stationary. Motor vehicles are one of the mobile sources. Stationary sources originated from emissions caused by urban
development, quarrying and power plants and petrochemical. The most noticeable contaminant in the Peninsular of Malaysia
is the particulate matter (PM10), the highest contributor of Air Pollution Index (API) compared to other pollution parameters. The
aim of this study is to determine the best loss function between quantile regression (QR) and ordinary least squares (OLS) using
boosted regression tree (BRT) for the prediction of PM10 concentration in Alor Setar, Klang and Kota Bharu, Malaysia. Model
comparison statistics using coefficient of determination (R2), prediction accuracy (PA), index of agreement (IA), normalized
absolute error (NAE) and root mean square error (RMSE) show that QR is slightly better than OLS with the performance of R2

(0.60–0.73), PA (0.78–0.85), IA (0.86–0.92), NAE (0.15–0.17) and RMSE (9.52–22.15) for next-day predictions in BRTmodel.

Keywords Particulate matter (PM10) . Quantile regression . Ordinary least squares (OLS) . Boosted regression tree

Introduction

The Air Pollution Index (API) describes the current state of air
quality in a given region. The Department of Environment
(DOE), Ministry of Environment and Water is one of the
government agencies responsible for monitoring air quality
at 68 stations in Malaysia. The API was then introduced to
measure the cleanliness and efficiency of the air (Leong et al.
2020). The Malaysia Ambient Air Quality Guidelines
(MAAQG) is used to determine the level of air quality in
Malaysia and is used to measure the concentration levels of
particles less than 2.5 μm (PM2.5), particles less than 10 μm
(PM10), carbon monoxide (CO), sulphur dioxide (SO2), nitro-
gen dioxide (NO2) and ozone (O3). When the concentration
level is above the level specified in the MAAQG for a long
period of time, it will cause negative effects on health and the

environment. The API in Malaysia is listed in Table 1 with its
categorization as good, moderate, unhealthy and hazardous.
Generally, PM10 is identified as a major pollutant that causes
unhealthy conditions (DOE 2018). Therefore, PM10 is the
main focus of this study.

According to Azmi et al. (2010), the main causes of air
pollution in Malaysia are either mobile sources from cars,
buses and planes or stationary sources from power plants,
open burning and wildfires, industrial facilities and others.
The occurrence of haze in Malaysia is as a result of biomass
burning since 1982 interrupting everyday life in Malaysia
(Latif et al. 2018). Several haze episodes have been reported
since then. These extreme episodes occurred in 1997, 2005
and 2015. Severe haze episodes were recorded in 1997 due to
forest fires and large-scale plantations, especially in southern
Sumatra and central Kalimantan, both in a neighbouring

Table 1 Malaysia Air
Pollution Index API Air quality status

0–50 Good

51–100 Moderate

101–200 Unhealthy

201–300 Very unhealthy

> 300 Hazardous
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country, Indonesia. The city of Kuching, Sarawak located in
East Malaysia was one of the areas affected by air pollution
and haze in Sarawak East Malaysia in 1997. The Kuching API
was recorded above 850 during the haze, the most alarming
haze in Malaysia (Zakri et al. 2018). A further episode of
extreme haze was reported in 2005 (Sahani et al. 2014) which
was mainly on the Peninsula’s west coast of Malaysia. At that
time, the smoke haze heavily affected the Klang Valley and its
surrounding area. It reached its height at the haze emergencies
on 11 August 2005, as the Air Pollution Index (API) reading
in Port Klang and Kuala Selangor was recorded to be above
500. The latest extreme and long haze episode in Malaysia
was reported in September 2015 (Huijnen et al. 2016). PM10

concentration is the most significant major pollutant released
by human activity (Sapini et al. 2015). Specifically the PM10

concentration, in most cities of Southeast Asia (Reddington
et al. 2014) and inMalaysia (Juneng et al. 2011), is justified as
the main atmospheric pollutant. PM10 contributed most to
Malaysia’s API until 2017. In mid-2017, PM2.5 had a greater
impact on APIs in Malaysia until 2018 (DOE 2018).

There has been a growing interest in using many statistical
models in the prediction of air pollution in recent years. One of
these is regression techniques which have been used for a long
time as predictive tools in many fields especially in the pre-
diction of air pollution. The benefits of regression models are
for its ease of use and efficient execution. However, these
models are not very good in the prediction of complex situa-
tions, as the linear relationship between the selected parame-
ters is determined (Abdullah et al. 2016). The statistical meth-
od is limited in clarifying the factors influencing PM10, due to
statistical assumptions and the homogeneity of the data.
Recent studies have attempted to develop powerful computing
intelligence models using machine learning algorithms such
as the neural network to predict the complex PM10 concentra-
tion system, which indicate that suchmodels can easily predict
the desired value (Abdullah et al. 2017). However, machine
learning, more specifically the neural network, is usually used
as a black box where there is no specific understanding of the
physical characteristic of the technique (Viotti et al. 2002).

The boosted regression tree (BRT) model, another type of
machine learning, which combines the advantages of regres-
sion trees with the boosted adaptive method, has recently been
used in air pollution prediction studies. The boosting method
was first developed by Friedman in (2001), and later added a
stochastic aspect to the boosting algorithm through a random
sample of the training data sets (Friedman 2002). In addition,
it can also be used as a general method that is useful to im-
prove the model accuracy of each learning algorithm. The
BRT produces an ensemble model by boosting the loss func-
tion (such as root mean square error) of the user-defined num-
ber of additional trees by minimizing it. In contrast to the
black box technique, the BRT method would evaluate the
response of variables based on the individual model variable.

It is therefore possible to determine, rank and describe the
relationship between variables (Yahaya et al. 2019). The
BRT is also capable of handling various types of inputs (i.e.
categorical and continuous data) and accepts missing values
(Motevalli et al. 2019) and able to deal with multiple forms of
loss functions (Ridgeway 2012), such as Gaussian, Laplace,
quantile regression (QR), Bernoulli and Poisson.

