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1. Introduction  

Animal activity recognition is a vital agricultural subject, which is helpful to understand animal behaviour, where 
the wellbeing of animals can be estimated and classified [1]. Various studies reported the use of animal activity as an 
indicator of animal health [2–4]. It is noted that the daily monitoring of animal activities and locomotion utilising 
sensor technology can provide information regarding stress and diseases such as lameness [5–10], and daily 
nutritional consumption [11]. Furthermore, a decrease in animal activities or hyper activities can provide evidence of 
animal disease and distress [7]. Information gathering through human observation is time-consuming and labour 
intensive. Therefore, devices to measure daily animal behaviour have been proposed and used over the past two 
decades [12,13]. It was also noted that the monitoring of animals with a human observer could influence the natural 
activity of animals on the pasture [14,15], which may not be the case when using technological devices. 

Animal food consumption, the presence of diseases, and general level of activity or inactivity can be estimated and 
identified using devices with embedded machine learning (ML) algorithms [16]. These measures provide the ability to 
monitor and diagnose animal welfare [17]. Additionally, the position of animals and activity information can be used 
to nominate pasture utilisation patterns and animal distribution for pursued animal behaviour [18]. Thus, smart 
technologies can play a valuable part in animal health management [19] and provide vital insights to individuals and 
concerned bodies (e.g., farm managers). The development of information technologies has therefore had a huge 
impact in agriculture using data analysis.  Reviews of big data analysis methods, and precision livestock farming 
using ML in agriculture are provided in [20–22] 

A number of studies illustrated the use of computer vision [23,24] and image analysis [24–26] for monitoring 
animal behaviour. For example, Ren et al. proposed a system able to automatically detect sheep behaviour 
(standing/lying) and position using an ultra-wideband (UWB) system, infrared radiation cameras, and three-
dimensional computer vision technology [23]. The authors successfully detected standing and lying with accuracies of 
98.16% and 100%, respectively which is comparable with other studies, however, they noted a limitation of their 
system for commercial applications due to the battery life of the UWB nodes. Another limitation is the use of 
cameras, which may result in limited area coverage. Moreover, several studies demonstrated the collection of tracking 
data from livestock using GPS collars [27–30]. Likewise, recent research focus on measuring food intake through 
sound analysis [31,32]. All of these studies illustrate the importance of machine based intelligent monitoring of animal 
behaviour and providing support for the research community and their industrial counterparts. The accelerometers are 
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 Animal activity recognition is an important topic that facilitates understanding of animal 
behaviour that is useful for analyzing and classifying their wellbeing. Research studies 
have been reporting the use of animal activity as an effective indicator of their health 
state. This survey focuses on recent advancements in machine intelligence utilizing 
wearable devices for sheep activity recognition. We summarise existing works focusing 
on various types of sensors used in agricultural sheep activity recognition. Furthermore, 
data segmentation methods used in each study, followed by the potential 
recommendations on window size and sample rate selection are addressed in detail. 
Finally, we present the features being identified as significant along with an overview of 
machine learning algorithms used in the domain of sheep activity recognition using 
accelerometer data. 

 



the most commonly used sensors due to their ability to provide information related to animal gait patterns. Due to 
their small size, lightweight, and low power requirements, these sensors are widely used in various applications for 
animal behaviour monitoring [33–35].  

This paper surveys the research studies addressing sheep activity recognition based on ML, Deep Learning (DL) 
and accelerometer measurements. While a number of existing studies propose solutions to this problem, over the last 
decade, there is a significant research gap between understanding the relationships between the focus of a study and 
the specific solution parameters, i.e., window size, feature set and significance level, and choice of ML/ DL 
techniques [34]. For instance, in a study to identify multiple behaviours in dairy calves, it was found that a collar-
mounted sensor, providing both accelerometer and magnetometer measurements produced superior results [16] . 
However, when there was a change in the targeted activities, the sensor was placed on the leg of the calves, and only 
accelerometer data was used [36] . Furthermore, current research on sheep activity recognition (SAR) using ML is 
limited and provides an opportunity to systematically analyse data processing and analysis protocols [37], as 
addressed in this contribution. 

Reviews and survey papers regarding farm production systems dedicated to applications of machine learning for, 
crop management (i.e. plant diseases [38] , agricultural disease image recognition [39], livestock management, water 
management, and soil management are available in the literature [40,41]. However, to the best of authors’ knowledge, 
the proposed work is first of its kind presenting detailed survey about recent advancements in SAR based on ML and 
DL using accelerometer data. More specifically, we provide a thorough overview of various window segmentation, 
feature extraction and selection, and classification algorithms which have been used over the past decade to identify 
the sheep activities.  

The remainder of this paper is organized as follows. Section 2 presents an overview of a typical sheep activity 
recognition problem. In Section 3 summarizes the existing work and challenges in each of the technical aspects of 
SAR. Finally, conclusions of this work and potential future directions and recommendations are presented in Section 
4. 

2. Sheep Activity Recognition using Motion Sensors 

This section describes the requirements and typical characteristics of a SAR problem, as illustrated in Figure 1. We 
present existing works and corresponding techniques proposed within the several steps of SAR task. Overall, a typical 
activity recognition problem includes: (1) data acquisition through sensor mounting on the animals’ body: sensors are 
placed on the collar, ear, leg, or under the jaw; (2) Data labelling: once the raw data is collected, data labelling is 
manually performed over sensor or video data.  In case of multiple data acquisition devices, the recorded data is time-
synchronized to serve as ground truth; (3) pre-processing of the acquired data such as data cleansing and 
standardization; (4) selection of window size within the time series data and feature extraction from the windowed 
frames; (5) feature selection to identify the distinguishing feature set; (6) model development and training using 
ML/DL algorithms; (7) performance evaluation of the models and selection of the most appropriate method.  

 

Figure 1 Illustration of the animal activity recognition problem 

 

Figure 1 presents an overview of the core stages followed within the related research studies to investigate various 
animal behaviours such as, identifying when an animal is active or inactive, classifying whether an animal suffers 
from lameness etc. Based on the nature of the problem and type of data, multiple options for window size, feature 
extraction methods, and ML/DL models can be used. The following subsections provide detailed information 
regarding the various choices within the aforementioned stages. 

 



2.1. Accelerometers  

Accelerometers have mainly been used within the existing works in relation to SAR and therefore, this survey 
mainly focus on the related works, which use accelerometers for data acquisition. Accelerometers measure the 
acceleration of motion and are a ubiquitous type of sensor in activity recognition problems because they are light 
weight, small in size, inexpensive, and offer low power consumption [18,34,42–46]. Studies have reported that 
activities such as walking, grazing, scratching, lying, and standing can be easily recognized by using only 
accelerometers, yielding overall accuracies in excess of 98% [47,48]. Likewise, running activity was detected with an 
accuracy of 96.62% using information from only one acceleration axis of accelerometer data [49]. On the other hand, 
several research studies also used gyroscopes and magnetometers combined with accelerometers to obtain a deeper 
understanding of domestic and wild animal behaviour [1], [2–4]. Combining accelerometer and gyroscope features 
produced an accuracy of 98% in identifying lying activity [50]. Similarly, walking activity was predicted with an 
accuracy of 99% using accelerometer data [51]. Other works also reported the use of accelerometer data to 
discriminate between active and inactive states with 98.10% accuracy [34].  

.  

2.2. Sensor placement 

To collect gait patterns from the animals, accelerometer sensors are attached to the animal body, usually in the 
collar and ear [5,6,34,37,50–53]. On the other hand, there are some studies, where accelerometers are mounted on the 
leg and under the jaw [54–58]. 

Table 1 presents the four most common sensor placements reported in research studies over the last decade. It can 
be observed that the mounting position is determined based on the activity problem under investigation. For example, 
a recent study [5] showed that an accelerometer attached to the animal's ear could discriminate lame walking from 
grazing, standing and normal walking. However, the same technique used on data collected from the animal's collar 
and leg failed to detect normal walking and lame walking. Placing the sensor under the jaw was used for the analysis 
of feeding behaviour, e.g., chewing and biting, which produced sensitivity and specificity of 97.4% and 97.7%, 
respectively [54]. Additionally, other types of activities were discriminated from biting and chewing with 100% 
sensitivity, when the sensors were attached under the jaw [54].  

Table 1 Sensor placement vs animal activity 

Sensor 
Placement 

References Animal activity domain 

Collar [2,5, 33,39,40,42–44,51,52, 53–58,] Collar-borne devices were used to classify 
“active” vs “inactive” behaviour, or “grazing” vs 
“non-grazing”. Additionally, collar-borne 
devices were used in multiclass classification to 
discriminate behaviours such as “grazing”, 
“browsing”, “foraging”, “standing”, “walking”, 
“running”, “resting”, “lame walking”. 

Leg [5,37,51,58]  Leg-borne devices were used to identify 
behaviours such as “walking”, “lame walking”, 
“trotting”, galloping”, “running”, “resting”, 
“grazing”. 

