
Lee, GM

 A Blockchain-based Trust System for Decentralised Applications: When 
trustless needs trust

http://researchonline.ljmu.ac.uk/id/eprint/15084/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Lee, GM (2021) A Blockchain-based Trust System for Decentralised 
Applications: When trustless needs trust. Future Generation Computer 
Systems: the international journal of grid computing: theory, methods and 
applications, 124. pp. 68-79. ISSN 0167-739X 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Future Generation Computer Systems 124 (2021) 68–79

B
f
(
v
t
s
o
s
i
f
i
p
s
a
a
I

(
y

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A blockchain-based trust system for decentralised applications:When
trustless needs trust
Nguyen Truong a,∗, Gyu Myoung Lee b, Kai Sun a, Florian Guitton a, YiKe Guo a,c

a Data Science Institute, South Kensington Campus, Imperial College London, London SW7 2AZ, United Kingdom
b Department of Computer Science, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
c Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong

a r t i c l e i n f o

Article history:
Received 26 January 2021
Received in revised form 7 April 2021
Accepted 20 May 2021
Available online 24 May 2021

Keywords:
Blockchain
DApps
Decentralised ecosystem
Reputation
Trust system

a b s t r a c t

Blockchain technology has been envisaged to commence an era of decentralised applications and
services (DApps) without the need for a trusted intermediary. Such DApps open a marketplace in which
services are delivered to end-users by contributors which are then incentivised by cryptocurrencies
in an automated, peer-to-peer, and trustless fashion. However, blockchain, consolidated by smart
contracts, only ensures on-chain data security, autonomy and integrity of the business logic execution
defined in smart contracts. It cannot guarantee the quality of service of DApps, which entirely depends
on the services’ performance. Thus, there is a critical need for a trust system to reduce the risk of
dealing with fraudulent counterparts in a blockchain network. These reasons motivate us to develop
a fully decentralised trust framework deployed on top of a blockchain platform, operating along with
DApps in the marketplace to demoralise deceptive entities while encouraging trustworthy ones. The
trust system works as an underlying decentralised service providing a feedback mechanism for end-
users and maintaining trust relationships among them in the ecosystem accordingly. We believe this
research fortifies the DApps ecosystem by introducing an universal trust middleware for DApps as well
as shedding light on the implementation of a decentralised trust system.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
d

1. Introduction

The turn of the last decade brought us to the disruptive
lockchain technology (BC) that provides a trusted infrastructure
or enabling a variety of decentralised applications and services
DApps) without the need for an intermediary. To actualise this
ision, Smart Contracts (SCs) technology is consolidated into
he BC-based infrastructure: SCs are programmed to perform
ervices’ business logic, compiled into byte-code, and deployed
nto a BC platform (i.e., replicated into full-nodes in the platform)
o that a user can create transactions to execute the business logic
mplemented in the SCs in a decentralised fashion [1]. This in-
rastructural BC platform offers some advanced features including
mmutability, transparency, trace-ability, and autonomy that are
romising to effectively implement plentiful DApps from financial
ervices (i.e., cryptocurrencies trading) to numerous services such
s digital asset management [2], provenance tracking in logistics
nd supply-chain [3,4], and data sharing and processing in the
nternet of Things (IoT) [5,6].
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Indeed, various DApps have already been developed and em-
ployed into the real-world. For instance, there are over 4000
DApps deployed on top of the Ethereum, Tron, and EOS plat-
forms, serving about 150k active users daily in 2019.1 This is a
considerable ecosystem and a huge decentralised peer-to-peer
(P2P) marketplace. Although there are numerous challenges due
to the limitation of the current BC technology hindering the
advancement of DApps, we believe that ‘‘everything that can be de-
centralized, will be decentralized’’ - David A. Johnston.2 The DApps
ecosystem is just in its preliminary state and will be the future of
the next-generation Internet.

1.1. Features of DApps

There are different perspectives of DApps definition and sys-
tem development among the cryptocurrency space. Nonetheless,
mutual perceptions were pointed out that a DApp must satisfy
some requirements: (i) open source so that participants can audit
the system, (ii) application operations and data are recorded and
executed in a decentralised BC (e.g., using SCs), and (iii) a crypto

1 https://cointelegraph.com/news/report-ethereum-tron-and-eos-
ominated-dapp-ecosystem-in-2019
2 http://www.johnstonslaw.org
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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oken is used to access the service and to contribute to the
perations (e.g., token reward) [7,8]. As of these features, ideally,
Apps have the ability to operate without human intervention
nd to be self-sustaining because the participation of stakeholders
s continuously strengthening the systems. According to Vitalik
uterin, DApps generally fall into two overlay categories, namely
ully anonymous DApps and reputation-based ones [8]. The first
ategory is DApps which participants are essentially anonymous
nd the whole service business logic is autonomously executed
y a series of instant atomic operations. Pure financial services
uch as Bitcoin are examples of this. Another example is dig-
tal assets trading DApps such as software licence, data, and
igitised properties in which the ownership can be impeccably
ransferred once a contract (defined and implemented using SCs)
re performed [9].
The second category refers to a type of DApps which busi-

ess logic requires a reputation-like mechanism to keep track
f participants’ activities for trust-related purposes. For instance,
Apps for data storage and computation, similar to Dropbox and
mazon AWS in the centralised space, do require to maintain
eputation-like statistic record of peers for service quality and
ecurity-related purposes (e.g., anti-DDoS). This requirement of
rust is irrelevant to BC technology which supposedly ensures
nly data security (e.g., for distributed ledgers), autonomy and
ntegrity of the business logic execution programmed in corre-
ponding SCs. The quality of service (QoS) of such a DApp also
epends on the service itself (i.e., how well the service handles
he business logic defined in the SCs and caters to customers).

.2. Necessity of a trust system in DApps ecosystem

DApps usage always comes with token movement from end-
sers to service contributors as a result of an incentive scheme,
hich is crucial to maintaining the service. However, due to the

mmutable nature, it is practically impossible to revoke any trans-
ction once it is settled onto BC. Thus, a DApp has to make sure
hat end-users are dealing with trustworthy counter-parties be-
ore invoking any SCs’ functions that can lead to a token payment.
ntuitively, end-users tend to look for an indication of ’assurance’
efore using any services. Indeed, a variety of DApps share the
ame stance on a challenge of lacking a unified decentralised
ramework to evaluate the trustworthiness of participants (for
nstance, decentralised storage and computing (similar to cloud
torage like Dropbox and Amazon AWS), home-sharing (similar to
irbnb), car-sharing (similar to Uber), or a hotel distribution and
eservation service (similar to Booking.com) backed by a BC plat-
orm). Therefore, a trust middleware that supports DApps’ end-
sers to transact with trustworthy counterparts is of paramount
mportance as it penalises deceptive participants while encourag-
ng authentic ones. In addition, a BC platform with a decentralised
rust system will facilitate DApps to build up trust with their
lients, which is fundamental in the business success.

.3. Objectives and contributions

Our objectives are to envision and develop a universal decen-
ralised system that operates along with any DApps to evaluate
rust relationships between entities in the ecosystem. This trust
ystem plays as middleware between a BC platform and DApps
hat provides mechanisms for DApps’ end-users to build up and
aintain a trust relationships network among the users. Op-
rations of the system are fully decentralised, transparent, and
ccessible to all of the participants which are autonomously and
lawlessly executed in a trustless fashion. It is also expected to
ffectively prevent from reputation attacks (e.g., Sybil, White-
ashing, Self-promoting, and Bad&Good-mouthing) and to dis-
iss masquerading hostile participants.

