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Multi-scale Grid Network for Image Deblurring
with High-frequency Guidance

Yang Liu, Faming Fang, Tingting Wang, Juncheng Li, Yun Sheng, Guixu Zhang

Abstract—It has been demonstrated that the blurring process
reduces the high-frequency information of the original sharp
image, so the main challenge for image deblurring is to re-
construct high-frequency information from the blurry image.
In this paper, we propose a novel image deblurring framework
to focus on the reconstruction of high-frequency information,
which consists of two main subnetworks: a high-frequency
reconstruction subnetwork (HFRSN) and a multi-scale grid
subnetwork (MSGSN). The HFRSN is built to reconstruct latent
high-frequency information from multiple scale blurry images.
The MSGSN performs deblurring processes with high-frequency
guidance at different scales simultaneously. Besides, in order
to better use high-frequency information to restore sharpening
images, we designed a high-frequency information aggregation
(HFAG) module and a high-frequency information attention
(HFAT) module in MSGSN. The HFAG module is designed to
fuse high-frequency features and image features at the feature
extraction stage, and the HFAT module is built to enhance the
feature reconstruction stage. Extensive experiments on different
datasets show the effectiveness and efficiency of our method.

Index Terms—Blind image deblurring, image processing, high-
frequency guidance, convolutional neural networks, multi-scale.

I. INTRODUCTION

MOTION blur caused by camera shake and object mo-
tion is one of the most common problems faced by

photographers. Blurry images containing unreal artifacts will
place an obstacle in application to autopilot systems, intelligent
surveillance systems and so on. Thus image deblurring which
aims to restore a sharp latent image from the blurry one has
been a research hot spot in Computer Vision and Artificial
Intelligence.

Over the past few decades, a large number of single image
deblurring methods have been proposed, which can be roughly
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divided into two categories, i.e., optimization-based meth-
ods and recent learning-based methods. Optimization-based
methods [1], [2], [3], [4], [5] follow the image degradation
equation. The unknown blur kernel and latent image make it
an ill-posed problem, so they need to estimate the blur kernel
of blurry image based on different assumptions or priors. Xu
et al. [2] develop an unnatural L0 sparse expression, and Pan
et al. [6] propose the L0-regularized prior on both intensity
and gradient for deblurring text images. Pan et al. [1] utilize
the dark channel prior to increases the effect of deblurring, but
when the images are bright pixels dominant, the dark channel
prior losses its utilities. Yan et al. [4] introduced an extreme
channel prior to solve this issue by combining the dark channel
prior and the bright channel prior. Chen et al. [5] proposed a
local maximum gradient prior to restore more high-frequency
information. Nevertheless, these methods suffer from several
drawbacks: (1) they need complex computational inference
due to the iterative calculation process; (2) they hardly handle
non-uniform dynamic blurs, that is, they can only deal with
blur caused by camera shake, not by object motion.

Recently, deep learning technology drives the development
of image restoration tasks [7], [8], [9], [10], [11]. There are lots
of learning-based deblurring methods that have been proposed.
Zhang et al. [12] trained a set of CNN denoisers and integrated
them into the model-based optimization method as a prior. Liu
et al. [13] designed two CNN modules, named Generator and
Corrector, to extract the intrinsic image structures from the
data-driven and knowledge-based perspectives, respectively.
However, it is difficult for these methods to remove non-
uniform dynamic blurs, and they are computationally ineffi-
cient due to the complex optimization process. Xu et al. [14]
used a deconvolutional CNN to remove blur with the given
blur kernel. Sun et al. [15] proposed a classification CNN to
predict blur direction and strength in 30×30 image patches.
Those methods still rely on the blur kernel to recover the sharp
image because they are limited by assuming that the sources
of blurs are only camera shake. To tackle such problems,
recent end-to-end network proposed to learn the mapping
between blurry images and clear images. Nah et al. [16]
proposed a multi-scale method by designing a convolutional
neural network for deblurring in a ’coarse-to-fine’ manner.
Kupyn et al. [17] presented a conditional generative adversarial
network (GAN) to produce photorealistic deblurred images,
with the assistance of the discriminator. Kupyn et al. [18]
utilized the FPN architecture [19] and dual discriminator to
improve the GAN network mentioned above. However, these
GAN-based methods usually suffer from over smoothing.
Zhang et al. [20] iteratively removed blur with a stackable
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Fig. 1: Comparison of edge image and high-frequency image
of the blurry image and sharp image. It is clear to find that
the blurry edge was ruined by the blurring process, but the
high-frequency information is still retained.

hierarchical method. Suin et al. [21] improved this method
with a cross attention module. Aljadaany et al. [22] proposed
a deconvolution network by learning both the image prior and
data fidelity terms.

