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Abstract  

Purpose: Since the start of the current century, the world at large has experienced 

uncertainties as a result of climate change, terrorism threats and increasing economic 

upheaval. These uncertainties create non-classical risks influencing global seaborne 

container trade and liner shipping networks (LSN). The purpose of this paper aims to 

develop a novel risk-based resilience framework to quantitatively measure the 

effectiveness of the recovery strategies designed for addressing the disruptions in LSN.  

Design: Based on a resilience loss triangle model, an indicator of recover strategy 

effectiveness is created based on a resilience-cost ratio, which can aid and guide the 

performance measurement of LSNs during the recovery against a disruption. Four types 

of recovery strategies are evaluated to test the rationality and feasibility of the proposed 

indicator in aiding the recovery decision-making of LSNs from a resilience perspective. 

Findings: The analysis results reveal that the preference of different recovery strategies 

varies depending on both the structures of the investigated LSNs and the specific 

requirements during recovery. Moreover, it tells how to optimize the sequence of ports 

being recovered to improve the overall recovery efficiency of the investigated LSN.  

Practical implications: Understanding the resilience of individual ports in its LSN and 

calculating the recovery cost will benefit shipping liners in selecting the most cost-

effective recovery strategies. The identified regional influential ports are suggested to 

have higher priorities during the recovery, in order to improve the overall performance 

of the whole LSN. 

Originality: The conceptual risk-based resilience framework and the resilience-cost 

ratio indicator are newly developed in this research. They can effectively integrate 

LSNs’ structural resilience and the total costs that a recovery strategy needs to restore 

the whole system simultaneously and holistically. 

Keywords: liner shipping network, transport resilience, Maritime Silk Road 

(MSR), maritime safety, maritime security 
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1 Introduction 

In recent years, the world has seen the rapid development of international trade. 

The world's top 100 container ports contributed a total of 616 million TEU of global 

trade in 2018 (Seanews, 2020). Maritime shipping is the kernel of international 

multimodal transportation and thus, a number of studies related to maritime shipping 

safety and security had been conducted to ensure the daily steady operations of liner 

shipping networks (LSN). However, recent accidents occurred in LSN demonstrate the 

insufficiency of purely relying on the existing risk methods (i.e. probabilistic risk 

analysis (PRA)) to deal with 1) emerging non-classical risks such as terrorist attacks 

and extreme weathers, 2) the shift of transport risk study focus from component to 

system levels, and 3) safety practice change from pure risk prevention to the 

combination of risk prevention (prior to the occurrence of an accident) and accident 

recovery (after the occurrence). It triggers new research needs for effective solutions to 

the disruptions in LSN from a resilience perspective. 

In an LSN system, ports and shipping routes are often exposed to various kinds of 

disruptions caused by such risks as strike, tsunamis and explosions (Yang et al., 2018), 

which could lead to the degradation of ports operational functions and even the collapse 

of regional maritime shipping networks in extreme cases. The direct consequences 

include the reduction of transport network efficiency and high social and economic 

losses. Broadly speaking, there are two ways to reduce the impact of a disturbance on 

an LSN system. One is prevention-oriented, meaning that defensive measures are taken 

to reduce the probability and/or extent to which an LSN system will be affected by 

disruptions, to improve the system resistance and reduce the possible losses it may 

suffer. The other, being response-driven, is to improve the recoverability of the system 

after the occurrence of disruptions, so that it can return to the normal condition as soon 

as possible (Dai and Li, 2017). Both resistance and recoverability of LSN have a great 

impact on the efficient and reliable operation of maritime transportation. 

Previous studies have revealed that LSN are vulnerable to deliberate attacks (e.g. 

Liu et al., 2018a). Under such a situation, ports are usually disable for a long time, and 

sometimes this will lead to large-scale failures of shipping networks. However, the 

deliberate attacks due to terrorist, regional conflicts and wars are relatively rare in 

reality. Compared to that, accidents including piracy (Liu et al., 2021), port strikes, and 

natural hazards (e.g. storms) are relatively frequent. The application and development 

of a resilience concept provides a new perspective for investigating the safety and 

security of LSN from a systematic network perspective. After being disrupted, an LSN 

usually needs to go through two stages before it can be restored to its original state, 

including the resilience loss and the resilience recovery. These two stages reflect the 

ability of a shipping network to absorb and resist disturbance and to quickly recover 

and adapt to new environment. A shipping network with higher resilience is believed to 

be able to respond to emergencies more effectively and recover more quickly. Thus, it 

is of great significance to measure and quantify the resilience of an LSN in order to 

ensure the transport capacity and efficiency of the shipping networks. However, most 

of the previous research in the area focused on the vulnerability analysis of LSNs, 



 

 

leaving the recovery of LSNs after disruptions not being well addressed. In addition, 

compared to the qualitative analysis of resilience, quantitative measurement of 

resilience itself or the recovery strategy is few in general and fewer in LSN context in 

specific. This paper addresses this knowledge gap by developing a novel risk-based 

resilience framework which enables the integrity of resilience and recovery cost in a 

holistic way to quantitatively measure the effectiveness of different recovery strategies 

for the disruptions in LSNs.  

