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Person identification is a problem that has received substantial attention, particularly in security domains. Gait recognition is one of the 

most convenient approaches enabling person identification at a distance without the need of high-quality images. There are several review 

studies addressing person identification such as the utilization of facial images, silhouette images, and wearable sensor. Despite skeleton-

based person identification gaining popularity while overcoming the challenges of traditional approaches, existing survey studies lack the 

comprehensive review of skeleton-based approaches to gait identification. We present a detailed review of the human pose estimation and 

gait analysis that make the skeleton-based approaches possible. The study covers various types of related datasets, tools, methodologies, 

and evaluation metrics with associated challenges, limitations, and application domains. Detailed comparisons are presented for each of 

these aspects with recommendations for potential research and alternatives. A common trend throughout this paper is the positive impact 

that deep learning techniques are beginning to have on topics such as human pose estimation and gait identification. The survey outcomes 

might be useful for the related research community and other stakeholders in terms of performance analysis of existing methodologies, 

potential research gaps, application domains, and possible contributions in the future. 

CCS CONCEPTS • Security and Privacy • Computing Methodologies ~Machine learning ~Artificial intelligence ~Computer 

vision~ Computer vision problems  

Additional Keywords and Phrases: Human pose estimation, gait re-identification, face matching, deep learning, human pose 

datasets, crime suspect identification. 
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1 INTRODUCTION 

Gait refers to a person’s manner of walking. Gait analysis and identification are important to several fields such as medicine 

and policing. By analysing a person’s gait, it is possible to extract features such as velocity, cadence (steps per minute), 

stride duration, stride length, and stride width [153]. The combination of values for these features is unique to each 

individual and can therefore be considered biometric data [160], and from as early as 1977, researchers have shown its 

usefulness in  identifying individuals [30].  

Traditionally, gait-based person identification methods have  used silhouette images to represent a person in an image 

frame, and have shown considerable success in the existing literature [49,105,129,190,196]. However, there are several 

limitations associated with these methods. For instance, silhouette images can lose fine-grained spatial information or they 

may contain other visual clues such as clothing and accessories which may influence the identification [173]. Furthermore, 

numerous studies do not address or explain how silhouette images are obtained in complex scenes which makes the 

silhouette approach unreliable for gait recognition [173].  

Alternatively, the skeleton-based approach, leverages modern advances in Human Pose Estimation (HPE) [173]. The 

HPE allows robust skeleton poses to be extracted directly from RGB images. Skeleton poses provide the opportunity to 

analyse gait more strictly by starting with a clear representation of a person in an image frame. This approach provides a 

more elegant extraction of gait features and the opportunity to remove the issues associated with clothing and accessories 

which impact the silhouette approach. 

1.1 Existing Survey Studies 

Generally, the HPE techniques can be categorised into 2D HPE and 3D HPE. In 2D HPE joints and/or body parts are 

tracked across the surface of an image, whereas 3D HPE also estimates the depth of the joints and body parts in the image. 

Table 1 summarises the existing survey studies that review 2D and 3D HPE. The survey studies presented in 

[31,46,118,194] focus solely on 2D HPE, [56,70,155] focus on 3D HPE, and [25,69,93,168,220] address the hybrid models. 

It is also important to note that previous survey studies published before 2015, review more conventional approaches to 

HPE, whilst [25,31,220] survey present the deep learning-based approaches to HPE. Both traditional and deep learning-

based approaches are reviewed in [46,197]. Likewise, human parts parsing methods of HPE are reviewed in [93]. 

Furthermore, head pose estimation which is also a related challenging area of research is addressed recently [119,158]. To 

the best of the authors’ knowledge, existing survey studies (as presented in Table 1) disregard the review of HPE for gait 

identification despite it enables the convenient way of gait feature extraction. Similarly, the existing surveys lack the 

discussion on the current reliance upon key point labelling in HPE datasets that is addressed in our study. 

Table 1. A List of Existing Surveys on HPE along-with Brief Summary of Key Objectives 

Ref Year Description 

[168] 2021 A survey of 2D and 3D multi-person HPE. Includes a focus on the unique challenges of multi-person HPE such as occlusion 

and truncated body parts.  

[194] 2021 A survey of methods for 2D multi-person pose estimation. Includes discussion of available datasets, evaluation metrics 

and open-source systems. 

[220] 2020 A survey on deep learning-based 2D and 3D HPE, including performance evaluation of HPE methods. 

[25] 2020 A survey of deep learning-based 2D and 3D HPE between 2014 and 2020.  

[118] 2020 A survey of 2D HPE models and methods between 2014 and 2020.  

[70] 2020 A survey of 3D HPE from monocular RGB images. Includes a taxonomy of approaches. Includes a discussion of datasets, 

evaluation metrics and provides a quantitative comparison of methods.  

[158] 2020 A survey of the developments of head pose estimation between 2010 and 2020. 
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Ref Year Description 

[31] 2019 A survey on deep learning-based 2D HPE. 

[197] 2018 A survey of RGB-D-based motion recognition focused on the application of deep learning to motion recognition.  

[46] 2016 A survey of 2D HPE from monocular images including traditional and deep learning approaches. Includes a brief discussion 

of available datasets.  

[155] 2016 A survey of 3D HPE from RGB images and image frames. Includes monocular and multi-view approaches. Also includes 

a brief discussion of available datasets.  

[102] 2016 A survey of computer vision-based camera localisation including a survey of proposed extensions. 

[93] 2015 A survey of 2D and 3D HPE. Includes an overview of the body parts parsing methods including monocular and multi-view 

approaches. Includes a brief review of available datasets. 

[143] 2014 A survey of 2D and 3D human pose estimation including a general taxonomy to group model-based approaches to HPE.  

[56] 2012 A survey of multi-view approaches for 3D HPE and activity recognition.  

[69] 2010 A survey of view-invariant pose representation and estimation using a marker-less approach. Includes an overview of 

behaviour analysis. 

[119] 2009 A survey of head pose estimation methods including a taxonomy of head pose estimation methods. 

[155] 2007 A survey of human motion analysis using a marker-less approach. 

[113] 2006 A survey of computer vision-based motion capture tracking, pose estimation and recognition between 2000 and 2006. 

[112] 2001 A survey of computer vision-based motion capture including tracking, HPE and recognition. 

Table 2. A List of Existing Surveys on Gait Analysis/Identification along-with Brief Summary of Key Objectives 

Ref Year Description 

[157] 2022 A survey of deep learning approaches to gait recognition. Includes a four-dimensional taxonomy and a review of datasets. 

[41] 2022 A survey of deep learning approaches to gait recognition. Includes a review of datasets, approaches, and architectures. 

Highlights weaknesses of the approach. 

[80] 2021 A survey of vision-based approaches to gait recognition, focusing mainly on silhouette images. 

[74] 2021 A survey of vision-based approaches to gait recognition. Includes a review of gait features, datasets, and existing solutions.   

[132] 2019 A survey of publicly available depth-based gait datasets for person identification and/or classification. 

[103] 2019 A survey of the use of gait for person identification via the use of wearable sensors.  

[35] 2019 A review of the evidence demonstrates a relationship between gait, emotions, and mood disorders.  

[48] 2018 A survey of gait analysis for human identification. 

[192] 2018 A survey of gait recognition methods, including a range of sensors. Includes a discussion of machine learning approaches.  

[166] 2018 A survey of vision-based gait recognition methods. Includes a discussion of evaluation metrics.  

[29] 2018 A survey of the types of features used by different modalities of gait recognition. Includes a discussion of factors that 

impact gait recognition and the issues of gait spoofing and obfuscation.  

[43] 2007 A survey of biometric recognition via the use of gait analysis. Includes a discussion of factors that influence gait 

recognition. In addition, an evaluation of gait analysis under various attack scenarios are presented.  

Table 2 lists the existing survey studies on the topics of computational gait analysis and gait-based person identification.  

The survey study in [132] reviews the depth-based gait datasets. In addition to person identification, there is a range of 

other domains in which gait analysis has the potential applications, for example, the association between gait and emotion 

is explored in [35]. In addition to applications, gait-based identification approaches can also be categorised w.r.t sensors 

used in the approach. The main sensors and approaches used for gait identification are machine vision, floor sensors, and 

wearable sensors. Among the list in Table 2, [120,166] solely reviews computer vision techniques, [103] reviews only 

wearable sensors methods, and [29,35,43,192] review approaches with a variety of sensors. A review of machine learning 

and deep learning approaches for gait identification is presented in [192] and [41,157] respectively. A discussion of the 

factors that limit the accuracy of gait identification and the security challenges are provided in [29,43].  

Alternatively, silhouette-based approaches to gait identification are surveyed in [35,48,120,166], while [103,192] 

present the approaches using sensors other than vision-based (e.g.,  wearable sensors). To the best of the authors’ 
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knowledge, none of the existing surveys present the review of the skeleton-based approach to gait identification. 

Furthermore, the existing surveys lack the review of the HPE datasets, models, and methods available for skeleton-based 

gait identification. 

1.2 Motivation 

The development of the skeleton-based gait identification approaches has the potential impact within the diverse 

application domains such as physiotherapy, sports coaching, healthcare, and person or criminal identification [55,133]. For 

example, the police and security services could benefit from person identification systems that are not dependent on 

appearance, such as face identification, which can otherwise be easily disguised.  

Recently, BBC reported the failure of existing face matching tools that are deployed by UK police are inaccurate [42]. 

Big Brother Watch, a campaign group investigated the technology and found that it produces an extremely high number 

of false positives, therefore inappropriately identifying innocent people as suspects. Likewise, ‘INDEPENDENT’ [159] 

and ‘WIRED’ [18] reported that Metropolitan and South Wales Police’s facial recognition technology misidentify the 

suspects, with a false positive rate of 98%. These statistics indicate the existence of a major gap within the existing 

technology that is needed to be investigated to deal with challenges associated with real-time video processing.  

Improving the real-time person identification has the potential impact in various domains such as border security at 

airports, police enforcement, and domestic applications (e.g., prevention of thefts in shops). The recent improvements in 

gait-based identification have shown to be applicable in situation where face-matching technology shows poor 

performance, for example, with low-resolution images, and/or when the face is covered. Furthermore, skeleton-based gait 

identification has indicated success in producing distinct features for the identification of individuals, such as stride length, 

stride width, and gait energy. Hybrid methods combining the use of face matching technology with gait-based identification 

may provide higher identification accuracy.  

In addition to the aforementioned impacts and related methods, the existing survey studies lack the comprehensive 

review of skeleton-based approaches to gait identification, and the available datasets for this problem. Similarly, 

application domains are not thoroughly reviewed. This survey therefore should support the understanding of gait-based 

identification methods to aid in the development of such solutions, including the collection of more appropriate datasets in 

future, with the aim of improvements towards safer community.  

1.3 Contributions 

For the first time, we present a thorough review of HPE methods specifically aimed towards gait identification, with an 

emphasis on skeleton-based approaches. This survey aims to address the shortcoming of the previous surveys by providing 

a systematic review of HPE for skeleton-based gait identification. Furthermore, we present a review of 2D and 3D HPE 

methods and gait identification methods, including a discussion of datasets, limitations in the existing datasets and technical 

models, application domains, and evaluation metrics. This survey mainly contributes in the following aspects:   

• A comprehensive review of approaches to the problems of 2D HPE, gait analysis, and gait identification. 

• A comprehensive review of the skeleton-based approaches to gait analysis with a comparison to conventional 

methods. 

• A comprehensive review of the datasets available for the training and evaluation of HPE solutions and gait-based 

identification, including a summary of their limitations and suggestions for future datasets. 