The key problem of image deblurring is to restore the high-
frequency features in the original image because the high-
frequency information of the original image is hidden after
the blurring process. Therefore, some methods were proposed
to introduce some priors to recover the high-frequency infor-
mation from degraded images. For example, Fang et al. [23]
introduce an edge prior to image super resolution problem
which is able to extract shape edges from degraded image. Ma
et al. [24] apply a gradient prior for the image super resolution
task, they use a subnet to reconstruct HR gradient map from
LR image which can preserve structure information. But these
kinds of prior are not suitable for image deblurring because
the blurring process will break edges or structures from the
original sharp image. As shown in Fig. 1, the blurry image has
different structures and edges from the sharp image, but some
of the original high-frequency information is still retained in
blurry image. This is because a blurred image can be regarded
as a sharp image convolved by the blur kernel, and the
high-frequency information in it is smoothed but not erased.
Based on this finding, we propose a high-frequency guided
framework for image deblurrring. First, we apply the high-
frequency reconstruction subnetwork (HFRSN) to reconstruct
latent high-frequency information from multiple scale blurry
images. Second, we use high-frequency information as a prior
to guide the deblurring process in different scale based on
the multi-scale grid subnetwork (MSGSN). In each scale of
MSGSN, we propose a high-frequency aggregation module
(HFAG) to fuse image features and high-frequency features in
the feature extraction stage, and we propose a high-frequency
attention module (HFAT) to enhance the reconstruction stage.
It is worth mentioning that the two sub-networks are jointly
trained so that the final loss of deblurring process in MSGSN
will influence the high-frequency reconstruction in HFRSN,
which will help HFRSN to reconstruct the really useful high-

frequency information. In this way, our method is capable of
handling image deblurring task. Extensive experiments show
that our method outperforms other state-of-the-art deblurring
methods on two benchmarks.

Our contributions are summarized in four aspects.
• We introduce a high-frequency prior to image deblurring

by proposing a high-frequency guided framework.
• We propose a high-frequency reconstruction subnet-

work called HFRSN, which can reconstruct latent high-
frequency information from multiple scale blurry images.

• We propose a multi-scale grid subnetwork called MSGSN
to perform the deblurring process in different scale with
high-frequency information guidance.

• We propose two different modules named high-frequency
aggregation module (HFAG) and high-frequency attention
module (HFAT), and they guide the feature extraction
stage and the feature reconstruction stage in each scale
of MSGSN, respectively.

II. RELATED WORK

A. Image Prior in Learning-based Methods

The image prior has demonstrated its superpower on
optimization-based methods which guided the equation to be
solved to a solution domain closer to the real domain. In recent
years, some deep learning methods based on image prior have
gradually shown their capabilities. Cheng et al. [25] proposed
a fusionnet with an edge prior for the semantic segmentation
of remote sensing harbor images. Wang et al. [26] used the
semantic segmentation probability map as a semantic prior to
constrain the super-resolution solution space. Cho et al. [27]
proposed a gradient prior-aided CNN denoiser to reduce
the computational complexity while enhancing the denoising
performance. These priors show remarkable performance in
different area.

In the image deblurring field, some image priors were
proposed. Shen et al. [28] propose a human-aware deblurring
method which applys a semantic prior to solve human blur and
background blur, respectively. But its performance is mediocre
when it processes other blurred images that do not contain
people. Yuan et al. [29] apply an optical-flow prior to guide
the spatially variant deconvolution network. Zheng et al. [30]
and Fu et al. [31] both proposed edge priors that extract edge
information with a pretrained subnet before the deblurring
process and use the extra edge information to improve the
deblurring result. However, their methods are limited by the
extraction of edge features, because if the wrong edge features
is extracted, the result of deblurring will be affected. As
mentioned above, the blurring process will break edges or
structures from the original sharp image. In addition, the edge
features are a kind of very sparse and high-frequency feature,
and the effective information contained therein is limited. To
address the drawbacks of previous methods, we proposed the
high-frequency reconstruction subnetwork (HFRSN) to recon-
struct latent high-frequency information from blurry images.
As shown in Fig. 1, the high-frequency information contains
more effective information than edges. What’s more important
is that our HFRSN adapts to the main deblurring subnetwork
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(MSGSN), so as to avoid the generation of harmful informa-
tion.

B. Multi-scale Methods

An image in different resolution has different performance.
Large blur artifacts will become small after reducing the
resolution, which is more suitable for repairing by convolution
because the convolution kernel of the same size has a larger
receptive field at a lower resolution. Therefore, the multi-scale
method is very suitable for image deblurring. Nah et al. [16]
exploited a multi-scale CNN to remove blurs in an end-to-
end fashion, which applied successive coarse-to-fine strategy
to recover the sharp image from coarser-scale to finer-scale in
a successive manner. But this method didn’t use downsampling
to reduce the size of features, so that it consumes a lot of time
to calculate the full size image of each scale. Following the
same strategy, Tao et al. [32] applied encoder/decoder modules
in each scale and also added an LSTM path from coarser-
scale to finer-scale to promote the flow of information only at
the middle level, and then Gao et al. [33] applied parameter
sharing between different scales which greatly reduced the
parameter number of the multi-scale network. Nevertheless,
these multi-scale methods did not consider the transfer of
information between different scales at different levels, which
leads to the blockage in information. In order to tackle such
an issue, we transform the grid-like architecture into a multi-
scale form and then use its dense connection to fuse features
between different scales.