The main contributions of this paper are three-fold:
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• Introduction to the concept and provision of a universal
decentralised trust system that can be integrated into any
DApps sharing a same Blockchain platform.
• A decentralised trust model with theoretical analysis, algo-

rithms, and simulations.
• Providing the whole agenda of the real-world development

of the system including technical solutions, implementation
reference, as well as performance evaluation.

The rest of the paper is organised as follows. Section 2 briefly
rings up background and related work and presents the pro-
ision and conceptual model of a decentralised trust system.
ection 3 describes a system design with a trust evaluation model
or the proposed system. Section 4 provides the algorithms and
he theoretical analysis of the trust evaluation model. Section 5
s to discuss on the technical solutions and the implementation
eference for the system development. Section 6 is dedicated to
he system analysis and discussion. Section 7 concludes our work
long with the future research directions.

. Decentralised trust system provision for DApps ecosystem

To craft a BC platform into a mature DApp development en-
ironment, fundamental elements must be incorporated such
s an Identity Management (IdM), a name registry, a wallet,
P2P messaging for end-users, a browser, and a decentralised

rust/reputation system [8] (as illustrated in Fig. 1). These ele-
ents are core built-in services of a BC-based infrastructure for
Apps development.

.1. Related work

A large number of trust management mechanisms that have
een proposed in various environments including social net-
orks [10], P2P or ad-hoc networks [11], and IoT [12–14]. Those
rust models could be adapted to different scenarios including BC-
elated environment. However, as the emerging BC technology
s in the early stage, there is limited research on trust manage-
ent for DApps. Most of the related research is to develop a

rust or reputation management platform leveraging the advan-
ages of BC such as decentralisation, immutability, trace-ability,
nd transparency. In this respect, researchers have proposed BC-
ased trust mechanisms to fortify specific applications in various
nvironments including vehicular networks and intelligent trans-
ortation systems [15,16], wireless sensor networks [17,18], or
oT [19,20]. For instance, W. She et al. in [18] have proposed
BC-based trust model to detect malicious nodes in wireless

ensor networks by implementing a voting mechanism on-chain,
nsuring the trace-ability and immutability of voting information.
. Debe et al. have developed a reputation-based trust model
uilt on top of Ethereum platform for fog nodes in a Fog-based
rchitectural system [21]. The idea is similar in that a reputation
echanism, comprising of several SCs, is implemented on top of
thereum platform so that clients can give feedback as ratings
oward a Fog node when using a service provided by such node.
he reputation of a fog node is simply accumulated on-chain from
sers’ ratings. Being executed on-chain, such ratings and reputa-
ion values are immutably recorded in a decentralised fashion,
hus ensuring data integrity as well as preventing from Denial of
ervice (DDoS) attack.
We, instead, look at a different angle of trust in BC-based

pplications in which a trust system plays a complementary
omponent of the BC platform that cooperates with DApps to
mpower the ecosystem built on top of the platform. We target to
evelop a trust system for decentralised services in a BC ecosys-
em (e.g., Ethereum) in which participants (clients and service
roviders) interact with each other on-chain in a P2P manner.
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Fig. 1. Functional model of a BC-based infrastructure comprising of a trust
system and other elements in alignment with IoT high-level architecture.

Our system plays as a unified trust solution working with any
DApps. Our previous research in [9] has presented an introduc-
tory concept of a unified trust system to strengthen a BC platform.
However, it has come without detailed analysis, algorithm, and
technical solutions for the development of the decentralised trust
system. In this paper, we further explore the concept and the
feasibility of a unified trust system as middleware between a
BC platform and DApps, as well as provide a proof-of-concept
of the decentralised trust system along with the system design,
algorithms, technical solutions and implementation reference.

2.2. High-level architecture of BC-based infrastructure and trust sys-
tem

For a better understanding of the big picture of the whole BC-
ased infrastructure, we represent the high-level architecture of
full-stack IoT infrastructure by harmonising these components

o the IoT and Smart Cities & Communities reference model.3
s can be seen in Fig. 1, the BC infrastructure (equipped with
ome fundamental elements) is located in the Service Support
nd Application Support, which is a layer between the Application
nd Network layers in the IoT architecture, as one of the layer’s
omponent. DApps is located in the Application layer. Unlike
lient–server applications and services whose reputation/trust
ystems are separately developed, as depicted in Fig. 1, we envis-
ge that DApps in the same ecosystem could leverage a universal
rust system, which serves as a fundamental service for the BC-
ased infrastructure. This trust middleware exists because DApps’
nd-users in an ecosystem are identified by the same IdM and a
ame registry, and use the same cryptocurrency (e.g., provided
y a BC platform) to consume the services.

.3. High-level architecture of trust system

In this sub-section, fundamental elements of a decentralised
rust middleware between a BC platform and DApps are de-
cribed. As can be seen in Fig. 2, the proposed system con-
ists of two basic components named Data Collection & Extrac-
ion and Trust Evaluation that collect and aggregate necessary
rust-related information and evaluate trust relationships, respec-
ively. These two components are along with North-bound and
outh-bound APIs for providing trust-related services to DApps
nd for collecting data from a BC or applications and services,
espectively.

3 http://itu.int/en/ITU-T/studygroups/2017-2020/20/Pages/default.aspx
70
Fig. 2. Conceptual model of the proposed trust system.

2.3.1. Trust evaluation mechanism
We adopt the REK trust model proposed in [13,14] to the

DApps ecosystem scenario in which both trustors and trustees
are end-users of DApps. In the REK model, a trust relationship
is evaluated by assembling three indicators called Reputation (of
the trustee), Experience and Knowledge (of the trustor toward the
trustee). In DApps scenarios, there is limited availability (or dif-
ficult to obtain) of off-chain information (i.e., information that is
recorded outside BC) for evaluating Knowledge indicator because
users’ identity is pseudo-anonymised and challenging to link to
outside world [22]. Instead, transactions between end-users are
immutably recorded and publicly available on-chain, which can
be leveraged for Experience and Reputation evaluations. There-
fore, we employ an adoption of the REK trust evaluation model
called DER which only utilises two indicators Experience and
Reputation in decentralised environment. Details of the DER trust
system is described in the next section.

Generally, after each transaction between two entities in a
DApp, the trust system enables an entity to give feedback toward
its counterpart, thus establishing and updating the Experience
relationship between the two. As a result, the trust system main-
tains an Experience network among participants, which is publicly
recorded on-chain and autonomously updated whenever an en-
tity gives feedback to the other. Reputations of all participants
are then calculated based on the Experience network, follow-
ing the idea of weighted Google PageRank algorithms [23,24].
Finally, trust relationship between two entity is calculated as a
composition between Experience and Reputation.