• An overview of the potential applications of HPE and gait analysis followed by suggested future works. 
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This paper describes and compare the traditional silhouette-based and the modern skeleton-based approaches to gait 

analysis and person identification. We also present a comprehensive review of the existing HPE technologies and 

techniques required to implement the skeleton-based approach, along with a review of the datasets and evaluation metrics 

that have been used to implement and evaluate HPE. Finally, this paper highlights a diverse range of domains in which 

gait analysis and HPE have the potential to make a significant impact, with a particular focus on the person identification.  

1.4 Organisation 

The remainder of this paper is organised as follows. Section 2 addresses the methodology of the proposed survey study. 

Section 3 reviews a wide range of datasets for HPE and gait identification in subsections 3.1 and 3.2 respectively. Section 

4 presents HPE, the metrics used to evaluate and compare methods, and technical approaches. Section 5 introduces the 

problem of gait identification. The traditional silhouette-based approaches are reviewed in subsection 5.1, while the more 

modern skeleton-based approach based on HPE is reviewed in subsection 5.2. Domains and applications relevant to HPE 

and gait analysis are explored in section 6. A discussion of the major topics is provided in section 7. Finally, section 8 

provides the conclusions and suggested improvements in various aspects for future works based on our findings from this 

study.  

2 METHODOLOGY 

This survey aims to systematically review existing research in 2D and 3D HPE to aid future work in HPE and gait 

identification in various aspects as mentioned earlier. The following subsections explains the adapted methodology for this 

review. The scope of this article is guided through two filters: research aspects and search strategy. 

2.1 Research Aspects 

The research aspects investigated in this survey include: a) What datasets are available for HPE and Gait identification? 

What are their limitations? b) What models are available for HPE and Gait identification? What are their limitations? c) 

What possible improvements can be made to the datasets and models? d) Is there a significant difference in the results of 

the skeleton-based approaches to gait identification as compared to traditional approaches? 

The survey firstly focuses on the identification and evaluation of the datasets required to evaluate the different methods 

of HPE and gait identification. The datasets also provide the opportunity for training and evaluating machine learning-

based approaches to HPE and gait identification. Secondly, we aim to represent the variety of approaches to HPE and gait 

identification, to evaluate them, and to explore the relationships between them. We then identify various aspects of datasets 

and models which can be explored further or improved in future works. The study also explores the works relevant to the 

skeleton-based approaches to gait identification where we perform statistical tests to investigate the performance measures.  

2.2 Search Strategy 

Inspired by [168], Table 3 includes a list of keywords and permutations used to explore the HPE literature for this survey. 

The keywords are categorised into context and objective. Context refers to the HPE methods as required to achieve the 

objectives of the HPE elements of this survey. Objective refers to the objective of identifying body parts. Table 3 contains 

a list of permutations used within the set of keywords when inputting search phrases. The following database libraries were 

searched for this survey: IEEE Xplore, Science Direct, ACM Digital Library, Scopus, and Google Scholar (see Figure 1).  

To filter the vast research and find only relevant studies aligned with the objectives of this survey, we defined a range of 
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selection and quality assessment criteria that considers: a) only articles written in English; b) only articles published in 

peer-reviewed journals or conferences are considered to ensure the quality of research; c) non-repeated articles. 

Table 3. Keywords Used to Explore HPE Literature for this Survey 

Goal Keywords 

Context Human, Body, Human Body, Part-based, Model-based, Model-Free, Regression-based, Top-

Down, Bottom-Up 

Objective Detection, Identification, Estimation, Recognition, Recovery 

Permutations [(Context AND “Pose”) OR (Objective + Context + “Pose”)] AND (“Estimation” OR Tracking) 

Using the above search strategy, a variety of peer-reviewed studies are identified. Figure 1 shows that 31.9% of the 

papers reviewed are journal papers while the remaining 68.1% are conference papers. Figure 1 also shows the 

distribution of publishers where, publishers who account for 3% or less are categorised in ‘other’, this includes MIT, 

ACM (journal), AAAI, and CVPR. 

 

Figure 1. Distribution of Publication Types Used in this Study 

Using the above search strategy, a variety of peer-reviewed journal and conference papers were found. FIGURE 1 

shows that 31.9% of the papers reviewed were journal papers while the remaining 68.1% are conference papers. 

Figure 1 also shows the proportion of publishers, publishers who account for 3% or less are categorised in ‘other’, 

that includes MIT, ACM (journal), AAAI, and CVPR. 

3 DATASETS 

To develop and evaluate the HPE and gait recognition approaches, a dataset (labelled, unlabelled) is the primary 

requirement. Collecting, compiling, and labelling datasets is a time-consuming process and therefore, many studies 

leverage secondary datasets published in the literature. This section will provide a systematic review of existing datasets 

available for training and evaluating models for 2D HPE, 3D HPE, and gait identification. For HPE, single image frames 

are often sufficient, however, for gait identification video data of a complete gait cycle is required. Some datasets are larger 

in size and contain features for multiple tasks; therefore, they may appear in more than one table. Though most datasets 

include RGB, RGB-D, or motion capture data for HPE, some datasets for gait identification include data from devices such 

as wearable sensors, microphones and pressure sensors.  
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3.1 Datasets for Human Pose Estimation 

This section will review the datasets available for both 2D and 3D HPE, as listed in Table 4. Common trends and limitations 

will also be highlighted in the extended in the supplementary materials Table S5. Table 4 provides a summary of the current 

datasets available for both 2D and 3D HPE. It can be noticed the number of records contained in each dataset varies, 

ranging from 928 in [68] to 5.4 million records in [199]. In relation to labelling methods, majority of the 2D datasets 

include labelled keypoints comprising 2D coordinates of body joints in an image that are grouped for each person. As most 

of the 3D datasets are captured in motion capture laboratories, these usually provide 3D coordinates of the reflective 

markers worn by each person in the images. In addition to key point labelling, some datasets also provide semantic 

segmentation of objects and body parts.  

Table 4. Summary of Existing Datasets Available for 2D and 3D HPE 

Ref Dataset Name No. Records Labelling 2D/ 3D 

[90] Common Objects in Context (COCO) 200,000 Key points. 2D 

[3] MPII Human Pose 40,000 Key points, full 3D torso, and head orientation, 

occlusion labels for joints and body parts, and 

activity labels. 

2D 

[62] Human3.6M 3,600,000 Motion capture. 2D & 3D 

[205] PASCAL-Person-Part 3,533 Key points and body segmentation. 2D 

[67] Buffy2 Stickmen, Movie Stickmen ~6,000 Key points. 2D 

[154] Frames Labeled in Cinema (FLIC) 20,928 Key points. 2D 

[189] Synthetic hUmans foR REAL tasks (SURREAL)  67,582 Ground-truth pose, depth maps, and segmentation 

masks. 

3D 

[165] HumanEva 40,000 3D Markers, 2D position of Markers. 2D & 3D 

[108]  MuCo-3DHP 8,000 Marker-less motion capture. Occlusion annotation. 3D 

[72] PANOPTIC Studio 297,000 3D Pose. 3D 

[101] 3D Poses in the Wild 51,000 2D Pose and 3D Pose. 2D & 3D 

[71] Leeds Sports Pose Extended 10,000 Key points. 2D 

[37] Joint Track Auto (JTA) 500,000 Key points, 3D Pose. 2D & 3D 

[106] MPI-INF-3DHP >1,300,000 3D Pose. 3D 

[199] CSI 5,400,000 3D Pose. 3D 

[218] Actemes 2,326 Key points. 2D 

[68] Joint labelled Human Motion DataBase (J-

HMDB) 

928 Key points. 2D 

Despite the availability of variety datasets (as in Table 4), the quantity and diversity (e.g., unusual poses) is limited 

within these datasets. A common issue with HPE (which is discussed later in this study) is its difficulty in dealing with 

unusual poses. Unusual poses may include a person being upside down, or dynamic perspective (e.g., yoga exercise). 

However, the LSPE dataset includes images from a variety of sports where some of the poses in this dataset can be 

considered unusual [71]. 

Figure 2 presents an overview of several properties associated with the datasets listed in Table 4, including the number 

of viewpoints captured, the experimental environments, data labelling method, and occlusion labelling. The distribution 

helps in the identification of some limitations in the current datasets. For example, Figure 2 shows that only 9% of the HPE 

datasets reviewed contain multiple viewpoints, completely missing the 2D HPE. Approximately 42% of the datasets do 

not contain a variety of indoor and outdoor locations and only 4% of all datasets are 3D HPE datasets containing outdoor 

images (see Figure 2). The distribution of labelling types indicates that 84% of all HPE datasets contain only key point or 

marker-based labelling. The presence of occlusion labelling indicates that only 41% of datasets reviewed contains 

occlusion labelling. This is particularly important as occlusion is a significant problem in HPE and resolving this problem 
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may provide more reliable gait data for gait identification. Furthermore, the majority of the 2D datasets presented in Table 

4 are labelled with key points, usually the body joints. Microsoft’s COCO dataset is one of the most popular datasets for 

2D Pose estimation [91]. This is a large-scale object detection, segmentation, and captioning dataset and includes 91 

different object categories in 330,000 images [90]. The dataset includes challenging and uncontrolled conditions in both 

indoor and outdoor environments.  The COCO dataset has been used to train several high-profile 2D HPE methods such 

as OpenPose [20] and PersonLab [140]. 

 
Figure 2. HPE Dataset Properties in the Works Reviewed including Viewpoints, Environment, Labelling, and Occlusion Labelling 

In comparison, most of the 3D datasets are recorded in motion capture suites as listed in Table 4. While the 3D datasets 

are ordinarily restricted to an indoor environment such as a laboratory, green screens and synthetic images have been used 

in some cases to increase the diversity in background, such as in [62,106]. MuPots-3D is an exception to this as the authors 

used marker-less motion capture in outdoor environments [108]. HPE algorithms enable the construction of skeleton 

models from the key points and marker data [143,197]. While motion data such as optical flow can provide useful 

information for HPE [26], many of the datasets, such as COCO [91], Pascal-Person-Part [205], VGG [67], and FLIC [154], 
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primarily include single-frame images, therefore, it is not possible to extract motion information. To partially overcome 

this, the MPII dataset includes adjacent video frames to allow the extraction of motion information [3]. 

Due to the nature of human pose datasets, it can be difficult to guarantee the privacy to participants in the images. 

Therefore, some datasets contain only pre-processed images that provide only derived or silhouettes images such as in 

[10,23,190,196], as shown in Table 5. Synthetic images provide an opportunity to create data using partially or fully 

computer-generated images [127]. The manual labelling of data is a time-consuming task and therefore, the creation of 

synthetic images can help to automate this process. The Human3.6M dataset includes some mixed-reality images to 

increase the number of records in the dataset [62], and another dataset for 3D HPE presented in [189], SURREAL, is 

completely composed of synthetic images. Similarly, the JTA dataset is primarily composed of images taken from video 

games [37]. However, one limiting factor of the adoption of such datasets is validation of associated models (that are being 

trained over such synthetic datasets) in real-time settings. Overcoming this challenge may aid in the adoption of synthetic 

data, therefore increasing the amount of data available.  

Furthermore, existing datasets suffer from additional limitations, for instance, most of the datasets do not reflect real-

time environmental variations, with being confined to laboratories or simulated settings [165,199]. On the other hand, 

some datasets are labelled either incompletely or inconsistently [44,57]. Likewise, several datasets contain poor-quality, 

low-resolution images [221]. Although HPE and gait recognition are affected by the viewing angle, viewing angles are 

rarely labelled in the few datasets that provide footage from multiple angles [81,212].  