The rest of the paper is constructed as follows. Section 2 describes the review of 

the research related to complex shipping networks and the resilience of transportation 

systems. The framework of evaluating the recovery strategies for the disruptions 

affecting LSN resilience is constructed in Section 3. The proposed method is applied to 

analyse and validate via a real case on the Maritime Silk Road (MSR) shipping 

networks under storm disruptions in Section 4. Section 5 summarizes the research, 

including the limitations and future research. 

2 Literature review 

Since 1736, it was found that many complex systems in reality can be abstracted 

into networks, and thus be studied from a topological perspective (Li et al., 2017). 

Based on the complex network theory, a maritime transportation system can also be 

mapped into a network to analyse the characteristics of each part of the network. The 

mainstream research topics in maritime shipping networks can be grouped into the 

following three categories.  

The first category is to investigate the hierarchy of LSNs. Hierarchical attribute is 

one of the basic characteristics of a maritime network. Analysis of a network 

hierarchical structure helps to better understand and grasp the relationship between 

network nodes and the structural characteristics of the network. Some research branches 

within this group include the analysis of topological characteristics of an LSN and its 

evolution mechanism (e.g. Yuan and Ji, 2017), design of measures to describe the 

topological properties of an LSN (e.g. Bian and Deng, 2017), and spatial distribution 

pattern of trade (e.g. Song et al. 2018). The second group is the design and optimization 

of LSNs, in which more operational-related components of LSNs have been considered 

including port and shipping companies, cargo owners and other service providers, 

traders, and involving such factors as ship scheduling, and capital and information flow, 

to optimize their objectives under various constraints (e.g. Yang et al., 2014; Zheng and 

Yang, 2016; Tu et al., 2018). The third group aims to investigate the vulnerability of 

LSNs under different types of disruptions, to which our research belongs. 

2.1 Vulnerability analysis of LSN transport systems 

A transportation system is inevitably affected by various internal and external 

uncertainties, and the high complexity of LSN due to its wide range cover in the world 

makes the situation even worse. Vulnerability becomes obvious when LSNs are 

attacked, as it is evident by the recent COVID-19 pandemic. The concept of 



 

 

vulnerability was first proposed by Timmerman (1981), who described vulnerability as 

the severity of adverse consequences caused by disruptive events. The concepts of the 

term “vulnerability” evolve in different research contexts (Liu et al., 2018b), including 

1) the opposite perspective of the concept “network robustness”, 2) the importance of 

elements (i.e. “vulnerability index”), and 3) node dependence. Nevertheless, all follow 

the rule that the deeper the adverse impact of a disruptive event, the more vulnerable 

the system is. In the research by Cultter et al. (2003), vulnerability was defined as the 

possibility of a system that will suffer from adverse impacts, and they believed that the 

less the vulnerability of a system, the stronger its ability to cope with disruptive events. 

Woolleymeza et al. (2011) found that the world maritime transportation and aviation 

networks not only have similar topological characteristics, but also show similar 

robustness and vulnerability in the face of attacks. Zio and Sansavini (2011) simulated 

the impact of fault cascade propagation on the connectivity of the maritime network by 

deleting nodes and edges selectively. Although vulnerability has long been widely used 

in transportation systems such as aviation and road transport, it is not until Ducruet and 

Notteboom (2012) that the network indicators were firstly used to assess the 

vulnerability of maritime transport network, in which the authors studied the impact of 

removing the Panama and Suez Canals on the vulnerability of global container shipping 

network. More recently, Liu et al. (2018b) used the Maersk Line data to model its LSN 

vulnerability subject to random and deliberate attacks.  

2.2 Resilience analysis of transport systems 

The concept of resilience was first proposed by Canadian ecologist Holling in 

1973. He defined resilience as "the ability of an ecosystem to return to a stable state 

after being disturbed by an emergency" (Gunderson and Holling, 2003). After that, 

researchers began to apply resilience to other disciplines. The theory of resilience 

abroad is mainly used to study engineering resilience, supply chain resilience (Lam and 

Bai, 2016, Liu et al., 2018, Ail et al., 2018), transportation resilience (Wan et al., 2018), 

economic resilience and social resilience (Zhou and Yuan, 2017). Among the 

representative viewpoints of resilience, Timmerman (1981) defined resilience as the 

ability of infrastructure to recover from disturbances and resist shocks. 

Chen and Yang (2018) used the concept of "resilience" to describe the process of 

quickly recovering the maritime networks to an acceptable level through appropriate 

repair measures after port failures under the background of production capacity 

constraints. Folke et al. (2002) defined resilience as the ability, function, structure, and 

feedback performance of a system that can absorb interference and reorganize to keep 

the system unchanged when undergoing changes. Fiksel (2003) defined a resilient 

system as a system that can return to a stable equilibrium state after encountering 

perturbations. Rose and Liao (2005) proposed a similar definition in which they 

regarded resilience as the ability of a system to apply an adaptive response mechanism 

to avoid potential losses when encountering an interruption. Adjetey and Birregah 

(2016) believed that resilience describes the overall goal of the system, that is, when 

faced with a certain degree of pressure, the system will continue to maintain the basic 



 

 

structure and function of the system to the greatest extent possible. Hudeca et al. (2018) 

described the resilience system as the ability of the system to maintain a constant output 

level when it is disturbed. In a recent study, Wan et al. (2018) used a graphical way to 

describe the changes of the performance of the system when it encountered external 

shocks from the perspective of resilience. The schematic of performance of a resilient 

system developed by the authors intuitively embodies the concept of resilience, that is, 

the system's ability to absorb and resist external shocks, and to take measures to actively 

respond and prompt the system to quickly reach a new equilibrium state. In the same 

work, the authors also systematically documented and presented the different resilience 

concepts of resilience within the transportation context.  