Ear [5,6,34,37,50–53]  Ear-borne sensors were used to identify 
behaviours such as “lame” vs “not-lame”, 
posture (upright vs prostrate), “grazing”, 
“lying”, “standing”, “walking”. 

Under the jaw [54–57] Jaw-based sensors were used to identify 
“biting”, “chewing”, “grazing”, “lying”, and 
“standing” behaviours. 

 
2.3. Sheep Activities 

Various studies related to SAR task using ML attempted to identify different types of activities. The activities of 
animals are discriminated based on domain experts’ knowledge. Table 2 summarizes the activities addressed within 
the related literature. These activities differ in their complexity in terms of being classified. The most common 
activities found in research studies are grazing, walking, standing, resting, and lying. However, other types of 
activities such as biting, chewing, ruminating, and foraging are also studied as shown in Table 2. 



Table 2 Description of sheep activity and behaviour 

Behaviour Description Reference 
Grazing 

 
 
 

 

Eating sward at ground level with the 
head down. 

[2,5, 34,37,47,48,51,52,55,56,57,59–62,64–66] 

Infracting Eating from branches above a certain 
height. 

[65] 

Browsing Eating the leaves of shrubs or trees with 
the head up off the ground. 

[66] 

Chewing Rotation of the lower jaw after a bite 
activity in any head position (up or 
down). 

[54] 

Biting Gathering forage (browse or grass) with 
incisor teeth. 

[54] 

Ruminating Usually performed with the body lying 
in the sternal position. Fermentation of 
digesta in the reticulo-rumen complex 
frequently accompanied by cud-
chewing. 

[2,52,56,57]  

Foraging A general term for the acquisition of 
nutrients with the ingestive apparatus: 
teeth, lips, and tongue. 

[63] 

Walking Four-time slow quadrupedal locomotion 
in sheep; speed 1.1-1.3 m.s-1. 

[2,5, 6, 34,37,47,50,51,53, 58–64,66]     

Moving This is an intended movement from one 
place to another. Naturally, the sheep is 
not looking for nutrition.  

[65] 

Running/ 
Trotting 

Two-time quadrupedal locomotion in 
sheep; speed 1.41-2.41 m.s-1 [67]. 

[55,58,60,61,63–65]  

Galloping Four-time rapid quadrupedal locomotion 
in sheep; speed 2.28-3.56 m.s-1 [67]. 

[58,63,65]  

Scratching Rubbing body surface against a solid 
object. 

[47,59,66]  

Standing Standing with all four feet on the 
ground.  

[2,5,6,34,37,50,51,53,55,59–66] 

Resting  Lying in the absence of rumination.  
Usually performed with the body lying 
in sternal position or infrequently with 
the   body lying horizontally in a lateral 
position. 

[2,5,6,34,37,50,51,53,55,56,59–64,66] 

 
Active  There is body movement, e.g., 

locomotion, foraging, scratching.  
[2,34,62]  

Inactive There is no movement; the sheep are 
lying down to ruminate or are asleep in 
sternal or lateral recumbence. 

[2,47,62]  

   
Upright The body standing in the vertical 

position. 
[34] 

Prostrate The body lying in the horizontal 
position. 

[34] 

   
Lame Asynchronous gait commonly due to 

lameness in one or more limbs; usually, 
the hoof. 

[5,6] 

Not Lame Normal gait, related to normal walking, 
trotting, and galloping. 

[6]  

 

Classification of animal activity to active or inactive states has a low degree of complexity to be classified and 
therefore, can be easily distinguished by utilizing conventional ML methods. It is noted in the literature that decreased 
animal activity or hyperactivity could be an indicator of disease and distress [7]. This kind of information is valuable 
for farm managers and related individuals for further investigation and appropriate treatment when required. On the 
other hand, detection of speed [60] and direction of running is necessary in hazardous cases such as identification of a 
thief or a predator pursuing an animal, specifically in remote locations; therefore, classifying trotting or running is 
essential. However, multiple studies indicated that trotting is generally the most challenging gait to determine 
[36,58,68].   

Identification of real-time foraging activity is essential for sheep farmers working in extensive agricultural hill 
systems [69]. These types of grazing systems characterize the bulk of the sheep farming industry in the UK and other 
parts of the world. Also, changes in the eating behaviour of sheep could indicate health or management problems, e.g., 



quality of pasture [70]. Similarly, continuous monitoring of food intake in real-time could provide better estimations 
of carcass value at market and grazing impact on the sward. It could also be a valuable land management tool, 
preventing the occurrences of dangerous ecological tipping points, leading to overgrazing, soil erosion, and water 
contamination, particularly in sensitive upland ecosystems [71,72].  

Additionally, studies are conducted to identify lameness, one of the most common and persistent health problems 
in sheep flocks around the world [5–10]. Unusual amounts of lying time were shown to be an indication of lameness 
in cattle and sheep [73–75], and therefore lying is a critical activity to be detected in autonomous monitoring systems. 

2.4. Data collection and labelling 

Data collection and labelling (i.e., annotation) of the raw dataset are essential steps of identification of sheep 
activities and behaviour. Usually, the process involves capturing the animals’ activity in their natural environment, 
having the sensors logging motion signals from the collar, leg, ear, or mounted under the jaw (as described in Table 
1). Video recordings of animals are usually observed by the domain experts to label the animal activities. There are 
tools for labelling the data, such as the ELAN_5.7_AVFX Freeware tool [76], however most authors perform the 
labelling manually having the data measurements and video recordings timestamped to serve as a ground truth during 
the labelling step. The camera is set to also record the time in HH(hour):MM(minute):SS(second) format, so it can be 
easily synchronized with the timestamped data measurements. The camera is usually placed in the pasture having a 
clear view of the selected animal or all the animals. During the video recordings, an observer is present and is 
responsible to move the camera if the animals are out of view. The animal is either recognized by the colour of the 
tracking device or is numbered with spray on its body, so the observer can recognize the corresponding animal. The 
various behaviours are labelled based on expert knowledge. Another important factor to be considered is the number 
of animals involved in data collection. This is because animals exhibit different characteristics such as age, height, and 
health status and therefore, larger sample would be required to capture such diversities. However, metadata such as 
age, height, and health status are not integrated in the datasets, but it can be considered during the selection of the 
animals for the data collection. For example, an animal suffering from lameness will differ in gait patterns from a 
healthy animal [7]. Additionally, younger sheep might be more active than older ones and behaviours such as walking 
and running may vary. Therefore, the animal selection plays a crucial role in data collection since having multiple 
behaviours from a variety of animals can ensure more representative training data, resulting in improved predictive 
model characteristics, e.g., adapting better when new animals are added to the flock. 

2.5. Windowing and sample rate  

Accelerometer measurements are collected in time intervals (milliseconds, seconds, minutes etc.), forming a time 
series dataset that needs to be analysed in overlapping intervals. A technique which is commonly used to slice the time 
series signals into the overlapped frames is known as ‘windowing’ [77]. This step is critical since accelerometer 
signals provide valuable information about motion patterns in slots of data and not as a single variable measure. The 
windows are of the same size and are either disjoint [2,5,34,37,47,54,57,59,66] or overlapping, typically at 50% [77]. 
Overlapping windows are suggested because of their ability to capture the transitions of activities more precisely [77]. 
On the other hand, very small disjoint windows can avoid transitions, but may lose important information from the 
signal [77]. Therefore, research studies analysed the effects of varying window size to identify the appropriate size, 
containing sufficient features to discriminate the gait patterns, while simultaneously avoiding misclassification. This 
can result from comparatively longer windows due to activity transitions, i.e., walking to grazing, standing to lying. 
Additionally, windowing process affects the computational complexity of the feature extraction process, which must 
also be taken into account [78]. In relation to SAR, various window sizes were tested and evaluated in the literature, 
as shown in Table 3. It can be observed that 5s and 10s windows have commonly been used.  

Similar to window size, the sampling rate is an important factor presenting the quantity/quantity/number of 
samples in each window. The choice of sampling rate influences accelerator signal information and subsequently, 
feature extraction, while playing an important role in terms of the time complexity and power consumption of the 
device. Various choices of sampling rate were reported in the literature and are presented in Table 3. An illustration of 
the choice of sampling rate vs window size selection in SAR is shown in Figure 2. The plot shows that the commonly 
used window size varies between 3s to 10s with sampling rates between 10Hz to 20Hz. The choice of window size 
and the sampling rate is further analyzed in Section 3.2. 