Another important factor in HPE and gait recognition datasets is clothing (wearing) which also affects the HPE and gait 

recognition accuracy [88]. However, very few datasets are available that include subjects in a variety of clothing, such as 

those presented in [106,108]. In addition, datasets recorded using marker-based motion capture restricts participants to 

skin-tight clothing with markers attached [106]. One alternative would be to use a marker-less system as presented in [72], 

allowing participants to wear a variety of clothing. However, this requires an expensive setup involving a purpose-built 

dome containing hundreds of cameras. Furthermore, the datasets listed in Table 4 do not contain a significant number of 

heavily crowded images. This ultimately leads to poor HPE model training and therefore affects the performance 

specifically, in real-time highly overlapped circumstances 

3.2 Datasets for Gait Identification 

This section will highlight the datasets available for gait identification. Table 5 highlights some of the most popular datasets 

in this area, including data from a range of sensors such as cameras, motion capture, and inertial sensors. An extended 

table in the supplementary materials, Table S6, highlights some of the advantages and disadvantages of the datasets. For a 

dataset to be useful for the problem of gait identification, it must contain multiple gait cycles per subject, preferably from 

separate walking exercises, provided by multiple subjects. Capturing multiple real-world environments, a variety of 

clothing, and footwear for the participants might enable the generalisation of the machine learning models being trained. 

Some of the datasets outlined in Table 5 were created for other domains such as healthcare, however, may be useful for 

gait identification. Though, it would first be necessary to ensure that the datasets include sufficient complete gait cycles 

per participant. It may be difficult to find a sufficient number of complete gait cycles where there are a limited number of 

records per participant, such as in [6,7,53]  

Table 5. Comparison of Existing Datasets that are Available for Gait Identification 

Ref Dataset Name No. Subjects No. Records Device Type 

[190] IST gait database 21 72 Digital Camera 

[33] Human Gait Phase Dataset 21 35,306 Motion Capture. 

[186,187] Human Gait (walking) Database 93 334 Phone Accelerometer. 



10 

 

 

Ref Dataset Name No. Subjects No. Records Device Type 

[27,28] HuGaDB: Human Gait Database 18 2,111,962 Inertial Sensors. 

[6,7] Gait Sounds 55 55 Audio. 

[23] Gait Silhouette Dataset 294 2,940 RGB Camera. 

[131,133] Gait Recognition Image and Depth Dataset  (GRIDDS) 35 350 RGB-D Camera. 

[55] TUM Gait from Audio, Image and Depth (TUM-GAID) 305 3,370 RGB-D, Microphone. 

[163,183] SOTON HiD 100 2,280 RGB Camera. 

[160] EMOGAIT 60 1,140 RGB Camera. 

[196] Unnamed  20 240 RGB Camera. 

[212] CASIA Gait Database: Dataset B 124 13,640 RGB Camera. 

[156] A multimodal dataset of human 

gait at different walking speeds established on injury-

free adult participants 

50 1,143 Motion capture, force 

plates, wireless EMG. 

[116] An elaborate data set on human gait and the effect of 

mechanical perturbations 

15 70,000 Motion capture, force 

plates, accelerometer. 

[172] OU-ISIR gait database, multi-view large population 

dataset (OU-MVLP) 

10,307 144,298 RGB Camera. 

 

[138] KinectREID 71 483 RGB-D Camera. 

[221] Motion Analysis and Re-identification Set (MARS) 1,261 ~20,000 RGB Camera. 

[176,200] PKU HumanID 18 216 RGB Camera. 

[53] Multi-shot Dataset 200 400 RGB Camera. 

[32] Reidentification Across indoor-outdoor Dataset (RAiD) 43 6,920 RGB Camera. 

[104] Wide area scenario dataset 70 4,786 RGB Camera. 

Figure S1 of the supplementary materials presents the distribution of the sensor types used to collect the primary data 

in Table 5. Only the image-based and motion capture datasets are appropriate for the skeleton-based approach to gait 

identification, which is the focus of this paper. This means that 70.8% of the datasets reviewed in this survey are appropriate 

for the skeleton-based approach to gait identification. One of the major limitations with image datasets is privacy and 

ethical concerns. Therefore some datasets, such as [23], opt to only provide the processed images and not the original RGB 

images, which prevents the use of the skeleton-based approach. Similarly, not all motion capture datasets include 

accompanying RGB images.  

In addition to privacy and ethical concerns, there are several common limitations related to gait recognition datasets. 

Firstly, availability and access to datasets is one the common challenges for researchers. For instance, several datasets are 

difficult to gain access to and require a formal application which is often time-consuming. Likewise, some datasets are 

described but are not made public, or are removed from public access [55,160].  Secondly, limited diversity in datasets is 

a major concern to be highlighted. Often participants within the datasets include work colleagues, students, and social 

contacts, etc., producing limited diversity in respect to ethnicity, age, gender, height, and weight [28,33]. Lack of diversity 

in datasets affects the machine-based models’ training and generalisation. Thirdly, the dynamic real-time environment and 

background are significant factors of image datasets. There are very few datasets considering variations of real-world 

outdoor and indoor environments [33,55,133]. However, generalisation of machine-based models might require 

comparatively larger-sized datasets comprising varying real-time dynamics.  Finally, many datasets are recorded from a 

single angle (perspective) [133,183], and others are inconsistent with their viewing angle recording [212]. Where there are 

multiple viewing angles, most datasets do not label viewing angles, as can be found in [138].  

Despite the existing datasets have shown to be adequate for developing gait identification algorithms and for the training 

of machine-based intelligent models, the aforementioned limitations should be considered while capturing datasets. Some 

major recommendations that may be considered while capturing datasets might include: i) Larger representation of 
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participants considering data diversity (e.g., ethnicity, age, gender, height, weight), ii) Include a range of clothing and 

accessories for each participant, iii) Multiple complete gait cycles per participant, iv) Record in multiple real-world 

locations (indoors and outdoors), v) Contain RGB data, vi) Record from multiple angles, annotate and publish the dataset. 

4 HUMAN BODY POSE ESTIMATION 

The HPE is a fundamental computer vision problem aiming to extract the posture of human bodies from input images by 

estimating the locations and connections of body segments  [25]. This section will review the methods and approaches for 

both 2D and 3D HPE. This section outlines the traditional taxonomy of 2D and 3D HPE as displayed in Figure 3 

[25,31,220]. The section also presents an overview of current 2D and 3D HPE methods, including the datasets used for 

training and evaluation of methods as well as corresponding metrics used for performance evaluation.  

 

 

Figure 3. Taxonomy of HPE Approaches 

4.1 Evaluation Metrics 

Various evaluation metrics have been utilised to evaluate HPE models and perform comparative analysis including; 

Intersection over Union (IoU), Mean Pixel IoU (mIoU), Average Precision (AP), Mean Average Precision (mAP), 

Percentage Correct Parts (PCP), Percentage of Detected Joins (PDJ), Percentage of Correct Key points (PCK), Head-

Normalized Probability of Correct Key point (PCKh), 3D Percentage of Correct Key points (3DPCK), Area Under the 

Curve (AUC), Object Key point Similarity (OKS), Average Distance of Key points (ADK), Mean Per Join Position Error 

(MPJPE), Normalised Mean Per Join Position Error (N-MPJPE), Proscrutes analysis Mean Per Join Position Error (P-

MPJPE), and Mean Per Joint Angular Error (MPJAE). A complete description of each of the evaluation metrics can be 

found in Section 1.2 of the supplementary materials. 

4.2 2D Human Pose Estimation 

The 2D HPE aims to extract estimated human body postures from an input image or video frame. Generally, the 2D HPE 

can be categorised into Single Person Pose Estimation (SPPE) and Multi-Person Pose Estimation (MPPE). As the name 

indicates, SPPE extracts a pose from only a single person per image, where MPPE can extract poses of multiple subjects 

in an image. The top-down approach to MPPE often implements SPPE where first object detection is used in the first step 

to extract individuals from an image, and then SPPE is used on each of the extracted individuals. The left-side tree in 

Figure 3 shows taxonomy of 2D HPE methods, which are explained in further detail in the following subsections.  As can 

be seen in Figure 3, 2D HPE has two top-level categories including SPPE and MPPE. The 2D SPPE can be further divided 
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into regression-based and body part detection-based approaches while the 2D MPPE category can be divided into the top-

down and bottom-up approaches. The top-down approach to MPPE often implements SPPE where first object detection is 

used in the first step to extract individuals from an image, and then SPPE is used on each of the extracted individuals. 

Table 6 summarises the existing studies addressing 2D HPE methods. Each method includes the relevant type and approach 

as per the taxonomy found in Figure 3.   

Table 6. A Comparison of 2D HPE Methods and Models 

Ref Year Dataset SPPE / 

MPPE 

Approach Model Metric Performance  

Score 

[20] 2021 COCO, MPII MPPE Bottom-Up CNN mAP 75.6% 

[52] 2020 COCO MPPE Bottom-Up FCN mAP 71.4% 

[19] 2020 COCO, MPII MPPE Top-Down CNN mAP 79.2% 

[5] 2020 LSP, MPII SPPE Body Part Detection CNN PCP 
PCK@0.2 

PCKh@0.5 

72.8% 
94.5% 

92.7% 

[58]  2020 COCO MPPE Top-Down Encoder - Decoder mAP 76.5% 

[214] 2020 MPII, COCO MPPE Top-Down Encoder - Decoder mAP 76.2 

[137] 2019 COCO MPPE Bottom-Up CNN mAP 42.8% 

[169] 2019 COCO, MPII MPPE Bottom-Up CNN mAP 

PCKh@0.5 

77% 

92.3% 

[215] 2019 MPII, LSP SPPE Regression CNN PCKh@0.5 

AUC 

91.1% 

65.9% 

[98] 2019 LSP, MPII SPPE Regression CNN PCKh@0.5 89.1% 

[34]  2019 FLIC SPPE Body Part Detection CNN PCK@0.2 96.4% 

[114] 2019 COCO MPPE Top-Down DNN OKS AP 73.6% 

[78] 2019 COCO MPPE Bottom-Up CNN mAP 66.7% 

[126] 2019 MPII, COCO, 
PASCAL 

MPPE Bottom-Up CNN mAP 78.5% 

[2] 2018 MPII, COCO MPPE Top-Down CNN mAP 68.7% 

[128] 2018 LSP, MPII SPPE Regression DNN PCKh@0.5 91.2% 

[140] 2018 COCO MPPE Bottom-Up CNN mAP 68.7% 

[97] 2018 Penn Action, 
JHMDB, LSP, MPII 

SPPE Body Part Detection CNN 

RNN 
PCK@0.2 93.6% 

[206]  2018 COCO SPPE Body Part Detection CNN mAP 76.7% 

[40] 2018 MPII MPPE Bottom-Up CNN PCKh@0.5 

mAP 

85.6% 

75.1% 

[59] 2017 CUB-200-2011, 
LSP, COCO 

MPPE Top-Down CNN PCK  84.5% 

[39] 2017 MPII, COCO MPPE Top-Down CNN mAP 76.7% 

[205] 2017 PASCAL MPPE Top-Down FCRF 

FCN 

mAP 
mIoU 

ADK 

39.2% 
64.39% 

40.7% 

[13] 2017 MPII, LSP SPPE Body Part Detection CNN 
RNN 

PCKh@0.5 

AUC 

88.1% 

58.8% 

[209] 2017 LSP, MPII SPPE Body Part Detection DCNN PCKh@0.5 92% 

[60] 2017 MPII MPPE Bottom-Up CNN mAP 73.3% 

[123] 2017 MPII, COCO, 
PASCAL 

MPPE Bottom-Up Stacked Hourglass 
CNN 

mAP 77.5% 

[21] 2016 MPII, LSP SPPE Regression CNN PCP 81% 

[124] 2016 FLIC, MPII SPPE Body Part Detection CNN PCKh@0.5 90.9% 

[144] 2016 LSP 
MPII 

MPPE Bottom-Up CNN PCP 
PCK 

86.5% 
63.6% 
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Ref Year Dataset SPPE / 