2.3.2. Data collection and extraction
By nature, a BC is a record of a continuous growing list of

transactions among end-users which can be analysed to extract a
network topology of end-user interactions. Nonetheless, further
information about QoS is required to be collected and aggregated
in order for the DER trust evaluation mechanism to be performed.
Therefore, a decentralised feedback mechanism associated with
DApps in a BC platform is required to reflect QoS once end-
users (e.g., service clients) successfully carry out transactions with
their counterparts (e.g., DApp providers). This mechanism creates
a distributed ledger that logs users’ feedback (toward a DApps
service) along with the information about associated transactions
(e.g., end-user ID (from address), counterpart ID (to address), and
timestamp). Feedback can be either implicit or explicit which may
or may not require human participation [25]. The trust system
then extracts feedback and transactions information recorded in
BC as the inputs for the DER trust evaluation model (i.e., the
Experience and Reputation calculations) in order to evaluate trust
relationships between any two participants in the decentralised
ecosystem.

http://itu.int/en/ITU-T/studygroups/2017-2020/20/Pages/default.aspx
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Fig. 3. Case study of a decentralised storage service built on top of a BC platform
hat incentivises storage nodes with crypto-tokens. A decentralised trust system
hould be incorporated in order for clients to select trustworthy providers whiles
enalising corrupt ones.

. System design and DER trust model

This section introduces the high-level system design of the
roposed trust system along with an evaluation model.

.1. Case study

For a better interpretation, we scrutinise the decentralised
ata storage services (DDS), in regard to some projects being de-
eloped and implemented in the real-world like Storj,4 Sia,5 and
ilecoin6 (built on top of the InterPlanetary File System7 (IPFS)).
ecentralised storage is a promising solution to cooperate or even
o take over the conventional centralised cloud storage where
ata is split into multiple chunks and distributed to storage nodes
cross a P2P network. These storage nodes, as DDS providers,
re expected to reliably store the data as well as provided rea-
onable network bandwidth with appropriate responsiveness for
ata owners to retrieve their data. As a reward, such storage
odes are incentivised by crypto-tokens. It is worth noting that
nd-users in DApps ecosystem can be both data owners (DDS
lients) and storage nodes (DDS providers). The decentralised
torage concept is similar to the legacy P2P file sharing such as
itTorrent8 but fortified with advanced cryptography and encryp-
ion mechanisms as well as incentive schemes built upon a BC
latform. It is expected to solve the long-standing challenges of
ingle-point-of-control and -failure in centralised data silos, and
o bring essential control of data back to the owners.

As illustrated in Fig. 3, the DDS deploys necessary SCs on top
f a BC platform to execute the business agreement between
DS clients (i.e., data owners) and DDS providers (i.e., storage
odes) such as storage space and period, guaranteed performance

(e.g., availability, throughput, bandwidth, and latency), and the
ncentive scheme (i.e., Token Reward). Unfortunately, such SCs are
nable to ensure the QoS of the DDS service provided by a set of
torage nodes because (i) it is impractical for the SCs to monitor
and enforce the performance of the DDS providers, and (ii) the
uaranteed performance can only be measured once the SCs are
lready invoked. In this regard, a trust system that manages the
erformance history of the storage nodes and ranks them in
rder of trustworthiness (to provide high QoS) is of paramount
mportance.

4 https://storj.io
5 https://sia.tech
6 https://filecoin.io
7 https://ipfs.io
8 https://en.wikipedia.org/wiki/BitTorrent
 E
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Table 1
Notations used in the experience model.
Notation Description

Expt Experience value at time t , Exp0 is the initial value
minExp minimum Exp value, minExp = 0 if Exp is normalised in

[0,1]
maxExp maximum Exp value, maxExp = 1 if Exp is normalised

in [0,1]
ϑt Feedback score at time t
α Maximum increase value of Exp in two consecutive

transactions, 0 < α < maxExp
β Decrease rate, β > 1
θco Cooperative threshold for a feedback score ϑt . A

feedback is cooperative if ϑt ≥ θco
θunco Uncooperative threshold for a feedback score ϑt . A

feedback is uncooperative if ϑt ≤ θunco
δ Minimum Decay value ensuring any Experience

relationship degenerates if it is not maintained
γ Decay rate controlling the amount of the decay

3.2. DER trust model

In the DER model, trust relationship between two entities is
a compound of two elements: Experience (of a trustor toward
a trustee) and Reputation (of a trustee). This section describes
mechanisms to calculate such two elements.

3.2.1. Experience mechanism
Experience is an asymmetric relationship from an entity to

the another which is built up from previous transactions between
the two. Experience is an indicator of trust [13]. For instance, an
experience (denoted as Exp(A, B)) is constituted from a DDS client
(i.e., a data owner, denoted as A) to a DDS provider (i.e., a storage
node, denoted as B) once A invokes an SC to use the storage
service offered by B. Higher Exp(A, B) value represents higher
degree of trust from A to B. Essentially, Exp(A, B) increases if B
provides high-quality storage service to A (which is reflected by a
feedback score ϑt ) and vice versa. It is worth noting that feedback
can be provided by either clients (e.g., A) or an authorised third-
party who is monitoring performance of service providers (e.g., B).
Also, Exp(A, B) gets decay if no transactions taken place after a
period of time or a transaction is neutral (i.e., neither cooperative
nor uncooperative). The amount of increase, decrease and decay
depends on intensity of transactions, feedback scores ϑ , and
the current value of Exp(A, B) which can be modelled by linear
difference equations and a decay function as follows (notations
are denoted in Table 1) [13,14]:

• Increase model

The current Exp(A, B) (denoted as Expt−1) increases when there
occurs a cooperative transaction (at the time t , indicated by
the feedback score ϑt ≥ θco) that follows the linear difference
equation:

Expt = Expt−1 + ϑt∆Expt (1)

where ∆Expt is defined as follows:

Expt = α(1−
Expt−1
maxExp

) (2)

• Decrease model

imilarly, Exp(A, B) decreases if the transaction is uncooperative
indicated by the feedback score ϑt ≤ θunco), following the
quation:

xp = Max(min , Exp − β(1− ϑ )∆Exp ) (3)
t Exp t−1 t t

https://storj.io
https://sia.tech
https://filecoin.io
https://ipfs.io
https://en.wikipedia.org/wiki/BitTorrent


N. Truong, G.M. Lee, K. Sun et al. Future Generation Computer Systems 124 (2021) 68–79

i

3

o
a
e
E
T
p
a m

l

4

4

t
v

L
m

I
t

r
a

n which ∆Expt is specified in Eq. (2). The decrease rate β > 1 im-
plies that it is easier to lose the Exp(A, B) value due to an uncoop-
erative transaction than to gain it (by a cooperative transaction).