The loss function is one of the BRT model factor consid-
erations. Ordinary least squares (OLS) loss function has been
used by many studies, for the purpose of minimizing the
squared error for continuous predictors, which resulted in a
better correlation between the observed value and the estima-
tion of the generalized boosting model (GBM) (Gu et al.
2019). However, datasets that have outliers such as air pollu-
tion data are not suitable to be used in OLS function.
According to Kudryavtsev (2009), QR has become an impor-
tant robust alternative tool, as it is more resistant to outliers
and it is free function and does not have any properties.

The QR has the ability to be more useful and precise, since
the non-central location of a distribution can be represented in
all quantiles (Lingxin and Naiman 2007). The QR has the
capability of including models for all quantiles, evaluating
the entire function and calculating the central tendency (such
as mean, median and mode) in the entire function of the var-
iable of interest. The advantage of QR is for its robustness
against non-OLS distribution which was found by Schlink
et al. (2010). It can also be adapted to unbalanced observa-
tional frequencies. Due to this property, QR was considered
and selected as a loss function strategy for this study.

The aim of this study is to derive air pollution modelling
based on the loss function of QR using the BRT method. It is
clear from the literature that no study has been conducted
using such a method to predict PM10 concentrations. The
finding from the proposed methodology is compared with
the prediction obtained from the OLS loss function using the
BRT method.

Methodology

The process of data preparation has been conducted in detail
to reach for developing the model evaluation as illustrated in
Fig. 1. The flow diagram is adapted to the author’s research
and is reconstructed.

Data preparation

Three urban sites were selected for this study. Table 2 shows
the characterization of each station. All stations are located in
the peninsular Malaysia. Alor Setar station (CA0040) is locat-
ed in the northern region, Klang (CA0011) is located in the
west coast region and Kota Bharu (CA022) is located in the
east coast region as shown in Fig. 2. Data are operated by the
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Department of Environment’s continuous air quality monitor-
ing (CAQM) stations in Malaysia. CAQM is an integrated
ambient air quality monitoring device, is outfitted with a va-
riety of ambient air analyses and sensors to identify particular
pollutants. The analyses and sensors operate in a continuous
mode, with data collected being captured on amicrocomputer-
based data acquisition system (DAS) that also controls the
performance of the analyses and sensors. On an hourly basis,
data is collected and transferred to a central computer for
review and reporting. The United States Environmental
Protection Agency (USEPA) has authorized the monitoring
instruments and operational protocols of CAQM stations
(Kamarul Zaman et al. 2017).

For data exploration, a descriptive analysis is carried out to
determine the existence of extreme values or missing values.
Missing data is a problem commonly faced by researchers in
environmental studies. Data discontinuities are a major obsta-
cle to the prediction models that require continuous informa-
tion for the majority of the parts to be used. The absence of
any data prevents the ability to accurately conclude or inter-
pret the observation (Noor et al. 2014). The missing data must
be processed, because complete data are required to perform

statistical analysis. This study used linear interpolation for
missing data imputation. According to Noor et al. (2015), this
linear interpolation method estimates the missing data better
than that of the other methods.

Data pre-processing

Maximum daily data used in this study were furnished by the
Department of Environment (DOE), Ministry of Environment
and Water of Malaysia for the period of 2002 to 2017. The
data for this project are confidential, but may be obtained with
Data Use Agreements with the Department of Environment
(DOE), Ministry of Environment and Water of Malaysia. The
data was 80% randomly selected for training and another 20%
for the validation of the model (80% for model development
and 20% to evaluate the performance of the model). The var-
iables used in this study consist of gaseous nitrogen dioxide
(NO2; ppb), carbon monoxide (CO; ppb), sulphur dioxide
(SO2; ppb), ozone concentration (O3; ppb), particulate matter
concentration (PM10; μgm

−3) and meteorological parameters
such as wind speed (WS; km/h), relative humidity (RH; %)
and temperature (T; °C), as the predictors used to predict

Fig. 1 Building the prediction model workflow

Table 2 Characteristics of monitoring station sites

Station ID Location Latitude Longitude Category

CA0040 Islamic Religious Secondary School, Mergong, Alor Setar, Kedah N06° 08.218 E100° 20.880 Urban

CA0011 Raja Zarina Secondary School, Klang, Selangor N03° 00.620 E101° 24.484 Urban

CA0022 Sekolah Menengah Kebangsaan Tanjong Chat, Kota Bharu, Kelantan N06° 00.040 E102° 15.321 Urban
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PM10 concentrations 3 days ahead. All the selected parameters
in this study have an influence on forecasts of PM10 concen-
trations for 3 days ahead, and had been used by previous
researchers, as summarized in Table 3. The general models
for this study are shown in Table 4. where

PM10,D+ 1 Next-day prediction of PM10 concentration
PM10,D+ 2 Next 2 days prediction of PM10 concentration
PM10,D+ 3 Next 3 days prediction of PM10 concentration
PM10,D Particulate matter (μg/m3)
COD Carbon monoxides (ppb)
NO2,D Nitrogen dioxide (ppb)
SO2,D Sulphur dioxide (ppb)
O3,D Ozone (ppb)
RHD Relative humidity (%)
TD Temperature (°C)
WSD Wind speed (km/h)

Model development

BRT is a method used to increase the accuracy of a single
model by fitting a number of models and combining them
for prediction purposes. BRT uses regression trees from the
classification and regression tree (CART) and constructs
boosts to combine model sets (Grunwald et al. 2020). In the
BRT, there are several tuning parameters that need to be con-
trolled such as the number of trees (nt), the learning rate (lr)
which is the shrinkage parameter used in each iteration to
reduce the contribution of the tree, the complexity of the tree
(tc) or the interaction depth which is the maximum tree depth
of variable interactions. This study fitted BRT models with
varying values for nt (10,000), lr (0.01) and tc (5). In version
3.4.2 of the R software, the BRTmodel was fitted with version
1.6-3.1 of the GBM. The GBM offers three methods for

Fig. 2 Location of the monitoring sites (Ul-Saufie et al. 2012a, b)
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estimating the optimum number of trees, i.e. the cross valida-
tion (CV), the independent test set (test) and the out-of-bag
estimation (OOB).