 

 

 

 

 

Table 3 Variation of window sizes in the literature 

Window size (seconds) Reference 



0.50 50Hz[65] 
1 25Hz[54], 200Hz[63] 
3 5Hz [55], 8Hz [50], 10Hz[55], 12Hz[37], 16Hz[50], 25Hz[55][54],  32Hz[50], 33Hz[58] 
5 5Hz[55], 8Hz[50], 10Hz[55], 12Hz[37], 12.5Hz[47][34], 16Hz[50], 20Hz[48], 25Hz[55][54], 32Hz[50], 

62.5Hz[57]  
5.12 100Hz[60] 
5.30 100Hz[79] 
6.4 100Hz[64] 
7 8Hz[50], 16Hz[6,50,52], 32Hz[50] 

10 5Hz[55], 10Hz[55,66], 12Hz[5,34,37,51], 16Hz[53], 20Hz[48], 25Hz[55], 62.5Hz[57]  
15 20Hz[48] 
25 32Hz [2] 
30 12.5Hz[34], 200Hz[59], 62.5Hz[57] 
60 62.5Hz[56], 62.5Hz[57] 

120 62.5Hz[57] 
180 62.5Hz[57] 
300 62.5Hz[57] 

 

2.6. Time and frequency domain features 

Feature extraction is an important step in classification problems [80,81] as well as in SAR task. In case of time 
series data, several continuous accelerometer measurements are required in order to be able to capture the useful 
activity patterns. However, this is not the case with several alternative measurement modalities which can provide 
information from a single value. A variety of techniques have been suggested to transform the data captured through 
raw accelerometer into useful form (i.e., features) that are further used by the ML algorithms to classify the gait 
activities [82–84]. Previous research in the field considered use of an extensive number of time and frequency domain 
features (refer to Tables 4-5). Examples of time domain features mainly include statistical parameters such as the 
mean, variance, correlation [60,64], higher-order moments, and sensor-based measurements such as pitch, yaw, roll, 
and inclination angles [54,65]. The major advantage of time domain features is that they are easy to extract and 
therefore, in most cases, they are computationally efficient [45,85]. However, they are affected by measurement and 
calibration errors [86]. Frequency-domain features on the other hand, (e.g., signal area, spectral entropy, peak 
frequency, etc.,) often require additional processing that include windowing, filtering, and other form of frequency 
domain analysis such as Fourier transform, wavelet transform, cosine transform etc. However, they are able to 
robustly represent the information in the signal specifically in case of time series data. Thus, they are more 
computationally expensive than time-domain features [87–89]. In Tables 4 and 5, we present an extensive list of time 
and frequency domain features, respectively, used for the SAR task. It can be observed that most commonly used time 
domain features include the mean, standard deviation, minimum, maximum, movement intensity, skewness, kurtosis, 
energy, and entropy. Likewise, spectral entropy, and peak frequency, are identified as the most commonly used 
frequency domain features. Note that reference to three signals in the formulae of Table 4 is due to the x, y, and z axes 
of the associated sensors. A detailed discussion of feature extraction methods in the context of animal activity 
recognition is given in Section 3.3. 
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Figure 2 Window size and sample rate used in sheep activity recognition studies 



Table 4 Time-domain features in sheep activity recognition 

 
1 Observations have been ranked in ascending order. 
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Crest factor 𝑚𝑎𝑥0U𝑥',$) + 𝑥),$) + 𝑥(,$)2

Q1𝑛∑ 0𝑥',$) + 𝑥),$) + 𝑥(,$)2%
$&'

 
[47] 

Peak to Peak 𝑚𝑎𝑥0𝑥",$2 − 𝑚𝑖𝑛0𝑥",$2 [47] 

Pitch (degrees) 

𝑡𝑎𝑛*'

⎝

⎛ −𝑥',$

Q𝑥),$) + 𝑥(,$) ⎠

⎞ 

[54,55,65] 

Roll (degrees) 𝑎𝑡𝑎𝑛20𝑥),$ , 𝑥(,$2 ×
180
𝜋  

[54,55,65] 

 

Yaw (degrees) 

 

𝑎𝑡𝑎𝑛20𝑥',$ , 𝑥),$2 ×
180
𝜋  

[65] 

 

Inclination 𝑡𝑎𝑛*'

⎝

⎛
Q𝑥',$) + 𝑥),$)

𝑥(,$
⎠

⎞ 

[54,55] 

 

Sum of changes 

 

&𝑥",$+' − 𝑥",$

%*'

$&'

 

 

[47,59,66] 

Mean of absolute 
changes 

1
𝑛&

S𝑥",$+' − 𝑥",$S
%*'

$&'

 
[47,59,66] 



 

 

Table 5 Frequency-domain features in sheep activity recognition 

Integrals [90] 
` |𝑥'(𝑡)|
1

2&3
𝑑𝑡 +	` |𝑥)(𝑡)|

1

2&3
𝑑𝑡 +	` |𝑥((𝑡)|

1

2&3
𝑑𝑡 

[47,59,66] 

Squared integrals 
[90] b` |𝑥'(𝑡)|

1

2&3
𝑑𝑡	c

)

+ b` |𝑥)(𝑡)|
1

2&3
𝑑𝑡	c

)

+ b` |𝑥((𝑡)|
1

2&3
𝑑𝑡	c

)

 
[47,59,66] 

Madogram [91] '
)
Εe𝑥",$ − 𝑥",2+4f  

where t=lag, E[.]=expectation 

[47,59,66] 

Energy 0𝑥',$) + 𝑥),$) + 𝑥(,$) 2 [5,21,40,43,46,47,52–55,57,58] 

Entropy (1 + (𝑋',$ + 𝑋),$ + 𝑋(,$))) × 𝑙𝑜𝑔(1 + (𝑋',$ + 𝑋),$ + 𝑋(,$))) 

 

[5,34,37,47,48,51,54,55] 

Name Description and Formula Reference 

Energy in 1Hz 
bins 1

𝑁5
& S𝑋".%S

)
78!+8!

%&78!+'

 

where X is the Fourier transform of x, Nb is the number of samples 
in each bin, and B={0,…,9}. 

 

[64] 

Spectral entropy 
[92] &𝑃0𝑋",%2 × 𝑙𝑜𝑔

1
𝑃0𝑋".%2

8

%&'

 
[6,50,52,60,61,63,64] 

 

 

Signal Area 

where P(X) is the normalized power spectrum of X. 

 

𝑆𝐴 = 	&𝑚𝑎𝑔 .
1
𝑓9

 

where mag is the magnitude and 𝑓9 is the sampling frequency. 

 

 

[50] 

Absolute signal 
area 𝐴𝑆𝐴 = 	&|𝑚𝑎𝑔| .

1
𝑓9

 
[50] 

 

Peak frequency 

 

ar g R
𝑓9
𝑛 𝑚𝑎𝑥 W𝑃

0𝑋",%2XT 

 

 

[6,47,50,52,59,63,66] 

Frequency 
Magnitudes 

Magnitudes of the first six components of the Fourier-transformed 
signal 

[63] 

Spectral Area 
2&𝑆(𝑓%) × ∆𝑓

8

%&'

 

where 𝑆(𝑓%) is the power spectral density at frequency n. 

[6] 

Harmonic 
frequency (2nd and 
3rd) 

Frequencies were the Fourier-transformed signal has its second and 
third highest power values 

[6] 



 
2.7. Feature selection and dimensionality reduction 

 Feature selection and dimensionality reduction are of major importance in activity recognition. Extracted features 
may contain irrelevant, duplicate, or misleading information which could affect the predictive or classification tasks 
[93,94]. While exhaustive search algorithms may be useful in identifying distinctive features, the deployment of 
exhaustive search is impractical in most of the cases, specifically in high dimensionality datasets. To handle this, a 
variety of feature selection and dimensionality reduction algorithms have been used to identify the optimal set of 
features to be further used in the classification/predictive model in various fields [95]. The most commonly used 
algorithms can be classified into filters, wrappers, and hybrid approaches, as described in the following subsections. 

2.7.1.  Fil ter  Methods 
Filter methods use proxy measures for dimensionality reduction in high dimensional spaces, which mostly include 

the amount of information, statistical features such as variance, similarity score, consistency etc., [93,96,97]. 
Likewise, there exist a variety of filter methods to be used depending on the nature of data and hence the task in hand, 
such as prediction or classification. Various studies have used different information-based filters, e.g., information 
gain [98][99], gain ratio [100], fast correlation-based filter [101] and symmetrical uncertainty [101]. On the other 
hand, the Chi-square test [99], Fisher score [102] and feature weighting k-Means [103] are examples of works that use 
statistical filters. Similarly, Relief and ReliefF [101,104–106] are examples of similarity-based filter methods used in 
classification and regression problems. A recent work uses filter methods to identify the candidate feature set for 
human activity recognition with an inertial sensing unit [107]. The algorithm identifies 48 candidate features out of a 
set of 585 temporal and spectral features, concluding the effectiveness of the selected features and classification 
algorithm. Additionally, several works related to sheep activity recognition used the Relief method to reduce the 
number of features for the specific problem [6,48,52,63]. Overall, filter-based methods are comparatively better than 
wrapper and hybrid methods [108], specifically, in high dimensional feature spaces, due to lower execution times and 
generalization abilities, as they are independent of the employed supervised algorithm. On the other hand, filter 
methods are unable to eliminate inter-related features due to univariate analysis [109,110]. 