• Decay model

Exp(A, B) decays if there is no transaction after a period of time
or a feedback is neutral (i.e., θunco < ϑ < θco) and the decay
rate is assumed to be inversely proportional to the strength of
the experience relationship (i.e., Expt value) [26]. Based on these
observations, the Decay model is proposed as follows:

Expt = Max(minExp, Expt−1 −∆Decayt ) (4)

∆Decayt = δ(1+ γ −
Expt−2
maxExp

) (5)

.2.2. Reputation mechanism
The reputation of an entity represents the overall perception

f a community regarding the characteristic of the entity such
s trustworthiness. In the DApps ecosystem, the reputation of an
nd-user U (denoted as Rep(U)) can be calculated by aggregating
xp(i,U), ∀i are users who have already been transacted with U .
o calculate the reputation of end-users, we utilise the model
roposed in [13,14] which is based on the standard PageRank [24]
nd the weighted PageRank [23,27].
Let N be the number of end-users in the DApps ecosystem,

an directed graph G(V , E) is constructed in which V is a set of
N users, E ⊆ {(x, y)|(x, y) ∈ V 2

∧ x ̸= y} is set of edges
representing experience relationship E(x, y) = Exp(x, y). If there
is no prior transaction between (x, y); E(x, y) = 0. To enable the
reputation model, G(V , E) is divided into two sub-graphs: positive
experience PG(V , PE) in which any edge PE(x, y) = Exp(x, y)
satisfying Exp(x, y) > θ and negative experience NG(V ,NE) in
which any edge NE(x, y) = Exp(x, y) satisfying Exp(x, y) < θ ,
where θ is a predefined threshold. d parameter is a damping
factor (0 < d < 1) introduced in standard PageRank [24]. The
reputation for each sub-graph is then calculated as follows:

• Positive Reputation

RepPos(U) =
1− d
N
+ d(

∑
∀i

RepPos(i)×
PE(i,U)
CPos(i)

) (6)

in which CPos(i) =
∑
∀j PE(i, j) representing the sum of all

positive experience values that the end-user i holds (toward
other end-users).

• Negative Reputation

RepNeg (U) =
1− d
N
+ d(

∑
∀i

RepNeg (i)×
1− NE(i,U)

CNeg (i)
) (7)

in which CNeg (i) =
∑
∀j (1− NE(i, j)) representing the sum

of all complements of negative experience values (i.e., 1 −
NE(i, j)) that the end-user i holds (toward other end-users).

• Overall Reputation
Rep(U) is the aggregation of RepPos(U) and RepNeg (U):

Rep(U) = max(0, RepPos(U)− RepNeg (U)) (8)

3.2.3. Trust aggregation
Trust relationship between trustor A and trustee B is a com-

posite of Exp(A, B) and Rep(B):

Trust(A, B) = w1Rep(B)+ w2Exp(A, B) (9)

in which w1 and w2 are weighting factors satisfying w1+w2 = 1.
It is worth noting that any end-user once signing up for a DApp
is assigned a default value at bootstrap (e.g., 1

N ). If A and B have
no prior transaction then Exp(A, B) = 0. In this case, w1 = 1 and
w = 0; thus, Trust(A, B) = Rep(B).
2

72
Fig. 4. Increase, Decrease, and Decay in Experience relationship.

4. Trust model: Evaluation and simulation

This section provides detailed evaluation of the DER trust
odel including model equations analysis, algorithms, and simu-

ation of the Experience and Reputation models.

.1. Experience model

.1.1. Analysis
For simplicity, Exp values and feedback score ϑ are normalised

o the range (0, 1) with maxExp = 1, minExp = 0 and the initial
alue 0 < Exp0 < 1. We then have:

emma 4.1. The Increase model (defined in Eq. (1)) is (*) a
onotonically increasing function and (**) asymptotic to 1.

The proof of this lemma is provided in Appendix A.1. As the
ncrease model is monotonically increasing, it is obvious that
he Decrease model defined in Eq. (3), which is based on ∆Expt
in Eq. (2), is decreasing. The decrements depend on the current
Expt value and the uncooperative ϑt feedback score. The decrease
rate β depicts the ratio of the decrements compared to the incre-
ments, which is normally greater than 1 as the current experience
Expt is ‘‘difficult to gain but easy to loose’’.

The Decay model defined in Eq. (4) ensures that an experience
elationship gets weakened if there is no or neutral transactions
fter a period of time. This is because the decay value ∆Decayt

specified in Eq. (5) is always > 0 as 0 < Expt−2 < 1 ∀t ≥ 2;
and it is inversely proportional to Expt−2, implying that a strong
relationship persists longer than a weak one.

4.1.2. Algorithm and simulation
Based on the Experience model defined in Section 3.2.1 along

with the analysis, the algorithm calculates experience value
Exp(A, B) of entity A toward entity B is demonstrated in
mathematical-style pseudo-code as in Algorithm 1. It is worth
noting that the parameters controlling the Experience model are
preset for our demonstration and should be optimised for specific
scenarios.

For demonstration purposes, the algorithm is implemented in
Matlab with different controlling parameters settings. As depicted
in Fig. 4, two sets of parameters configuration are taken into
account in which the maximum increase value α is either 0.05 or
0.1, the decrease rate β is either 1.6 or 4.0, and the parameter pair
for the decay model (δ, γ ) is either (0.005, 0.005) or (0.01, 0.01).
The initial value is preset Exp0 = 0.5. As can be seen in Fig. 4,
the results show that both increase model curves are asymptotic
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Alg. 1: Experience Calculation Algorithm
Input : Current experience value Expt−1

Previous experience value Expt−2
Feedback score ϑt

Output: Updated experience value Expt
1 Parameters Preset
2 Exp0 = 0.5; ▷ In case there is no prior transaction, Expt−1 and
Expt−1 are set to Exp0;

3 minExp = 0; maxExp = 1; ▷ Experience value is normalised in the
range [0,1];

4 θco = 0.7; θunco = 0.5;
5 α = 0.05; β = 1.6;
6 δ = 0.005; γ = 0.005

7 Begin

8 if ϑt ≥ θco then
9 ▷ Increase Model;

10 Expt = Expt−1 + ϑtα(1−
Expt−1
maxExp

)

11 else if 0 < ϑt ≤ θunco then
12 ▷ Decrease Model;
13 Expt = Max(minExp, Expt−1 − β(1− ϑt )α(1−

Expt−1
maxExp

)

14 else
15 ▷ No transaction (ϑt = 0) or neutral θunco < ϑt < θco
16 ▷ Decay Model;
17 Expt = Max(Exp0, Expt−1 − δ(1+ γ −

Expt−2
maxExp

)

18 Return Expt

to 1, which is already proven in the theoretical analysis, at differ-
ent rates depending on the controlling parameter α. The results
lso indicate that stronger experience relationships require more
ooperative transactions to achieve. For instance, with α = 0.05,
experience value increases from 0.5 to 0.7 after 12 consecutive
transactions whereas it increases from 0.9 to just 0.94 after the
same number of transactions.

The simulation results of the Decrease model show that ex-
perience relationships are prone to uncooperative transactions
suggesting that a strong tie is hard to attain but easy to lose,
particularly with higher decrease rate β . For instance, with α =
0.05 and β = 4.0, it takes 50 consecutive cooperative transaction
to increase the experience value from 0.5 to 0.9 but takes only
22 uncooperative transactions to drop from 0.9 to 0.5. As can
also be seen from the figure, both decrease and decay models
exhibit a same behaviour that a strong tie is more resistant to
uncooperative transactions/decay whereas a weaker one is more
susceptible. These characteristics of the experience model mani-
fest the human social relationships, showing the practicability of
the proposed model.

4.2. Reputation model

4.2.1. Analysis
Denote (N × 1) column vectors Rep, RepPos, and RepNeg whose

elements are overall reputation, positive reputation, and negative
reputation of N end-users in DApp ecosystem, respectively. As
specified in Eq. (6), RepPos(U) of the user U is calculated from oth-
ers’ positive reputations RepPos(i) ∀i holding positive experience
PE(i,U) with U . Consequently, there would be correlations among
the N positive reputations, which would lead to the fact that
RepPos might not exist or might be ambiguous (i.e., there exists
more than one values for a user that satisfy Eq. (6)). The same
condition could happen for RepNeg , and for Rep, as a consequence.
We then need to prove this following lemma:

Lemma 4.2. The reputation vector Rep exists and is unique.
73
Fig. 5. Convergences of the reputation algorithm using interactive method with
different sizes of DApp ecosystem.