Although the previous studies made considerable contributions to the literature of 

the vulnerability and resilience analysis of LSNs and provided important theoretical 

implications for resilience assurance in maritime transportation, there are still research 

challenges that have theoretical implications that are not being dealt with holistically in 

current literature and cannot be solved easily without developing new conceptual 

methodologies. A comparison analysis of the relevant studies in the field is summarized 

in Table 1 to illustrate the research demand on a new risk-based resilience methodology. 

 

Table 1 Comparisons of the research of vulnerability and resilience analysis of LSNs  

Literature 
Centrality measures 

Vulnerability 
Recoverability 

Resilience 
Degree Closeness Betweenness Recovery cost Recovery time 

(Calatayud et al., 2017) ○  ○ ○    

(Chen et al., 2018)    ○   ○ 

(Liu et al., 2018) ○ ○ ○ ○    

(Charłampowicz, 2018)     ○ ○ ○ 

(Wu et al., 2019) ○ ○ ○ ○    

(Shen et al., 2019) ○   ○    

(Asadabadi and Miller-

Hooks, 2020) 
    ○  ○ 

(Rousset and Ducruet, 

2020) 
  ○   ○ ○ 

This paper ○ ○ ○ ○ ○ ○ ○ 

 

The existing gaps in the literature on LNS resilience have led to the development 

of the following important research questions: 

How to develop a conceptual methodology that can enable the quantitative 

analysis of LSN resilience?  

It is reflected by the aim of this paper. The relevant sub-questions are relevant to 

the objectives of this paper, including:  

(1) How to select the parameters influencing LSN resilience? 

(2) How to quantify the parameters? 

(3) How to integrate the quantified parameters to obtain a single resilience index 

value? 



 

 

3 Recovery strategy evaluation for LSN resilience 

3.1 Research methodology 

In previous studies, researchers often constructed index systems consisting of 

multi-layer indicators with different weights in order to evaluate the performance of an 

LSN system. However, this will inevitably bring in subjectivity when developing the 

hierarchical structure of index systems. To overcome this drawback, this paper 

investigates the resilience of an LSN system considering its inherent characteristics (i.e. 

vulnerability and recoverability). Both vulnerability and recoverability will be 

quantified and then combined in a resilience triangle to evaluate the recovery strategies 

for the resilience of LSN according its performance under disturbance events. To 

achieve this goal, a new methodology containing the following steps is constructed (see 

Fig. 1). Each of them is described in detail in the ensuing sections.  

Step 1: Construction and performance evaluation of an LSN. 

Step 2: Development of the resilience index. 

Step 3: Comparative analysis of the recovery strategies in terms of resilience and 

total recovery time of the disrupted LSN. 

Step 4: Real case analysis for the model validation.  

Modelling of an LSN

              

Global network 

efficiency

Resilience 

index

Performance 

evaluation of LSN

Measuring the 

resilience

Centrality 

measures

Recovery cost

Development of  

recovery strategies

Comparative analysis of  
recovery strategies

Degree centrality-based 

recovery strategy

Random recovery 

strategy

Case study: Storm resilience of an LSN along the MSR 

Betweenness centrality-

based recovery strategy

Closeness centrality-

based recovery strategy

Recovery strategy evaluation for LSN resilience

  

Fig.1 Flowchart of the proposed framework



 

 

3.2 Performance evaluation of an LSN 

3.2.1 Global network efficiency 

Network efficiency is defined as the average of the reciprocal of the shortest path 

lengths between each node pair in a network, indicates how efficiently the network 

transmits information. The concept of network efficiency was firstly proposed by 

(Latora and Marchiori, 2001) to characterize the properties of small-world networks. 

Since then, this measure has been widely used in different types of transport networks, 

including urban road networks (Sergio et al., 2006), subway networks (Vito and 

Massimo, 2002), and airline transport networks (Zhang et al., 2019). It suits the topic 

of this research well. This work chooses global network efficiency as an index to 

characterize the performance of an LSN. 

𝐸𝑓 =
1

𝑛(𝑛−1)
∑ 𝜀𝑖≠𝑗 𝑖𝑗

                     (1) 

Where, Ef indicates the global network efficiency, n is the total number of ports in 

the investigated LSN. The global network efficiency reflects the connectivity between 

ports within the network and the overall efficiency of the whole network. Normally, the 

higher the global network efficiency of an LSN, the more the operational benefit it will 

gain (Wu et al., 2019). 