This research used 10-fold cross validation as suggested by
Ridgeway (2010) to get the optimum number of trees, and
then, ten separate testing sets were averaged. Rather than wor-
rying about the block being suitable for testing, CV employs
them all, one at a time, and summarizes the results at the end.
The independent test set (test) approach uses a single holdout
base dataset to determine the optimum number of tree
(Ridgeway 2007). This research used a 50% held out test set
to find the optimum number of trees as suggested by
Ridgeway (2017). Out-of-bag estimation (OOB) is used to
evaluate the classifier. According to Martinez-Munoz and
Suarez (2010), individual classifiers are trained in standard
bagging on independent bootstrap samples extracted with
replacement from the set of original data. In general, the
size of these samples is chosen to align with the number
of the original training dataset. This prescription is arbi-
trary and does not have to be optimal in terms of the
ensemble’s generalization accuracy. The accuracy of the
voting classifier is equal to the average of classifier.
Bag.fraction 0.5 was used in this research, as suggested
by Ridgeway (2020), to improve predictive performance
while using the OOB method.

BRT constructs a model as a weighted sum of functions
similar to other boosting algorithms. The BRT algorithm steps
are summarized accordingly:

F0 xð Þ ¼ argmin
γ

∑
n

i¼1
L yi; γð Þ ð1Þ

Fm xð Þ ¼ Fm−1 xð Þ þ γmhm xð Þ ð2Þ

Start the model with a constant value F0(x).The BRT algo-
rithm steps consist of a suitable decision tree and a loss func-
tion to determine how well a study is predicted. At each stage,
the decision tree hm(x) is chosen tominimize the loss given the
current model Fm − 1 and its fit Fm − 1(xi). The residuals ri, m are
computed:

ri;m ¼ −
∂L yi; F xið Þð Þ

∂F xið Þ
� �

F xð Þ¼Fm−1 xð Þ
ð3Þ

ri, m is the negative gradient of the ith sample in the mth as the
number of trees. hm(x) is set to use the ri, m as the target
variable. Fit a regression tree to the residual ri, m values and
create the leaf node area Rj, m for j = 1, 2, …, J. The weights
are obtained by solving the problem of minimization:

γjm ¼ argmin
γ

∑
n

i¼1
L yi; Fm−1 xið Þ þ γð Þ ð4Þ

Table 3 Variable selection by the
previous studies in the prediction
of PM10 concentration level

Authors NO2 SO2 CO O3 PM10 T RH WS Others

Chelani et al. (2002) √ √ √ TVs, WD

McKendry (2002) √ √ √ TVs, MVs, NO,
PM2.5

Lu et al. (2004) √ √ √ √ √ NO, NOx, WD, SR

Corani (2005) √ √ √ P

Brunelli et al. (2007) √ √ WD, P

Fernando et al. (2012) √ MVs

Perez (2012) √ MVs

Nejadkoorki and Baroutian
(2012)

√ √ TVs, MVs, NO

Popescu et al. (2013) √ √ WD

Liu et al. (2015) √ √ √ √ √ MVs

Navares and Aznarte (2020) √ √ √ √ √ Pollen

This study √ √ √ √ √ √ √ √

Abbreviations of the parameters: TVs temporal variables,WD wind direction,MVs meteorological variables, NO
nitrogen monoxide, NOx nitrogen oxide, SR solar radiation, P atmospheric pressure

Table 4 General model of BRT
3 days ahead prediction Model

Next-day prediction (D+1) PM10,D+1~gbm (PM10,D, COD, NO2,D, SO2,D, RHD, TD, WSD, O3,D)

Next 2-day prediction (D+2) PM10,D+2~gbm (PM10,D, COD, NO2,D, SO2,D, RHD, TD, WSD, O3,D)

Next 3-day prediction (D+3) PM10,D+3~gbm (PM10,D, COD, NO2,D, SO2,D, RHD, TD, WSD, O3,D)
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The square error is the loss function for the deterministic
prediction:

L yi; F xið Þð Þ ¼ 1

2
yi−F xið Þð Þ2 ð5Þ

For quantile regression, the expression below is used when
the α (quantile) value is in range 0 to 1.

L yi; F xið Þ;αð Þ ¼ α yi−F xið Þð Þ; if yi≥ F xið Þ
α−1ð Þ yi−F xið Þð Þ; otherwise

�
ð6Þ

Rj, m is a leaf node, the jth being the number of leaf in the
tree and υ is a learning rate. Update the current model:

Fm xð Þ ¼ Fm−1 xð Þ þ υ ∑
J

j¼1
γjmI x∈Rjm

� � ð7Þ

It is a method of looping that fits the regression tree. Then,
once the first tree is added to the model, tree error prediction
will be taken into account to balance and boost the accuracy of
the next tree.

Fm xð Þ ¼ ∑
M

m¼1
∑
J

j¼1
υγjmI x∈Rjm

� � ð8Þ

Model evaluation

Performance indicators in this research work are used to de-
termine the accuracy and errors of BRT with different loss
function (OLS and QR). The indicators used to identify the
best method for the prediction of PM10 concentration were the
root mean square error (RMSE), normalized absolute error
(NAE), predictive accuracy (PA), agreement index (IA) and
coefficient of determination (R2). The RMSE and NAE
were used to find a model error where a value closer to
0 demonstrated a better model. Meanwhile, the other three
performance indicators, i.e. IA, PA and R2, were used to
verify the accuracy of the model outcome, where a higher
accuracy is given by a value closer to 1. The equations
displayed in Table 5 have been indicated by Ul-Saufie
et al. (2015).

N = Number of sample hourly measurement of a selected
sites.

Pi = Predicted values of hourly data.
Oi = Observed values of hourly.

O = Mean of the observed values of hourly data.

P = Mean of the predicted values of hourly data.