C. Grid-like Architecture

The grid-like architecture was first proposed by [34] who
used it in semantic segmentation, but its blockwise dropout
is not suitable for image restoration work, and its batch
normalization [35] costs a lot of time to calculate. Liu et
al. [36] improved the grid network with an attention mech-
anism to better remove fog from foggy pictures. The grid-
like architecture shows its superiority because it has dense
connection between different levels, but the previous grid-
like method mentioned above ignored the connection between
levels and scales. We introduce the grid-like architecture to
the image deblurring field and transform it into a multi-scale
architecture. In detail, we abandon tricks from above grid
networks and add multi-dimensional inputs and outputs to
each level of the grid-like architecture, and design a multi-
scale loss to guide each scale so that the grid-like network
can gradually deblur the image and capture more information
from different scales. It was demonstrated that convolution
layers loss image details so that Ronneberger et al. [37]
proposed the skip-connection in Unet to protect image details.
Inspired by that, we introduce the skip-connection into our
grid-like architecture which also protect image details from
losing through a lot of convolutional layers and improved our
deblurring result.

III. OUR FRAMEWORK

In this section, we propose a novel image deblurring
method, the overall architecture of which is depicted in Fig.

2. We input multi-scale blurry images to HFRSN, which
reconstruct high-frequency features directly from multi-scale
blurry images, and we take the high-frequency features to
guide the deblurring process (MSGSN). In MSGSN, we also
take multi-scale blurry images as input and perform multi-
scale deblurring processes simutaneously. During each scale’s
deblurring process, we apply the high-frequency aggregation
module (HFAG) and high-frequency attention module (HFAT)
to strengthen the feature extraction stage and feature recon-
struction stage.

A. High-frequency Reconstruction Subnetwork (HFRSN)

As mentioned above, an image in different resolution has
different high-frequency information. And the same convolu-
tional network working on different resolution has different re-
ception field. Inspired by this, we propose a subnetwork (called
HFRSN) which possesses multi-scale inputs and outputs to
reconstruct multi-scale high-frequency information simultane-
ously. The network architecture of HFRSN is illustrated in the
upper part of Fig. 2. As you can see, the HFRSN, taking multi-
scale blurry images as inputs, follows the popular encoder-
decoder structure. The purpose is to obtain accurate high-
frequency information with the multi-scale fusion capability
of encoder and decoder. The operation of the HFRSN can be
written as

{HF1, ...,HFS} = D(E(B1, ..., BS)), (1)

where S denotes the number of scales, E and D denote the
encoder and the decoder, respectively, Bi, i ∈ 1, ..., S are the
multi-scale blurry image and HFi, i ∈ 1, ..., S are the multi-
scale high-frequency information reconstructed by HFRSN.

1) Encoder and Decoder: From a functional perspective,
the encoder plays the role of feature extractor, while the
decoder plays the role of feature reconstructor. As shown
in Fig. 3, there are three main blocks in the encoder mod-
ule and decoder module. ResGroup is composed of several
resblocks [38]. The Downsampling Block/Upsampling Block
consists of a convolutional/deconvolutional layer and a res-
block.

Specifically, the encoder is represented as a top-to-bottom
path containing ResGroup and Downsampling Blocks. The
ResGroup is used to extract features in different scales. The
extracted features are fused by the Downsampling Blocks
from high-resolution to low-resolution. Conversely, the de-
coder has a bottom-to-top path containing ResGroup and
Upsampling Blocks. It is designed to reconstruct images from
low-resolution to high-resolution. Briefly, the encoder and
decoder extract and then fuse multi-scale features.

2) Discrete Cosine Transform: There are many transforma-
tions that can be used to extract high-frequency information
of the image, such as Discrete Cosine Transform (DCT) [39],
Wavelet [40], and Framelet [41]. Here we select DCT to
transforms images from spatial representation to frequency
representation. The high-frequency coefficients representing
image edges or shapes are regarded as high-frequency infor-
mation of the image and they are used as the ground-truth of
our HFRSN.
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Fig. 2: The whole network of our method. The upper part is our high-frequency reconstruction subnetwork, and the lower part
is our multi-scale grid subnetwork.

B. Multi-scale Grid Subnetwork

It has been demonstrated that the multi-scale ap-
proaches [16], [32], [33] are capable of recovering the sharp
image from the blurry one in the field of single image
deblurring. Benefitting from the different reception field, the
multi-scale approaches are able to handle different sizes of
blurs. Besides HFRSN, our MSGSN also follows the multi-
scale manner.