Supposing that the initial global network efficiency of an LSN is
0f

E , and the 

global network efficiency after a disruption to a certain port is 
frE  , then the 

vulnerability of the network with respect to this port can be expressed by Eq. (2) 

 0

0

( )
 rf f

r

f

E E
V

E
                        (2) 

Where, Vr indicates the influence of port r on the global efficiency of the LSN. 

3.2.2 Centrality measures 

Centrality is an important indicator for determining the importance of a node in a 

network. In this study, three centrality measures are calculated and used as a reference 

to develop different recovery strategies of LSNs. They are degree centrality, closeness 

centrality, and betweenness centrality. 

(1) Degree centrality 

Degree centrality of a port refers to the number of ports directly connected to it, 

and it represents the connectivity of a port with other ports in a maritime shipping 



 

 

network (Wu et al., 2019). Degree centrality can be calculated using Eq. (3). 

i

n

c ijj
D                              (3) 

Where, 
icD indicates the degree centrality of port i, n represents the total number 

of ports in the LSN, and 
ij  is the number of links between port i and j. 

(2) Closeness centrality 

The closeness centrality is the reciprocal of the sum of the shortest distance from 

all ports to the target port, which is used to evaluate the reachability and spatial 

advantage of a certain port in the shipping network (Wu et al., 2019). The closeness 

centrality can be calculated using Eq. (4). 

 1
ic

iji j n

n
C

d
 





                       (4) 

where dij represents the shortest distance between two ports. 

(3) Betweenness centrality 

Betweenness centrality reflects the degree to which a port is located "in the 

middle" of other port pairs, which can be be calculated using Eq. (5).  

 
, , ,

( , )
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                     (5) 

where s and t represent a set of port pair, and 
( ),s t i

│

 is the number of times the 

shortest distance between port pairs that pass through port i. 

3.3 Measuring the resilience  

3.3.1 Resilience index 

When a disruptive event occurs, the capacity of the influenced ports will be 

damaged to a certain extent, leading to a decline of the transport efficiency of the entire 

LSN, as shown in Fig 2. Assuming that the disturbance caused by the disruption 

minimizes the performance of the shipping network in an instant, then the sudden 

decline of the performance curve reflects the vulnerability of the system, the depth of 

the resilience loss triangle indicates the degree of performance degradation of the 

system, and the length of the resilience triangle indicates the total time required for the 

system to return to its normal state. The greater the slope of the rising curve during the 

recovery stage, the stronger the recoverability of the shipping network. 
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Fig 2 The graphical measure of system resilience  

(Source: adapted from Brunea et al., 2003) 

The vertical axis represents the performance Q(t) of the system, and the horizontal 

axis is time. At time t0, the system is disrupted, and the performance drops 

instantaneously. After Tl, the performance Q(t) restores to the original level at time t1. 

The loss of resilience is indicated by the grey areas in the figure. 

Based on the resilience triangle, the resilience index Re can be expressed as the 

ratio of the area covered by the interrupted performance curve Q(t) to the area covered 

by the uninterrupted curve Q(t0) during the recovery time th. The system’s resilience 

metrics are expressed by Eq. (6). 

                     
0

0

0

( )
lt t

t

e

l

Q t dt
R

t Q




                   (6) 

In this research, the global network efficiency is selected to reflect the performance 

of the shipping network. Therefore, we replace the performance index in Eq. (6) with 

the global network efficiency to obtain the new resilience index of the shipping network 

as expressed using Eq. (7).  

0

0

0

[ ( )]
lt t

f
t

e

l f

E t dt
R

t E




                      (7) 

where 
 tfE  represents the global network efficiency at the moment t, and 

 0fE  

represents the initial global network efficiency of the shipping network. 

Resilience index (Re) is a value between zero and one. The higher the value of Re, 

the smaller the resilience loss and the greater the structural resilience of the shipping 

network. If Re =1, it indicates that the network has not been affected by the disruptive 

event, the performance of the network after the disruption remains the original state; If 

Re <1, it indicates that the disruptive events have a negative impact on the shipping 

network, and recovery countermeasures are needed to recover the shipping network 

function; If Re << 1, it indicates that the network has been severely destroyed by the 



 

 

disruptive event, and it will take a long time to recover. 

3.3.2 Recovery cost 

During the recovery of an LSN, the total cost C of can be calculated using Eq. (8). 

 
1

n

i ii
C C T


                         (8) 

Where Ti is the time needed for port i to recovery, and Ci is the daily cost of port 

i’s operation.  

It can be seen from Eq. (8) that the total cost is determined by the recovery time 

and daily cost of each port. Regarding the recovery time of a port after a disruption, it 

is mainly determined by its scale and the economic condition. Usually, a port with larger 

scale and poorer economic development status should take longer time to recover, 

because the larger the scale, the more resources are needed when conducting 

reconstruction of a port after being destroyed. In this study, the length of port shoreline 

and the gross domestic product (GDP) of the country are selected to reflect the port 

scale and economic development of hinterland of port respectively. The GDP will have 

a positive impact on port recovery, while the length of port shoreline has a negative 

influence on recovery time. In addition, an adjustment coefficient k is set to adjust the 

recovery time and make it suitable under different situations, as shown in Eq. (9). 

i
i

i

L
T k

G
                        (9) 

Where, Li is the sum of the coastal line length of port i, and Gi is the GDP of the state 

where port i belongs to.  