Results and discussion

The descriptive statistics and box plots for maximum daily
PM10 concentrations in Alor Setar, Klang and Kota Bharu

from 2002 to 2017 are shown in Fig. 3. Concentrations of
PM10 were very high in Klang, Selangor with maximum
concentrations 643 μg/m3 over the threshold limit of
150 μg/m3, followed by Alor Setar (385 μg/m3) and
Kota Bharu (198 μg/m3). This relates to the fact that
Klang is the 13th busiest shipping port and the 16th busi-
est port in the world. Klang is one of the densely popu-
lated and developed areas in Malaysia as there are many
industries and business activities in Port Klang. Alor
Setar, Klang and Kota Bharu witnessed high particulate
events as well as extreme events that promote the increase
in PM10 concentrations since the skewness value for Alor
Setar (4.03), Klang (4.89) and Kota Bharu (1.72). The
distribution is highly skewed, as described in Shaziayani
et al. (2018), if the skewness is less than − 1 or greater
than + 1. Box plot shows that Alor Setar experienced the
highest PM10 concentration in 2016. According to the
DOE, this condition is affected by land and forest fires
in Sumatra Central, Indonesia, carried by the Southwest
Monsoon winds. Klang reached the highest PM10 level
during the haze emergency declared on 11 August 2005
as the Air Pollution Index (API) exceeded 500. Due to
massive land and forest fires in Sumatra and Kalimantan,
Indonesia, Kota Bharu had suffered degradation in air
quality during Southwest Monsoon from August to
September 2015.

The MAAQG control values for CO, NO2, O3, PM10 and
SO2 are 8750 ppb (8-h mean reading), 40 ppb (24-h mean
reading), 60 ppb (8-h mean reading), 50 μg/m3 (24-h mean
reading) and 40 ppb (24-h mean reading). The analysed data
for Alor Setar, such as mean, median, standard deviation,
skewness, kurtosis and maximum data, are listed in Table 6.
The mean values for all five air pollutants which are PM10

Table 5 Performance indicator

Performance indicator Equation

Root mean square error (RMSE) 1
n−1 ∑

n

i¼1
Pi−Oið Þ2

Normalized absolute error
(NAE)

∑
n

i¼1
Abs Pi−Oið Þ

∑
n

i¼1
Oi

Index of agreement (IA) 1−
∑
n

i¼1
P−Oið Þ2

∑
n

i¼1
Pi−Oj jþ Oi−Oj jð Þ2

2
4

3
5

Prediction accuracy (PA)
∑
n

i¼1
Pi−Oð Þ2

∑
n

i¼1
Oi−Oð Þ2

Coefficient of determination (R2) R2 ¼
∑
n

i¼1
Pi−Pð Þ Oi−Oð Þ
n:Spred :Sobs

 !2
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Fig. 3 Descriptive statistics and box plots for maximum daily PM10 concentration

Table 6 Descriptive statistics for
Alor Setar, Kedah Parameters Mean Median Standard deviation Skewness Kurtosis Maximum

PM10 (μg/m
3) 41.99 38.00 20.84 4.03 40.05 385

O3 (ppb) 34.27 32.00 14.86 0.82 1.05 118

CO (ppb) 560.30 540.00 246.71 1.71 7.36 3060

NO2 (ppb) 15.20 14.00 5.85 1.10 2.97 58

SO2 (ppb) 1.05 1.00 0.93 0.99 2.32 8

RH (%) 89.35 91.00 8.07 −1.77 3.81 100

T (°C) 32.42 32.70 2.77 −1.23 3.21 39.5

WS (km/h) 10.53 10.70 3.74 0.30 1.78 33.5
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(41.99 μg/m3), O3 (34.27 ppb), CO (560.30 ppb), NO2

(15.20 ppb) and SO2 (1.05 ppb) indicate that the average con-
centration in Alor Setar for 16 years was below the Malaysia
Ambient Air Quality Guidelines (MAAQG) for the period
from 2002 to 2017. Furthermore, the mean values for
meteorological parameters are represented by RH
(89.35%), T (32.42 °C) and WS (10.53 km/h). Skewness
shows positive values for all air pollutant values. The
highest positive skewness value for CO, NO2, O3, PM10

and SO2 is 1.71, 1.10, 0.82, 4.03 and 0.99 indicating the
existence of extreme events.

Table 7 gives the summary of the descriptive statistics for
all parameters’ maximum daily data of Klang for 2002 to
2017. The mean values for the area in 16 years are higher than
their respective median which indicates that the pollutant dis-
tributions are positively skewed (also called right-skewed).
The maximum value for air pollutants was PM10 643 μg/m3,
O3 127ppb, CO 10,500 ppb, NO2 128 ppb and SO2

150 ppb. Klang has the highest mean and median values
compared to other locations. This may be due to the fact
that extensive industry operates in Port Klang, the most
densely populated and developed region in Malaysia (AL-
Dhurafi et al. 2017, 2018). It has the smallest standard
deviation, despite the highest central tendency value, in-
dicating that this area has continuously encountered very
high concentrations.

Table 8 demonstrates the result of the descriptive analysis
of air pollutant concentration and meteorological parameter
for Kota Bharu, Kelantan. The mean values for PM10

(48.73 μg/m3), O3 (29.21 ppb), CO (926.26 ppb) and NO2

(15.15 ppb) were higher than the median value. Therefore,
the distributions of these measurements were skewed to the
right, indicating that there were several observations of high
concentration of air pollutant occurred in the years 2002–
2017. Meanwhile, the mean value for RH (91.86%) and T
(31.36 °C) was lower than the median value which indicates
the distribution of data was skewed to the left. These results
show that the weather in Kota Bharu is mainly hot and dry,

which means that the observation of humidity this year seems
to be less humid.

The relative influence (RI) was computed to identify the
strength of each predictor-response variable relationship.
According to Sayegh et al. (2016), the BRT modelling
technique can be used to identify the influence of dif-
ferent predictors on response variable. The most impor-
tant predictor identified for the maximum daily PM10

concentration for the next day (D + 1) was PM10 con-
centration for the previous day, where Alor Setar has
90.17%, Kota Bharu 59.72% and Klang 54.68%. PM10

concentration for the previous day played a remarkable
role in explaining more than 50% of the variance in the
BRT model. The least important predictor was found to
be SO2, where Alor Setar has 0.30%, Kota Bharu
2.77% and Klang 3.02% (Fig. 4).