MSGSN applies the grid-like architecture to perform multi-
scale deblurring in parallel. The main architecture of the
MSGSN is shown in the lower part of Fig. 2. It takes multi-
scale blurry images as input, processes multi-scale feature
extraction and feature reconstruction in parallel and finally
outputs multi-scale deblurred results. Compared with HFRSN,
MSGSN also uses the same encoder and decoder to extract
and aggregate image features from different scales despite of
the doubled number. Besides, we apply high-frequency aggre-
gation module (HFAG) and high-frequency attention module
(HFAT) to enhance the capability of the encoder and decoder,
respectively. In the feature extraction stage, the HFAG is

used to aggregate image features and high-frequency features
together which enriches the feature diversity. While in the
feature reconstruction stage, the high-frequency attention map
calculated by HFAT is used to strengthen the reconstruction
of high-frequency regions. The details of the HFAG and the
HFAT will be described later. In addition, to preserve image
details, we introduce the skip connection from U-net [37] to
improve the performance of the grid-like architecture.

Given the multi-scale blurry images Bi, i ∈ {1, ..., S} as
input, the MSGSN executes HFAG G to aggregate image
features and image high-frequency features in each scale, it
can be formulated as

FG
i = G(Bi, F

HF ), i ∈ {1, ..., S}, (2)

where FHF denotes the high-frequency features reconstructed
by HFRSN, i.e., the output of the last convolutional layer in
HFRSN.

Then, the aggregated features FG
i are fed into cascaded

encoders E1 and E2 to extract deeper image features,

{F1, ..., FS} = E2(E1(FG
1 , ..., F

G
S )). (3)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 3: The illustration of the encoder module, the decoder module, the high-frequency aggregation module and the high-
frequency attention module.

After that, the MSGSN utilizes HFAT T to enhance the
reconstruction of the high-frequency area,

FT
i = T (Fi, F

HF ), i ∈ {1, ..., S}. (4)

Then, the enhanced features FT
i are used to reconstruct clear

image Li with cascaded decoders D1 and D2,

{F IM
1 , ..., F IM

S } = D1(F
T
1 , ..., F

T
S ),

{L1, ..., LS} = D2((F
IM
1 + FG

1 ), ..., (F IM
S + FG

S )),
(5)

where the F IM
i are the intermediate outputs of the first

decoder. We input the sum of F IM
i and FG

i to the second
decoder to preserve the low-level details of the input image.

1) High-frequency Aggregation module: Inspiring by [24],
we select concatenation to fuse image features and high-
frequency features in each scale. However, the two types of
features are independent of each other, which is not conducive
to effective feature fusion. Thus we use convolutional layers
to refine the features separately and make them have the same
number of channels before concatenation. Then we apply a
bottleneck convolution layer to extract useful features. The
network details of HFAG module are illustrated in Fig. 3.
With the help of HFAG, our deblurring method make full use
of extra high-frequency information to better recover sharp
images.

2) High-frequency Attention module: To better take advan-
tage of high-frequency information, HFAT module is intro-
duced to enhance the deblurring process. The HFAT network
is shown in Fig. 3, which takes the concatenation of high-
frequency features and image features as input and adaptively
learn high-frequency attention maps. Then the attention maps
multiply image features so as to pay more attention to high-
frequency area.

C. Loss Function

Our loss function contains three terms: pixel consistency
loss LC , perceptual loss LP , and high-frequency loss LHF .
The overall loss function Loss is defined as follows:

Loss = LC + λPLP + λHFLHF , (6)

where λP and λHF control the weight of the perceptual
loss and the high-frequency loss, respectively. Specifically,
LC controls the pixel level accuracy, LP measures the high
level feature similarity between the reconstructed image and
ground-truth image and LHF guarantees the HFRSN to recon-
struct real high-frequency information from blurry images. It is
worth noting that we calculate all the loss functions in different
scales separately, which helps our method better handle multi-
scale process.

1) Pixel Consistency Loss: As shown in Fig. 2, we let Li

and Gi respectively denote the deblurred sharp image and the
ground-truth sharp image in ith scale. The pixel consistency
loss can be expressed as

LC =
1

2S

S∑
i=1

‖Li −Gi‖22 . (7)

2) Perceptual Loss: The perceptual loss is defined as the
l2-norm between the VGG-19 features of the deblurred sharp
image Li and the ground-truth sharp image Gi in each scale:

LP =

S∑
i=1

1

2SCjHjWj
‖φj(Li)− φj(Gi)‖22 , (8)

where φj(Li) and φj(Gi) denote the aforementioned VGG19
feature maps from the jth level associated with the deblurred
sharp image and the ground-truth sharp image in each scale,
and Cj , Hj and Wj are dimensions of the feature. In our work,
we use the feature from the conv3 3 layer (j = 15).
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3) High-frequency Loss: The high-frequency loss function
can be defined as

LHF =
1

2S

S∑
i=1

‖HFi −GHFi‖22 , (9)

where GHFi denotes the high-frequency information ex-
tracted from ground-truth image.

IV. EXPERIMENTS

In this section, we conduct a series of experiments to
evaluate the effectiveness and efficiency of our method. First,
we explain the implementation details of our method and the
datasets we used for training and validation. Then we show
the comparisons on synthetic datasets and a real-world dataset
with start-of-the-art methods. Next, we explore our method
on high-level task. Finally, we present an ablation study to
investigate the effect of each component in our methods. Note
that we use Matlab to calculate the PSNR and SSIM values
on the RGB color space.