2.7.2.  Wrapper Methods 
Wrapper methods use a subset of feature space recursively to train a predictive or classification model and evaluate 

the performance over unseen data for the candidate feature set. Selection of subset in each round can be performed 
through various algorithms such as hold out (forward, backward), selection [111], and heuristic search methods [112]. 
Finally, the best performing feature set is identified using the test data for the corresponding trained model. One of the 
major issues with wrapper methods is time complexity specifically, in high dimensional feature spaces [113].  

An example of wrapper methods is the Boruta  [114,115], which deploys the Random Forest algorithm for 
recursive selection of candidate features. Work related to sheep activity recognition applied the Boruta for feature 
selection, prior to fitting the data to the predictive model [59]. Likewise, [116] presented a detailed comparison of RF-
based feature selection and standard chemometric methods, when classifying spectral data. Suto et al., [117] presented 
an interesting study involving wrapper and filter methods in human activity recognition. Specifically, they presented a 
naïve Bayesian wrapper method, which outperformed filter methods, including Chi-Square, Fisher score and T-test for 
the task in hand.  

Several techniques have been introduced to overcome time complexity issues in wrapper methods, specifically, for 
the subset selection task. For instance, Bayesian network [118], sequential search using aggregation [119], expectation 
maximization [120], and beam search [121] are some of the example works towards the optimization of feature search 
in wrapper methods. There exist several studies related to SAR which utilize wrapper methods in feature selection. 
For instance, Boruta algorithm is used in [59], Sequential Forward Selection (SFS) is employed in [58, 114], and 
Recursive Feature Elimination is used in [66]. While these methods yield high classification accuracy, they work 
better only for the specific models adopted for feature selection. In other words, these methods are computationally 
expensive as well as lacking in terms of generalization [122].  

2.7.3.  Embedded and Hybrid Methods 
Embedded feature selection methods partly use supervised learning and hence, they are relatively faster compared 

to wrapper methods. These techniques utilize automated pruning, regularization, or a built-in strategy to select the 
candidate feature set. For instance, the SVM model can be used to recursively prune a feature with associated variance 
less than a set threshold.  Likewise, decision tree-based approaches such as CART [123], C4.5 [124] and XGBoost 
[125] are other commonly used embedded methods for feature selection. A study presented in [126] introduced an 
embedded method for recursive feature elimination using SVM. Feature significance is measured through the 
associated weights in the trained model, and then used to iteratively eliminate the least important features [127]. A 

Harmonic ratio ∑ 𝑓)%
%/)
%&'

∑ 𝑓)%+'
%
)*'
%&'

 
[6] 



widely used technique for sheep activity recognition in the literature is the Random Forest feature selection 
[5,37,51,55].  

Alternatively, a variety of hybrid methods were introduced by integrating the properties of wrappers and filter 
methods [97]. For instance, a filter method (e.g., based on variance in PCA or alternative statistical features) is applied 
over the entire feature space to identify significant features, which are then forwarded to wrapper methods with the 
reduced feature set. In this way, the overall complexity and execution times can be reduced to support the use of 
recursive procedures within wrapper methods. Thus, a hybrid approach tends to be faster and more general than 
wrapper methods, but slower and less general than filter methods.  

2.8. Machine Learning Algorithms 

Various supervised ML techniques have been used to classify the activities of animals [128]. In [129], a 
combination of unsupervised and supervised learning is used. Specifically, the authors propose an automatic 
behaviour recognition system, which uses spatiotemporal features, incorporating temporal dynamics and invariance 
with respect to the animal’s position and orientation. Unsupervised learning is specifically used in the context of 
dimensionality reduction, while a supervised classifier processes the corresponding spatiotemporal information. In 
[130], machine learning approaches for animal activity recognition are being considered, including unsupervised 
classification of movement data into behavioural modes using hidden Markov models. In this subsection, we present 
and describe some commonly used classification algorithms used in SAR.  

The k-nearest neighbours (KNN) classifier is one of the most commonly used classification algorithms in 
supervised ML [131,132]. KNN is a non-parametric model, where the classification process is based on the similarity 
between the training and testing samples. Because of the effectiveness and simplicity of the KNN algorithm, it is 
widely popular in various disciplines, e.g., data science [133–136]. The algorithm determines the nearest k neighbours 
for an unseen sample, and then provides its category based on the maximum frequency label in the k nearest 
neighbours [137]. A description of the KNN is provided in Algorithm 1 in Appendix A.  

The SVM is the alternative robust classifier which utilizes the kernel trick in conjunction with supervised learning 
[138]. The algorithm was first introduced by Boser et al., [139] and further detailed by Cortes [140]. The decision 
hyperplane generated through SVM depends on the so-called support-vectors. A description of the SVM classifier is 
provided in Algorithm 2 in Appendix A. It is effective even with high dimensional data making it a powerful ML 
algorithm for animal behaviour recognitions.    

Logistic regression (LR) is a supervised ML algorithm that is a generalization of linear regression. LR is used for 
prediction as well as binary and multi-class classification. Logistic regression involves the calculation of the 
prediction function, building the loss function, and determining the regression parameters that are capable of 
minimizing the loss function. Optimal parameters are determined using iterative optimization techniques [141]. 
Algorithm 3 in Appendix A illustrates the LR steps.  

Decision trees are well-known supervised ML algorithms used in classification and regression. There are various 
algorithms utilising decision trees (DT) for the classification of data, including ID3 by Quinlan et al.,  [142], C4.5 by 
Quinlan [124] and the classification and regression tree (CART) by Breiman et al., [123]. DT algorithms recursively 
partition the data into subsets, then assigning decision rules to their nodes, as presented in Algorithm 4 in Appendix A, 
which shows an overview of the DT learning process. In this case, several subsets of data are selected from the 
training samples to create an ensemble of various models providing more robust decision than a single model. As a 
results, improved sheep animal behaviour recognition is achieved. 

 Ensemble models further extend the functionality and hence the ability of conventional DT, while utilizing the 

Figure 3 The RF Algorithm [182] 



bagging concept (Beriman, 2001). Random Forest is a commonly used ensemble ML model that was initially 
proposed by Breiman [143]. The algorithm uses the Random Subspaces method [144] and bagging [145] to combine 
several weak classifiers leading to a robust classification. The algorithm is successfully applied to both prediction and 
classification tasks. Using the RF, training data are randomly received using subsets to form trees based on a random 
algorithm [146]. Using the RF algorithm, bootstrap samples (new training set) are selected by substituting the original 
data set for the tree, allowing a number of training data to be excluded, which can then be reused i.e., out of bag 
samples. Figure 3 demonstrates the steps used in the RF algorithm utilizing the bagging approach for decision making.  

The Naïve Bayes (NB) classifier has been widely employed in a variety of data mining and classification tasks 
[147]. The algorithm assumes that the probability of a new data sample can belong to a particular class, when the 
attributes are independent of each other [148]. The algorithm works as follows. Let Dtrain represent a set of training 
samples of t classification objects. In this case, let the probability P(y∣x) for a new data sample X = <x1, x2….xa> to 
belong to the class y∈ {1,… , 𝑐}, where xi represents the value of the attribute. Algorithm 5 in Appendix A shows the 
basic steps in NB classification.  

Multilayer perceptron (MLP) or artificial neural networks (ANNs) are well-known supervised ML algorithms 
which has been used in a variety of domains including classification and regression [149–156] and successfully solved 
many computation problems related to signal processing [157]. Additionally ANNs have been applied to face 
recognition [158], texture classification [159], shape recognition [160] and image segmentation [161]. ANNs have 
also been used to improve generalization [162]. The external inputs are presented to the network through the input 
neurons, while the outputs are shown in the output layer. All other layers are called hidden layers. Each layer has its 
own weights, biases, and transfer functions. The use of more than one layers of nonlinear units makes the network 
more powerful than a single layer network [163]. As an example, multilayer networks can predict many functions 
using two layers with sigmoid and linear functions in the first and the second layers, respectively. Multilayered neural 
networks can be used for pattern classification and function approximation, as well as modelling and prediction [164]. 
For instance, (Nadimi et al., 2012) used MLP with sheep accelerometer measurements to predict grazing, lying down, 
walking, standing, and other activities, obtaining an accuracy of 76.2%. Figure 4 shows the structure of a MLP 
network, where f denotes the transfer function. Algorithm 6 in Appendix A summarizes the forward propagation 
process in MLP.  

 

Deep neural networks (DNN) is considered as a standard neural network with more hidden layers (i.e., a deeper 
structure). In this case, the depth of the network is defined by the number of hidden layers. It should be noted that 
there is no preset number of hidden layers for a neural network to be defined as deep, however, Schmidhuber [165] 
considered that if their credit assignment paths exceed 10, then the corresponding ANN is very deep. The aim of the 
DNN is to be trained to model complex nonlinearities in the input data by mining unique features. Each of the layers 
of the DNN aims to extract certain features. Examples of DNN include Convolutional Neural Networks (CNN) that 
are widely used in image processing [166] and deep belief networks. 