Regarding the daily cost of a port, it can be understood as the loss of the port’s 

operating expenses due to its functional degradation. It consists of harbour dues 
1i

C , 

facility security fees 
2i

C , pilotage fees 
3i

C  and berthing fees 
4i

C . Thus, it can be 

calculated using Eq. (10). 

 
1 2 3 4i i i i iC C C C C                      

 
(10) 

Here containerships are used for a demonstration, while the daily cost model itself 

is generic and accommodate different types of ships. Currently, the containership 

market is dominated by the fifth-generation container vessels, typically carrying 4800 

TEU1, with a standard aspect ratio of 7 to 8. The size of a 20-foot standard container is 

6.058×2.438×2.591 meters, and the gross weight of it is 17.5 tons. When fully loaded, 

 
1 This is also partially evidenced by the research of Charłampowicz (2018) that the number of vessels with a 

capacity below 5000 TEU accounts for more than 70% of the total number of container ships in the global maritime 

shipping market.  



 

 

each standard container can generally carry 12 tons of goods. 

 

Table 2 Type parameters of the fifth-generation container ships 

Capacity/TEU Standard Size/m Length-Width Ratio All-Up Weight/t 

4800 6.058×2.438×2.591 7~8 12 

 

Let the annual container throughput of a port is set as Mi. According to Table 2, 

the annual throughput Mi is converted into the number of container ships passing 

through the port every day by using Eq. (11). 

 
365 4800

i
i

M
F 


                        (11) 

Assuming that the port is destroyed by disasters, then the daily cost of port will be 

the loss of operating income of it before it is restored to its original state. According to 

the foreign trade cargo port charge rate (Table 3), the import rate for a 20-foot standard 

container for general cargo is 34 CNY/container, and the export rate is 17 

CNY/container. The security fee for a 20-foot standard container is 8 CNY/container. 

Pilotage fees and berthing fees are charged in accordance with the provisions of the 

benchmark rate of port charges for ships sailing on international routes. The rate of 

40,000 net tons and below is 0.45 CNY/ton, the rate of 40001-80000 net tons is 0.40 

CNY/ton, and the rate of 80000-120000 net tons is 0.375 CNY/ton. It is noted that  

 

Table 3 Port charges for ships of international routes 

Number Category Charge Unit Charge/CNY Illustrate 

1 Harbour Dues Box (20 feet) 
34 Import 

17 Export 

2 Port Facility Security 

Fees 

Box (20 feet) 8  

3 
Pilotage (Mooring) 

Fees 
Ton 

0.45 40000 net tons and below 

0.40 40001-80000 net tons 

0.375 80000-120000 net tons 

4 Berthing Fees Ton/Day 0.25  

Source: The Ministry of Transport of the People's Republic of China, (2019) 

 

Assuming that the number of container ships imported and exported every 

day is equal, both are / 2iF , then the daily harbour dues 
1i

C , and port facility 

security fees 
2i

C   can be calculated by using Eq. (12) and (13), respectively. 

Assuming that each ship is fully loaded with 4800 TEU and each container weighs 

12 tons, and then each ship will have a net cargo load of 57,600 tons. Then, the 

daily pilotage fees 
3i

C  and the pilotage fees 
4i

C  can be calculated by using Eq. 

(14) and (15), respectively. 



 

 

1
(34 4800 / 2) (17 4800 / 2)i i iC F F                   (12) 

2
8 4800i iC F                           (13) 

3
(0.45 40000 0.40 17600)i iC F   

               
(14) 

4
0.25 57600i iC F 

                 
     (15) 

3.3.3 Resilience-cost ratio 

To maximize the benefits of LSNs during recovery, it is necessary not only to 

consider the resilience of a shipping network, but also to pay attention to the cost needed 

in response to disasters. Based on the aforementioned resilience index model and LSNs 

recovery cost model, a resilience-cost radio indicatorλ  for evaluating the overall 

performance of an LSN is developed which can be calculated using Eq. (16). 

 eR

C
                              (16) 

The resilience-cost ratioλ indicates the performance of a recovery strategy. The 

larger theλ, the higher the resilience-cost ratio of the recovery strategy for LSNs. 

4 Case study: Storm resilience of an LSN along the MSR  

4.1 Background information 

The 21st-Century Maritime Silk Road (MSR) is an important strategy for countries 

and regions to strengthen infrastructure connectivity with others, and it is an economic 

belt with a large population and most of the participating countries are developing 

countries and emerging economies. Given its growing importance in international trade 

and economic development, this study selects the LSN along the MSR as a case study 

to demonstrate the proposed method and conduct the resilience evaluation and selection 

of recovery strategies of maritime transportation. According to Liu et al. (2018a), 

typhoons and tropical cyclones are the most typical and serious natural hazards 

affecting the MSR. Tropical cyclones will cause violent winds and heavy rains. In view 

of this, this paper mainly focuses on the LSN resilience of the routes involved in the 

Pacific Northwest and North Indian Ocean parts of the MSR facing the threat of storms. 