A. Experimental Settings

1) Implementation: We implement our method in PyTorch
on a single NVIDIA V100 GPU. During training, we randomly
crop the blurry and sharp images to 512×512 in pixel size and
then downsample them several times for different scales. We
use the DCT to get ground-truth high-frequency information
maps. The batch size is set to 1 for training. We use the Xavier
method [42] to initialize network parameters. The network is
optimized by the Adam solver [43] for 600 epochs. Initial
learning rate is set to 0.0001, and then exponentially decayed
to 0 using power 0.3. We use 3 × 3 convolution kernel for
convolutional layers all over the networks, and for different
scales in HFRSN and MSGSN, we set the numbers of filters
as 40, 80, 160 from large scale to small scale. We set the
numbers of scale (S) to 3 in order to balance the parameters
and performance. In the total loss function, we set λP = 0.01
and λHF = 0.01 for the best result which will be discussed
in section IV.C.

2) Datasets: We choose the GoPro dataset [16] to train
our method, and use the GoPro dataset [16] and the HIDE
dataset [28] to evaluate our method. Moreover, we choose
blurry images from [44] for comparisons with real-world
images.

The GoPro dataset [16] consists of 3214 pairs of blurry
images and corresponding sharp images, and each blurry
image was synthesized from multiple continuous sharp images,
which can simulate the way of real blur generation. The GoPro
dataset was captured at several different scenarios by a high-
speed action camera, whose image size is 720×1280. For a
fair comparison, we follow the same protocol in [16], which
uses 2103 image pairs for training and 1111 image pairs for
testing.

The HIDE dataset [28] consists of 8422 pairs of blurry
images and corresponding sharp images, and the images are
divided into two categories, i.e. , long-shot (HIDE I) and close-
shot (HIDE II). Evaluating each group can capture different
aspects of the multi-motion blurring problem. In addition, we

Fig. 4: The PSNR vs Runtime of our methods and the state-
of-the-art deblurring methods.

Models PSNR SSIM Time(ms) Params(Mb)

Nah et al. [16] 29.08 0.913 4300 21
Kupyn et al. [17] 28.70 0.958 850 null
Tao et al. [32] 30.26 0.934 1600 6.4
Gao et al. [33] 30.92 0.942 1600 2.8
Aljadaany et al. [22] 30.35 0.961 1200 6.7
Zhang et al. [20] 31.50 0.948 552 27.6
Kupyn et al. [18] 29.55 0.934 350 3.3
Suin et al. [21] 31.85 0.948 340 null
Yuan et al. [29] 29.81 0.936 10 3.1
Jiang et al. [45] 31.79 0.949 null null

ours 31.90 0.951 160 25.7

TABLE I: Comparison with other deblurring methods on
GoPro dataset [16].

evaluate the model trained on the GoPro dataset [16] on
the HIDE dataset to evaluate the generalization ability of our
methods.

B. Performance Comparisons

We compare our method with other state-of-the-art deblur-
ring methods [16], [17], [32], [33], [22], [20], [18], [21],
[29], [45] on three datasets as mentioned above. Unless stated
otherwise, all the reported results are directly copied from the
original paper and the null stand for the result cannot be found
in the original paper and its open source code cannot be found.

1) Comparision on the GoPro dataset: We first compare
our method with other deblurring methods on the GoPro
evaluation dataset. The quantitative results are listed in TABLE
I. Time and Params in the tables refer to inference time and the
number of network parameters. Our method performs better
than previous multi-scale methods [16], [32], [33] because our
method has high frequency guidance. Method [29] achieves
the fastest speed on processing 720×1280 image with a
small model. Our proposed method achieves a competitive
result (31.90 dB in PSNR). Furthermore, we evaluated the
computational efficiency of the aforementioned state-of-the-
art methods as shown in Fig. 4, our method achieves good
balance between speed and PSNR. It is worth noting that the
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(a) Comparison on the GoPro dataset.

(b) Comparison on the HIDE dataset.

(c) Comparison on the real-world blurry image.

Fig. 5: Visual comparison on the synthetic datasets and real-world blurry image, respectively. From left to right: the blurry
image, the deblurred result of [32], [20] and ours, respectively. The zoomed-in area is shown below each result image.
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Models HIDE I HIDE II

PSNR SSIM PSNR SSIM

Nah et al. [16] 27.11 0.897 26.01 0.870
Tao et al. [32] 28.01 0.920 26.97 0.901
Gao et al. [33] 29.98 0.943 28.14 0.919
Kupyn et al. [18] 26.28 0.879 25.09 0.858
Shen et al. [28] 29.60 0.941 28.12 0.919
Zhang et al. [20] 29.79 0.942 28.33 0.924

ours 30.33 0.943 28.61 0.925

TABLE II: Comparison with other deblurring methods on
HIDE dataset [28].

runtime of network is not directly related to the number of
parameters. It is affected by many factors, such as network
architecture, convolution kernel size, different neural network
modules, etc.