The sparsity and the high dimensional properties of the data will result in increased complexity. Linear 
discriminant analysis [167] has been used for dimensionality and sparsity reduction and represents one of the most 
favourable tools for the projection into a low dimensional space. There are various applications utilizing linear 
discriminant analysis (LDA), including image retrieval, speech recognition, and microarray data analysis [168]. 
Traditional LDA assumes that the dispersion matrices are identical for all classes (i.e., common covariance matrix). 
When this is not possible, quadratic discriminant analysis (QDA) is used. Unlike LDA, QDA assumes that each of the 
classes has its own covariance matrix, thus allowing the discriminant function to contain second-order terms, 
effectively providing for more accurate non-linear decision boundaries. The individual covariance matrices 

Figure 4 MLP network structure 
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correspond to a higher number of parameters for QDA, compared to LDA, which means that to avoid overfitting a 
higher number of sample points is needed [169]. Algorithm 7 in Appendix A presents the basic steps of the LDA 
algorithm.  

 

Table 6 Classification algorithms in sheep activity recognition 

Model Reference 

LR1 [64] 

Linear SVM1 [170] [34,52,63,64] 

Radial SVM1 [6] 

LDA1 [34,48,56–58,60,61,63,64] 

QDA1 [5,34,37,51,60,64] 

CART1 [171][142] [34,54,55,63–65] 

RF1 [143] [6,47,50,52,59,64,66] 

ANN1 [172] [6,59,62,63] 

XGB1 [125] [59] 

AdaBoost1 [173,174] [6,52] 

DNN1 [63] 

KNN1 [175,176] [6,52,53,59,63,64] 

NB1 [63,64] 

K-means2 [53] 

1 is for supervised,  

2 is for unsupervised 

 

 

 

LR
2%

DNN
2%

K-means
2%

RSVM
2%

XGB 
2%

AdaBoost 
4%

NB
4%

ANN 
8%

LSVM 
8%

CART 
12%

KNN 
12%

QDA
12%

RF 
13%

LDA
17%



Table 6 presents the ML algorithms used in the SAR problem and illustrates the use of each algorithm in percentage 
manner. From the illustration, it is clear that the most used algorithm is the LDA (17%), followed by RF (13%), QDA 
(12%), KNN (12%), and CART (12%). Discussion regarding the performance of the algorithms in SAR is presented 
in section 3.3. 

3. Discussion and summary 

Tabular summaries and illustrations of the research works surveyed in relation to sensor placement are provided in 
Tables 7-10, Figure 6-7, respectively. The tables are sorted by descending accuracy and provide information about the 
type of activity, sample rate, window size, feature selection method, learning model, and performance (i.e., accuracy). 
Figure 6 illustrates an overview of the use of ML, sensors, sample rate, window size, feature selection algorithm, and 
resulted accuracy of the reviewed studies when the sensor is placed on the collar of the animal. Similarly, Figure 7 
shows the same parameters as Figure 6, when the sensors are placed on the leg, ear, and under the jaw of the animal.  
In the following sub-sections, detailed observations are presented based on the information provided in Table 7-10 
and Figures 6-7. 

 

Figure 5 Summary chart for SAR studies using collar-born sensors (refer to Table 7) 

 

 

 



 

Figure 6 Summary chart for SAR studies using sensors placed on ear, leg, and under the jaw (refer to Table 8-10) 

 

Table 7 Collar-borne sensors in sheep activity recognition 

ACC=accelerometer, GYR=gyroscope, MAGN=magnetometer, RFs = random forest feature selection, SFS= Sequential 
forward selection, GFS=greedy feature selection 

Model Sensor Sensor 
Placement 

Activities Sample 
Rate 

Window 
(s) 

Feature 
Selection  

Accuracy  Reference 

RF ACC collar grazing, walking, 
scratching, inactive 

12.5Hz 5  -  99.43% [47] 

LDA ACC collar grazing, not-grazing 
(tall pasture) 

20Hz 10  Relief 98.20%  
 

[48] 

LDA ACC collar grazing, not-grazing 
(short pasture) 

20Hz 10  Relief 97.80%  [48] 

LDA ACC collar grazing, not-grazing 
(medium pasture) 

20Hz 10  Relief 97.40%  [48] 

CART ACC,  
ultrasound 
module 

collar Running, not-running 4Hz  - - 96.62% [49] 

RF ACC, 
GYR, 

collar grazing, lying, 
standing, walking, 

200Hz 30  Boruta 96.47% [59] 



MAGN scratching 
RF ACC,  

GYR 
collar grazing, lying, 

standing, walking, 
browsing, scratching 

10Hz 10  - 96.43% [66] 

RF ACC collar grazing, lying, 
standing, walking, 
browsing, scratching 

10Hz 10  - 96.03% [66] 

CART ACC,  
ultrasound 
module 

collar Posture (Infracting and 
Not Infracting) 
 

4Hz  - - 95.95% 
 

[49] 

XGB ACC, 
GYR, 
MAGN 

collar grazing, lying, 
standing, walking, 
scratching 

200Hz 30  Boruta 95.85% [59] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

32Hz 5    
 

- 95.00% 
 

[50] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

32Hz 7  - 95.00% [50] 

MLP ACC, 
GYR, 
MAGN 

collar grazing, lying, 
standing, walking, 
scratching 

200Hz 30  Boruta 94.40% [59] 

DNN ACC, 
GYR 

collar stationary, foraging, 
walking, trotting, 
running 

200Hz 1  - 94.00% [63] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

32Hz 3  
  

- 94.00% 
 

[50] 

KNN ACC, 
GYR, 
MAGN 

collar grazing, lying, 
standing, walking, 
scratching 

200Hz 30 Boruta 93.57% [59] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

16Hz 7 - 93.00% [50] 

MLP ACC collar active, 
inactive 

1Hz - - 92.30% [62] 

RF ACC, 
GYR 

collar 
 

grazing, ruminating, 
non-eating (walking, 
standing, lying) 

16Hz 7  Relief 92.00% 
 

[52] 

CART ACC collar infracting, grazing, 
standing, moving, 
running,  

50Hz 0.5  oneR 91.78% [65] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

16Hz 5 - 91.00% 
 

[50] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

8Hz 5    
 

- 91.00% 
 

[50] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

16Hz 3  
 

- 90.00% 
 

[50] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

8Hz 7  - 90.00% [50] 

QDA ACC collar grazing, lying, 
standing, walking, 
running 

100Hz 5.12  GFS 89.70% [60] 

RF ACC, 
GYR 

collar Walking, standing, 
lying 

8Hz 3  
  

- 89.00% 
 

[50] 

Linear 
SVM 

ACC collar grazing, lying, 
standing, walking, 
running 

100Hz 6.4  SFS 88.40% [64] 

LDA ACC collar grazing, lying, 
standing, walking, 
running 

100Hz 5.3  SFS 82.40% [61] 

CART ACC,  
ultrasound 
module 

collar Resting vs Not resting 4Hz  - - 81.31% 
 

[49] 

MLP ACC collar grazing, lying, 
standing, walking and 
others 

1Hz - - 76.20% 
 

[62] 

QDA ACC collar grazing, standing, 
walking, resting 

12Hz 10  RFs 54%-96% [51] 

QDA ACC collar 
 

grazing, standing, 
walking, 
resting, 
lame walking 

12Hz 10  RFs 35%-95% [5] 

QDA ACC collar grazing, lying, 
standing, walking 

12Hz 3  
 

RFs 6%-88% 
 

[37] 

QDA ACC collar grazing, lying, 
standing, walking 

12Hz 5  
 

RFs 6%-88% 
 

[37] 



QDA ACC collar grazing, lying, 
standing, walking 

12Hz 10 RFs 6%-90% [37] 

 

Table 8 Ear-borne sensors in sheep activity recognition 

ACC=accelerometer, GYR=gyroscope, RFs = random forest feature selection 

Model Sensor Sensor 
Placement 

Activities Sample 
Rate 

Window 
(s) 

Feature 
Selection  

Accuracy  Reference 

CART ACC ear active, inactive 12.5Hz 30  - 98.10% [34] 
RF ACC, 

GYR 
ear standing, walking, 

lying 
32Hz 5  

 
- 95.00% 

 
[50] 

RF ACC, 
GYR 

ear standing, walking, 
lying 

32Hz 7  - 95.00% [50] 

RF ACC, 
GYR 

ear standing, walking, 
lying 

32Hz 3  
 

- 94.00% 
 

[50] 

QDA ACC ear grazing, standing, 
walking 

12Hz 10  RFs 94%-99% [51] 

RF ACC, 
GYR 

ear standing, walking, 
lying 

8Hz 5  - 91.00% 
 

[50] 

RF ACC, 
GYR 

ear grazing, ruminating, 
non-eating  

16Hz 7  Relief 91.00% [52] 