The BRT models using OLS loss function and compared
test, 10-fold CV and OOB methods are shown in Table 9.
Performance indicator has been used to assess the accuracy
of the fit to the BRT model in order to determine which meth-
od better predicts PM10 concentration in Alor Setar, Klang and
Kota Bharu for the 3 days ahead. This study predicts up to
3 days ahead because, according to Perimula (2012), the gov-
ernment will be able to announce warning status if the API
exceeds 101 for more than 72 h.

The best OLS loss function in BRT models with the lowest
total ranking is shown in Table 10. For error measurements,
the values are ranked from the smallest (rank = 1) to the
largest (rank = 3), and for accuracy measurements, the
values are ranked from the largest (rank = 1) to the
smallest (rank = 3). The total ranking has been deter-
mined. This procedure was repeated until the next 3-day
(D + 3) prediction to decide the best BRT models for the
three stations in this study.

The results show that for the next-day prediction indepen-
dent test set is better than OOB and CV for all sites. The
coefficient of determination (R2) for Alor Setar, Klang and
Kota Bharu was 0.70, 0.60 and 0.65, respectively, while the

Table 7 Descriptive statistics for
Klang, Selangor Parameters Mean Median Standard deviation Skewness Kurtosis Maximum

PM10 (μg/m
3) 75.05 68 37.78 4.89 44.82 643

O3 (ppb) 44.74 42 19.33 0.66 0.48 127

CO (ppb) 1611.43 1440 774.87 2.65 16.04 10,500

NO2 (ppb) 38.34 37 12.67 0.36 0.89 128

SO2 (ppb) 6.60 5 6.52 8.67 119.11 150

RH (%) 83.71 84 6.93 −0.71 1.37 100

T (°C) 33.34 33.6 2.22 −0.74 0.74 38.5

WS (km/h) 9.15 9.60 5.02 25.33 1326.95 271
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RMSE value was 10.35, 22.13 and 10.27, respectively. The
R2 values between the fitted model data and the data set were
found to be more than 0.5, suggesting that the model is ap-
propriate and good for the next day’s prediction by using an
independent test set. The R2 between the observations and the

fitted model obtained from this study indicates how well the
BRT model fits.

A comparison among the performances of the lowest error
(NAE and RMSE) value and comparable IA, PA and R2

values as for Alor Setar (independent test set), Klang (CV)

Table 8 Descriptive statistics for
Kota Bharu, Kelantan Parameters Mean Median Standard deviation Skewness Kurtosis Maximum

PM10 (μg/m
3) 48.73 45 18.11 1.72 6.22 198

O3 (ppb) 29.21 29 10.99 0.23 −0.05 69

CO (ppb) 926.26 850 475.32 16.44 689.59 21,712

NO2 (ppb) 15.15 14 6.23 1.22 4.15 63

SO2 (ppb) 0.903112 1 1.54 19.54 836.17 71.4

RH (%) 91.86 92 6.80 −5.91 59.70 100.2

T (°C) 31.36 31.7 2.33 −0.63 0.21 37.5

WS (km/h) 9.50 9.8 8.04 31.07 1346.61 360

Fig. 4 Relative influence of the selected predictors
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and Kota Bharu (OOB) indicates that the best method for each
site is different for the second-day prediction.

However, the next 3-day prediction suggests that the CV is
the best method for Alor Setar and Klang, but for Kota Bharu
independent test set is the best method which predicts PM10

concentration. Overall, the model’s performance verified that
the next-day prediction is better than the next 2-day and next
3-day prediction.

Descriptive analysis shows that the data for this study is
non-central condition because it contains outlier; therefore,
this study uses quantile regression as explained by
Kudryavtsev (2009). Performance indicators have been used
to identify the best quantile to predict the next-day (D + 1)
PM10 concentration at Alor Setar as summarized in
Table 11. Of the five performance indicators used, NAE and
IA indicate that 0.5 quantile gave better fit than other
quantiles, but the valley differed by just 0.01 with 0.55
quantile. However, RMSE, PA and R2 have shown that 0.55
quantile is the best quantile in PM10 concentration models.
0.55 quantile was therefore used to predict the PM10 concen-
tration models for the OOB method. For CV and OOB

Table 9 Comparison method of
best iteration (OLS) Station Predicted day Method Best iteration RMSE NAE IA PA R2

Alor Setar Next day OOB 256 10.0661 0.1529 0.9115 0.8370 0.6992

CV 663 10.4801 0.1541 0.9122 0.8376 0.7003

Test 440 10.3452 0.1528 0.9127 0.8381 0.7011

Next 2-day OOB 236 13.1370 0.2224 0.7816 0.6504 0.4223

CV 256 13.2581 0.2222 0.7877 0.6507 0.4226

Test 350 13.2971 0.2224 0.7903 0.6516 0.4238

Next 3-day OOB 230 14.7003 0.255 0.6627 0.5345 0.2852

CV 465 14.7194 0.2549 0.6876 0.5415 0.2927

Test 322 14.7446 0.2561 0.6769 0.5361 0.2869

Klang Next day OOB 255 22.4456 0.1753 0.8441 0.7729 0.5963

CV 998 22.1405 0.1735 0.8621 0.7764 0.6018

Test 991 22.1348 0.1734 0.8623 0.7766 0.6020

Next 2-day OOB 231 27.0512 0.2312 0.7043 0.6261 0.3913

CV 391 26.8149 0.2289 0.7303 0.6304 0.3967

Test 912 27.2296 0.2309 0.7345 0.6164 0.3793

Next 3-day OOB 233 30.3456 0.2519 0.6024 0.5378 0.2887

CV 378 30.1907 0.2508 0.6327 0.5400 0.2911

Test 2406 30.4640 0.2508 0.6533 0.5310 0.2815

Kota Bharu Next day OOB 341 10.2873 0.1527 0.8845 0.8086 0.6527

CV 708 10.2792 0.1511 0.8898 0.8091 0.6534

Test 412 10.2702 0.1518 0.8868 0.8092 0.6535

Next 2-day OOB 253 13.7274 0.2091 0.7390 0.6435 0.4133

CV 842 13.7969 0.2068 0.7605 0.6373 0.4054

Test 558 13.7114 0.2062 0.7594 0.6422 0.4116

Next 3-day OOB 247 15.4608 0.2294 0.6409 0.5508 0.3028

CV 595 15.3865 0.2270 0.6720 0.5531 0.3053

Test 565 15.3831 0.2271 0.6709 0.5533 0.3056

Table 10 Ranking of performance indicators for the BRT model to
predict D + 1 PM10 concentration