MPPE 

Approach Model Metric Performance  

Score 

mAP 54.1% 

[61] 2016 LSP, MPII MPPE Bottom-Up CNN PCK 

mAP 

66.1% 

70% 

[201] 2016 MPII, LSP, FLIC SPPE Body Part Detection CNN PCK 90.5% 

[89] 2016 MPII, LSP SPPE Body Part Detection CNN PCKh@0.5 

PCP 

89.4% 

84.3% 

[17] 2016 MPII, LSP SPPE Body Part Detection CNN PCKh@0.5 

PCK 

89.7% 

90.7% 

[45] 2016 MPII, Penn Action SPPE Body Part Detection CNN 
RNN 

PCKh@0.5 

PCK 

86.1% 

91.8% 

[65] 2015 FLIC MPPE Bottom-Up CNN PDJ 87% 

[38] 2015 LSP, LSPE, FLIC SPPE Regression CNN PCP 84% 

[178] 2015 FLIC, MPII SPPE Body Part Detection CNN PCKh@0.5 82% 

[180] 2014 FLIC, LSP SPPE Regression DNN PCP 61% 

[85] 2014 FLIC, Buffy 
Stickmen 

SPPE Regression CNN PCP 75.27% 

[146] 2014 LSP, FLIC SPPE Body Part Detection DNN PCP 72% 

[154] 2013 FLIC, Buffy  
PASCAL  

SPPE Body Part Detection SVM PDJ 70% 

Figure 4 shows the proportions of each method present in the literature reviewed in this survey as summarised in 

Table 6 for both 2D HPE (a) and 3D HPE (b). The bar chart presented in Figure S2 of the supplementary materials displays 

the accuracies of the works presented in Table 6 in mAP and Figure S3 shows PCKh@0.5. In both cases, the higher the 

bar the better the accuracy. The best performing works were [5,20] which are discussed in the following subsections.  

 

 

Figure 4. The Proportions of HPE Types Reviewed in this Study (a) 2D HPE, (b) 3D HPE 

4.2.1. The 2D Single Person Pose Estimation 

As mentioned previously, the 2D SPPE aims to estimate the pose of a single person per input image. In cases where 

multiple persons are present in an image, the image is automatically cropped so that only one person is present in each sub-
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image, then SPPE can proceed on each sub-image. To extract the single-person sub-images, a full-body detector such as 

[52,148], or an upper-body detector such as [110] have been utilised. Generally, 2D SPPE are divided into two categories; 

regression, and body part detection, as described in the following subsections.  

4.2.1.1 Regression 

Regression methods employ an end-to-end framework to automatically learn the mapping from an input image to body 

joints or the parameters of the body model [180]. Table 6 presents several regression-based approaches to 2D SPPE such 

as [21,98,128,215]. The progress of regression approaches, as with other approaches, is being accelerated by deep learning 

methods. Table 6 shows that in recent years, deep learning approaches, particularly Convolutional Neural Networks 

(CNNs) have become increasingly popular for the 2D SPPE task. The switch to deep learning approaches has accelerated 

the improvement in accuracy up to 79.2% mAP. DeepPose [180] is a cascaded deep neural network regressor with the 

ability to identify key points within the input images. For image classification, DeepPose bases its architecture on the DNN 

on the work by Krizhevsky et al. [79]. Carreira et al. propose an Iterative Error Feedback (IEF) network [21] which uses 

the GoogLeNet [170]. The IEF is a self-correcting network that feeds the estimation error back into the input [220]. Luvizon 

et al. [98] propose an end-to-end regression approach using soft-argmax to convert feature maps directly into body joint 

coordinates, resulting in a fully differentiable framework. This method can learn heat map representations indirectly, 

without the need to generate artificial ground truth.  

Table 6 further indicates that the best performing 2D SPPE in the regression category is FPD [215] with a PCKh@0.5 

of 91.1%. Although satisfactory levels of performance have been achieved using the regression-based approach, it does 

not outperform the body part detection methods, as discussed in the following subsection. A major factor that limits the 

performance of the regression-based approach is that current solutions do not exploit the structural information contained 

in the human body pose [87]. 

4.2.1.2 Body Part Detection 

The body part detection method aims to train a body part detector to estimate the locations of body joints [220]. This 

typically consists of two stages, first heatmaps are generated for key points, followed by the assembling of the estimated 

key points into body poses. Much of the recent work has considered body part detection as a heatmap detection problem 

[2,19,20,137]. To assemble the detected body parts into a body pose, PoseTrack surrounds the detected person with a 

bounding box and then declares the maxima of heatmaps as belonging together [2]. An alternative approach is to use 

heatmaps which provide richer supervision information compared to joint coordinates, by preserving spatial location 

information [220]. This information is ideal for training CNNs and has resulted in a growing interest in leveraging CNNs 

for the purpose of HPE [5,13,17,34,45,89,97,124,146,178,201,206,209]. Table 6 shows that the best performing body part 

detection-based method is achieved by Debnath et al. [34] with a PCKh@0.2 of 96.4%. As mentioned previously, this 

performance and the performance of other body part detection methods are higher than that of regression-based methods. 

Although body part detection methods have shown excellent performance, however, they are prone to estimating false 

positives [143].  

4.2.2 2D Multi-Person Pose Estimation 

The 2D MPPE aims to estimate the poses of multiple subjects from an input image and can be mainly categorised into the 

top-down, and bottom-up approaches. Furthermore, Table 6 shows that deep learning-based approaches are gaining in 

popularity due to better performance. Figure 3 presented a general taxonomy of 2D HPE whereas, [194] introduced a 

specific taxonomy of deep learning-based 2D MPPE. Deep learning-based MPPE can be further divided into one-stage or 
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two-stage. The two-stage approaches can be further categorised into top-down and bottom-up methods similar to that of 

the general approach shown in Figure 3. Details of each of the sub-categories and approaches are provided in the following 

sub-sections. 

4.2.2.1 The 2D MPPE: Two-Stage Top-Down Approach 

The initial step of the two-stage top-down MPPE approach is person segmentation. This step aims to place each person 

inside an individual bounding box by using standard person detection methods such as Faster R-CNN [148], or Mask R-

CNN [52]. Pose estimation can then be performed on each of the identified people where 2D coordinates for key points of 

each individual are identified in an input image or video frame are estimated. The key points are then connected to create 

a 2D representation of the body pose of identified individual. Once the subjects are detected, the SPPE techniques can then 

be used to estimate the key points for each identified person and then to connect the key points to form an estimated pose 

[220]. The computing time in this approach is positively correlated with the number of individuals in image frame/s. Table 

6 shows several recent studies that use this approach for 2D MPPE along with the performance outcomes.  

An alternative approach to 2D MPPE is target representation that aims to estimate joint locations and can be further 

divided into two methods: coordinate-based and heatmap-based methods. Coordinate-based methods output two-

dimensional coordinates of body key points. DeepPose was the first to use Deep Neural Networks (DNNs) for the problem 

of HPE [180]. DeepPose implements a cascade of DNN regressors and iteratively estimates joint coordinates via multi-

stage refinements [194].  Coordinate-based methods such as DeepPose are intuitive, however, the method loses spatial 

information which can reduce the accuracy of the pose estimation. Heatmap-based methods, such as [124,169,179], manage 

to retain special information. Heatmap-based methods instead use the Gaussian heatmap as the learning target to encode 

the position of the joint [194]. Tompson et al. [179] presented the use of Gaussian heatmaps in HPE. Heatmap-based 

methods have been shown to reduce overfitting which is otherwise problematic for coordinate-based methods [17]. 

However, heatmap-based approaches are restricted by the resolution of the heatmap which is not consistent with the input 

image. Furthermore, obtaining key point coordinates is another limitation in the heatmap approach involving conversion 

of coarse coordinates in the heatmap to the input space, which influence the quantization error [194]. There are several 

methods available to mitigate this issue including: prior knowledge-based methods [124,215], soft argmax-based methods 

[98], and offset regression-based methods [58].   

Another problem related to 2D MPPE is the variability in the scale of people in an image. To resolve the scale variance 

problem,  multi-scale feature learning strategies, such as [180,201],  have been developed. In DeepPose, the initial-stage 

regressor crudely estimates the position of key points in the full image while additional regressors take sub-images to learn 

the offset between the estimation and the true location [180]. Convolutional Pose Machines (CPM) [201] also follow a 

multi-stage process where heatmaps from previous stages are concatenated with low-level features to prevent vanishing 

gradients when training. The CPM reports a PCK of 90.5% [201] however, it indicates difficulties in separating the pose 

estimations when multiple subjects are in close proximity of each other.  

Despite its success, the MPPE like other machine learning tasks can suffer from overfitting. To address this, Peng et al. 

[194] designed an adversarial data augmentation network based on Generative Adversarial Networks (GANs) [47], and 

reinforcement learning [111] and achieved improved performance by optimising them together. Toyoda [181] achieved 

improved HPE performance on images involving extreme and wild motions by implementing rotation augmentation. In 

addition to overfitting, person detectors often return redundant detections which may raise IoU scores in person detectors. 

This have been resolved by removing the redundant boundary boxes [39,141,216,217]. Papandreou et al. replaced IoU 

with OKS in Non-Maximum Suppression (NMS) to consider key points [141].  Zhang used soft-NMS which resets the 
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redundant bounding boxes with low scores [216]. Parametric Pose NSM removes invalid key points generated by redundant 

detections in the post-processing [39].  

4.2.2.2 2D MPPE: Two-Stage Bottom-Up Approach 

In the bottom-up approach, key points are first identified in the image frame which is grouped into individual subjects and 

then joined together to form estimated poses [220]. Typically, the computing time for the bottom-up approach is lower 

than the top-down approach [220] as separate key points detection for each person is not necessary. As shown inTable 6, 

bottom-up methods indicate better performance [123]. An example of the bottom-up approach is DeepCut [144], which 

performs graph-based joint parsing in the form of an Integer Linear Program. Insafutdinov et al. adapt the deep Residual 

Network (ResNet) [124] for sliding window-based human body part detection (DeeperCut) [110] and DeepCut [109]. In 

contrast to graph-based approach, Cao et al. [20] perform greedy parsing on a tree structure to reduce complexity. 

While the bottom-up approaches indicated satisfactory performance (up to 77.5% mAp in Table 6), they must overcome 

the foreground-background imbalance. This is an issue in which an infinite number of negative examples can be sampled, 

in comparison to a relatively small finite number of regions of interest, leading to an imbalance of negatives and positives 

[134]. OpenPose and PifPaf address the foreground-background class imbalance by using a greedy parsing algorithm to 

group key points for each individual [20,78]. Likewise, Simple Pose [84] is an alternative solution, where focal loss aims 

to tackle hard-to-learn pixels by balancing gradients of easy and hard samples. 

4.2.2.3 The 2D MPPE: One-Stage Approach 

In the one-stage MPPE approach, joint position estimation and the grouping of joints are performed in a single step. Recent 

work presented by Wang et al. [194] suggests that this approach harnesses the benefits of the two-stage approach whilst 

overcoming some of its limitations. The bounding box approach assigns key points to a subject only when the key points 

are located within the bounding box [52]. Associative embedding identifies the joint assignment as a tag regression task 

[124,169]. An alternative to the bounding-box method is the Offset-based method which aims to encode the connection 

between joints for key point assignments by aggregating offsets [126,140].  

