
Model Checking for Formal Verification of Space Systems

Michał Kurowski1, Rafał Babski 1, Steve Duncan 2, Maxime Perrotin3, Matt Webster 4

1) N7 Space sp. z o.o. 2) Thales Alenia Space UK, 3) European Space Agency, 4) Liverpool John Moores

University

Abstract

The goal of the presented activity is to integrate an existing model checking engine – SPIN1 – with the TASTE2

MBSE environment. For this purpose, the modelling languages used in TASTE – ASN.1, AADL and SDL need to

be translated into PROMELA, a language for modelling and verification of concurrent systems. This paper

describes the current achievements of the activity – proposal of a TASTE model checking workflow,

formalization of requirement specification and established PROMELA translation patterns. Finally, the

development of SDL models for validation of the tools and exploration of their utility in the design of space

systems is discussed.

Introduction

TASTE is ESA’s MBSE-based development environment for heterogenous, embedded, real-time systems.

At its core it uses standard modelling languages for architecture (AADL), data (ASN.1/ACN) and behaviour

(SDL) definition. It provides the capabilities to design, implement, build, deploy and test embedded

applications. It can be connected with higher-level MBSE solutions (such as Capella)3 and integrated into

traditional/hybrid workflows4.

The formalized, unambiguous high-level abstraction provided by the used modelling languages enables

various analyses, simulation and model checking. Model checking is a method of verifying that a finite-state

model of a system satisfies a given specification. In simple terms, it can be thought of as generalized testing,

in which all possible system behaviours are automatically explored and verified against the defined

requirements, or system properties. These properties are usually categorized into two groups: safety

(“nothing bad ever happens”) and liveness (“something good eventually happens”).

The automatic exploration of all the possible behaviours may discover unforeseen issues and reduce the

effort of manual or automated testing, e.g., by supporting the generation of test scenarios. However, it is not

intended to replace the testing altogether – not all requirements can be expressed in a way compatible with

model checking or in an efficient way. Due to the exhaustive nature, model checking may require significant

computational power, memory or execution time. Additionally, as it operates on models, it cannot exercise

the final system in its operational (or other concretized) environment. Model checking should be perceived

as a complementary measure for ensuring high reliability and high degree of correctness of a system.

Despite the potential benefits, TASTE currently lacks a full-fledged model checker. The goal of the presented

activity is to integrate a state-of-the-art model checker engine with the TASTE environment. As space

systems have to operate in harsh environments and are (despite dedicated hardware hardening) prone to

various kinds of hardware faults (e.g., memory corruption, interference), the model checking engine is to be

extended with the capabilities to inject errors into the models, so that Fault Detection, Isolation and

Recovery (FDIR) procedures can be properly verified.

Tools and Workflow

Two approaches to model checking have been considered and analysed: development of a native model

checker or integration of an existing one. ESA expressed their explicit preference for the latter. Several state-

of-the art model checkers were evaluated (e.g., PRISM, nuXmv and UPPAAL) and SPIN was selected.

The main reasons were broad and active community, abundance of training material, good performance and

compatible licensing, important for integration with TASTE.

SPIN (Simple PROMELA Interpreter) is an open-source explicit state model checker. It achieves state of the

art performance by transforming a PROMELA model into an executable C program that performs the actual

state exploration. PROMELA is a formal language tailored to high-level modelling of concurrent systems.

Its semantics introduces the concept of “non-deterministic” execution – scheduling (the order of process

activation for a given scenario is non-deterministic) and decisions (some constructs allow several

simultaneous code paths to be taken, only one of which is evaluated in a given scenario). However, as

multiple scenarios are exercised to exhaustively explore the state space, in the end all possible orderings and

decisions are evaluated. SPIN accepts a dialect of PROMELA that allows for embedded C code, enabling

workarounds for certain PROMELA deficiencies.

Model is expressed in TASTE using AADL/XML Interface View, ASN.1 data model and SDL behaviour.