Station Method Best iteration RMSE NAE IA PA R2 Sum

Alor Setar OOB 256 1 2 3 3 3 12

CV 663 3 3 2 2 2 12

Test 440 2 1 1 1 1 6

Klang OOB 255 3 3 3 3 3 15

CV 998 2 2 2 2 2 10

Test 991 1 1 1 1 1 5

Kota Bharu OOB 341 3 3 3 3 3 15

CV 708 2 1 1 2 2 8

Test 412 1 2 2 1 1 7
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methods, the presented results demonstrate that 0.5 gave better
fit than other quantiles.

After choosing the right quantile to present the best PM10

concentration prediction models for the next day, repeat the
same process for finding the best quantile for the next 2-day
and next 3-day prediction for all selected locations.

The best quantile to predict the next 2-day (D + 2) PM10

concentration at Alor Setar is reported in Table 12. Results
show that 0.5 is the best quantile for CV and Test method for
the next 2-day prediction, while for OOB is 0.4. The chosen
quantile for the next 3-day at Alor Setar is described in
Table 13. The findings revealed that all methods (OOB, CV
and Test) have the same result, which is 0.55 as the best
quantile.

After selecting the best weighting for OOB, CV and Test,
the next step is to determine the best method for the next-day,
the next 2-day and the next 3-day prediction. The best
weighting function was identified for the next day, the next
2 days and the next 3 days in Table 14 for all three monitoring
stations by repeating the same procedure for the proposed
PM10 concentration prediction method.

The best prediction model for next-day PM10 concentration
in Alor Setar is OOB (quantile = 0.55) with an error of 0.1464
(NAE) and 9.3260 (RMSE), with an accuracy of 0.9177 (IA),
0.8546 (PA) and 0.7291 (R2). For Klang and Kota Bharu, CV
(quantile 0.5) is the best method. The CV and Test models
were selected to predict the PM10 concentration for the next 2-
day while for the next 3-day only Alor Setar shows that OOB

Table 11 Performance indicators
for PM10 concentration prediction
(D + 1)

Method Quantile Best iteration NAE RMSE IA PA R2

OOB 0.1 537 0.267904 15.991054 0.685428 0.793510 0.628524

0.2 546 0.201553 12.512929 0.818682 0.831978 0.690941

0.3 650 0.165560 10.207522 0.894825 0.853560 0.727252

0.4 588 0.150423 9.475352 0.914884 0.856961 0.733060

0.5 407 0.145459 9.345616 0.918590 0.854599 0.729024

0.55 318 0.146444 9.326012 0.917657 0.854638 0.729091

0.6 312 0.148931 9.461313 0.917807 0.853149 0.726552

0.65 307 0.154895 9.727199 0.915689 0.851896 0.724420

0.7 301 0.164896 10.222952 0.910567 0.848863 0.719271

0.8 286 0.208543 12.432113 0.882167 0.834148 0.694549

0.9 277 0.324641 18.010877 0.802655 0.803960 0.645188

CV 0.1 3466 0.230134 13.12464 0.821847 0.844543 0.711969

0.2 3228 0.186435 10.99957 0.881592 0.851891 0.724412

0.3 2047 0.163486 9.97347 0.907356 0.853797 0.727657

0.4 944 0.150205 9.49027 0.917772 0.856138 0.731653

0.5 706 0.145297 9.484484 0.920923 0.853164 0.726579

0.55 921 0.146527 9.655575 0.920727 0.851436 0.723638

0.6 716 0.14933 9.922706 0.918218 0.848511 0.718673

0.65 791 0.155147 10.32006 0.914679 0.846717 0.715639

0.7 793 0.16241 10.73059 0.90988 0.844388 0.711707

0.8 521 0.198085 12.46628 0.887964 0.837048 0.699388

0.9 746 0.284587 17.64743 0.825464 0.816684 0.665772

Test 0.1 2379 0.236263 13.54239 0.804801 0.841709 0.707198

0.2 2161 0.188082 11.07842 0.878106 0.852244 0.725012

0.3 2060 0.163522 9.972937 0.907353 0.853876 0.727791

0.4 907 0.15027 9.484897 0.917661 0.856346 0.732008

0.5 668 0.145298 9.477619 0.920683 0.853023 0.726338

0.55 600 0.146047 9.519797 0.921000 0.852851 0.726046

0.6 806 0.149524 9.954591 0.918100 0.84827 0.718266

0.65 634 0.154392 10.15938 0.915851 0.848536 0.718717

0.7 843 0.162507 10.75863 0.909660 0.844025 0.711095

0.8 1047 0.200318 13.27227 0.880712 0.829483 0.686802

0.9 541 0.288694 17.47310 0.825032 0.816543 0.665542
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(quantile = 0.55) is the best method with performance
indicators 0.2463 (NAE), 14.4598 (RMSE), 0.6496
(IA), 0.5553 (PA) and 0.3078 (R2). Overall, the results
showed that quantile values of 0.5, 0.55 and 0.6 obtained
the best quantile results when combined with the BRT
method.

The best loss function representing each monitoring station
can be identified according to the results of the performance
indicator in Table 15. Of the five performance indicators ap-
plied, all sites indicate that QR was slightly better than OLS.
This is supported by Khan et al. (2019), which states that QR
can be utilized for the prediction of extreme events.