4.2.3 The 2D Pose Estimation Summary 

Deep learning techniques have accelerated the performance in 2D HPE. Table 6 summarises several deep learning solutions 

indicating robustness for 2D SPPE including DeepPose [180], and the Stacked Hourglass Network [124]. The table also 

reports the examples of efficient approaches for 2D MPPE including RMPE [39] and OpenPose [20]. While addressing 

the task of 2D HPE, several studies have explored the use of temporal and special information to boost HPE 

[5,65,97,169,202,206]. The findings from MoDeep highlight the usefulness of motion features alone to outperform some 

traditional methods of HPE [65]. Gong et al. [46] suggested that motion cues such as optical flow provide useful 

information to aid in the extraction of key points, while the motion of rigid parts can aid in the identification of body joints. 

DeepFlow [202] utilises optical flow to better connect predictions between frames for a more continuous detection. Current 

methods involving optical flow calculate optical flow as a pre-processing step, however, machine learning solutions to 

calculating optical flow in real-time still need to be resolved. Motion-based features require at least two frames to compare, 

however, this is not feasible for most of the datasets available and therefore, further research in this area might be inhibited 

by the lack of relevant datasets. 

This section presented both the body part detection and regression-based approaches to 2D SPPE. As mentioned earlier, 

the best performing body part detection-based method is achieved by Debnath et al. [34] with a PCKh@0.2 of 96.4%, and 

the best performing 2D SPPE in the regression category with the same metric reported was Unipose [5] with a PCKh@0.2 
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of 92.5%. Both approaches have their strengths and limitations as reported in previous subsections. This section has also 

reported on both the top-down and bottom-up approaches to 2D MPPE, Table 6 shows that the top-down approach has 

achieved the best performance with RSN [19] reporting mAP of 79.2%, whereas the best performance of a bottom-up 

method was OpenPose [20] with an mAP of 75.6%. However, the bottom-up approach has an advantage in speed as the 

input image goes through the network only once, whereas in the top-down approach each identified individual must go 

through the network, resulting in a slower performance [31]. 

Despite the success reported, there are additional limitations in the existing datasets including the larger datasets such 

as COCO [91] and Human3.6M [62] which provide a plethora of usual poses such as standing and walking. However, 

considerably fewer records of unusual poses such as upside-down and yoga poses are available in existing datasets. 

Therefore, generalise training of the models to detect and accurately estimate human poses may be a challenge [220]. Also, 

several works such as [114] report results based on a single dataset, often the COCO dataset without considering the data 

diversity. Reporting results from multiple datasets allows evaluating the model generalisation for alternative datasets. 

4.3 3D Human Pose Estimation 

The 3D HPE aims to extract an estimated 3D posture from an image and is a challenging compared to 2D HPE due to 

depth estimation of key points. It can be noticed from Table 4 that very limited datasets are available for 3D HPE as 

compared to 2D HPE datasets. Furthermore, these datasets are mostly limited to constrained, simulated and controlled 

environments such as motion capture laboratories. Very fewer datasets are captured in real-world environments with 

dynamic conditions such as varying backgrounds and moving objects, etc. For 3D HPE, there are two main types of input 

that include single view (i.e., images from only a single camera) or multi-view (i.e., images from multiple cameras placed 

at various angles). Like 2D HPE methods, 3D HPE can be categorised into SPPE and MPPE approaches as shown in the 

right-side tree of Figure 3 which is almost like that of 2D HPE is except for few differences. For instance, 3D HPE has 

top-level categories that include single view or multi-view. Likewise, 3D SPPE is classified as model-free or model-based 

which is not the case with 2D HPE. The 3D HPE methods will be described in further detail in the following subsection.  

Table 7. A Comparison of 3D HPE Methods in Relation to Datasets used, Models and Performance Outcomes 

Name Year Dataset SPPE/ 

MPPE 

Approach Model Metric Performance 

Score 

[199] 2021 CSI Image SPPE Model-Based DNN P-MPJPE 29.7mm 

[107] 2020 MarCOnI, 3DPW MuCo-
3DHP, MPI-INF-3DHP 

MPPE Bottom-Up ResNet MPJPE 
3DPCK 

AUC 

98.4mm 
82.8% 

45.3% 

[150] 2020 Human3.6M, MPII LSPE, 
MuPoTS-3D 

MPPE Bottom-Up CNN 

RPN 
3DPCK 74% 

[193] 2020 MuPoTS-3D, CMU Panoptic MPPE Top-Down RPN 

ResNet 

3DPCK 

MPJPE 

43.8% 

30.5mm 

[14] 2020 JTA, MuPoTS-3D, CMU 
Panoptic 

MPPE Top-Down FPN 3DPCK 83.2% 

[115] 2019 COCO, Human3.6M, 
MuPoTS-3D 

MPPE Top-Down ResNet 3DPCK 31.5% 

[26] 2019 Human3.6M, HumanEva MPPE Top-Down 

Model-Based 

DNN 

CNN 

MPJPE 

P-MPJPE 

42.9mm  
32.8mm 

[223] 2019 Human3.6M, HumanEva, 
MPI-INF-3DHP 

SPPE Model-Free CNN 

ResNet 
MPJPE 39.9mm 

[83] 2019 Human3.6M, MPII, MPI-INF-
3DHP 

SPPE Model-Free CNN MPJPE 52.7mm 
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Name Year Dataset SPPE/ 

MPPE 

Approach Model Metric Performance 

Score 

[4]  2019 Human3.6M, HumanEva, 
3DPW 

SPPE Model-Based ResNet MPJPE 77.8mm 

[188] 2018 SURREAL, Unite the People SPPE Model-Based CNN MPJPE 49mm 

[135] 2018 UP-3D SPPE Model-Based CNN MPJPE 59.9mm 

[213] 2018 Human3.6M, CMU Panoptic  MPPE Top-Down DNN MPJPE 48mm 

[87] 2018 MPII, Human3.6M SPPE Regression CNN MPJPE 48.3mm 

[108] 2018 MuCo-3DHP, Human3.6M, 
MuPoTs-3D 

MPPE Bottom-Up CNN 3DPCK 75.2% 

[106] 2018 Human3.6m,  
MPI-INF-3DHP 

SPPE Model-Based CNN MPJPE 
3DPCK 

AUC 

54.6mm 
57.3% 

28% 

[100] 2018 3DPW, Total Capture 

 
MPPE Top-Down,  

Model-Based 
CNN MPJPE 

MPJAE 

26mm 

12.1% 

[149] 2018 Human3.6M SPPE 

 
Model-Based CNN MPJPE 

N-MPJPE 

P-MPJPE 

131.7mm 
122.6mm 

98.2mm 

[99]  2018 MPII, Human3.6M, Penn 
Action, NTU 

SPPE Regression CNN 

 

MPJPE 

 
53.2mm 

[151] 2017 Human3.6M, MPII, LSPE MPPE Bottom-Up CNN 

RPN 
MJPE 72.7mm 

[224] 2017 MPII, MPI-INF-3DHP SPPE Model-Based CNN PCK 

AUC 

69.2% 

36.9% 

[174] 2017 MPII, Human3.6M, 
HumanEva, KTH, LSP 

SPPE Model-Free CNN MPJPE 69.7mm 

[24] 2017 Human3.6M, MPII SPPE Model-Free CPM MPJPE 

PCKh@0.5 

82.7mm 
88.5%  

[117] 2017 HumanEva, Human3.6M SPPE Model-Free CPM MPJPE 87.3mm 

[142] 2017 HumanEva, Human3.6M, 
KTH 

SPPE Model-Free CNN MPJPE 71.9mm 

[177] 2017 Human3.6M SPPE Model-Based CPM MPJPE 88.4mm 

Table 7 provides an overview of the existing 3D HPE methods including the relevant type and approach as per the 

taxonomy found in Figure 3. The bar chart in Figures S4 and S5 of the supplementary materials display the accuracy levels 

of the works presented in Table 7. Accuracies are reported in MPJPE (mm) and 3D PCK (%). Therefore, for MPJPE the 

smaller the bar, the higher the accuracy whereas, for 3D PCK the larger the bar the higher the accuracy. Figures S4 and S5 

show that the best performing works are [100,115] which are described in the following subsections. 

4.3.1 The 3D Single Person Pose Estimation 

This subsection presents a range of 3D SPPE techniques that are mainly categorised as model-based or model-free as 

explained in the following subsections. Like 2D SPPE, 3D SPPE also performs person detection in the first step following 

image segmentation to isolate the identified person boundary within the image.  

4.3.1.1 Model-Based 3D SPPE 

The model-based approaches for 3D SPPE, sometimes referred to as generative model approaches, which utilise a 

parametric body model template to estimate the human pose [25,155]. These approaches received significant attention in 

recent years [4,106,135,149,177,199,224]. By taking into account the human body’s appearance, structure, and motions 

related to activities, model-based approaches can reduce the search space [143]. These approaches can further be classified 

into the kinematic (or skeleton) model and the volumetric model. The kinematic model, as employed in [24,100,108,142], 

include a set of joint positions and limb orientations to represent the human body structure [31]. It is the most widely used 



19 

 

 

model for 3D HPE. The major advantage of the kinematic model is its simple representation using graph data structures 

[100]. The volumetric model, on the other hand, is used in 3D human reconstruction, and unlike the kinematic model, it 

can represent texture and shape information. BodyNet is one of the few methods as shown in Table 7 which makes use of 

the volumetric model [188] while deploying the Skinned Multi-Person Linear model [95]. Alternatively, the planar model 

[220] is also available for the 2D HPE estimation only. Another example of the model-based approach is presented by 

Zhou et al. [222] which validates regressed poses by employing a kinematic model to enforce orientation and rotation 

constraints by adding a kinematic layer in the framework to map the motion parameters to the joints. Nie et al. [125], and 

Lee etal. [82], use skeleton-LSTM to learn the depth information from global human skeleton features, leveraging joint 

relations and connectivity [31]. Chen and Ramanan [24] estimated the 3D postures from 2D kinematic models based on 

anthropometric, kinematic, and dynamic constraints.  

4.3.1.2 Model-Free 3D SPPE 

In contrast to the model-based approach, the model-free 3D SPPE approach automatically learns the mapping between 

appearance and body pose leading to faster and precise estimations for certain actions [143]. While extensive literature is 

available for the model-free HPE [24,83,117,142,174,223], this approach has several limitations such as use of 

conventional methods (e.g., background subtraction) producing poor generalisation of poses [143]. In contrast, various 

existing studies take a direct estimation approach by inferring the 3D pose from 2D images without performing 2D HPE 

[86,87,142]. For instance, Sun et al. [87] proposed a structure-aware regression approach employing a bone-based 

representation reporting more stability than joint-based models. This work defines a compositional loss based on the long-

range interactions between the bones [220]. Similarly, to convert the non-linear 3D coordinate regression problem into a 

more manageable discrete form, Pavlakos et al. [142] propose a volumetric representation. 

The alternative to direct estimation is 2D to 3D lifting, where 3D HPE is inferred from a 2D pose estimation which is 

performed as an intermediate stage [220] and outperformed the  direct estimation. Chen and Ramanan [24] used DNNs to 

lift 2D pose estimations to 3D pose estimations using nearest neighbour matching to implement a memorisation 

mechanism. Moreno-Neuger [117] formulates the 3D HPE task as a 2D to 3D distance matrix regression problem. This 

approach was found to better in handling the missing observations and allowed for the positions of non-observed key points 

to be hypothesised [117]. On the other hand, Zhou et al. [223] found that using the 2D to 3D lifting approach caused 

uncertainty due to the inherent ambiguities of the approach. They instead introduced an intermediate state Part-Centric 

Heatmap Triplets, to shorten the gap between the 2D estimation and the 3D interpolation [223]. The work was shown to 

generalise well to “in-the-wild” images where only weakly annotated 3D information is available [223].  