Fig. 3 shows the geographical distribution of the affected ports in these two regions, in 

which red dots indicate the ports in the Pacific Northwest region (47 out of 254 sea 

ports) and the green in the North Indian Ocean region (27 out of 254 sea ports). 



 

 

 

Fig 3. Distribution of the ports which are frequently affected by typhoons  

4.1.1 Data sources 

Based on the official published information, this work finally screened out 43 

countries participating in the MSR, including 32 Asian countries, 7 European countries, 

3 African countries, and 1 Oceania country. 

According to the transport capacity information provided by Alphaliner in 2018, 

the top 16 container shipping companies in the world have a total shipping capacity of 

18,395,500 TEU, accounting for 88.05% of the total global container shipping capacity 

(Chen et al., 2018). Thus, the service information (including ports of call, time schedule, 

ship fleet, and ship capacity) of the top 16 shipping companies is considered in this 

research, to make the analysis and result representative. According to the service 

information provided by these container shipping companies from October 2016 to 

December 2016, this paper divides the service areas of global shipping into nine main 

routes according to their service areas, including Southeast Asia Line, Mediterranean 

Line, and European routes, etc. Finally, there are altogether 1249 liner shipping routes 

related to the investigated LSN along the MSR, connecting 37 countries and altogether 

254 sea ports (Wu et al., 2019). 

4.1.2 Construction of the MSR LSN  

From the perspective of spatial layout, liner shipping can be abstract into a network 

where ports and routes consist of the sets of nodes and edges, respectively. Two main 

approaches to constructing a network are the graph of direct linkages (GDL) and the 

graph of all linkages (GAL). In an LSN, a GDL only considers the direct links between 

each port in a sequence of the service, while, in a GAL, all the ports within the shipping 

network are linked no matter they are adjacent or not. Considering that in reality, the 

actual shipping transportation is better reflected by the GAL model when they navigate 

from one port to another, and GAL can better explain the dominant position of the 

network hub port (Ferber, 2009). Thus, this research applied GAL when constructing 

the MSR LSN. By using the UCINET software, a network composed of 254 nodes and 



 

 

1,249 links is developed, as shown in Fig. 4. It is noted that Fig. 4 only highlights the 

top 50 ports in terms of the degree value in order to improve the readability.  

 

Fig 4. Demo of the investigated MSR LSN  

4.2 Evaluating the recovery strategies of the MSR related LSNs 

As mentioned in Section 3.2, the global network efficiency is selected to measure 

the performance of the MSR LSN of different regions under storm disruptions. In 

addition, the total recovery time of the LSN is considered to compare the efficiency of 

different recovery strategies. For the Northwest Pacific region, the GDP values of eight 

countries (which are China, Indonesia, Malaysia, Vietnam, the Philippines, Thailand, 

South Korea and Japan) in 2018 and the length of the shoreline of 47 ports in these 

countries are collected. For the Northern Indian Ocean region, the GDP values of six 

countries (which are Thailand, Myanmar, Pakistan, Bangladesh, Sri Lanka and India) 

in 2018 and the length of the shoreline of 27 ports are collected.  

To model the reconstruction of ports after being destroyed by natural hazards, we 

take the performance of the Port of Tokyo (Japan) hit by the earthquake and tsunami in 

2011 as a baseline when calculating the recovery time of other ports. In terms of the 

disaster, it took around 30 days for the Port of Tokyo to recover. According to Eq. (8), 

the k value can be calculated as 64 in this case, and assuming that the other ports in the 

MSR shipping network share the same k. Then, the recovery time of other ports can be 

obtained accordingly.  

Taking the Port of Shanghai as an example, GDP of China was 13,457.267 billion 

USD in 2018, and the length of shoreline of the Port of Shanghai was 72,473 meters, 

so its recovery time is 34 days according to Eq. (8). Similarly, the recovery time of all 

ports can be calculated, partly as shown in Table 4. 

Table 4 The recovery time of the top 10 most connected ports in the MSR 

shipping network 



 

 

No. Port Country Region 
Recovery 

Time/day 

1 Port of Hong Kong China Northwest Pacific 9 

2 Port of Singapore Singapore Northwest Pacific 264 

3 Shanghai Port China Northwest Pacific 34 

4 Ningbo Port China Northwest Pacific 43 

5 Shenzhen Port China Northwest Pacific 15 

6 Port Kelang Malaysia Northwest Pacific 90 

7 Port of Busan Korea Northwest Pacific 106 

8 Qingdao Port China Northwest Pacific 14 

9 Xiamen Port China Northwest Pacific 14 

10 Tianjin Port China Northwest Pacific 17 

 

A previous study by Wu et al., (2019) revealed that the MSR network can survive 

from no more than 60% of the disruption of ports, or it will collapse. Therefore, in this 

study, we assume that a maximum of 60% of the ports in the MSR regional shipping 

network will be destroyed by random in the case study, and different recovery strategies 

will be quantitatively assessed and compared with respect to their influence on the 

resilience of the MSR shipping network. The four recovery strategies considered in this 

study are listed as follows. 