Environment is defined implicitly by the Interface View and data model, which can be additionally refined to

reduce the possible state space. The presented activity introduces 3 possible ways of formally (in an

unambiguous, machine readable and processable way) defining the requirements: Stop Conditions,

Verification Message Sequence Charts (MSC) and Observers. Stop conditions are simple Boolean expressions

supporting a small subset of Linear Temporal Logic (LTL): never, always and eventually clauses. Verification

MSC express desired or undesired communication patterns. Observers are extended SDL state machines

capable of both observing and manipulating the entire system state. Observers can be triggered both by

signal exchanges (both before and after signal processing by the recipient) and system state changes

(detected via continuous signals).

A simplified version of the proposed workflow is as follows:

• Define an iteration of the model structure, so that a framework (e.g., signals, states, data structures)

is available for the formalization of requirements.

• Formalize the requirements by translating the informal ones into Stop Conditions, Observers and

Verification Message Sequence Charts.

• Define an iteration of model behaviour using SDL.

• Define a model checking scenario by selecting the relevant subset of the model under verification

and applicable requirements, as well as optionally refining input vector generation and preparing

additional Observers transitioning the model into the desired initial state.

The presented activity aims to translate the TASTE Interface View, ASN.1 and SDL directly into PROMELA.

As the major involved components of TASTE (SpaceCreator and OpenGEODE) are open source, it is possible

to integrate the solution with the existing codebase, re-using the facilities that are already implemented.

The assembly of the PROMELA model, combining the translation of the original TASTE system and the

applicable formalized requirements, is to be performed by SpaceCreator, as it is the node integrating most of

the relevant data – base architecture, data model, MSCs, as well as the relevant subset selections. The only

data not available directly to SpaceCreator is SDL behaviour specification, which is to be translated into

PROMELA directly within OpenGEODE. The assembled PROMELA model is then to be explored via SPIN

model checker, according to the settings configured for the given scenario.

Translation into PROMELA

The project is currently in the prototyping phase. The formal requirement specification languages have been

designed, both in terms of syntax and semantics. PROMELA generation is not yet developed, however, some

patterns are already established (possibly subject to change along the project execution).

Figure 3 Counter's Count signal reception process Figure 4 Environment's Enable signal sending process

Figure 2 SDL specification of the Counter

Figure 1 Model Interface View

An example trivial model to be verified (see Figure 1) contains a Counter

process (see Figure 2), which has two states (ENABLED and DISABLED), as

well as an internal value, resetting after exceeding 10. It can receive two

signals: enable, indicating the desired counter state, and count, carrying a

delta to be applied to the internal value in case the counter is ENABLED.

If it is DISABLED, its internal value shall always be 0. DISABLED is the

starting state. The proposed PROMELA model, in line with TASTE runtime

semantics, is as follows:

• A globally accessible aggregated state, including the Counter’s

state and internal variables, such as value.

• Processes, one for each of SDL input signals (provided sporadic

interfaces) – see Figure 3 for an example.

• Inlines defining Counter reactions (transitions) to the given signal in the given state.

Adherence to ASN.1 type constraints is evaluated after each assignment, using assertions. The environment

is defined via processes, sending one of the allowed signal values per model exploration path (see Figure 4).

The requirements for the example are specified via a single Stop Condition (Counter’s value must be 0 in the

DISABLED state), expressed directly via an LTL clause, which is evaluated alongside model exploration.

Additionally, an Observer is used for narrowing the state exploration by silencing certain signals.

As Observers are not native to PROMELA, their logic needs to be injected into appropriate locations.

Observers can react to a signal just after it has been sent (predelivery - thus having the capability to modify

its value or silence it), or after it has been delivered and processed by the recipient (postdelivery). The above

examples illustrate both predelivery (Environment_Enable in Figure 4, between signal value generation and

submission to a channel) and postdelivery (Counter_Count in Figure 3, at the end of the loop) injections, the

former including the logic for handling the possible silencing of a signal. As Observers are just extended SDL,

their bodies are to be generated the same way as the inlines for regular SDL state machines.