4.3.2 The 3D Multiple Person Pose Estimation 

This subsection presents a range of 3D MPPE techniques which can be categorised into top-down, or bottom-up 

approaches. Figure 3 indicates the position of 3D MPPE in the 3D HPE hierarchy.  

4.3.2.1  The 3D Top-Down MPPE Approaches 

Similar to the 2D top-down approach, 3D top-down MPPE also uses person detection in the first step to isolate and segment 

each person in an image. Then the root (i.e., the centre) of the identified individual, usually the pelvis, is localised which 

is then used for the root-relative 3D pose estimation, aligning all poses to the world coordinate [115].  Table 7 presents a 

variety of recently introduced 3D top-down models. For instance, Moon et al. [115] proposes a machine learning-based, 

camera distance-aware approach to 3D MPPE for single images. The work introduces RootNet, to estimate the camera-

centred coordinates of each detected person, and PoseNet, to then estimate the root-relative 3D pose of each individual 
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[115]. An alternative approach is LCR-Net that generates potential poses for each individual and refines these using a 

regressor [151]. However, LCR-Net lacks the generalisation to real-world images, and therefore LCR-Net++ was trained 

with synthetically augmented training data to address the issue [150]. A further alternative is proposed by Li et al. [193] 

which addresses the lack of a global perspective in the top-down approach by introducing a form of supervision, 

Hierarchical Multi-person Ordinal Relations (HMOR). HMOR captures the body part and joint level semantic while 

maintaining global consistency by encoding interaction information as ordinal relations of depth and angles hierarchically. 

4.3.2.2 The 3D Bottom-Up MPPE Approach 

The first step in the 3D bottom-up approach is the estimation of joint locations and depth maps. The estimated joint 

locations and body parts are then associated with the individual subjects, according to the root depth and part relative depth 

[220]. One of the major issues with the bottom-up approach is the occlusion occurrence due to hidden-view of joint 

locations that has been addressed in several works. As an example, Mehta [109] presents Occlusion-Robust Pose-Maps 

(ORPM) which produces full-body pose estimations even under strong partial occlusion. ORPM uses body part association 

to allow for the inference of 3D poses without explicit bounding boxes. Similarly, Zhen et al. [219] regresses a set of 2.5D 

representations of body parts and then from this, reconstructs the 3D poses using a depth-aware part association algorithm 

by reasoning about inter-person occlusion and bone-length constraints. Mehta [107] also presented the SelecSLS Net 

architecture which infers 2D and 3D pose encodings for visible joints which then reconstructs 3D body poses based on the 

results of a person detector. Finally, refinement is performed for temporal stability and kinematic skeleton fitting. 

4.3.3. The 3D Pose Estimation Summary 

To summarise, the 3D HPE is more complex problem as compared to 2D HPE. The reliance on motion capture data implies 

that most datasets are captured in a laboratory setting. It would be useful to acquire the dataset from RGB and motion 

capture data acquisition in varying real-world environments while making use of the portable motion capture hardware. 

Without a dataset captured in a real-world environment, it will remain a challenge to develop a generalised model for the 

real-world scenarios (i.e., images and environments). Figure 5 summarises the distribution of HPE datasets utilisation 

grouped by HPE category. Datasets which account for less than 2% of the distribution are categorised as ‘other’. The MPII, 

COCO, and LSPE datasets are mostly cited and referenced in 33.33%, 21%, and 19.3% of the 2D HPE literature reviewed 

respectively. Although the FLIC dataset has been referenced in 11.4% of all the 2D HPE literature reviewed, it has only 

been cited once in the last five years. This is likely because authors have shown a preference for creating custom-made 

datasets, rather than collating existing images from movies and other similar online resources. For 3D HPE, the literature 

contains a wider variety of datasets as compared to 2D HPE. The most cited dataset of the 3D HPE literature reviewed is 

Human3.6m and is referenced in 34.6% of the articles reviewed. 

Table 7 shows that the best performing 3D SPPE method is Wi-Mose [199], a model-based approach, reporting an 

MPJPE of 29.7mm. This is better than the best performing model-free method, HEMlets Pose [223] with MPJPE of 

39.9mm. However, model-free approaches indicated faster performance than model-based approaches [143]. Likewise, 

model-free approaches are sensitive to appearance changes while model-based approaches struggle to extract reliable body 

models from gait sequences [210] the subject of the next section. Table 7 also indicate HMOR [193] being outperforming 

3D MPPE method (a top-down method), with an MPJPE of 30.5mm. This was better than the best performing bottom-up 

method, LCR-NET [151], which reported an MPJPE of 72.7mm. As with 2D MPPE, the top-down approach provides the 

best accuracy. However, bottom-up approaches deliver faster performance because they run the image through the model 

or network only once as compared to top-down approaches executing for each identified individual.  
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Researchers have only recently begun to harness the deep learning for 3D HPE [101,129] however, it is likely to follow 

2D HPE in terms of its popularity and acceleration of accuracy improvement. As discussed in Section 4.2.3, recent works 

have initiated the exploration of the use of temporal features such as optical flow for 2D HPE. To the best of the authors’ 

knowledge, this has not yet been explored for 3D HPE, however, this may present opportunities to improve the estimation. 

The success of top-down 3D HPE is highly dependent on the recent developments in person identification and SPPE. As 

with the 2D HPE, the computational complexity may increase significantly with increasing numbers of individuals in an 

image. Likewise, due to the cropping performed by the person detectors, a significant amount of background information 

may be eliminated by the top-down approaches leading to inaccurate depth estimations. In contrast, bottom-up approaches 

benefit from linear increments in computational time with respect to the number of individuals identified in an image. 

 

Figure 5. Distribution Summary of the Datasets Usage Grouped by the Related HPE Category 

5 GAIT IDENTIFICATION 

Gait refers to a person’s manner of walking and has shown to be a unique biometric identifier for the person identification. 

Concerning person identification, gait recognition has significant advantages over other identification methods such as 

facial recognition and fingerprint identification. For instance, it is possible to identify subjects via their gait at a distance 

or a low resolution when other methods (e.g., face matching) may fail under these circumstances [139,173]. Studies have 

shown that it is difficult for a person to disguise their unique gait as this usually impedes movement [130]. Gait analysis is 

also of great importance to physiotherapists and for rehabilitation where it can be used as a tool to identify and aid in the 

treatment of unhealthy gait [185]. Physiotherapy is costly and labour intensive and therefore, by using automatic gait 

analysis, individuals at home can accelerate their recovery by completing exercises at home with automated feedback. 

Person identification or re-identification via gait analysis has the advantages of being unobtrusive. It does not require 

the cooperation of the subject, can be measured at a distance, is unique to each individual, and cannot be easily faked or 

concealed [120]. However, person identification via gait does have its limitations such as variation in gait due to illness, 

age, and emotional states [35,160]. Gait can also vary based on the walking surface, types of clothing, objects being carried 
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and clutter in the environment [120]. Accurate HPE and a skeleton-based approach may provide a method of analysing 

gait in a way that is not affected by clothing, environmental clutter or personal appearance.  

Gait analysis can be performed using a variety of sensors including cameras, pressure sensors and inertial sensors. The 

use of pressure sensors and inertial sensors is less well documented for the application of person identification as compared 

to the computer vision approach. This is likely because the use of such sensors requires some contact and consent from the 

subject. The use of computer vision approaches has the advantage of being more passive and can perform gait analyses of 

a subject from a distance, without their knowledge, though consent would be required unless performed by concerned 

authority (e.g., police and security agencies). A selection of gait datasets created with the intention of supporting person 

identification is shown in Table 8 along with Table 9 presenting the related studies utilising these datasets. 

Table 8. A Comparison of Existing Gait Datasets for Person Identification 

Dataset Name No. Subjects Description Dataset Name No. Subjects Description 

CASIA-datasetA [196] 20 Outdoor KinectREID [138] 71 Indoor 

CASIA-datasetB [196] 124 Indoor I-LIDS [182] 119 Indoor 

SOTON (large) [163] 114 Indoor MARS [221] 1,261 Outdoor 

TUM-GAID [55] 305 Indoor PKU [176] 18 Outdoor 

OU-MVLP [172] 10,307 Indoor PRID2011 [53] 983 Outdoor 

The datasets presented in Table 8 have several limitations. A common limitation is a relatively low number of 

participants such as in [138,176,196]. Likewise, many datasets are limited to indoor environments only, such as in 

[55,138,163,172,182,196]. Although Mars [221] contains a variety of participants in real-world environments, the recorded 

videos are inconsistent in terms of the viewing angle and distance from the participants and does not label the angles or 

distances which affects the estimated key point locations required for the skeleton-based approaches. On the other hand, 

some datasets such as [182] are no longer available for the public use.  

Table 9. Performance Analysis of Gait-based Person Identification 

Ref Approach Dataset No. 

Subjects 

Rank-1 CMC rate / mean CCR 

(Unless otherwise stated) 

[198] Discriminative Selection in Video Ranking. PRID2011, iLIDS-
VID,  
HDA+ 

200 
300 

83 

40% 
39.5% 

54.3% (5fps), 52% (2fps) 

[121] Multi-modal feature fusion of 3D soft biometric cues. Vislab KS20 20 39.6% 

[122] Context-aware ensemble fusion. Vislab KS20 20 74.67% (No Context) 

82.33% (Cross-context) 

[15] Marker-less feature extraction. iLIDS 20 92.5% 

[8] Fisher Linear Discriminant + Maximum Margin 

Criterion (MML). 

CMU Graphics 

MOCAP 

464 75%-85% (ROC) 

The literature provides numerous approaches to person identification using gait, Table 9 summarises several of the 

cutting-edge solutions [120]. Many studies used the traditional silhouette-based approach to gait analysis for person 

identification [190,196]. While other works take a skeleton-based approach to gait recognition for person identification 

using RGB images [173,210] or depth images [121]. For instance, Yao et al. [210] used Skeleton Gait Energy Images 

(SGEIs), and the results showed improvements over traditional Gait Energy Images (GEIs) when participants used 

additional clothing items such as long coats. Alternatively, several works use a CNN approach to extract the gait features 

[173,207]. As an example, Xie et al. [207] make use of additional information with cross-modal embedding layers to help 

focus on each person’s prominent distinctions. Similarly, Upadhyay et al. [184] perform HPE and analyse gait to identify 

people with the use of deep learning. There are alternative to computer vision techniques for identifying people via their 
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gait such as use of the footstep sounds [22,162]. Likewise, studies have identified  pressure sensors on the floor as being 

useful to identify people [136,145]. 

To analyse gait for person identification, rehabilitation, or other purpose, it is necessary to extract distinguishing 

features, which will provide relevant clues regarding a person’s gait. These features may include walking velocity, cadence, 

stride duration, stride length, and stride width [153]. A traditional method of analysing gait involved computing a gait cycle 

into a single Gait Energy Image (GEI) [96,173]. GEI preserves dynamic and static information of a gait cycle such as the 

appearance and shape of the body and the variation and frequency of the gait phase [96]. The two major approaches for 

gait feature extraction from RGB images are the traditional silhouette approach [155] and the more recent skeleton 

approach [173]. The silhouette approach involves extracting the silhouette or outline of the human body from the scene, 

while the skeleton approach involves extracting an HPE skeleton from the image. Study presented in [173] shows a 

comparison of the different gait representation methods of a person in the CASIA-B [212] gait dataset at different timesteps 

[173]. Each row depicts the same frames as the original RGB image, silhouette image, and 2D skeleton pose, respectively 

[173]. It is observed that the RGB image includes background details, whereas the silhouette image extracts the individual 

from the background. Furthermore, study reported that the silhouette image is affected by the accessories worn by the 

individual whereas, the skeleton pose contains only estimated joint locations and representations of their connections. 