Visual comparison on the GoPro evaluation dataset is shown
in Fig. 5. No matter it is a small blur caused by object motion
or a large blur caused by camera shake, our method can obtain
a promising deblurring result. Looking at the enlarged image
area, it can be seen that our method reconstructs more high-
frequency information. Please zoom in for more details.

2) Comparision on the HIDE dataset: In order to verify
the generalization ability, we further evaluate our model on
the HIDE test set. TABLE II shows a quantitative evaluation
in terms of PSNR and SSIM, where our model achieves the
competitive performance, which proves that our method can
remove blurs in different scenes well, even though our model
is trained on the GoPro dataset. Fig. 5 presents the visual
comparison on the HIDE dataset, our method deblurs better
and reconstructs more high-frequency details.

3) Comparision on the real-world images: We further
compare our method against previous deblurring methods on
the real-world dataset [44]. Since there is no ground-truth for
these real-world blurry images, we can only make qualitative
comparisons. As shown in Fig. 5, method [32] can remove blur
and strengthen the edges well, but with the loss of details.
Method [20] causes many artifacts. Our method removes
blur without generating artifacts and reconstructs more high-
frequency information.

4) Comparision on High-level Task: The quality of the
deblurred images will affect the performance of the high-level
computer vision tasks, such as object detection and image
classification. To further demonstrate the effectiveness of our
method, we conducted a comparative experiment on high-
level computer vision tasks. Specifically, we used the VGG19
network to train a flower classifier on the flower classification
dataset [46]. The dataset, containing 102 types of flower
images and are divided into a training set and a test set. Eight
random blur kernels generated by the same method as [47]
are used to blur each image in the test set. We train the flower
classifier on the clear training set, and test it using clear test
images, blurred test images, deblurred images by method [20],
method [33] and our method, respectively. The classification
accuracy is presented in Fig. 6, One can see that blurry images
severely reduce the accuracy of high-level image classification
task. The deblurred images reconstructed by our method get

Fig. 6: Exploration on image classification.

Method PSNR SSIM Params(Mb)

(a) w/o HFRSN 31.21 0.944 16.5
(b) w/o joint training 31.71 0.949 25.7
(c) our method 31.90 0.951 25.7

(d) DMPHN [20] 30.21 0.935 7.2
(e) DMPHN [20] with HFRSN 30.49 0.939 9.7

TABLE III: The impact of HFRSN and joint training strategy
on model performance.

77% classification accuracy, which is 11% higher than the
blurry images, 3% higher than that using deblurred images by
method [20], 4% higher than that using deblurred images by
method [33]. This is a huge improvement, demonstrating that
our method can reconstruct clearer images than other deblur
methods.

C. Ablation Analysis
We conduct a series of ablation studies to demonstrate the

efficiency of our method. We use GoPro dataset for evaluation.
1) Ablation Analysis on High-frequency Prior: In recent

years, image priors in deep learning-based methods have
gradually received researcher’s attention. In this paper, we
propose a high-frequency prior to the single image deblurring
field. To demonstrate its effectiveness, we designed a series of
experiments.

(i) As mentioned in section III, our high-frequency features
is reconstructed by our HFRSN and we use it as a prior
in MSGSN. In order to verify the importance of our high-
frequency prior, we separately trained a MSGSN without
HFRSN and a MSGSN with HFRSN for comparison exper-
iments. As shown in Fig. 7, high-frequency prior can help
our MSGSN network recover sharper edges and structures.
We also performed quantitative analysis on the GoPro test set,
as shown in (a) and (c) of TABLE III, our method improved
0.69dB in PSNR with the assistance of high-frequency prior.
It is clearly showed that our HFRSN can reconstruct high-
frequency features and help the MSGSN to get better deblur
results.

(ii) Our proposed high-frequency prior is independent of
the backbone. To further demonstrate the effectiveness of the
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Fig. 7: Visual comparison of our method w/o HFRSN and our
method with HFRSN

Fig. 8: Visual comparison of separate training and joint
training

proposed high-frequency prior, we apply it to DMPHN [20],
a classic multi-patch deblurring network. As shown in (d) and
(e) of TABLE III, our high-frequency prior can improve the
deblurring performance of DMPHN. It is worth mentioning
that we only use single-level high-frequency guidance on the
DMPHN network, the performance can be further improved
by using multi-level high-frequency guidance.

(iii) Previous methods [30], [31] use the edge prior to
enhance the high-frequency feature extraction by utilizing a
pretrained network to extract edges from blurry images. But
wrong edge features may be extracted. In our method, we
train the two subnets (MSGSN and HFRSN) jointly, thus the
final error gradient will propagate to the HFRSN to avoid
the reconstruction of harmful high-frequency information. The
difference between joint training and separate training can be
seen in (b) and (c) of TABLE III. Compared with separate
training, joint training brings about 0.2dB improvement in
PSNR. In addition, we show the visual comparison of joint
training and separate training in Fig. 8. It is obvious that
the high-frequency image reconstructed by joint training has
more sharper edge than separate training does, which further
demonstrates the importance of joint training.