Norazrin et al. (2018) investigated the Bayesian regression
model using conjugate prior distribution and get the results for

RMSE (4.66 to 9.88), IA (0.900 to 0.929), PA(0.830 to 0.866)
and R2 (0.614 to 0.665). While, Park et al. (2018) predicted
PM10 concentration in Seoul metropolitan subway stations
using artificial neural network (ANN) model and presented
R2 of 0.39 to 0.81. On the other hand, Abdullah et al. (2020)
showed the results from performance error RMSE (126.73–
164.98) and NAE (0.33–0.43) by using multiple linear regres-
sion for PM10 forecasting during episodic trans-boundary
haze event in Malaysia. In addition, Shaziayani et al. (2018)
reported that feed forward back propagation performs better
than general regression neural network in Seberang Jaya,
Pulau Pinang with an IA of as much as 0.7796 for the next
day, 0.6033 for the next 2-day and 0.8024 for the next 3-day
predictions.

Table 12 Performance indicators
for PM10 concentration prediction
(D + 2)

Method Quantile Best iteration NAE RMSE IA PA R2

OOB 0.1 299 0.363715 20.51956 0.526868 0.616668 0.379594

0.2 298 0.288589 17.02283 0.590397 0.656111 0.429707

0.3 289 0.250096 15.08631 0.656008 0.667207 0.444363

0.4 281 0.226822 13.6431 0.720543 0.676696 0.457092

0.5 281 0.216947 12.79989 0.767547 0.675379 0.455315

0.55 281 0.217607 12.68753 0.781193 0.672139 0.450957

0.6 278 0.221589 12.72408 0.788015 0.672194 0.451032

0.65 272 0.230308 13.03989 0.786863 0.666954 0.444027

0.7 268 0.242643 13.4476 0.785895 0.669762 0.447773

0.8 266 0.289563 15.60705 0.758638 0.665199 0.441693

0.9 253 0.424113 22.04045 0.665915 0.626922 0.392324

CV 0.1 873 0.337707 18.91487 0.572998 0.661126 0.436301

0.2 769 0.274776 16.11904 0.65214 0.671201 0.449699

0.3 913 0.24255 14.42645 0.715937 0.670518 0.448784

0.4 574 0.224878 13.40232 0.755227 0.670488 0.448744

0.5 648 0.216564 12.84958 0.790077 0.670562 0.448844

0.55 743 0.217634 12.86845 0.798897 0.669231 0.447063

0.6 717 0.220777 12.94091 0.800999 0.669613 0.447574

0.65 701 0.228319 13.21856 0.800638 0.669104 0.446893

0.7 598 0.241782 13.77886 0.796029 0.669002 0.446757

0.8 430 0.28651 15.96568 0.765365 0.663513 0.439456

0.9 728 0.398319 22.43355 0.68394 0.633522 0.400628

Test 0.1 1872 0.326885 18.36329 0.597421 0.66398 0.440075

0.2 1445 0.270644 15.86809 0.671778 0.667623 0.444918

0.3 1120 0.242326 14.39568 0.719462 0.669347 0.447218

0.4 1861 0.224681 13.38723 0.769915 0.664307 0.440509

0.5 1244 0.217868 12.94139 0.79478 0.668038 0.445471

0.55 3147 0.219849 12.98603 0.799145 0.665574 0.44219

0.6 2819 0.222878 13.13031 0.803858 0.66691 0.443968

0.65 1625 0.230164 13.45881 0.801663 0.66566 0.442305

0.7 1877 0.241219 14.02964 0.79772 0.66578 0.442465

0.8 598 0.286518 16.1793 0.766589 0.662632 0.43829

0.9 716 0.398211 22.38851 0.684235 0.633931 0.401145
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Overall, this implies that the values of performance indica-
tors of this study are almost the same as those of previous
researchers. This paper shows that alpha 0.5, 0.55 and 0.60
are the best quantile as recommended by Ul-Saufie et al.
(2012), which is appropriate for data on air pollution in
Malaysia. Therefore, the proposed model can be used as an
alternative method to predict the concentration of PM10 in
Malaysia.

Figure 5 shows the comparison between the observed
value and predicted value of Alor Setar, Kota Bharu and
Klang for the validate data set. The optimum setting value
from the training data set is tuned with the number of
learning rate at 0.01 and iteration at 10,000. By using
the optimum value found in the training process, the

accuracy of this BRT prediction is found to be 60.33 to
91.77%.

Conclusion

Overall, these results indicate that the quantile regression has
fulfilled the assumptions and the good model for BRT for
predicting maximum daily PM10 concentration. The study
findings show that the values of NAE (0.15–0.17), RMSE
(9.33–22.25), R2 (0.60–0.73), IA (0.85–0.92) and PA (0.78–
0.85) were good for the next-day predictions. Most of the
results used 0.5 as the best quantile which represents the me-
dian data, but 0.55 and 0.6 had also been chosen as the best

Table 13 Performance indicators
for PM10 concentration prediction
(D + 3)