Figures S6 and S7 of the supplementary materials present a comparison of the gait identification accuracies for both 

the silhouette-based and the skeleton-based approaches. Both approaches include examples of works that achieved over 

90% accuracy. Figures S6 and S7 show that the highest accuracy work belongs to the silhouette-based approach. Both 

approaches and the individual works are explored in sections 5.1 and 5.2. The remaining section mainly focuses on gait 

feature extraction techniques from RGB images as well as alternative methods, which have been reported in the literature.  

5.1 Silhouette Approach 

Silhouette extraction is an important step in many computer vision tasks such as gait recognition [176], body part 

segmentation [10], and HPE [193]. Object detection methods such as the Haar Cascade Classifier [191] can be used first 

to detect human body within the image frame. The identified body is then isolated from the background image, leaving 

only the binary silhouette of the body as shown in [173].  

Once a silhouette image is achieved, various feature extraction methods can be used to analyse gait, including GEI, 

Gait Energy Image on Depth Data (depth-GEI), Gait Energy Volume (GEV), and Depth Gradient Histogram Energy Image 

(DGHEI) [55]. GEI assumes that all gait information can be captured in a single gait cycle and therefore averages the data 

captured over one full cycle [50]. This method discards a lot of information from each cycle; however, it may remove some 

of the noise that is captured. From RGB data alone, silhouettes can be of low quality and may not accurately capture the 

outline of the body [55]. An alternative to GEI is Depth-GEI, which can overcome some of these limitations by using depth 

data to produce a higher quality GEI. A further alternative to GEI is GEV, which is an extension to GEI to average the 

three-dimensional binary voxel volumes [167]. Another feature extraction method, DGHEI, uses the concept of averaging 

feature vectors of each frame of a gait cycle, as with the standard GEI. DGHEI also uses the edges and depth gradients 

available in the depth data [54]. Luo et al. [96] propose Accumulated Frame Difference Energy Image (AFDEI) as a method 

of considering time within a GEI. AFDEI is calculated by combining forward frame difference image with backward frame 

difference image.  The accumulated frame difference energy image is obtained using the weighted average method.  

There are a few studies such as CASIA-B [212] providing pre-processed silhouettes as part of their dataset to aid other 

works. Alternative studies, [172] provide only silhouettes instead of RGB images, to eliminate the need to share identifiable 

images of participants. As an example, Chauhan [23] provides such a dataset containing silhouettes only. 
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Table 10. Comparison of Silhouette-based Approaches to Gait Recognition 

Ref Year Features / Extraction Methods Models / Classifiers Accuracy 

[203] 2022 GEI GAN 51.78% 

[176] 2019 GEI RankSVM N/A 

[190] 2018 GEI K-Means Clustering 92% 

[96] 2017 GEI, AFDEI Nearest Neighbour (NN) 88.7% 

[161] 2016 GEI Convolutional Neural Network (CNN) <= 89.7% 
[204] 2015 GEI CNN <= 90% 

[81] 2009 View Transformation Model (VTM) based on GEI Linear Discriminant Analysis (LDA)  <= 90% 

[50] 2006 GEI Euclidean Distance Classifier (EDC) <= 89% 

[94] 2005 Body shape, gait stance shape K-Means Clustering 78% 

[196] 2003 Principal Component Analysis (PCA) NN, Nearest Neighbour with respect to class 

exemplars (ENN) 

82.5% 

 

Table 10 provides an overview of silhouette-based approaches to gait analysis and identification, including the features 

used for recognition and the accuracy of gait recognition. As evident in Table 10, GEI is a popular approach for extracting 

gait features from silhouette images. Recent studies explore the deep learning techniques for gait recognition from GEI 

[161,204]. GEINet [161] achieved recognition accuracy of 89.7% when using GEIs in a CNN designed for gait recognition. 

The model was trained over the OU-ISIR dataset [64]. Although the dataset contains 4007 subjects with diverse 

characteristics, it also has limitations such as limited range of view variations. Likewise images were captured in a green 

environment to enable easier silhouette extraction [64,161]. Similarly, Wu et al. [204] uses CNN while utilising adjacent 

video frames as input from which 4,096-dimensional frame-level features are extracted. The features are then forwarded 

to a Multilayer Perceptron (MLP) for gait recognition producing up to 90%accuracy [204]. However, this model ignores 

motion between frames that could be helpful to improve recognition rates.  

Obtaining a silhouette image can also be used as a starting point for other methods. For example, Jalal et al. [66] 

identified key points in the silhouette to obtain a skeleton model with a body part detection rate of 90.01% [66]. Although 

this approach reported successful detection, it does not report the accuracy of the pose estimation. Furthermore, the model 

was not trained to overcome occlusion.  Similarly, Barnard et al. [10] trained Hidden Markov Models with labelled 

synthetic images to label silhouette body parts which is further used to annotate data automatically. However, this model 

also does not produce pose estimation for the estimated body parts. 

While silhouette-based gait analysis indicates satisfactory outcomes in several recent works, a common problem with 

the silhouette model is that it tends to differ when taken from different angles. To resolve this, View Transformation Model 

(VTM) transforms gait features, as in [81,176], from multiple gallery views to the probe view for allowing the evaluation 

of gait similarity. However, it is not possible to use the VTM approach when the viewing angle is unknown or is not 

included in the predefined views. Tian et al. [176] address this with their View-Adaptive Mapping (VAM) where the 

viewing angle of the gait sequence is estimated and a Joint Gait Manifold (JGM) is used to find the optimal manifold 

between the probe data and relevant gallery data to evaluate gait similarity [176]. Alternatively, Wen et al. [203] transform 

the GEI to 90° normal state using GANs. A related issue occurs when cameras are placed in an elevated position, such as 

on a hill or attached to a streetlight, the top-down view can often cause self-occlusion where one body part hides another. 

Verlekar et al. [190] propose a solution to this problem, by using shadows as a means of obtaining a less occluded 

silhouette. Though this partially solves the problem of occlusion, it has other associated issues. For example, the solution 

does not perform well without appropriate lighting conditions [190]. Also, slopes and environments can distort shadows 

and obstacles (and their shadows) can occlude shadows [190].  
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In summary, the literature reports success when using the silhouette approach as summarised in Table 10. However, 

many of the datasets used has various limitations that mainly include insufficient variety of participants, variety in real-

world environments or varied viewing angles, and comprising the pre-processed silhouette images or GEI without the 

original RGB data. Likewise, the silhouette approach itself also has some limitations. For example, clothing and accessories 

can alter the appearance of the silhouette and image quality may also affect the silhouette produced.  

5.2 Skeleton Approach 

It can be noticed from [173] that the outline of the binary silhouette images can be easily affected by clothing and 

accessories. A possible solution is the skeleton approach that aims to produce a consistent skeleton pose estimation 

regardless of what the participant is wearing or carrying. The motion of human skeletons provides a significant amount of 

information about the subject, their activities, and gait. To implement the skeleton-based approach, a skeleton for each 

individual must be extracted using HPE, as previously discussed, with visualisation examples shown in [173].  

Table 11. A Comparison of Existing Skeleton-based Approaches to Gait Recognition 

Ref Year Features / Extraction Methods Models / Classifiers Accuracy 

[147] 2021 CAGEs Neural Network (NN) <=92% 

[173] 2021 Graph GCN <=87.7% 

[160] 2021 Graph AT-GCN 92.2% 

[88] 2020 Joint angles, limb lengths, and joint motions CNN <=76.1% 
[211] 2019 SGEI CNN <=82.33% 

[139] 2019 Pose + 3D Face  Decision Tree 92.3% 

[210] 2018 SGEI CNN <=92.09% 

[11] 2018 Pose TGLSTM 98.4% 

[121] 2017 Pose NN 96.67% 

[1] 2014 Joint Angles K-Nearest Neighbour (KNN), MLP 80% 

[9] 2012 3D Pose K-Means Clustering 43.6% 

Table 11 presents a range of skeleton-based approaches to gait including the feature extraction methods, models and 

classifiers used, in addition to the accuracy achieved. One skeleton-based feature extraction approach is SGEI, a GEI that 

is generated from HPE skeletons rather than silhouette images which have been discussed earlier. It was first proposed by 

Yao et al. [210], achieving a recognition accuracy of 92.09%, as shown in Table 11, and has recently grown in popularity. 

SGEI starts with real-time HPE which identifies 13 key points in the limbs and the torso. The key points are then used to 

calculate or extract features such as thigh swing and step period. SGEI has shown to be more robust to changes of clothes 

when compared to other methods such as GEI [210,211].  

An alternative skeleton-based feature was recently proposed by Rao et al. [147] introducing Constrastive Attention-

based Gait Encodings (CAGEs) as a distinct feature representing the gait effectively. It performs 3D HPE firstly, to gain a 

3D skeleton from which gait features can be extracted. This approach differs from other existing work, such as [139], as it 

provides a self-supervised method to encode discriminative gait features from unlabelled 3D skeletons [147]. Unlike 

[11,51,88], this approach does not require hand-crafted features or prior data annotations for supervised gait representation 

learning [147]. This method achieved gait recognition accuracy of 92% [147] as shown in Table 11. Despite the advantages 

and accuracy of this model, it is limited in several ways. For example, the dataset used to train the model is relatively small 

[147]. Similarly, the model considers only skeletons generated using high-quality data such as depth data and therefore, it 

is unknown whether this model would generalise well in uncontrolled environments such as the outdoors [147]. Finally, 
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the estimated skeletons are modelled as body-joint sequences on different dimensions which may not capture underlying 

relations between the joints [147].  

Earlier skeleton-based works, such as [76,92], relied on traditional CNNs which are not optimised for the graph-

structured data, though recognition accuracy of  92.2% was achieved [160]. More recently, several studies have used graph-

structured data when working with HPE data for tasks such as activity recognition and gait recognition. As an example, 

Graph Convolutional Networks (GCNs) has been proposed as a generalisation of CNNs to work with graph-structured data 

[16]. The GCNs are capable of automatically learning both spatial and temporal patterns from data. Early use of GCNs 

focused on human activity recognition [164,208]. Studies have shown that GCNs can be used for the problem of gait 

recognition [160,173]. For example, GaitGraph [173] reported 87.7%, 74.8%, and 66.3% recognition accuracy on the 

CASIA-B [212] dataset with normal walking, with a bag, and with a coat or jacket respectively. The reported accuracy is 

lower than the state-of-the-art silhouette approaches, such as the 92% reported in [190]. However, the silhouette-based 

approaches use appearance to aid recognition which may not be considered as true gait recognition [173]. The work 

presented in GaitGraph [173] suggests that true temporal gait features can be used to recognise gait alone.  

An alternative graph-based learning approach, Time-based Graph Long Short-Term Memory (TGLSTM), is proposed 

in [11]. It is inspired by Recurrent Neural Networks (RNN) and consists of Long Short-Term Memory (LSTM) nodes 

alternating to full connected layers. TGLSTM achieved the highest gait recognition accuracy (98.4%) as reported in Table 

11. In contrast to RNNs, the TGLSTM model works in a frame-by-frame manner while learning the skeleton joint features 

as well as the information extracted from the changes in the adjacency matrix over time [11]. With deep learning, the model 

can exploit temporal data, including how new connections are formed and old ones broke to learn long short-term 

dependencies. However, in this method each skeleton is a polygonal approximation which is not a natural-looking skeleton. 