The proof of this lemma is provided in Appendix A.2. As the
existence and the uniqueness are proven, the reputation vector
Rep of N end-users in DApps ecosystem can be calculated by solv-
ing the matrix equations defined in Eqs. (6), (7). The traditional
algebra method to solve an NxN matrix equation (e.g., Eq. (6)
or Eq. (7)), whose the complexity is O(N3), is impractical when
he size of the DApp ecosystem is enormous (e.g., in millions).
nstead, the reputations of the N end-users can be approximately
alculated with a predefined accuracy tolerance using an iterative
ethod, which is much more efficient [28,29]. The latter ap-
roach is utilised in our system to solve Eqs. (6) and (7), depicted
y Algorithm 2 in the next subsection.

.2.2. Algorithm and simulation
The reputation calculation algorithm (Algorithm 2) takes the

urrent positive and negative Reputation values defined in Eq. (6)
nd (7) (i.e., RepPos and RepNeg N × 1 column vectors) with the

Experience network (represented by (N × N) matrix E) as inputs
and outputs the updated RepPos and RepNeg . Detailed explanation
of the algorithm is commented out in the pseudo-code. Finally, as
defined in Eq. (8), the overall reputation for N end-users (i.e., N×1
column vector Rep) is then simply obtained by adding two vectors
RepPos and RepNeg , which are the outputs of Algorithm 2.

The simulation of the proposed reputation calculation algo-
rithm are conducted for different DApp ecosystem sizes (i.e., N =
1000, 4000, 8000 and 16,000) with the error tolerance tol =
10−5, which is accurate enough to rank N end-users in the DApp
ecosystem. As depicted in Algorithm 2, the total error err is
calculated as the Euclidean norm of the vector difference of the
Rep vector in two consecutive iterations. Fig. 5 illustrates the
convergence rate of the algorithm, showing the rapid reduction
of the total error as more iterations are carried out. As can be
seen from the figure, the algorithm converges in less than 70 it-
erations (to be exact: 54, 61, 64, and 66 iterations) for four DApps
ecosystem sizes N = 1000, 4000, 8000 and 16,000, respectively.
These results suggests that the reputation model well scales for
a huge network as the scaling factor is roughly linear in logN .

5. Technical solutions and implementation

This section provides a real-world demonstration for the pro-
posed decentralised trust system and how a decentralised storage

service based on IPFS interacts with it. The demonstration is
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Alg. 2: Reputation algorithm using iterative method
Input : (N × N) matrix E (set of edges in the directed graph

G(V , E) of N end-users)
Positive reputation N × 1 vector RepPos
Negative reputation N × 1 vector RepNeg

Output: Updated RepPos and RepNeg
1 Parameters Preset
2 d= 0.85; ▷ damping factor in standard PageRank
3 tol = 1e− 5; ▷ Error tolerance
4 thres = 0.5; ▷ threshold for positive and negative experience

5 Begin
6 ▷ Elicit matrices PE and NE from matrix E;
7 PE = zeros(N,N); ▷ initialise zero matrix for NE
8 PE = zeros(N,N); ▷ initialise zero matrix for PE
9 for i← 1 to N do

10 for j← 1 to N do
11 if E(i, j) ≥ thres) then
12 PE(i, j) = E(i, j)
13 else if 0 < E(i, j) < thres then
14 NE(i, j) = 1− E(i, j)

15 ▷ Constitute 1× N row vectors CPos and CNeg ;
16 CPos = zeros(1,N); ▷ initialise zero vector for CPos
17 CNeg = zeros(1,N); ▷ initialise zero vector for CNeg
18 for i← 1 to N do
19 for j← 1 to N do
20 CPos(1, i) = CPos(1, i)+ PE(i, j);
21 CNeg (1, i) = CNeg (1, i)+ NE(i, j);

22 ▷ Constitute transition matrices of PE and NE;
23 for i← 1 to N do
24 for j← 1 to N do
25 if PE(j, i) > 0) then
26 APos(i, j) = PE(j,i)

CPos(1,j)
; ▷ Transition matrix for PE

27 if NE(j, i) > 0) then
28 ANeg (i, j) = NE(j,i)

CNeg (1,j)
; ▷ Transition matrix for NE

29 ▷ Update RepPos and RepNeg based on Eqs. (6) and (7);
30 I = ones(N, 1); ▷ create vector of all ones
31 err = 1; ▷ Total error of the current iteration
32 while err ≥ tol do
33 tempPos = d× APos × RepPos + (1−d)

N × I;
34 tempNeg = d× ANeg × RepNeg + (1−d)

N × I;

35 ▷ update err using N (v) function as the Euclidean norm of
vector v;

36 err = N (tempPos − RepPos)+N (tempNeg − RepNeg );

37 RepPos = tempPos; ▷ update RepPos vector
38 RepNeg = tempNeg ; ▷ update RepNeg vector
39 Return [RepPos, RepNeg ]

carried out on top of the Ethereum permissionless BC platform
in which system components, functionality, technical challenges
and solutions are identified as the implementation reference for
developers who wish to build a similar system. Source-code of
the demonstration can be found at Github repo.9

.1. System setup

The DDS service and the proposed decentralised trust sys-
em are implemented on top of the permissionless Ethereum
latform to which fundamental elements for developing a DApp
ave already been deployed. For instance, in our platform setup,

9 https://github.com/nguyentb/Decentralised_Trust_Eth_IPFS.git
74
Fig. 6. Sequence diagram of how the decentralised trust system is incorporated
with the DDS service and how the proposed DER trust calculation is performed.

Ethereum account and address are leveraged for IdM, Metamask10
is for BC browser and a wallet service, and web3/web3j11 are
DApps APIs for interacting with Ethereum network (e.g., SCs and
end-users). SCs are implemented in Solidity using Truffle suite
framework12 and deployed in an Ethereum test-net (i.e., we use
several test-nets including Ropsten, Kovan Rinkeby, and Goerli)
for real-world experience. We assume that IPFS storage nodes
are also clients of the DApps ecosystem (e.g., Ethereum clients
in Ropsten, Kovan or Rinkeby test-net) that get incentivised once
providing storage capability (e.g., IPFS storage nodes host and pin
the hash of requested files from data owners).

The overall procedure of the setting system is illustrated in
Fig. 6. As can be seen in the sequence diagram, a client starts to
use the DDS service by making a transaction to a DDS SC (step
(1)), which invokes enFeedback function in FeEx SC of the trust
system to grant the client permission to give feedback to the
DDS nodes ((step (3)), (4))). Once getting feedback from the end-
user (step (5)), experience relationships between the user and the
DDS nodes are updated on-chain by executing expCal function
in FeEx SC (step (6)). On the contrary, as the reputation calcu-
lation is resource-intensive, it is impractical to implement the
algorithm (i.e., Algorithm 2) on-chain; instead, only the results
(i.e., reputation values of entities) are publicly recorded on-chain.
This challenge can be circumvented by using Oraclize service,
as demonstrated in step (7-1), (7-2), and (7-3) in Fig. 6. With
he same reason, Rep SC is not invoked whenever an experience
elationship is updated; instead, it is periodically self-executed —
or example, for every 100 blocks.