RF ACC, 
GYR 

ear standing, walking, 
lying 

16Hz 7  - 91.00% [50] 

RF ACC, 
GYR 

ear standing, walking, 
lying 

8Hz 7 - 91.00% [50] 

LDA ACC ear posture (upright and 
prostrate) 

12.5Hz 30  - 90.60% [34] 

RF ACC, 
GYR 

ear standing, walking, 
lying 

16Hz 5    
 

- 90.00% 
 

[50] 

RF ACC, 
GYR 

ear standing, walking, 
lying 

8Hz 3  
   

- 89.00% 
 

[50] 

QDA ACC ear grazing, standing, 
walking 

12Hz 10  RFs 89%-93% [37] 

QDA ACC ear grazing, standing, 
walking 

12Hz 5  
 

RFs 86%-93% 
 

[37] 

QDA ACC ear grazing, standing, 
walking 

12Hz 3  
 

RFs 83%-92% 
 

[37] 

QDA ACC ear grazing, standing, 
walking,  
lame walking 

12Hz 10  RFs 82%-96% [5] 

Linear 
SVM 

ACC ear grazing, lying, 
standing, walking 

12.5Hz 10  - 76.90%  [34] 

RF ACC, 
GYR 

ear lame, not lame 
(within Walking) 

16Hz 7  Relief 76.83% 
 
 

[6] 

 

Table 9 Jaw-based sensors in sheep activity recognition 

ACC=accelerometer, RFs = random forest feature selection, SDA=stepwise discriminant analysis 

Model Sensor Sensor 
Placement 

Activities Sample 
Rate 

Window 
(s) 

Feature 
Selection  

Accuracy  Reference 

CART ACC under the 
jaw 

bite, chewing, other 
(grazing pasture plots, 
different sward height 
treatments combined) 

25Hz 5  RFs 96.70% [54] 

CART ACC under the 
jaw 

bite, chewing, other 
(while grazing micro-
sward boxes) 

25Hz 5  RFs 96.6% [54] 

CART ACC under the 
jaw 

bite, chewing, other 
(grazing pasture plots, 
different sward height 
treatments combined) 

25Hz 3  
 

RFs 93.30% 
 

[54] 

LDA ACC under the 
jaw 

grazing, ruminating, 
and resting 

62.5Hz 60 SDA 93.00% [56] 

CART ACC under the 
jaw 

bite, chewing, other 
(while grazing micro-
sward boxes) 

25Hz 3  
 

RFs 90.80% 
 

[54] 

LDA ACC, 
FORCE  

under the 
jaw 

grazing, ruminating, 
other 

62.5Hz  30 SDA 89.70% [57] 



CART ACC under the 
jaw 

bite, chewing, other 
(grazing pasture plots, 
different sward height 
treatments combined) 

25Hz 1  
 

RFs 86.10% 
 

[54] 

CART ACC under the 
jaw 

grazing, lying, 
standing, walking, 
running 

10Hz 5 RFs 85.50% [55] 

CART ACC under the 
jaw 

grazing, lying, 
standing, walking, 
running 

10Hz 10 RFs 83.40% [55] 

CART ACC under the 
jaw 

grazing, lying, 
standing, walking, 
running 

10Hz 3 RFs 82.90% [55] 

CART ACC under the 
jaw 

bite, chewing, other 
(while grazing micro-
sward boxes) 

25Hz 1  
 

RFs 80.40% 
 

[54] 

 

Table 10 Leg-based sensors in sheep activity recognition 

ACC=accelerometer, RFs = random forest feature selection, SDA=stepwise discriminant analysis 

Model Sensor Sensor 
Placement 

Activities Sample 
Rate 

Window 
(s) 

Feature 
Selection  

Accuracy  Reference 

LDA ACC leg walking, trotting, 
galloping (only 
horizontal axis was 
used) 

33Hz 3  SDA 90.91% [58] 

QDA ACC leg 
 

grazing, standing, 
walking, 
resting, 
lame walking 

12Hz 10  RFs 58%-100% [5] 

QDA ACC leg grazing, standing, 
walking, resting 

12Hz 10  RFs 56%-100% [51] 

QDA ACC leg grazing, lying, 
standing, walking 

12Hz 3  
 

RFs 38%-93% 
 

[37] 

QDA ACC leg grazing, lying, 
standing, walking 

12Hz 10  RFs 35%-94% [37] 

QDA ACC leg grazing, lying, 
standing, walking 

12Hz 5  
 

RFs 29%-94% 
 

[37] 

 
3.1. Accelerometers and sensor placement 

As mentioned in Section 1, accelerometers have been widely used in animal activity recognition due to their ability 
to distinguish various behavioural patterns with high accuracy. It is important to note that when using accelerometers, 
the absolute acceleration feature must be considered as it diminishes the effect of sensor orientation, which can 
adversely affect the performance of predictive models [37]. Indeed, it has been previously reported that change in 
sensor positioning could affect the results [177]. Several works such as e.g., [50,59,66]  integrated the accelerometers 
with gyroscopes and magnetometers however, the outcomes in above tables indicate no substantial improvement in 
accuracy.. Therefore, it is suggested that an accelerometer sensor suffices in accurately identifying animal behaviour.  

There is a common trend in attaching the sensor on the collar and ear. For instance, a sensor attached on the collar 
successfully classified grazing, walking, scratching, and inactivity with accuracies above 99.13% [47]. On the other 
hand, a collar sensor is not recommended when the purpose of the study is concerned with lameness [5]. Lame 
walking was classified with an accuracy of 87% when the sensor was attached to the leg as compared to ear 
attachment that produced 82% accuracy [5]. On the other hand, grazing activity can be identified with an accuracy in 
excess of 97% when the sensor is attached to the collar [47,48]. It can be noted from Table 7-10 that activity 
recognition performance depends various factors that include extracted features, ML techniques, sensor placement, 
and window size. When reviewing the locations of sensor placement, the advantage of ear-based sensors is the ability 
to be integrated to existing ear-tags on animals. Based on the reported results of the reviewed studies in Tables 7-10 
[34,47,48,54], we can conclude that one sensor per animal suffices in producing satisfactory predictive results in 
identifying sheep activities patterns. 

3.2. Windowing and sample rate 

The selection of the window size (to analyze the overlapping slots of time series data) and sample rate has 
significant impacts on sheep activity classification results. The choice of window size always depends on the activity 
to be detected.  For example, [54] reported that the classification of biting, chewing, and other feeding activities when 
acquired from under the jaw of the animal, increased the accuracy when the window size was increased from 3 s to 5 s 
[54]. On the other hand, [55] evaluated the classification accuracy for grazing activity using varying window size (3, 



5, and 10-second windows) and reported no significant difference in the performance; however, the highest accuracy 
for running was achieved using the 10s window[55]. This indicates the dependency of window size on the activity to 
be classified. However, using larger window size in real-time animal activity classification may lead to mislabeling 
because, animal may exhibit more than one activity in comparatively larger time interval. A study presented in [39] 
conducted experiments to identify the impact of varying size window over the animal activity recognition 
performance. The outcomes reported  5 seconds as an optimal window size for SAR task.  

In addition to window size selection, previous studies also reported that a lower sampling frequency improves the 
memory usage as well as less power demanding [178]. One of the existing study [50] evaluated the effect of sampling 
frequency and window size on power consumption to identify sheep behaviour. The study outcomes suggested that a 
sampling frequency of 16Hz using 7s window size is useful in terms of  less power consumption. The study also 
reported higher accuracy using a 32Hz sampling rate however, the results were close to those reported for 16Hz from 
[50]. Another work presented in [61] performed spectral analysis on a sheep dataset collected with a sample rate of 
100Hz. The author reported that limited spectral information is available above 10Hz to distinguish the animal 
activities.[61] To summarize, the sampling rate and window size need to be chosen based on the specific animal 
activity recognition problem, in the context of memory and power consumption application constraints.  

3.3. Feature extraction, feature selection, and classification 

During the course of this survey study, it became evident that there is no universal method for feature selection in 
SAR while using the accelerometer signals. From the reviewed studies (Section 2.6, Tables 4-5), it is observed that the 
majority of works use time-domain features as they are computationally efficient. While the frequency-domain 
features are robust to noise,  they are relatively computationally expensive and therefore, requiring more power [87]. 
A variety of feature selection methods have been deployed for the optimal features selection from various time and 
frequency domain features extracted from the accelerometer data.  

 

Figure 7 Use of time-domain features in SAR 

 



 

Figure 8 Use of frequency-domain features in SAR 

 

Visualisation of time and frequency domain features used in the SAR studies are shown in Figures 8 and 9, 
respectively. From Figure 8, it is clear that the most commonly used time-domain features are the mean (11%), 
standard deviation (10%), minimum (7%), energy (6%), and maximum (6%). In Figure 9, it is shown that the most 
commonly used frequency-domain features are the peak frequency (33%) and spectral entropy (33%). 