 Random recovery strategy 

The destroyed ports will be recovered in a random sequence without the 

consideration of the difference of the ports within the MSR shipping network. 

 Degree centrality-based recovery strategy 

The destroyed ports will be recovered in a descending order of their degree 

centrality, which means the port with higher degree centrality will be recovered first. 

 Closeness centrality-based recovery strategy 

The destroyed ports will be recovered in a descending order of their closeness 

centrality, which means the port with higher closeness centrality will be recovered first. 

 Betweenness centrality-based recovery strategy 

The destroyed ports will be recovered in a descending order of their betweenness 

centrality, which means the port with higher betweenness centrality will be recovered 

first. 

 

4.2.1 Northwest Pacific Region 

According to Eq. (1), the initial global network efficiency of the Northwest Pacific 

shipping network is 37.67%, and after 60% of the ports being destroyed by storms, the 

global network efficiency of the MSR shipping network in the Northwest Pacific 

Region declines to 18.35%, losing 51.29% of its functions. In order to carry out 

different recovery strategies, the degree centrality, closeness centrality and betweenness 

centrality of each port need to be calculated first based on Eq. (3) to (5). Considering 

that in reality, it is not usually the case that only one port can be recovered in a certain 



 

 

time period and all the ports wait to be recovered one by one. Instead, different countries 

and regions tend to work together so that the whole shipping network can return to 

normal as soon as possible. In this study, we assume that 20% of the destroyed ports 

will be recovered at the same time during a certain period. Thus the total time of the 

period depends on the port which spends the longest time to recover in each port group. 

Based on this idea, the performance of the shipping network in the Northwest Pacific 

region under different recovery strategies can be depicted, as shown in Fig. 5. The 

horizontal ordinate shows the total time that the whole shipping network needs to be 

fully recovered. 

  

Fig 5. Recovery time of the Northwest Pacific LSN under different recovery strategies  

According to Eq. (6) to (16), the resilience index, recovery time, recovery cost, 

and resilience-cost ratio under different recovery strategies are calculated. The results 

are shown in Table 5. 

Table 5 Performance of recovery strategies in the Northwest Pacific LSN 

 

As shown in Table 5, the LSN in the Northwest Pacific region takes the shortest 

recovery time when using the betweenness centrality-based recovery strategy, which is 

Recovery 

strategy 

Resilience 

index 

Recovery 

time (days) 

Lost operating 

cost (Billion 

CNY) 

Resilience-cost 

ratio (10-2) 

Random recovery 

strategy 
0.7127 745 18.098 0.394 

Degree centrality-

based 
0.7217 694 14.761 0.489 

Closeness 

centrality-based 
0.7253 694 13.461 0.540 

Betweenness 

centrality-based 
0.7140 649 17.006 0.420 



 

 

649 days. This means that if the primary goal is to minimize the total shutdown time 

and reduce ship delays as much as possible, betweenness centrality-based recovery 

strategy will be the best choice. The recovery strategy based on closeness centrality 

lead to the largest resilience index, and the least recovery costs at the same time. This 

means that in the Northwest Pacific region, closeness centrality-based recovery strategy 

performs the best, which can achieve higher comprehensive benefits. 

 

 
Fig 6. Comparison of different recovery strategies in the Northwest Pacific region 

As shown in Fig. 7, according to the resilience-cost ratio of different recvoery 

strategies in the Northwest Pacific LSN, closeness centrality-based recovery strategy 

ranks first, followed by recovery strategies based on degree centrality, betweenness 

centrality, and random recovery strategy. 

 

 

Fig 7. Resilience-Cost ratio of the LSN in the Northwest Pacific region 
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4.2.2 Northern Indian Ocean region 

In a similar way, the performance of the Northern Indian Ocean shipping network 

under storms can be evaluated. The initial global network efficiency of the Northern 

Indian Ocean shipping network is 37.67%, and after the storms, the global network 

efficiency of the MSR shipping network in the Northern Indian Ocean declines to 

29.24%, losing 22.38% of its capacity. Based on the same restoration process, the 

performance of the shipping network in the Northern Indian Ocean region under 

different recovery strategies can be depicted, as shown in Fig. 8. 

 
Fig 8. Recovery time of the North Indian Ocean LSN under different recovery 

strategies 

In a similar way, the resilience index, recovery time, recovery cost, and resilience-

cost ratio under different recovery strategies in the Northern Indian Ocean are 

calculated. The results are shown in Table 6. 

 

Table 6 Performance of recovery strategies in the Northern Indian Ocean LSN  

Recovery strategy 
Resilience 

index 

Recovery 

time (days) 

Lost operating 

cost (Billion 

CNY) 

Resilience-

cost ratio 

Random recovery 

strategy 
0.8552 213 0.685 0.125 

Degree centrality-

based 
0.8647 165 0.647 0.134 

Closeness 

centrality-based 
0.8753 189 0.681 0.128 



 

 

 

From the Table 6, it can be seen that the LSN in the North Indian Ocean region 

takes the shortest recovery time when using the degree centrality-based recovery 

strategy, which is 165 days. Regarding resilience index, betweenness centrality-based 

recovery strategy performs the best with a value of 0.8845, which is suitable for the 

situation when minimum resilience loss is required during the recovery. Taking degree 

centrality-based recovery strategy is the best in terms of comprehensive recovery effect, 

with a maximum resilience -cost ratio of 0.134. 