(iv) The edge features are one of the most important
component of image features, which has been widely used
in image reconstruction tasks [23], [24]. Nevertheless, the
edge features is seriously destroyed by the blurring process,
so it is hard to recover sharp edges from the blurry image.
In addition, the edge features are a kind of very sparse and
high-frequency feature, so the effective information contained
therein is limited. By contrast, high-frequency prior has more
information than edge prior so it is easier to extract useful
information by networks. Therefore, we propose the high-
frequency prior to guide the deblurring process.

In order to verify the effectiveness of our high-frequency

Image prior PSNR SSIM

(a) Canny edge 31.72 0.949
(b) Laplace edge 31.67 0.948
(c) Gradient 31.80 0.950
(d) Wavelet Transform 31.79 0.950
(e) our method (DCT) 31.90 0.951

TABLE IV: Comparision of different image prior.

Method PSNR SSIM Params(Mb)

(a) w/o HFAG 31.40 0.947 25.2
(b) directly concatenating 31.78 0.950 25.4
(c) w/o HFAT 31.69 0.949 22.3
(d) single-level guidance 31.62 0.948 22.4
(e) our method 31.90 0.951 25.7

TABLE V: Comparision of high-frequency guidance.

prior, we trained a model with (a) the Canny edge map; (b)
the Laplace edge map; (c) the gradient map; (d) the Wavelet
high-frequency map; (e) the DCT high-frequency map. The
visual and quantitative comparison are shown in Fig. 9 and
TABLE IV, respectively. It can be seen that the performance
of the high-frequency priors (c, d, e) is better than that of the
edge (a, b), and our DCT high-frequency prior achieves the
best performance.

2) Ablation Analysis on High-frequency Guidance: As
mentioned above, high-frequency features have been recon-
structed by our HFSRN, but it is also a challenge to apply
the high-frequency to guide the deblurring process. Different
from other prior guidance methods [23], [31], our high-
frequency prior guidance is implemented by two different
modules HFAG and HFAT and we apply them at different
scales. We designed several sets of comparison models to
demonstrate the effectiveness of our high-frequency guidance:
(a) a model without HFAG; (b) a model directly concatenating
the high-frequency features and image features; (c) a model
without HFAT; (d) a model with single-level guidance; (e)
our method with multi-level guidance. The result is shown
in TABLE V. The model without HFAG (a) is nearly 0.5
dB worse than our complete model (e) and the (c) is 0.2 dB
worse than the model (e), which demonstrates our HFAG and
HFAT module is effective. Moreover, the model (b) directly
concatenating the high-frequency features and image features
shows worse result than our complete model (e), which also
verifies the effectiveness of the proposed HFAG. The result of
single-level guidance (d) is 0.28 dB lower than our complete
model (e), which demonstrates the effectiveness of the multi-
level guidance.

Besides, we showed the visualization of our high-frequency
attention map in Fig. 10. We can observe the high correlation
between estimated attention weights and the high-frequency
regions presented in the image. Thus, our decoders will pay
more attention to feature reconstruction of high-frequency
regions after multiplying image features with our attention
maps.

3) Ablation Analysis on Network Structure: Both HFRSN
and MSGSN use the encoder-decoder structure to extract and
reconstruct multiple scale features in parallel. In this part,
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Fig. 9: Visualization of different image priors used by our method.

Fig. 10: Visualization of high-frequency attention map from
HFAT.

we will discuss the effectiveness of the multi-scale strategy,
encoder and decoder in HFRSN and MSGSN. Moreover, we
will discuss the effectiveness of our MSGSN backbones.

(i) HFRSN: here we train the HFRSN with single scale and
with different numbers of encoder/decoder, respectively. The
result is shown in TABLE VI. The single scale (a) is 0.2dB
lower than the multi-scale (b), which demonstrates that our
multi-scale HFRSN can extract more high-frequency informa-
tion from multi-scale blurry images. It is worth noting that our
single scale model (a) has the same architecture and the same
number of parameters of our complete method (b) except the
multi-scale inputs and outputs. The model (c) to (f) represent
the results of different numbers of encoders and decoders. We
set the numbers of encoders and decoders of MSGSN to 1
for convenience. It can be seen that increasing the numbers
of encoders and decoders cannot bring much performance
improvement but will take a long time to converge when the
numbers of parameters increased. So we choose the E1D1 as
our proposed HFRSN.

(ii) MSGSN: similar experiments are also designed for
MSGSN. The experiment result is showed in TABLE VII. The
model (b) performs better than the model (a) about 0.57dB
but does not bring additional parameters, which demonstrates
that multi-scale features are very important for our deblurring
method. The model (c) to (f) shows that the performance of the
different numbers of encoders and decoders. We can observe
that E2D2 showed the best performance. Different from
HFRSN, we found that increasing the numbers of encoders and

Method PSNR SSIM Params(Mb)

(a) w/o multi-scale 31.70 0.949 25.7
(b) our method 31.90 0.951 25.7

(c) E1D1 31.23 0.945 17.5
(d) E2D1 31.26 0.945 21.6
(e) E1D2 31.25 0.945 21.6
(f) E2D2 31.29 0.945 25.7

TABLE VI: Results of the impact of each component in
HFRSN. The ExDy means the model has x encoder and y
decoder.