.2. Feedback and experience smart contract

This SC, denoted as FeEx, contains feedback information and
xperience relationship of any entity A (i.e., a DDS client) toward
ntity B (an IPFS storage node) where a transaction between A
nd B has been carried out (i.e., A uses the DDS service provided
y B depicted by step (1) and (2) in Fig. 6). FeEx SC also provides
unctions for end-users to give feedback and to update experi-
nce relationships accordingly (step (3) to (6) in the sequence
iagram). Note that A and B are identified by Ethereum address
n the ecosystem.

10 https://metamask.io/
11 https://github.com/web3j/web3j
12 https://truffleframework.com

https://github.com/nguyentb/Decentralised_Trust_Eth_IPFS.git
https://metamask.io/
https://github.com/web3j/web3j
https://truffleframework.com
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.2.1. Ledger data model
Necessary information about users’ feedback and experience

elationships is permanently recorded on-chain using state vari-
bles defined in FeEx SCs. These state variables are as a public
istributed ledger comprised of the full history of state transitions
f all experience relationships between any two entities. It is
onvenience to obtain the latest information of any experience
elationship as Ethereum supports key–value data format and the
atest state of the ledger (recording the most recent experience
elationships information) can be found in the most recent block.

FeEx SC stores a state variable called FeExInfo in its contract
torage in form of nested key–value pairs using Ethereum built-in
apping type as in Appendix B.1. FeExInfo consists of information
bout the relationship from A toward B, specified in FeExStrut

data structure: (ii) Exp(A, B) value, (iii) feedback score, and (iv)
a flag indicating whether A has permission to give B feedback.
Any parties or SCs can easily access FeExInfo recorded on-chain
to obtain desired information for their purposes.

5.2.2. Functionality
The FeEx SC contains two main functions: (i) enFeedback en-

ables/revokes permission of a data owner A to give feedback
to storage node B by updating the permission flag in FeExInfo
with associated transaction ID; and (ii) expCal calculates Exp(A, B)
value and updates FeExInfo whenever A gives feedback to B. The
nFeedback function is called by an SC of the DDS service once a
transaction has been carried out (illustrated by step (3) in Fig. 6).

The expCal implements the experience calculation function
ollowing Algorithm 1 proposed in Section 4.1. It is worth not-
ng that as there is no global time server synchronised among
odes in the Ethereum BC platform so that the implementation
f the decay model is not straightforward. To circumvent this
hallenge, expCal determines time in Algorithm 1 using block
eight (block.number property) so that Exp(A, B) decays every a
umber of blocks if no transaction occurred between A and B
uring the period.

.3. Reputation smart contract

Reputation SC, denoted as Rep, records positive reputation and
egative reputation of all users (e.g., IPFS storage nodes) using
wo state variables RepPosInfo and RepNegInfo, respectively. Rep
C is invoked in step (7) which consists of three subsequent steps,
amely 7-1, 7-2, and 7-3 as illustrated in the sequence diagram
Fig. 6).

.3.1. Ledger data model
The data model for the two state variables RepPosInfo and

epNegInfo is a mapping between a user’ address and a value,
epicted in Appendix B.2. These two state variables play the role
f a public distributed ledger permanently recording a full history
f state transitions of the positive and negative reputation of all
sers.

.3.2. Functionality
The reputation calculation algorithm (Algorithm 2) performs

atrix multiplication with numerous iterations that requires a
arge number of operations and local variable manipulations.
onsequently, the resource-consumption and the gas cost for
xecuting this algorithm on-chain are extremely high, which is
nfeasible to be implemented in Rep SC. To bypass this chal-
enge, off-chain storage and calculations appear as a promising
olution. The catalyst of this solution is that high-volume data
nd resource-intensive tasks should be stored and processed off-
hain; only results of the off-chain tasks are piggybacked for
n-chain ledgers and/or calculations. However, as an SC must be
75
eterministically executed, there might be a room for ambiguity
f SC executions rely on information from off-chain sources. In
ddition, this practice could turn a decentralised system into a
entralised one due to the dependency on an external source
f information. This dilemma is known under the term: ‘‘Oracle
roblem’’ [30]. The following section will describe in detail how
ep SC can accomplish the off-chain reputation calculation while
itigating the Oracle problem.

.4. Off-chain computation for reputation

Oracle problem could be mitigated by leveraging a decen-
ralised trusted provider to feed required data into SCs. For in-
tance, Oraclize.13 deploys an SC on Ethereum platform as an API
or other SCs to interact with the outside world14 The Oraclize
C works as a bearer that gets required data from an external
ource and delivers the data to the requested SCs in a decen-
ralised fashion. Furthermore, to alleviate the ambiguity, it (ii)
rovides authenticity proof as an assurance for data integrity. In
he implementation, we follow this Oraclize solution to calculate
sers’ reputations off-chain.
Assume that there is already an off-chain server, called Rep-

alService, that implements Algorithm 2 to calculate positive and
egative reputations and provides an API (e.g., REST API) to re-
rieve the calculation results. The implementation of the off-chain
ervice is straightforward: it queries the Ethereum BC to obtain
xperience relationships stored in FeExInfo and the current rep-
tations values from RepPosInfo and RepNegInfo state variables
s inputs for Algorithm 2. Rep SC then periodically calls this
ervice to update the reputation values in a decentralised fashion
sing Oraclize solution. The implementation reference depicted
n Appendix B.3 shows how to execute these tasks. Specifically,
ep interacts with the Oraclize service by importing the Oraclize
C (i.e., provableAPI.sol) to make a query to RepCalService using
raclizeQuery() function. A callback function also needs to be
mplemented in order to get the results from the query and to
pdate RepPosInfo and RepNegInfo accordingly.

.5. Integration of DDS service and trust system

Supposedly, the DDS service implements some SCs for data
torage business logic between data owners and storage nodes,
hich is out of the scope of this paper. The main focus of the
aper is that once a transaction has been accomplished between
client and an IPFS storage node, the enFeedback function in

he FeEx is invoked that enables the owner to give feedback to
ts counterpart, which will establish experience and trust rela-
ionships (step (2) in Fig. 6). For this reason, a DDS SC (i.e., the
aller SC) defines an interface of FeEx SC (i.e., the callee SC) and
alls it with the callee’s contract address as demonstrated in
ppendix B.4.
Similarly, when a data owner gives feedback toward a stor-

ge node (with value fbScore), DDS invokes expCal function that
alculates the experience relationship between the two and up-
ates FeExInfo accordingly. In the demonstration, feedback scores
re randomly generated; however, in the real-world scenarios, a
unction to measure DDS QoS shall be implemented to correctly
eflect the service quality. As Solidity supports interactions be-
ween SCs deployed on Ethereum platform, the proposed trust
ystem is feasibly actualised as any DApps including DDS can
e incorporated by invoking public functions or accessing trust-
elated information from state variables defined in the SCs of the
roposed trust system.