 

 
Fig 9. Comparison of different recovery strategies in the North Indian Ocean region  

As shown in Fig. 10, according to the resilience-cost ratio of different recvoery 

strategies in the North Indian Ocean LSN, degree centrality-based recovery strategy 

ranks first, followed by recovery strategies based on betweenness centrality, closeness 

centrality and random recovery strategy. 

 

 

0.84

0.85

0.86

0.87

0.88

0.89

0

5

10

15

20

Random Degree centrality-

based

Closeness centrality-

based

Betweenness

centrality-based

C
 /

 B
il

li
o

n
 C

N
Y

Recovery Cost Resilience Index

0.12

0.122

0.124

0.126

0.128

0.13

0.132

0.134

0.136

Random Degree centrality-

based

Closeness

centrality-based

Betweenness

centrality-based

R
es

il
ie

n
ce

-C
o
st

 r
at

io

Betweenness 

centrality-based 
0.8845 197 0.676 0.131 



 

 

Fig 10. Resilience-Cost ratio of the LSN in the North Indian Ocean region 

4.2.3 Section summary 

The resilience-cost ratio of the LSN in the Northwest Pacific region is much 

smaller than that of the North Indian Ocean, due to the relatively higher total recovery 

time and cost of the 47 ports in the Northwest Pacific region. The resilience-cost ratio 

of the random recovery strategy is the lowest in both the Northwest Pacific and the 

North Indian Ocean regions. 

The research results also indicate that in the Northwest Pacific region, the ports 

with relatively higher value of closeness centrality will have a greater impact on the 

structural resilience of LSNs, such as the Port of Singapore, Hong Kong and Shenzhen. 

While, in the North Indian Ocean region, ports with relatively higher value of degree 

centrality will have a greater impact on structural resilience, such as Port of Navassiwa 

Laem Chabang and Jeddah. Therefore, these ports are suggested to have higher 

priorities during the recovery after being disrupted, in order to improve the overall 

performance of the whole LSN. 

5 Conclusion  

As a crucial component of global trade, maritime container shipping has made a 

significant contribution to the global economy, and thus it requires a resilient system to 

resist disturbance in today’s uncertain environment. This study developed a novel risk-

based resilience framework to measure the effectiveness of different recovery strategies 

for the disruptions in LSN. The case study of the recovery of a specific LSN along the 

MSR under storm disruptions was conducted and four types of recovery strategies are 

compared to demonstrate how the newly proposed method can effectively aid resilience 

decision of LSNs. The contributions of this research are summarized as follows. 

From a theatrical perspective, it contributes to knowledge of risk management of 

maritime shipping networks from a resilience perspective. A directed complex network 

model of liner shipping along the MSR is constructed based on the liner service 

information covering 254 ports from 37 countries, which provides a model basis for the 

vulnerability of LSNs in other regions from a topological structure perspective. The 

methodology is conceptual and generic, providing scientific insights in terms of 

evaluating the resilience of LSNs under disruptions and it could be easily tailored to 

accommodate more parameters when appropriate so as to provide targeted evaluation 

results under different scenarios. The methodology provides insightful reference for the 

safety assurance of maritime transportation from a systemic perspective. 

Practically, the findings provide some managerial implications. First, the proposed 

resilience model is able to identify the influential ports in different regions, and 

calculate the total cost of the recovery of whole LSN, which helps to develop and select 

suitable recovery strategies. Second, this research also provides useful insights on the 

rational emergency response and resource allocation for maritime transportation, and 

also scientific guidance for stakeholders in terms of the investment of ports of global 

LSNs and the practical stakeholders can use it for better plan adaptation to extreme 



 

 

weather events. The ports of low resilience can learn the best practice with respect to 

different parameters from those of high resilience. Furthermore, the proposed resilience 

framework has a good generality and can be tailored when it is applied for dealing with 

other types of risks like earth quake, and tsunamis. More extended applied work based 

on the proposed methodology will further broaden the application range of the proposed 

methods2.  

Although showing some attractiveness, this paper still reveals some limitations in 

applications. As an exploratory research on the risk-based resilience evaluation of LSNs, 

port scale and economy are considered as the main parameters at the current stage when 

estimating the time needed to fully recover the whole LSN. In future research, more 

attributes will be tested and incorporated, if valid, into the proposed model to further 

extend its ability and application scopes. Besides, due to the incomplete and unavailable 

cargo volume information of shipping routes among different port pairs, the importance 

of all links in the LSN is treated equally. Despite the fact that many transport network 

resilience studies used the same setting to support their analysis, it is still believed that 

when more information of the traffic volume of each shipping route is collected, a 

directed and weighted LSN model can be constructed to generate new findings. More 

application of the proposed framework in dealing with other types of risks is 

nevertheless encouraged to further 1) test the generality of the model and 2) generate 

useful guides for LSN resilience to different disruptions in the future. 
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