The presented example has been exercised using SPIN. Two artificially injected bugs (lack of Counter’s value

resetting when exceeding 10 or on Counter disable) were successfully detected using the Stop Condition and

type checking assertion. On the other hand, the existence of these bugs was successfully (and deliberately)

masked by the Observer, which (post-delivery) stops model exploration when Counter’s value is larger than

5 and (pre-delivery) silences the disable signals.

Demonstration Use Cases

A set of models is presented that serve as demonstration use cases for the model checker. These models are

to be used to validate the model checker and explore its capabilities and limits, whilst providing

representative practical examples that demonstrate the applicability of the model checking technique.

Three model categories are foreseen, covering a range of sizes and complexity:

• Toy Model

• Subsystem Model

• Application Model

The Toy Model is a small model based on a common computational problem for which the behaviour,

whether correct or otherwise, is already well understood and documented in computer science literature.

It allows to perform end-to-end validation of the model transformation and model checking, with the output

of the tools being compared against known results. A clear pass/fail criterion is therefore possible.

The chosen Toy Model is an SDL implementation of Dekker’s algorithm5, including a correct version and

defective variants that have known faults.

The Subsystem Model is a larger model with a narrowly scoped but possibly complex range of behaviour. It is

chosen to be representative of standards-based subsystems that are commonly used in missions. It may

contain known flaws or limitations that the model checker should be able to detect. Additionally, the

Subsystem Model may contain flaws that are currently unknown, which the model checker may uncover.

The choice of a common, standards-based subject for the Subsystem Model is key, as it allows consensus to

be established, before the model checking process begins, that the design of the model is essentially correct.

The chosen Subsystem Model is an SDL model of the ECSS-E-ST-50-15C CANopen protocol stack.

The Application Model is larger than the Subsystem Model but potentially less complex in terms of state

space size. It is system-focused, being composed of static architectural blocks that represent major

subsystems or, at the highest level, separate interacting systems. The Application Model is intended to be

created early in the system engineering life cycle. Desirable features are that it should be accessible (easy to

construct from scratch and for untrained users to gain a basic comprehension), informative (bringing value

to the requirements analysis and design process through animation and scenario evaluation) and mutable

(amenable to change and supporting the coexistence of alternative versions). The chosen Application Model

is an SDL model of a control system for in-orbit fuel transfer between two spacecraft.

Conclusions and Future Work

Model checking workflow and languages for formal requirement definition have been specified in terms of

syntax and semantics, thus establishing the base model checker capabilities and use-cases. SPIN has been

evaluated and chosen as the backend. Translation into PROMELA of a trivial, yet complete TASTE system has

been manually prototyped and exercised within the target environment. Scope of the demonstration use

cases has been established. Further activities within the project will focus on the translation patterns, as well

as the design and implementation of the automatic translator which will be integrated with Space Creator.

References

1) The SPIN model checker: primer and reference manual. Gerard Holzmann. 2003. Addison-Wesley.

2) TASTE portal. https://taste.tools/

3) Capella to TASTE MBSE bridge, M. Kurowski, A. Wójcik, M. Kocon, D. Kaczmara, B. Juszczyk, M. Mosdorf, H. P. de Koning, M.

Perrotin. MBSE2020.

4) TASTE in action. M. Perrotin, K. Grochowski, M. Verhoef, D. Galano, M. Mosdorf, M. Kurowski, F. Denis, E. Graas. 8th ERTS 2016,

Jan 2016, TOULOUSE, France.

5) Over de sequentialiteit van procesbeschrijvingen (EWD-35). Dijkstra, Edsger W. E.W. Dijkstra Archive. Center for American

History, University of Texas at Austin.

https://taste.tools/