13 https://docs.provable.xyz/
14 https://github.com/provable-things/ethereum-api/blob/master/oraclizeAPI_
0.4.sol

https://docs.provable.xyz/
https://github.com/provable-things/ethereum-api/blob/master/oraclizeAPI_0.4.sol
https://github.com/provable-things/ethereum-api/blob/master/oraclizeAPI_0.4.sol
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Fig. 7. Latency of READ and WRITE from/to Smart Contracts in Ethereum
test-nets.

Finally, to reinforce service quality for a client, the DDS ser-
vice queries RepPosInfo, RepNegInfo and FeExInfo stored at FeEx
and Rep SCs, respectively, to receive reputation and experience
values related to this client. The DDS service then aggregates this
information for finalising trust values between the client and the
storage nodes and provides the most trustworthy counterparts to
the client.

6. System analysis and discussion

The demonstration system presented in Section 5 is a proof-
of-concept of a universal decentralised trust system which is
incorporated into a BC infrastructure as an underlying service
for supporting DApps. This section investigates and discusses on
the practicality, performance, and security-related aspects of the
proposed trust system.

6.1. Performance evaluation, feasibility and limitation

In order to illustrate the real-world performance, we deploy
our system to different BC platforms, i.e., Ethereum test-nets
namely Ropsten, Kovan, Rinkeby, and Goerli. We carry out latency
measurement of both READ and WRITE transactions to the ledger
FeExInfo in the FeEx SC in the four test-nets. The results are shown
in Fig. 7. The performance measurement script can also be found
at the same repo.15

It is worth noting that in READ transactions, an Ethereum
platform does not perform the consensus mechanism; instead,
in WRITE transactions, consensus mechanism (i.e., Proof-of-Work
(Ethash) in Ropsten, Proof of Authority (Authority Round) in
Kovan, Proof of Authority (Clique) in both Rinkeby, and Goerli)
is carried out as the state of the ledger is changed. In details,
WRITE transactions require further complicated processes includ-
ing block formulation and mining, broadcast the mined block to
peers in the network, block verification, and updating the ledger.
This is why the latency of READ transactions is much smaller
than WRITE transactions, reassured by the results in Fig. 7. As can
be seen in the figure, the average latency of READ transactions
is roughly the same in all four test-nets at around 350–420
s with relatively small standard deviations. This indicates the
onsistency when querying data from the ledger. Compared to

15 https://github.com/nguyentb/Decentralised_Trust_Eth_IPFS/tree/master/
ackages/performanceAnalysis
76
READ transactions, the average latency in WRITE transactions is
significantly risen to 6013, 10376, 16973, and 17727 ms, which
is 15 to 42 times higher, in Kovan, Rinkeby, Goerli, and Ropsten, re-
spectively. The standard deviations, however, are different in the
four test-nets: Ropsten and Goerli introduce considerably higher
WRITE latency compared to Kovan and Rinkeby (2–3 times) but
WRITE transactions are more stable as the standard deviations
are small. Particularly, in Rinkeby test-net, the standard deviation
is substantially high — The latency spreads out in a wide range,
from 4500 to 17350 ms.

Results also show the block latency16 in WRITE transactions in
the four test-nets. In Kovan and Rinkeby, WRITE transactions are
almost appended and confirmed in the next block demonstrated
by block latency is close to 1 whereas in Goerli and Ropsten, it
could take one or two more blocks before the transaction is writ-
ten onto a new block. This is probably one of the reasons that the
latency in Goerli and Ropsten is higher than in Kovan and Rinkeby.

Results of the system latency indicate the technical barrier
on Ethereum-based system performance, which limits the us-
ability of the proposed decentralised trust system to serve only
small-scale services. Note that unlike the other test-nets, Rop-
sten performs Proof-of-Work consensus mechanism, similar with
the Ethereum main-net, thus, it best reproduces the Ethereum
production environment. As SCs, including FeEx and Rep SCs, are
dedicated to performing critical tasks with minimal storage and
computation, the performance of a DApp is heavily dependent on
the BC platform but not the application built on top. In addition
to Ethereum test-nets, most of permissionless BC main-nets, at
this stage, offer limited performance in terms of both throughput
and/or scalability. For instance, Bitcoin and Ethereum main-net
only handle about 7 and 15 transactions per second17). As a con-
sequence, the system performance immensely relies on an under-
lying BC network which requires further research on consensus
mechanisms [31], off-chain [32] and sharding solutions [33], etc.
for a better DApp ecosystem.

Besides the underlying BC platform, a variety of factors should
be taken into account when deploying the trust system into real-
world usages. For instance, gas cost for SC execution in Ethereum
Virtual Machine is high as such SCs requires high volume storage
for the state variables, as well as numerous operations and local
variable manipulations in Sc SC and the cost for using Oraclize
service in Rep SC. This calls for further research on SC optimisa-
tion [34] and better off-chain storage and calculation solutions.

Another limitation of the proposed approach is that the rep-
utation calculation needs to be executed off-chain due to the
extremely-high cost of Rep SC. As a consequence, the system
has to leverage the Oraclize solution in order to circumvent the
Oracle problem, which might lead to the dependency upon a
third-party (i.e., Oraclize provider) and breaks the philosophy of
a fully decentralised system. This dependency can be mitigated
if an Oraclize provider deploys its service under a decentralised
fashion, which is the solution approach to be pursued [35].

6.2. System security

The advanced capability of BC platform plays a key role in
providing a secure and trustworthy environment for DApps. Al-
though current BC and SC technologies still pose both perfor-
mance limitations and security threats, we assume that the de-
centralised nature of the BC ensures there is no adversary can
corrupt the BC network and change the content of the ledgers
as this would imply majority of the network’s resources are

16 The number of blocks increase counted when a transaction is broadcasted
to the network until it is confirmed (written in the latest block).
17 https://blockchain.info/charts/n-transactions

https://github.com/nguyentb/Decentralised_Trust_Eth_IPFS/tree/master/packages/performanceAnalysis
https://github.com/nguyentb/Decentralised_Trust_Eth_IPFS/tree/master/packages/performanceAnalysis
https://blockchain.info/charts/n-transactions
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ompromised. Besides, there is no adversary who can imperson-
te another entity as the public-key cryptography (e.g., Elliptic
urve Digital Signature Algorithm (ECDSA) used in Ethereum)
annot be forged.
Security threats in the proposed decentralised trust system are

rom typical reputation-related attacks such as Self-promoting,
landering (good/bad mouthing), and Whitewashing [36]. In our
ystem, to be able to provide feedback, an entity is required
o make a transaction toward the counter-party which, as a
esult, yields some fees, at least the transaction fee. Therefore,
uch reputation attacks are minimised as they always comes at
ost. Importantly, the proposed reputation mechanism itself can
itigate such reputation attacks. For instance, if a newly-created
ntity (thus its reputation value is minimal), makes a transaction,
nd then gives bad/good feedback toward a victim; the contri-
ution of this feedback to the reputation value of the victim
s minimal. This is because the reputation value of the victim
s calculated based on both experience and reputation score of
articipants who transact with the victim (indicated in Eqs. (6)
nd (7)). Obviously, if an entity is high-reputed (thus, probably
ot malicious) then the contribution (to one’s reputation) is huge.
ur reputation mechanism shares the same characteristics to
age-rank algorithm in Google web-ranking engine [37] that it
s not easy to increase the reputation ranking of an entity by
reating a lot of new Experience relationships toward it.
Feedback is typically subjective, and low-quality feedback

oward an entity results in the imprecision of the associated
xperience relationship, and, consequently, the reputation and
rust relationships of the entity. The nature of any feedback-
ased evaluation systems is that it is impossible to fully prevent
rom such low-quality feedback and reputation attacks. However,
e believe our approach can well mitigate these behaviours,
articularly with a large number of honest participants over
orrupt ones.