Another alternative graph-based learning approach known as Attention Enhanced Temporal Graph Convolutional 

Network (AT-GCN) is presented by Sheng and Li [160]. The model produced a recognition accuracy of 88.9% on the 

TUM-GAID [55] dataset and 92.2% on their dataset, EMOGAIT [160], which is not currently available to the public. This 

solution attempts to identify participants via their gait, predict future frames of the gait, and finally predict emotions, such 

as sadness, from the gait data [160]. Another study presented by Pala et al. [139] suggests that combining the skeleton-

based approach with facial recognition techniques can outperform the individual methods. In this work, the authors 

combined the traditional 2D skeleton approach with a 3D model of the face using a depth sensor and reported an accuracy 

of 92.3%. However, this model indicated appropriateness for only certain distances between the camera and the participant. 

In summary, the accuracy of the skeleton-based approaches shown in Table 11 is almost like that of the silhouette-

based approaches shown in Table 10. Table S1 of the supplementary materials provides a statistical comparison of both 

approaches where the t-test outcome indicates no significant difference between the means of both approaches. This is 

despite the fact that silhouette images also contain visual clues which can help identify individuals [173], however, such 

visual clues may not be available outside of controlled environments, for example, varying lighting conditions or clothing 

worn. Therefore, a comparison of the approaches using a more dynamic real-world dataset would be more informative. 

Some models such as [173] indicate good performance by utilising gait features only, however, the authors in [139] suggest 

that combining gait and appearance may provide higher recognition accuracy. A detailed discussion on the alternative 

approaches, technologies, and applications of gait analysis is provided in Section 1.6 of the supplementary materials. 

6 DOMAINS AND APPLICATIONS 

HPE and real-time gait analysis have been employed in various domains and have a substantial impact via diverse 

applications within these domains. Gait has been used as soft biometric data, which may prove useful for security and 



27 

 

 

governance bodies such as law enforcement for criminal identification or missing person identification. Accurate HPE and 

gait analysis could also be used in real-time analysis within sports for commentary or coaching. Another potential domain 

where this technology could have an impact in healthcare, particularly in detecting abnormal gait for disease diagnosis and 

rehabilitation. This subsection will introduce several such domains and applications.  

6.1 Person Identification 

There are many scenarios where accurate person identification is required including border control, access control, criminal 

identification, authentication systems, safety systems such as construction and environmental, missing person 

identification, and many more. Biometric identifiers are distinctive physiological characteristics of a person which may be 

used to label and describe or identify a person. Examples of biometric identifiers include fingerprints, DNA, iris recognition 

and facial recognition etc. As discussed in earlier sections, gait has been considered as an important biometric identifier. 

The use of DNA, fingerprints and iris recognition are difficult to perform without the knowledge or cooperation of the 

individual that requires identification. The literature shows that humans and machines can recognise people by their gait 

[63,120]. The use of facial recognition and gait analysis can be performed covertly, at a distance and without the knowledge 

of the individual. As discussed previously, facial recognition has several limitations, specifically in the case of low-quality 

images such as blurry images, background noise, or when the face is hidden etc. On the other hand, gait analysis has an 

advantage over facial recognition specifically because it is extremely difficult for someone to disguise gait without 

inhibiting movement. Also, the need for high-resolution images is not a major requirement here.  

6.2 Healthcare 

Abnormal gait can be identified and corrected through physiotherapy. Physiotherapy is costly, labour intensive, and 

involves long waiting times for treatment. Gait rehabilitation could be aided and accelerated with regular home exercise, 

guided by an automated feedback solution [75]. An example is proposed by Ropars et al. [152], which used motion capture 

data to analyse the range of motion in the shoulders of participants. The method can assess shoulder hyperlaxity, a main 

risk factor for shoulder instability. Similarly, [12] used motion capture technology to diagnose knee injuries. Likewise, it 

may be possible to create an alternative diagnostics system using HPE in place of the motion capture suite. In addition to 

diagnosis and gait rehabilitation, [77] shows that gait analysis provides the potential identification of gait imbalance and 

fall prediction, such solutions may enable quick response to incidents, for example, fallers in care homes. 

6.3 Sports and Sports Coaching 

Sport is an integral part of many people’s lives and plays a significant role in individuals’ quality of life. It is important to 

play sports with the correct posture and techniques to perform to the highest standards, avoid injuries and avoid future 

health issues [73]. The analysis of gait has been proven as an effective method of quantifiably comparing athlete’s 

performance, particularly for sports such as sprinting [36]. It presents the opportunity to allow clinicians and sports coaches 

to analyse the biomechanics of athletes and to aid them in becoming more effective in their sport. Similarly, for sports such 

as boxing, judo, snooker, javelin, cricket, and football, whole body posture is important for optimal performance. HPE can 

offer the opportunity to automatically analyse athletes’ performance to aid with sports coaching. 

One example of automated coaching is presented by Tharatipyakul et al. [175] that uses HPE to compare the tai chi 

technique between a user’s video and a trainers video. They were able to use this comparison to verify the accuracy of the 

user’s movements for their tai chi training. To estimate the user’s performance, the average angular difference of the 

shoulder, hip, upper and lower arms, as well as upper and lower legs between the trainer and the participant was calculated. 
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The authors did not implement any automated coaching in this solution. Similarly, Takeichi et al. [171] used HPE to 

analyse the performance of runners, using six metrics; speed, step frequency, step length, vertical oscillation, trunk angle, 

arm swing angle and leg swing angle. Again, the authors did not implement any automated feedback for the participants. 

Similarly, Wang et al. [195] used HPE to track athletes while they ski. They implement a novel HPE model by refining 

coarse heatmaps generated by a basic image HPE model. This approach successfully estimates unusual body poses such 

as an upside-down person, which is especially important for sports such as skiing and snowboarding. In the current 

implementation, feedback is relatively simple where poses are classified as either good or bad and users are alerted when 

they perform a bad pose. However, prescriptive feedback on how to improve the bad poses is not currently provided.  

The reviewed studies indicate that a variety of work already published in sports and athlete analysis while there is a 

significant opportunity for researchers to build on this work, especially for sports coaching. If it is possible to track an 

athlete’s body pose, then it must be possible to provide qualitative feedback on their pose in a real or near-real time manner. 

For example, if a system can analyse a boxing guard based on the angle and position of their arms, it should be a trivial 

problem to provide feedback on whether the boxer should raise or lower their guard, bring their hands closer together or 

further apart. During the literature review, the authors are not aware of any solutions which provide this type of feedback.  

7 DISCUSSION 

Many datasets for both HPE and gait identification have been reviewed as part of this survey. Two of the most popular and 

most practical datasets are COCO[91], and Human3.6m [62]. Both datasets contain a large number of instances with high 

quality labelling, however, they are several limitations in both datasets. For example, COCO lacks a variety of unusual 

poses and comprises a single viewpoint, whereas Human3.6m is restricted to a laboratory environment and contains limited 

diversity in subjects. These limitations are typical of the existing datasets currently available. Similarly for the gait datasets, 

TUM-GAID [55] and SOTON HiD [183] provide a large number of subjects along with multiple gait cycles per subject. 

However, like other datasets, they are limited in terms of the diversity of environments, viewpoints, and subject clothing. 

Detailed recommendations for an improved dataset are provided as future directions in section 8. 

In relation to existing HPE models and approaches, Table 6 indicated that he top-down approach has achieved the best 

2D HPE performance with RSN [19] reporting mAP of 79.2%. However, it has associated limitations, for example, the 

computational cost is directly affected by the number of subjects in an image. Similarly, this method often suffers from 

redundant person identifications. Furthermore, the top-down approach to 3D HPE is limited by the same challenges as that 

of the 2D problem. The top-down approach often implements SPPE as the second step after identifying person in an image. 

The SPPE regression methods currently perform lower as compared to the body part detection methods. For example, the 

best accuracy was reported by Debnath et al. [34] with a PCKh@0.2 of 96.4%. Although body part detection methods have 

shown excellent performance, however, they are prone to estimating false positives [143].  

The 3D HPE is a more challenging problem than 2D HPE due to estimation for the depth dimension in addition to the 

2D coordinates of key points. Wi-Mose [199], a model-based approach was the best performing 3D SPPE method, 

reporting an MPJPE of 29.7mm. This is a better performance than the best performing model-free method, HEMlets Pose 

[223] with MPJPE of 39.9mm. However, model-free approaches have indicated faster performance than model-based 

approaches [143]. Likewise, model-free approaches are sensitive to appearance changes while model-based approaches 

struggle to extract reliable body models from the gait sequences. 

Gait identification (as mentioned previously in section 5) can be categorised into the silhouette-based approaches and 

the skeleton-based approaches. Most significantly, the skeleton-based approaches have been performing gait identification 

independent of personal appearance, unlike the traditional approaches which do not guarantee the identification using 
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purely gait data [139,210]. However, the statistical analysis provided in Table S1 of the supplementary materials does not 

show significant difference (p=0.608) between the mean accuracy of both approaches at present. The authors are not aware 

of any current attempts towards implementing gait identification using 3D HPE. Such a solution might potentially offer 

the additional information and features, such as stride width, which is not possible using 2D HPE. 

8 CONCLUSIONS AND FUTURE WORKS 

This study has surveyed a plethora of approaches and applications of gait analysis using computer vision techniques such 

as HPE. This survey has also provided a comprehensive review of the datasets and technology available to support gait 

analysis and person identification. This includes a comprehensive review of HPE approaches and solutions which are 

imperative to the implementation of gait analysis techniques following a skeleton-based approaches. A comparison of both 

the traditional silhouette-based approaches and the more recent skeleton-based approaches has been provided and the 

advantages of the skeleton-based approaches have been highlighted. This survey should provide the reader with sufficient 

direction to aid them in exploring and developing skeleton-based gait analysis and identification which will prove useful 

in a variety of domains and applications. It has also identified several limitations in the literature which provide ample 

opportunity for researchers to make significant contributions in a vast range of domains. Potential ideas for future work 

are as follow: 

• The 3D HPE-based gait analysis for person identification that would allow for additional gait features to be extracted, 

such as stride width. Currently, there has been limited progress in this area. 

• HPE-based crime or violence detection and classification. By training machine learning models to identify criminal 

actions, it would be possible to automatically alert law enforcement agencies about a crime in real-time. There are 

sporting datasets available that may aid in the training of models to identify actions such as punching, kicking, and 

throwing which would be key indicators of violence in the real world. The authors are unaware of any specific crime-

based datasets available. 

• Optic flow has been shown to provide useful data for gait analysis and person identification. Current methods require 

optic flow to be pre-calculated during pre-processing stages. It would be beneficial if machine learning models could 

be trained to automatically detect and calculate the optic flow in real or near-real time. The authors are not aware of 

any attempt to implement this solution. Similarly, research is necessary to further explore the use of optic flow as a 

method of analysing gait. 

• Generally, the current methods of HPE are dependent on machine learning models learning to identify the key points. 

This has been shown to cause some limitations such as the difficulty dealing with key point occlusion. Developing a 

solution without this dependency would provide a useful alternative approach. This can be achieved using body part 

segmentation and localisation however, may require the development and/or labelling of a dataset. 

• There are ample opportunities to train machine learning models to effectively coach individuals for a range of sports 

and martial arts based on data derived from HPE and gait analysis. 
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