Method PSNR SSIM Params(Mb)

(a) w/o multi-scale 31.33 0.946 25.7
(b) our method 31.90 0.951 25.7

(c) E1D1 31.23 0.945 17.5
(d) E2D1 31.55 0.948 21.6
(e) E1D2 31.61 0.949 21.6
(f) E2D2 31.90 0.951 25.7

TABLE VII: Results of the impact of each component in
MSGSN. The ExDy means the model has x encoder and
y decoder.

decoders in MSGSN will bring an improvement in deblurring
result and the reason may lie in that MSGSN has more image
information to be processed. However, when we continue to
increase the numbers of encoders and decoders, we found the
improvement is limited. So we choose E2D2 as our proposed
MSGSN.

(iii) Our MSGSN backbone is inspired by the grid-like net-
work [34] and the multi-scale network [16] and aims to com-
bine their advantages. In detail, we use the dense connections
of the grid network to fuse information from multiple scales
and use the skip-connection to preserve low-level features. We
compared our MSGSN with other three networks: previous
grid-like network [34], previous multi-scale network [33], and
our MSGSN backbone without skip-connection. For a fair
comparison, we guarantee the four networks to have similar
parameters and numbers of convolutional layers, and trained
them on GoPro dataset [16] with the same training strategy. As
illustrated in TABLE VIII, our MSGSN backbone achieves the
best results, which demonstrates that our MSGSN backbone
is able to combine the advantage of both the grid-like network
and the multi-scale network.
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Method PSNR SSIM Params(Mb)

(a) GN 30.96 0.942 16.3
(b) MSN 31.03 0.942 16.5
(c) MSGN w/o skip-connection 31.13 0.943 16.5
(d) MSGN 31.21 0.944 16.5

TABLE VIII: Comparison with different backbones in MS-
GSN. GN denotes the previous grid-like network, MSN de-
notes the previous multi-scale network, and MSGN presents
the backbone network of our MSGSN.

Method PSNR SSIM

(a) LC 29.53 0.929
(b) LP 27.06 0.881
(c) LC + λPLP 30.94 0.940
(d) LC + λPLP + λHFLHF 31.23 0.945

TABLE IX: Ablation study on loss function

4) Ablation Analysis on Loss Function: Our loss function
contains three terms: pixel consistency loss LC , perceptual
loss LP , and high-frequency loss LHF . Specifically, in order
to show the importance of each loss term, several cases are
considered: (a) a model trained only with pixel consistency
loss LC ; (b) a model trained only with perceptual loss LP ;
(c) a model trained with pixel consistency loss LC and high-
frequency loss LHF ; (d) a model trained with all three loss
terms. The result is shown in TABLE IX. Note that case (c)
is used in many deblurring literatures [17], [18], and it can
indeed improve the performance compared with cases only
using single loss, i.e., cases (a) and (b). On the basis, we
add another loss term called high-frequency loss to further
boosting the performance. It is worth reminding that high-
frequency loss LHF is only applied to HFRSN, so it cannot
be used alone to train the entire network.

5) Ablation Analysis on Hyper-parameters: Our total loss
function Eq. (6) contains three terms so that we set two
hyper-parameters λP and λHF to control the balance. The
λP controls the weight of the perceptual loss Eq. (8) and the
λHF controls the weight of the high frequency loss Eq. (9). In
order to find the most suitable hyper-parameters, we designed
following experiments. (1) We fixed the λHF to 0.01, and
then use different values of λP to train our model. The result

Fig. 11: Ablation study on λP and λHF values.

is shown in Fig.11, we found that the best value of λP is 0.01.
(2) We fixed the λP to 0.01 and keep it constant, and then use
different values of λHF to train our model. The result is shown
in Fig.11. It is clearly shown that if the λHF is too small, the
effect of high-frequency guidance is limited. In contrast, if
λHF is too big, the deblurred images will be over-sharpened.
We found that the best λHF is 0.01 in our experiments.

V. CONCLUSIONS

In this paper, we propose a novel deblurring framework
for single image deblurring task by introducing a high-
frequency prior to convolutional networks. Speciffically, we
built a high-frequency reconstruction subnetwork (HFRSN)
to reconstruct high-frequency features directly from multiple-
resolution blurry images. And then we built a multi-scale
grid subnetwork (MSGSN) to fuse high-frequency features
and image features at multiple scales. In order to make better
use of the extracted high-frequency features, we designed two
modules named HFAG and HFAT. The HFAG is built to better
fuse high-frequency features and image features to strengthen
the feature extraction. While the HFAT calculates attention
maps to enhance the reconstruction of the high-frequency
information. Through extensive evaluations of both qualitative
and quantitative criteria, it is demonstrated that our approach
has a competitive advantage over the state-of-the-art methods.
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