 From the survey outcomes (Section 3, Tables 7-10), it can be observed that the RFs is identified as the most 
commonly used feature selection approach. In relation to optimal classification model in SAR task, it was observed 
that the most commonly used methods are LDA, QDA, RF, CART, and KNN (refer to Table 6, Section 2.8). 
However, from Tables 7-10, it can be observed that the highest accuracies are achieved using RF (99.43%), LDA 
(98.20%), and CART (98.10%). Given the different settings for each study, i.e., type of animal activities, and sensor 
position etc., a direct comparison in regard to classification or prediction performance is not straightforward. Tables 
11-14 provide an overview of the applied feature selection methods and final set of features, depending on the 
location of the sensors. The outcomes in Tables 11-14 are sorted in terms of descending accuracy. It is envisaged that 
the information presented in these tables could be used to provide guidance in future research studies in relation to the 
sensor position, activity type, and overall system requirements. 

Table 11 Top performances in collar-borne sensors: Feature selection and feature set 

Model Sensor FS Final Features Activities Results per activity Accuracy  Ref 

RF ACC correlation 
>80 

mean, crest factor, root 
mean square velocity, 
skewness, kurtosis, 
madogram, zero 
crossing rate, squared 
integrals, and signal 
entropy 

grazing,  
walking,  
scratching,  
inactive 

acc 99.08% 
acc 99.13% 
acc 99.90% 
acc 99.85% 

99.43% [47] 

LDA ACC Relief entropy az, mean az, 
mean gy, mean gx, 
entropy ay 

grazing,  
not-grazing 
(tall pasture) 

acc 98.2% 98.20% [48] 



LDA ACC Relief mean az, entropy az, 
mean gy, entropy ay, 
mean gx 

grazing,  
not-grazing, 
(short 
pasture) 

97.80% 97.80% [48] 

LDA ACC Relief entropy az, mean gy, 
mean az, entropy ay, 
mean gx 

grazing,  
not-grazing 
(medium 
pasture) 

97.40% 97.40% [48] 

CART ACC No the 3-axis dynamic 
acceleration results 
only considered one 
axis to differentiate 
activity 

Running/not-
running 

96.62% 96.62% [49] 

RF ACC, 
GYR, 
MAGN 

Boruta mean, sd, rms, rms 
velocity, energy, sum 
of changes, mean 
absolute change, 
integrals , squared 
integrals, madogram, 
peak frequency 

grazing,  
lying,  
standing,  
walking,  
scratching 

sens 97.66% spec 97.74% 
sens 93.22% spec 99.76% 
sens 97.32% spec 98.50% 
sens 96.23% spec 99.53% 
sens 95.70% spec 99.74% 

96.47% [59] 

RF ACC, 
GYR 

NA mean, sd, rms, rms 
velocity, energy, sum 
of changes, mean 
absolute change, 
integrals , squared 
integrals, madogram, 
peak frequency 

grazing,  
lying,  
standing,  
walking,  
browsing,  
scratching 

sens 94.90% spec 98.21% 
sens 97.29% spec 99.34% 
sens 95.48% spec 97.46% 
sens and spec 100% 
sens 78.91% spec 99.99% 
sens 90.91% spec 100% 

96.43% [66] 

 

Table 12 Top performances in ear-borne sensors: Feature selection and feature set 

Model Sensor FS Final Features Activities Results per activity Accuracy  Ref 

CART ACC No average, average all 
axis, minimum, 
maximum, sd, average 
sd, movement 
intensity, signal 
magnitude area, 
energy, entropy, 
movement variation 

Active, 
inactive 

sens 97.4% spec 98.5% 
sens 98.5% spec 97.4% 

98.10% [34] 

QDA ACC RF Movement Variation, 
Average Intensity, 
Average y 

grazing,  
standing,  
walking 

acc 94% 
acc 96% 
acc 99% 

94-99%  [51] 

 
Table 13 Top performances in leg-mounted sensors : Feature selection and feature set 

Model Sensor FS Final Features Activities Results per activity Accuracy  Ref 

QDA ACC RF Average x, Signal 
Magnitude Area, 
Average Intensity 

grazing,  
lying,  
standing,  
walking, 
lame walking 

acc 89% 
acc 100% 
acc 58% 
acc 64% 
acc 87% 

58%-100%  [5] 

QDA ACC RF Average x, Signal 
Magnitude Area, 
Movement Variation 

grazing,  
lying,  
standing,  
walking 

acc 91% 
acc 100% 
acc 56% 
acc 100% 

56%-100%  [51] 

QDA ACC RF Average x , Signal 
Magnitude Area and 
Movement Variation 

grazing,  
lying,  
standing,  
walking 

acc 76% 
acc 38% 
acc 48% 
acc 93% 

38%-93% [37] 

QDA ACC RF Average x, Signal 
Magnitude Area and 
Movement Variation 

grazing,  
lying,  
standing,  
walking 

acc 81% 
acc 35% 
acc 47% 
acc 94% 

35%-94% [37] 

QDA ACC RF Average x, Signal 
Magnitude Area and 
Movement Variation 

grazing,  
lying,  
standing,  
walking 

acc 80% 
acc 29% 
acc 48% 
acc 94% 

29%-94% [37] 



 
Table 14 Top performances in jaw-mounted sensors: Feature selection and feature set 

Model Sensor FS Final Features Activities Results per activity Accuracy  Ref 

CART ACC RF mean of Movement 
Variation and Energy 

Bite, 
chewing,  
other  
(grazing 
pasture plots, 
different 
sward height 
treatments 
combined) 

sens 97.4% spec 97.7% 
sens 96.3% spec 96.8% 
sens 95.4% spec 100% 

96.70% [54] 

CART ACC RF mean of Movement 
Variation and Energy 

Bite,  
chewing,  
other (while 
grazing 
micro-sward 
boxes) 

sens 96.3% spec 98.4% 
sens 95.1% spec 97.4% 
sens 100.0% spec 99.0% 

96.60% [54] 

 

Table 7 and Figure 6 shows that studies with the sensors attached to the animals’ collar indicated high accuracy in 
identifying various types of activities. Best results show that accuracy range of 97.40%-99.43%, were obtained using 
the RF and LDA as classification models. RF yielded an overall accuracy of 99.43% for grazing, walking, scratching, 
and inactive [47]. On the other hand, LDA yielded an accuracy of 98.20% in binary classification, i.e., grazing, and 
non-grazing [48]. These two studies used different combinations of features. For example, the RF approach used 
features including mean, crest factor, root mean square velocity, skewness, kurtosis, madogram, zero crossing rate, 
squared integrals, and signal entropy to obtain an accuracy of 99.08% for grazing [47]. While [48] used entropy and 
mean with LDA and achieved an overall performance of 98.20% for grazing and non-grazing. On the other hand, 
Cardoso et al., [49] used data acquired from the collar using only one axis of the accelerometer signal to classify 
running activity and achieved an accuracy of 96.62%.  

Another study [34] reported 98.1% accuracy towards distinguishing active and inactive sheep behaviours. They 
used sensor attached to the ear, CART as classification model trained over multiple set of features that include mean 
of each axis, mean of all axes, minimum, maximum, sd, average sd, movement intensity, sma, energy, and entropy 
(refer to Table 12). On the other hand, [51] acquired ear-mounted sensor data to discriminate between grazing, 
standing and walking, using QDA and three features (movement variation, average intensity, and  average of y-axis). 
The study reported 94%-99% accuracies for the selected activities. The outcomes from these studies clearly indicate 
the association between  the sensor mounting location, , the activities to be distinguished, and the selected features, 
which indicated impact on the performance of ML models. 

A limited literature reported the sensors placement on the leg and under the jaw in relation to SAR task (Refer to 
Figure 7). The activity classification using leg mounted sensor produced an imbalanced accuracy (refer to Table 13). 
For example, accuracies of 89%, 100%, 58%, 64%, and 87%, respectively, were obtained for grazing, lying, standing, 
walking, and lame walking respectively while using QDA and only three features (average of x-axis, signal magnitude 
area, and average intensity) in [5] . Considering these outcomes, it can be inferred that the selected three features are 
efficient to discriminate the lying activity (100%) however, demonstrate poor performance in discriminating standing 
and walking. Likewise, there are few studies reporting potential towards feeding activity classification when sensor 
are mounted under the jaw.. For instance, Alvarenga et al., achieved accuracies of 96.60%, and 96.70% using CART, 
and identified that the most important features were the mean of movement variation and energy, to discriminate 
between biting, chewing, and other activities [54]. 

In summary, there is no universal approach for animal activity recognition. Instead, each activity recognition 
approach needs to be designed according to the specific aim, objectives, environment, available, and datasets, etc. 
Depending on the nature of problem, selection of sensor configuration, feature extraction, and ML techniques have 
associated advantages and disadvantages, which primarily relate to the context of the investigated activities. 