. Conclusion

In this paper, we have provided a comprehensive concept, sys-
em model and design of a decentralised trust system for DApps
cosystem along with detailed analysis, algorithms, and simula-
ions actualise the DER trust model. Foremost, we have developed
proof-of-concept system implementing the DER trust model
n top of the Ethereum permissionless BC. The trust system is
hen able to incorporate with the DDS service for supporting data
wners to select trustworthy storage nodes.
We have also provided technical difficulties along with

rospective solutions as well as the implementation reference
n the development of the proposed decentralised trust system.
xisting technical barriers are also outlined which need further
fforts to be successfully solved. We believe our research signif-
cantly contributes to further activities on trust-related research
reas and open some future research directions to strengthen a
rustworthy DApp ecosystem.
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ppendix A

This appendix section is dedicated to solving Lemmas 4.1 and
.2 in Section 4.

.1. Increase model lemma

emma A.1. The Increase model defined in Eq. (1) is (*) a mono-
tonically increasing function and (**) asymptotic to 1.

Proof. From Eqs. (1) and (2), with maxExp = 1, we have:

xpt = Expt−1 + (1− Expt−1)ϑt α (10)

Subtracting both sides of Eq. (10) from 1:

− Expt = 1− (Expt−1 + (1− Expt−1)ϑt α)
= (1− Expt−1)(1− ϑt α)
= (1− Expt−2)(1− ϑt α)(1− ϑt−1 α)
= · · ·

= (1− Exp0)
t∏

i=1

(1− ϑi α) (11)

As 0 < Exp0 < 1, 0 < α < maxExp = 1, and 0 < ϑi < 1 ∀i;
rom Eq. (11) we have 0 < Expt < 1 ∀t . Therefore, Expt function
efined in Eq. (1) is increasing as the increment value between
xpt and Expt−1 is ϑt ×∆Expt where ∆Expt = α(1− Expt−1) > 0.
ence, Lemma (*) is proven.
Furthermore, as Increase model is for cooperative transactions,

eaning that ϑi ≥ θco; ∀i ∈ {1, . . . , t}; from Eq. (11) we have:

< 1− Expt ≤ (1− Exp0)(1− θco α)t (12)

As θco, α, and Exp0 are the three pre-defined parameters in the
ange (0, 1); therefore:

lim
t→∞

(1− Exp0)(1− θco α)t = 0 (13)

Applying the Squeeze theorem on (12) and (13), we then have:

lim
t→∞

(1− Expt ) = 0 (14)

In other word, the monotonically increasing Expt function is
symptotic to 1; hence Lemma (**) is proven. □

.2. Reputation model lemma

emma A.2. The reputation vector Rep exists and is unique.

roof. According to Eq. (8), Rep exists and is unique if both RepPos
nd RepNeg exist and are unique.
The positive experience N × N matrix PE is constituted as

ollows:

E(i, j) =
{
Exp(i, j) if Exp(j, i) ≥ θ

0 if Exp(j, i) < θ
(15)

Let us constitute an N×N diagonal matrix M whose diagonal
lements mi = CPos(i),∀i ∈ {1, . . . ,N} and a matrix J is a N×N
ll-ones matrix.
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Based on Eq. (6), RepPos can be represented in matrix notation
as follows:

RepPos = (
1− d
N
×J + d× PE×M−1)×RepPos (16)

Let us define the APos matrix as follows:

APos =
1− d
N
×J + d× PE×M−1 (17)

Thus, Eq. (16) can be re-written:

RepPos = APos×RepPos (18)

From Eq. (18), we can see that RepPos is the eigenvector of
atrix APos with the eigenvalue = 1. Let us define a matrix
= AT

Pos; thus PT
= APos. Therefore, Eq. (18) can be re-written

s follows:

epPos = PT
×RepPos (19)

Eq. (19) implies that RepPos is the stationary distribution of a
arkov chain whose transition probability matrix is P . Let us
onstitute a discrete-time Markov chain with the transition prob-
ability matrix P = AT

Pos consisting of N states and the probability
to move from state i to state j is P(i, j). Note that ∀i, j ∈ {1, ..,N},
e have:

(i, j) = AT
Pos(i, j) = APos(j, i) =

1− d
N
+ d×

PE(j, i)
m(j)

(20)

The Markov chain can then be constructed as follows:

(i, j) =

{
1−d
N + d× PE(j,i)

m(j) if Exp(j, i) ≥ θ

1− ( 1−dN + d× PE(j,i)
m(j) ) if Exp(j, i) < θ

(21)

here θ is the threshold to differentiate positive and negative
xperiences. This Markov chain is a model of random surfer with
andom jumps over the experience relationships directed graph
(V , E) [38–40]. The graph G(V , E) is strongly connected with
o dangling nodes. This is because any two nodes (x, y) with
o prior transaction is set Exp(x, y) = 0, implying that the
dge weight is 0; it does not mean there is no connection. This
andom surfer Markov chain, apparently, is a weighted PageRank
odel; as a result, its stationary distribution, RepPos, exists and is

unique [39–41].
Similarly, RepNeg vector exists and is unique. Therefore, the

overall reputation vector Rep exists and is unique. □

Appendix B

This appendix section depicts some pseudo-code used in Sec-
tion 5. Note that the source-code of the software is located at
Github repo.18 Solidity source-code for Smart Contracts is under
/packages/ethereum-core and the performance evaluation
scripts are under /packages/performanceAnalysis in the
repository.

B.1. Data structure and state variable in FeEx SC

struct FeExStrut {
uint expValue;
uint fbScore;
bool perFlag;

}
mapping (address=>mapping (address=>FeExStrut))

public FeExInfo;

18 https://github.com/nguyentb/Decentralised_Trust_Eth_IPFS.git
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B.2. State variable in Rep SC

mapping (address => uint)
public RepPosInfo;

mapping (address => uint)
public RepNegInfo;

B.3. Oracle API used in Rep SC

import "./provableAPI.sol";
contract Rep is usingProvable {
function oraclizeQuery() {
// make an Oraclize query to the service using URL
oraclize_query("URL", RepCalService_API_URL);

}

function __callback(bytes32 _requestID, string _result) {
// only Oraclize is permitted to invoke the function
require (msg.sender == oraclize_cbAddress());

// update RepPosInfo & RepNegInfo
RepPosInfo[addr] = getRepPos(_result, addr);
RepPosInfo[addr] = getRepNeg(_result, addr);
}

}

B.4. FeEx SC is integrated into DDS SC

contract DDS {
function ePayment(address _storageNode,
unit _amount, string _datahash) {
...
if (success) {
//call FeEx using deployed address scAddr
FeEx fe = FeEx(scAddr);
fe.enFeedback(msg.sender, _storageNode,
string _transID);

}
}

}
contract FeEx {
function enFeedback(address _owner,
address _storageNode, string _transID);

function expCal(address _owner, uint _fbScore,
address _storageNode, string _transID);

}
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