Method Quantile Best iteration NAE RMSE IA PA R2

OOB 0.1 300 0.380873 21.52871 0.489821 0.521352 0.271318

0.2 299 0.309502 18.46747 0.515503 0.535856 0.286625

0.3 286 0.27178 16.6726 0.548701 0.539934 0.291003

0.4 283 0.252316 15.47293 0.589012 0.547938 0.299696

0.5 272 0.244396 14.64987 0.633554 0.55345 0.305755

0.55 270 0.246321 14.45983 0.649632 0.555341 0.307848

0.6 270 0.253148 14.47623 0.662903 0.552334 0.304523

0.65 266 0.26346 14.68193 0.66915 0.550629 0.302647

0.7 260 0.281239 15.15586 0.670203 0.549539 0.301449

0.8 253 0.33933 17.32438 0.651928 0.540822 0.291962

0.9 247 0.487294 23.57309 0.593902 0.524174 0.274263

CV 0.1 992 0.35873 20.4491 0.512107 0.530793 0.281234

0.2 693 0.297879 17.83777 0.550349 0.539899 0.290966

0.3 1533 0.261724 16.09796 0.610221 0.542735 0.29403

0.4 828 0.246604 15.16012 0.636867 0.550614 0.30263

0.5 1262 0.243505 14.5868 0.681152 0.551573 0.303685

0.55 1594 0.245915 14.51953 0.692946 0.553111 0.30538

0.6 1068 0.253651 14.64835 0.694083 0.548511 0.300322

0.65 808 0.263544 14.90997 0.694612 0.546833 0.298488

0.7 810 0.278159 15.31503 0.695164 0.54996 0.301911

0.8 828 0.333233 17.60118 0.675653 0.540595 0.291716

0.9 697 0.460661 23.56437 0.612804 0.532199 0.282726

Test 0.1 926 0.35965 20.48675 0.511432 0.531874 0.28238

0.2 1917 0.291029 17.51332 0.571968 0.534348 0.285014

0.3 3558 0.259282 15.95166 0.6225 0.54401 0.295414

0.4 1872 0.244724 15.05166 0.649943 0.553874 0.306224

0.5 1878 0.243075 14.56068 0.684663 0.553187 0.305465

0.55 2952 0.245934 14.5097 0.695175 0.554395 0.3068

0.6 2899 0.252724 14.6662 0.698867 0.550385 0.302378

0.65 1724 0.263638 14.94919 0.698801 0.54829 0.300081

0.7 974 0.278018 15.33929 0.696575 0.549713 0.30164

0.8 1704 0.33469 17.89451 0.678132 0.538551 0.289514

0.9 1030 0.456324 23.71731 0.613868 0.528703 0.279023
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Table 14 Comparing the result between quantile regression

Station Predicted day Method Alpha Best iteration NAE RMSE IA PA R2

Alor Setar Next day OOB 0.55 318 0.1464 9.3260 0.9177 0.8546 0.7291

CV 0.5 706 0.1453 9.4845 0.9209 0.8532 0.7266

Test 0.5 668 0.1453 9.4776 0.9207 0.8530 0.7263

Next 2-day OOB 0.4 281 0.2268 13.6431 0.7205 0.6767 0.4571

CV 0.5 648 0.2166 12.8496 0.7901 0.6706 0.4488

Test 0.55 2952 0.2459 14.5097 0.6952 0.5544 0.3068

Next 3-day OOB 0.55 270 0.2463 14.4598 0.6496 0.5553 0.3078

CV 0.55 1594 0.2459 14.5195 0.6929 0.5531 0.3053

Test 0.55 2952 0.2459 14.5097 0.6952 0.5544 0.3068

Klang Next day OOB 0.65 295 0.1807 22.8858 0.8377 0.7673 0.5877

CV 0.5 1248 0.1653 22.2483 0.8509 0.7774 0.6033

Test 0.4 2360 0.1659 22.6276 0.8402 0.7835 0.6127

Next 2-day OOB 0.65 263 0.2420 27.3318 0.6974 0.6262 0.3914

CV 0.6 825 0.2340 26.7720 0.7310 0.6337 0.4008

Test 0.6 1365 0.2338 26.6723 0.7409 0.6366 0.4046

Next 3-day OOB 0.65 251 0.2579 30.3537 0.5950 0.5459 0.2974

CV 0.6 520 0.2490 30.0872 0.6151 0.5491 0.3010

Test 0.6 917 0.2489 30.0279 0.6272 0.5487 0.3006

Kota Bharu Next day OOB 0.6 303 0.1568 10.4668 0.8816 0.8069 0.6498

CV 0.5 1301 0.1483 10.2735 0.8917 0.8097 0.6544

Test 0.6 536 0.1542 10.4305 0.8891 0.8093 0.6538

Next 2-day OOB 0.6 279 0.2088 13.5492 0.7542 0.6608 0.4359

CV 0.4 1049 0.2061 13.8734 0.7520 0.6623 0.4378

Test 0.5 677 0.2006 13.4385 0.7667 0.6625 0.4380

Next 3-day OOB 0.5 288 0.2269 15.5590 0.6379 0.5548 0.3072

CV 0.5 648 0.2244 15.4857 0.6639 0.5550 0.3075

Test 0.6 1332 0.2286 15.4000 0.6871 0.5557 0.3083

Table 15 Comparing the best performance of statistical models for predicting PM10 concentration

Station Predicted day Method Distribution Best iteration RMSE NAE IA PA R2

Alor Setar Next day OOB QR(0.55) 318 9.3260 0.1464 0.9177 0.8546 0.7291

Test OLS 440 10.3452 0.1528 0.9127 0.8381 0.7011

Next 2-day CV QR(0.5) 648 12.8496 0.2166 0.7901 0.6706 0.4488

Test OLS 350 13.2971 0.2224 0.7903 0.6516 0.4238

Next 3-day OOB QR(0.55) 270 14.4598 0.2463 0.6496 0.5553 0.3078

CV OLS 465 14.7194 0.2549 0.6876 0.5415 0.2927

Klang Next day CV QR(0.5) 1248 22.2483 0.1653 0.8509 0.7774 0.6033

Test OLS 991 22.1348 0.1734 0.8623 0.7766 0.6020

Next 2-day Test QR(0.6) 1365 26.6723 0.2338 0.7409 0.6366 0.4046

CV OLS 391 26.8149 0.2289 0.7303 0.6304 0.3967

Next 3-day Test QR(0.6) 917 30.0279 0.2489 0.6272 0.5487 0.3006
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quantile because the model has more number of outliers com-
pare to the other models. Overall, the results showed that the
number of quantile is greater than the median value (0.5). In
conclusion, QR is an alternative loss function for BRT to

predict the 3 days ahead of PM10 concentration for all sites
and suitable for data containing influence outlier. This model
can help local authority to take action to reduce the effect of
haze in Malaysia.

Table 15 (continued)

Station Predicted day Method Distribution Best iteration RMSE NAE IA PA R2

CV OLS 378 30.1907 0.2508 0.6327 0.5400 0.2911

Kota Bharu Next day CV QR(0.5) 1301 10.2735 0.1483 0.8917 0.8097 0.6544

Test OLS 412 10.2702 0.1518 0.8868 0.8092 0.6535

Next 2-day Test QR(0.5) 677 13.4385 0.2006 0.7667 0.6625 0.4380

OOB OLS 253 13.7274 0.2091 0.7390 0.6435 0.4133

Next 3-day Test QR(0.6) 1332 15.4000 0.2286 0.6871 0.5557 0.3083

Test OLS 565 15.3831 0.2271 0.6709 0.5533 0.3056

Fig. 5 The observed and predicted maximum daily PM10 concentration
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