4. Conclusion and future directions 

Intelligent monitoring and detection of sheep activities using accelerometers and ML is an important research 
topic, specifically with potential to provide information which might be useful for the efficient decision-making in 
terms of animal welfare as well as land utilization. In this survey, the problem of SAR was considered in terms of its 
essential building blocks. A number of aspects were the main focus of this study, including sensor type and 
positioning, window size and sampling rate, feature extraction, feature selection, and classification methods in relation 
to SAR. Furthermore, an overview of the foundations of utilized techniques and the opportunities and challenges was 
presented. Based on the findings from surveyed literature, it is identified that the solution to SAR task depends g upon 
the problem at hand and properties of the available data. For example, an essential aspect in SAR model is the choice 



of activities to be identified, as this will significantly influence the proposed methodology, i.e., sensor placement, 
window size, feature selection, and choice of the classification algorithm. From the review of related state-of-the-art 
works, it was identified that lameness recognition in sheep using accelerometer signals is a challenge that has not been 
sufficiently studied, and therefore, offering opportunities for novel contributions in this field. 

The majority of related research works focus on using collar-borne and ear-borne accelerometers. Animal activity 
prediction results indicated that these two sensor positions result in higher accuracy, when compared to sensors 
mounted on the leg and under the jaw. However, limited work exists addressing these mounting positions. Therefore, 
more research should be conducted to further explore the advantages of using leg and under the jaw-based sensors for 
recognizing varying sheep activities. Indeed, a leg-borne sensor can provide valuable information regarding 
movement activities, while the data collected from the jaw of the animal could provide more information regarding 
feeding activities, such as grazing, biting, chewing, and ruminating, which are critical behaviours for the sheep 
industry as well as for conservation purposes. 

We further observed that limited studies exist in regard to the use of DL for the SAR task and indeed, this is an 
avenue that needs to be further explored. Classifying sheep activities using DL could overcome limitations that arise 
from conventional approaches. For example, when using traditional ML methods, there is a requirement to develop 
and investigate the appropriateness of feature extraction, which takes valuable time and efforts. This can be resolved 
by utilizing DL models, which automatically perform the feature extraction during the learning process. 

Appendix A:  

Consider a set X of n labelled samples, KNN performs the classification task as shown in Algorithm 1.  

Algorithm 1: KNN Algorithm 

Let y represent the unknown sample  
Let 𝑘 ∈ [1, 𝑛] 
Repeat  
 Calculate similarly between y and xi 
 If (i <= k) 
  𝑥! ∈ 𝑖𝑛𝑡𝑜	𝑘	𝑛𝑒𝑎𝑟𝑒𝑠𝑡	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟	𝑜𝑓	𝑦 
 Else if (xi is close to y than one of the nearest neighbours) 
  Eliminate the farthest neighbour in the k nearest neighbour set  
  𝑥! ∈ 𝑖𝑛𝑡𝑜	𝑘	𝑛𝑒𝑎𝑟𝑒𝑠𝑡	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟	𝑜𝑓	𝑦 
 End  
 i++  

Until (i > No of Training data) 

 

Algorithm 2. Support Vector Machine Algorithm [179] 

Let S represent a set of m data points where 𝑠 = 8{(𝑥! , 𝑦!)|𝑖 = 1. .𝑚}@ 
Where 𝑥 ∈ 𝑅"and y ∈ {1,−1} for binary classification  
Let 𝜑 be a map function, where Z = 𝜑(𝑥) and 𝜑 maps the input space to a high-dimensional dot-product feature space. 
Determine the hyperplane define by 𝑤. 𝑧 + 𝑏 = 0	𝑤ℎ𝑒𝑟𝑒	𝑤 ∈ 𝑅#	𝑎𝑛𝑑	𝑏 ∈ 𝑅. 
∃	(w, b) 
If (S is linearly separable) 

𝑤. 𝑧! + 𝑏	 ≥ 1, 𝑦! = 1 
𝑤. 𝑧! + 𝑏	 < 1, 𝑦! = −1 

Else  
𝑤. 𝑧! + 𝑏	 ≥ 1 −	𝜀! 

𝑚𝑖𝑛$,&,' M
1
2𝑤

(𝑤 + 𝑐P 𝜀!
#

!
Q 

𝑦!(𝑤(𝜑(𝑥!) + 𝑏) ≥ 1 + 𝜀! , ∀𝑖 = 1,… . ,𝑚 
𝜀! ≥ 0, ∀𝑖 = 1,… . ,𝑚 
c is a constant  
𝐾(𝑢, 𝑣) = 𝜑(𝑢)𝜑(𝑣) 
K is the kernel 

 

Algorithm 3: LR algorithm [180] 

Let S be the prediction function (a sigmoid function)  



Let x be the variable 

𝑆 =	
1

1 + 𝑒)* 

Let g to be the prediction function and L the Loss function   

𝑔$(𝑥) = 𝑆(𝑤(𝑥) = 	
1

1 + 𝑒)$!* 

𝐿(𝑤) =
1
𝑚 XP (𝑦! log𝑔$(𝑥!) + (1 − 𝑦!) log(1 −𝑔$(𝑥!)))

#

!+,
\ 

Determine w using gradient descent to minimize the loss function 
 
Algorithm 4. A general method for learning the DT [123] 
Let (X, Y), {x1, x2……., xd}, Knots depth, depthmax and 𝐺𝑎𝑖𝑛-./!0#!"  as the inputs  
Let N0 the initial node 
Calculate Gainsplit 
For 𝛼 ∈ {1,… , 𝑑} 

For 𝛽 ∈ 𝑘"10- 
  Find Gainsplit 

  Find 𝐺𝑎𝑖𝑛-./!0∗ =max(Gainsplit, 𝐺𝑎𝑖𝑛-./!0∗ ) 
  Record optimal split variable 𝑥3∗ and split the knot 𝛽∗ 
                End  
End  
Update the nodes based on 𝑥3∗ and 𝛽∗ 
depth ++ 
if 𝐺𝑎𝑖𝑛-./!0∗ > 𝐺𝑎𝑖𝑛-./!0#!" 𝑂𝑟	𝑑𝑒𝑝𝑡ℎ > 𝑑𝑒𝑝𝑡ℎ#4* 
 exit  
end  
Algorithm 4 applied to (X,Y)left and (X, Y)right 

 
 

Algorithm 5 shows the NB algorithm which works as follows. Let Dtrain represent a set of training samples of t 
classification objects. In this case, let the probability P(y∣x) for a new data sample X = <x1, x2….xa> to belong to the 
class y∈ {1,… , 𝑐}, where xi represents the value of the attribute. Algorithm 5 shows the basic steps in NB 
classification.  

Algorithm 5: NB algorithm 

Let P(y|x) be the posterior probability of the target class 

Let P(y) be the probability of the class  

Let P(x) be the probability of the predictor 

						𝑃(𝑦|𝑥) =
𝑃(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥)  

						𝑃(𝑦|𝑋) = 𝑃(𝑥,|𝑦) × 𝑃(𝑥5|𝑦) × …… . .× 𝑃(𝑥4|𝑦) × 𝑃(𝑦) 

 

Algorithm 6: The input-output equations for MLP network 

Let M to be the number of inputs  
Let N is the number of outputs 
S is the number of hidden units 
Let y represents the N-tuple outputs of the output layer,  

Let x represents the M-tuple inputs to the network hidden layer, 𝑛6 = ∑ 𝑊,𝑥78
7+,  

nj represents the net sum at the hidden neuron j  
The output of this unit is: 

𝑣6(𝑛6) = 𝑓 MP 𝑊,𝑥7
8

7+,
Q 



where f is a nonlinear transfer function.  
The output of the hidden layer is the input to the next layer and the net input to the output unit i is: 

𝑛! =P 𝑊5𝑉6
:

6+,
 

and the output unit i produces the following output value: 

𝑦! = 𝑓(𝑛!) = 𝑓 iP 𝑊5𝑉6
:

6+,
j 

Algorithm 7 presents the basic steps of the LDA algorithm.  

 

Algorithm 7: Linear discriminant analysis (LDA) [181] 
Let 𝑥!6 	 ∈ 𝑅; to be the training sample  
Let c to be the number of unknown classes  
i, j are the class numbers  
Let mi to be the mean vector of class ci 
Let Sb and Sw to be the between and within class scatter matrices, respectively, were  

𝑆& =
1
𝑛P𝑛!(𝑚! −𝑚)(𝑚! −𝑚)(

<

!+,

 

𝑆$ =
1
𝑛PPk𝑥!:6 −𝑚lk𝑥!:6 −𝑚l

(
"#

6+,

<

!+,

 

LDA aims to find a projection that is optimal in separating data classes in a low-dimensional space 
If U is a set of projection vector, then U is selected to maximize the ratio between Sb and Sw 

𝑈∗ =					?
@AB#4* 𝑡𝑟(𝑈(𝑆&𝑈)

𝑡𝑟(𝑈(𝑆$𝑈)
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